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Abstract
Bilingual children cope with a significant amount of phonetic variability when processing
speech, and must learn to weigh phonetic cues differently depending on the cues’
respective roles in their two languages. For example, vowel nasalization is coarticulatory
and contrastive in French, but coarticulatory-only in English. In this study, we
extended an investigation of the processing of coarticulation in two- to three-year-old
English monolingual children (Zamuner, Moore & Desmeules-Trudel, 2016) to a group
of four- to six-year-old English monolingual children and age-matched English–French
bilingual children. Using eye tracking, we found that older monolingual children and
age-matched bilingual children showed more sensitivity to coarticulation cues than the
younger children. Moreover, when comparing the older monolinguals and bilinguals,
we found no statistical differences between the two groups. These results offer support
for the specification of coarticulation in word representations, and indicate that, in
some cases, bilingual children possess language processing skills similar to monolinguals.
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Introduction

Processing spoken language is a complex task, in part due to the multi-dimensional and
variable characteristics of speech. This ability continues to develop throughout
childhood, even into adolescence (Rigler, Farris-Trimble, Greiner, Walker, Tomblin
& McMurray, 2015). Language complexity is further intensified in multilingual
contexts: learners who are exposed to more than one language also receive more
variable speech input (Byers-Heinlein & Fennell, 2014), and the multiplicity of
phonetic cues from different languages can create challenges for the learner. The way
that bilingual learners cope with variability is not well documented, especially in the
context of spoken word recognition. Coarticulation, a process where sounds in words
influence each other (Fowler, 1980), is an ever-present source of phonetic variability.
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Here, we investigate how children use fine-grained phonetic information (i.e.,
coarticulation) during word processing. First, we examine potential developmental
changes between younger and older monolingual children. Second, we compare how
older monolingual and bilingual children process coarticulation cues within words to
examine the influence of bilingualism on language processing.

Coarticulation processing in adults and children

Coarticulation and phonetic variability impact spoken word recognition in adults
(Archibald & Joanisse, 2011; Beddor, McGowan, Boland, Coetzee & Basher, 2013;
Dahan, Magnuson, Tanenhaus & Hogan, 2001; Desmeules-Trudel & Zamuner, 2019;
Gow, 2003; McMurray, Clayards, Tanenhaus & Aslin, 2008; McMurray, Tanenhaus &
Aslin, 2002; Salverda, Kleinschmidt & Tanenhaus, 2014) and children (Cross
& Joanisse, 2018; Johnson & Jusczyk, 2001; Mahr, McMillan, Saffran, Weismer &
Edwards, 2015; Paquette-Smith, Fecher & Johnson, 2016; Zamuner, Moore &
Desmeules-Trudel, 2016). One coarticulatory phenomenon that influences auditory
word recognition in monolingual English-speaking adults and young children is
vowel nasalization (Beddor et al., 2013; Zamuner et al., 2016). Regressive vowel
nasalization is a well-known coarticulatory pattern in English: vowels are partially
nasalized before nasal consonants (Beddor, 2009; Cohn, 1990). The gesture
associated with the nasal consonant (i.e., lowering of the velum) starts early and
overlaps with the preceding vowel. This results in a vowel that has a different
acoustic quality than when it is followed by a non-nasal consonant, likely due to a
general loss in spectral energy (Delattre, 1965; Maeda, 1993) and the emergence of
nasal formants and antiformants (Fujimura, 1962; Kurowski & Blumstein, 1993). In
perception, Beddor et al. (2013) found that English adult listeners recognize words
with nasal consonants (e.g., scent) more quickly when the vowel was nasalized for a
longer proportion of its duration than when it was nasalized for a shorter period.
This indicates that coarticulation cues that occur early in the speech signal
contributed to faster recognition of the target than coarticulation cues that occur late
in the signal, even though nasalization cues are noncontrastive, optional, and variable
in English. This finding demonstrates that listeners use coarticulatory vowel
nasalization as a cue to word recognition. This evidence also suggests that word
representations are rich and include some amount of fine-grained phonetic detail
(see also Browman & Goldstein, 1986; Pierrehumbert, 2002) which are traditionally
considered redundant in the literature on lexical and phonological storage
(Archangeli, 1988; Keating, 1988; Lahiri & Marslen-Wilson, 1991; Steriade, 1995).

Only a few studies have investigated the influence of coarticulation on word
processing in development. Mahr et al. (2015) demonstrated the influence of
coarticulation across word boundaries in 18–24-month-olds. In another study,
Paquette-Smith et al. (2016) showed that two-year-old toddlers (2;0 to 2;5 years old)
were able to detect mismatches in a variety of coarticulation cues within words,
suggesting that children can use subphonemic (i.e., fine-grained phonetic detail)
information during spoken word recognition. This finding is further supported by
Zamuner et al. (2016), who found that two- and three-year-old (monolingual)
toddlers, as well as adults, use regressive vowel nasalization during online spoken
word recognition. In the procedure, participants were presented with spoken words
that had been cross-spliced to manipulate coarticulation cues. For example, the oral
vowel from the word boat [boʊt] was replaced with the nasalized vowel from the
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word bone [bõʊ̃n] (the tilde represents nasalization on the vowel), yielding a stimulus
with a mismatching nasalized vowel [bõʊ̃t]. Adults and children were able to perceive
the mismatching vowel nasalization, as indicated by the fact that they looked towards
the image of the bone when they heard boat presented with a nasalized vowel.
However, while adults ended up fixating the target boat well above chance by the
end of the mismatching ([bõʊ̃t]) trials, young children were unable to resolve the
ambiguity caused by the cross-splicing. Instead, children hovered around chance
towards the end of the trial, as if they could not decide which of the two words they
had heard. This pattern of results showed time-dependent sensitivity to
coarticulation cues in toddlers, but also suggested that young listeners had difficulty
resolving phonetic mismatches, which could be attributed to children’s relative
inefficiency in resolving lexical competition compared to adults (Huang & Snedeker,
2011; Rigler et al., 2015; Sekerina & Brooks, 2007; Swingley, Pinto & Fernald, 1999).
As a tentative explanation based on Huang and Snedeker (2011) who found that
five-year-old children showed continued interference from a competitor word,
Zamuner et al. (2016) hypothesized that the smaller number of exemplars in
memory may yield less robust word representations, and therefore result in lower
activation of the target word when the auditory stimuli contained mismatches.
Another complementary hypothesis was based on the less mature processing system
in toddlers, yielding different competitor inhibition mechanisms (Huang & Snedeker,
2011) and thus difficulties in recognizing ambiguous stimuli. This is an open
question, as little work has examined the development of the link between spoken
word processing and competitor inhibition in children (e.g., with nine-year-olds and
sixteen-year-olds, see Rigler et al., 2015). However, the general finding seems to be
that children are slower than adults at activating targets and inhibiting competitors
(Cross & Joanisse, 2018; Huang & Snedeker, 2011; Rigler et al., 2015). In our study,
we compare and extend the findings with toddlers from Zamuner et al. (2016) with
a group of older monolingual children (4;3 to 6;5 years old), to investigate whether
older children are better able to resolve mismatching coarticulatory cues.

Second language perception and phonetic variability

In addition to competition and inhibition mechanisms, exposure to phonetic variability
has been shown to significantly impact lexical processing and word learning in children
(e.g., Rost & McMurray, 2009) as well as adult second language (L2) processing
(Barcroft & Sommers, 2005). However, the picture is not as clear for bilingual
children. In their review article, Byers-Heinlein and Fennell (2014) argue that
exposure to more than one language often results in more phonetic variation in the
input for young learners, which could in turn result in maintained sensitivity to
more phonetic contrasts than monolinguals. For example, bilinguals can be exposed
to two languages from the same person or within code-switched sentences
(Byers-Heinlein, 2013), and speech sounds produced by bilinguals are often different
from monolinguals (MacLeod & Stoel-Gammon, 2009). Bilingual learners are thus
exposed to greater variability than monolinguals in general. Therefore, given that
exposure to variability influences early lexical processing (Rost & McMurray, 2009),
bilingual learners are expected to maintain sensitivity to phonetic distinctions in
both of their languages (for a review of the process in adults see Flege, 2007), i.e.,
they ought to discriminate more contrasts than monolinguals (Burns, Yoshida, Hill &
Werker, 2007; Kuhl, Conboy, Coffey-Corina, Padden, Rivera-Gaxiola & Nelson, 2008;
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Sundara, Polka & Genesee, 2006). However, monolingual children are expected to
maintain sensitivity to distinctions that are contrastive in their native language but
lose this ability for foreign contrasts, as has been repeatedly shown in the literature
(Kuhl et al., 2008).

To date, very little work has been conducted on the interplay between phonetic
details and word recognition in bilingual children, a process that depends on the
ability to distinguish sounds. Some work has examined how monolinguals and
bilinguals process a Catalan vowel contrast between /ε/ and /e/, which maps to a
single vowel category in Spanish. Children’s sensitivity to this contrast appears to
depend partly on the stimuli used. In one study which included cognates
(Ramon-Casas, Swingley, Sebastián-Gallés & Bosch, 2009), Catalan–Spanish bilingual
children (aged 17 to 27 months) were insensitive to the /ε/-/e/ contrast. However, in
a study using novel words (Ramon-Casas, Fennell & Bosch, 2017), bilinguals aged 21
and 22 months were able to perceive the /ε/-/e/ contrast. While the work by
Ramon-Casas and colleagues illustrates the variation in phonemic perception
between monolinguals and bilinguals, these studies do not examine how bilingual
children cope with coarticulatory information within spoken words. It is important
to make this distinction because phonetic cues differ across languages in how they
are realized (Cohn, 1990). For example, as mentioned above, vowel nasalization is
coarticulatory, non-contrastive and variable in English (Beddor, 2009); vowel
nasalization is not necessary for recognizing words in English, e.g., the word scent
can be realized with a vowel that is more or less nasalized and listeners will
recognize the word anyway. However, languages like French have phonological
nasalization on vowels (Cohn, 1990), which can be variably realized as well, where
words differ based solely on vowel nasalization (e.g., pain [pε̃] ‘bread’∼ paix [pε]
‘peace’), and in which phonological nasalization is expressed through longer
nasalization duration on the vowel (Desmeules-Trudel & Brunelle, 2018). French
learners must remain phonologically sensitive to vowel nasalization duration to
differentiate between words, while the same cue does not indicate meaning
differences between words for English listeners (i.e., variable nasalization duration
always corresponds to a coarticulatorily nasalized vowel in English) even though the
cue can be used to speed up word recognition.

When it comes to bilingual children’s perception of phonetic properties that are
present in both of their languages (e.g., vowel nasalization for English–French
bilinguals, however with different phonological status in their languages), little is
known concerning the perception of sublexical (e.g., coarticulatory) information.
However, we know that young monolingual children’s word recognition patterns are
significantly influenced by coarticulation (Paquette-Smith et al., 2016; Zamuner et al.,
2016) and bilingual children can maintain sensitivity to phonetic properties in more
than one language (Burns et al., 2007; Kuhl et al., 2008; Ramon-Casas et al., 2017;
Sundara et al., 2006).

This thus leads us to the first formal goal of the current study, which is to investigate
if bilingual children are more or less sensitive to (mismatching) coarticulatory cues than
monolinguals. Specifically, we aim to determine if the presence of contrastive vowel
nasalization in the L2 (French) has an influence on the perception of nasal
coarticulation (i.e., non-contrastive) in the L1 (English). In the current study, we
operationalize sensitivity to nasal coarticulation through potential disruptions in the
word recognition patterns of items that contain phonetic mismatches (i.e., the
presence of a nasalized vowel in an oral-consonant context, see below for specific
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methods). Based on previous research, we expect that bilingual children will display
sensitivity to coarticulation, just like their monolingual peers. However, no strong
predictions can be made as to whether bilinguals’ sensitivity will be lesser, equal to,
or greater than that of monolinguals. On the one hand, some studies have
documented that monolinguals and bilinguals show similar processing abilities (e.g.,
Byers-Heinlein, Fennell & Werker, 2013; Legacy, Zesinger, Friend & Poulin-Dubois,
2018), which would yield to similar patterns of sensitivity to coarticulation (i.e.,
equal disruption in word processing when mismatching cues are present) in
monolinguals and bilinguals. On the other hand, some research has demonstrated a
bilingual advantage in processing (for a review, see Bialystok, Craik & Luk, 2012)
and yet some other research that bilinguals lag behind their monolingual peers
(Pelham & Abrams, 2014). If these hypotheses are true, given the fact that both
languages’ systems influence each other (Brasileiro Reis Pereira, 2009; Fabiano &
Goldstein, 2005; Paradis, 2001), one might predict that English–French bilinguals’
sensitivity to vowel nasalization will be different from monolingual English listeners.
For example, since English–French bilingual children have to maintain a
phonological contrast between non-nasalized and nasalized vowels in their (French)
lexicon, one might expect their phonological system to treat coarticulatory vowel
nasalization in English differently, perhaps with greater sensitivity to coarticulation.
This prediction would be supported by the fact that bilingual listeners are exposed to
more variability for this phonetic cue (Byers-Heinlein & Fennell, 2014), and that this
kind of variability may motivate maintaining fine-grained perceptual abilities for
vowel nasalization in English–French bilingual children.

The second goal of the current study is to examine if four- to six-year-old children
are able to resolve coarticulatory mismatches within words, compared to the younger
group from Zamuner et al. (2016). We are interested in this question because
younger children (two- and three-year-olds) could not yet overcome the
coarticulation mismatch in Zamuner et al.’s (2016) previous investigation. Since
Huang and Snedeker (2011) found evidence that five-year-old children show
sustained interference from competitors during word discrimination, we do not
expect our group of four- to six-year-old participants to resolve the phonetic
mismatch as efficiently as adults. However, we predict that they will be more
adult-like in their resolution of competitor interference than Zamuner et al.’s (2016)
toddlers, given their older age.

Methods

Participants

The group of younger monolinguals were 19 children, aged 2;1 to 3;10, who completed
the study published in Zamuner et al. (2016), and for whom the data was reanalyzed
below in order to provide a comparison with the older monolingual group.1 The

1We conducted a post-hoc power analysis using G*Power 3.1.9.3 (Faul, Erdfelder, Lang, & Buchnier,
2007) to determine the achieved power of the Zamuner et al. (2016) study. We expected a large effect
size ( f2 = 0.35) based on the observation of the data, and an a error probability (i.e. p-value) of 0.05.
Zamuner et al. (2016) tested the influence of one predictor (CROSS-SPLICING), which is one of the required
arguments in G*Power. Since G*Power does not provide a way to perform power analyses for
generalized additive mixed-effects models (GAMMs; see below), which is the statistical method that we
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other children, aged between 4;0 and 6;11 years, completed the same experiment (N =
119). We focused on this age range to determine if children older than 3;0 years could
resolve phonetic ambiguity created by mismatching phonetic cues. Children were tested
in a sound-attenuated room on a university campus or museum-based lab. Twenty
bilinguals (ten girls, ten boys; age range: 4;3 to 6;5 years; M = 5;4 years; SD = 8.1
months) and twenty age-matched monolinguals (seven girls, thirteen boys; age range:
4;3 to 6;5 years; M = 5;4 years; SD = 8.2 months) are included in the current
analysis.2 Note that the majority of the data collection was conducted in a
museum-based lab, which has the objective of involving the community in
developmental research through research participation and knowledge translation to
the families. In this context, parents are welcome to walk into the reception area of
the museum-based lab and are offered to participate in the research with their child.
Consequently, given the inclusive mandate of the testing setting, we did not restrict
our recruitment criteria to only monolinguals and bilinguals, but rather provided an
opportunity to the children to participate in a research activity. However, as we were
interested in researching sensitivity to coarticulation and coarticulatory-mismatch
solving abilities in monolinguals and bilinguals, our strategy was to select two groups
of age-matched monolinguals and bilinguals. Note that all children from the large
testing sample that fitted the inclusion criteria below were included in the analyses.

The final group of children included in the analyses were either English monolingual
or English–French bilinguals who had not been diagnosed with a speech or hearing
delay as determined by parental questionnaire. Our criteria for determining
bilingualism in children were established through parental report and are as follows:
children had to be considered English-dominant (i.e., 50% or more exposure to
English in the family, to ensure that the children would know all of the used words
in the experiment), had to be exposed to L2 French≥ 30% of the time for two
consecutive years (across contexts such as home, daycare/school, with extended
family), had to be exposed to French as an L2 from the first year of life, and had to
be exposed to L2 French at least 30% of the time through overall development. No
participants spoke an L2 other than French. Due to the absence of wide-spread
norms for establishing bilingualism status in L2 research, we required bilingual
participants to be exposed to L2 French for more than a quarter of their linguistic
interactions, therefore the 30% cut-off point. Bilingual children’s average exposure to
French across development was 45.1%, SD = 7.8%. Monolingual children had been
exposed to French less than 30% overall and had been exposed to French for less
than two consecutive years. Monolingual children’s average exposure to French
across development was 6.1%, SD = 6.3%. Note that in the Canadian education

are using in the current paper, the closest statistical test available in the software is Linear multiple
regression: Fixed model, R2 increase. We used this statistical test as an estimation of power for the
current study. Note that the results of the power analysis are a general indication of achieved power, but
we expect GAMMs to be robust against Type II errors even with a relatively small sample size. We
found that the post-hoc Power (1-β error probability) was 0.681 given a sample size of N = 19. The
results of the current power analysis should thus be interpreted with care, as the GAMM method is well
suited to the eye tracking measures used here.

2We also conducted a post-hoc power analysis for the whole sample, which comprises N = 59 children
(19 children from Zamuner et al. (2016), 20 older monolinguals, and 20 older bilinguals). We investigated
the impact of two predictors (AGE and LANGUAGE BACKGROUND), and thus achieved a power of 0.983,
expecting a large effect size. When expecting a medium effect size ( f2 = 0.15), we achieved a power of
0.739. We consider these values more than sufficient to pursue analyses using the current sample size.
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system, children can be exposed to French as an L2 relatively early, at four or five years
old, which means that all children in our sample were likely exposed to French to some
extent, although not continued exposure to French in the monolingual group. Other
children who were tested did not fit our bilingualism criteria or were not
age-matched (N = 26) or contributed only one trial in one of the experimental
conditions (N = 37). Note that these latter 37 children fixated to target images in
filler trials, but did not meet our criterion of looking to at least two trials in both the
same-splice and cross-splice conditions. There were 16 participants excluded based
on a failure to calibrate or other technical problems (N = 14), fussing (N = 1), or
parental interference (N = 1).

Stimuli

Stimuli were six pairs of imageable English nouns (see Table 1). Each pair started with
the same consonant and vowel, followed by either an oral consonant (e.g., boat [boʊt])
or a nasal consonant (e.g., bone [bõʊ̃n]), and both had the same place of articulation. As
in Zamuner et al., (2016), three additional experimental pairs (duck–dumptruck,
leg–lemon, and egg–M) were excluded from the analyses because of multiple
coarticulation cues: nasalization and place of articulation. There were nine filler pairs
(boots–carrot, star–keys, monkey–camel, frog–fish, dog–elephant, turtle–sandwich,
chicken–kangaroo, doll–clock, and flower–sun). The stimuli were recorded by a female
native speaker of Canadian English and normalized for amplitude at 70 dB. A
trained phonetician spliced the stimuli by keeping the initial and final consonants of
an oral word token (e.g., [boʊt]1) and replacing the original vowel with one from
another token of the same word (e.g., [boʊt]2) or a nasal token (e.g., [bõʊ̃n]N),
considering zero crossings to avoid acoustic artifacts like clicks or noises in the final
signal. This yielded two SPLICING conditions: one with matching phonetic cues
(same-splice, e.g., [b1o͜ ʊ2t1]), and one with mismatching phonetic cues (cross-splice,
e.g., [b1õʊ̃Nt1]). In Table 1, the two rightmost columns indicate the vowel onset
timing within the target word.

The images used in the experiment were the same size, and animacy was also
controlled for within pairs (e.g., adding eyes to the cloud image which was paired
with the image of a clown) in order to minimize preference effects in children.

Table 1. List of the target-competitor pairs and durational details about the auditory stimuli.

Target
word IPA

Competitor
word IPA

CROSS-SPLICE
IPA

V onset
SAME-SPLICE in ms

V onset
CROSS-SPLICE in ms

boat [boʊt] bone [bõʊ̃n] [bõʊ̃t] 23 23

bug [bʌɡ] bunk(bed) [bʌ̃ŋk] [bʌ̃ɡ] 18 15

castle [kæsɫ̩] candy [kæ̃ndi] [kæ̃sɫ̩] 198 148

cloud [klaʊd] clown [klãʊ̃n] [klãʊ̃d] 238 250

hat [hæt] hand [hæ̃nd] [hæ̃t] 175 275

kick [kɪk] king [kɪ̃ŋ] [kɪ̃k] 140 206

Averages: 132 153
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Potential frequency effects could not be controlled for due to the limited number of
familiar and picturable C(C)VC-C(C)VN English minimal pairs. We also could not
include word frequency as a covariate in our analyses given the low number of items
in our procedure, although this question could be the object of further investigations
in the future.

Design and procedure

Children were tested by themselves or on their parent’s lap. Eye gaze data was collected
on an Eyelink1000 (campus-based lab) or an Eyelink1000 Plus (museum-based lab) eye
tracker in monocular remote mode, measuring movements of the right eye. The
experimenter proceeded through a three-point calibration before the familiarization
phase. During the familiarization, children saw each test and filler image and heard
the corresponding unspliced label. During the experimental phase, children saw a
central fixation point to ensure that they looked at the center of the screen at the
beginning of the trial, then two images appeared on the screen. Experimental and
filler images always appeared in the same pairs. Images were displayed for 1500 ms,
and then an audio clip with the phrase “Look at the [target]” played. The images
remained on the screen for four seconds after the onset of the sound file; each trial
lasted approximately six seconds. The entire experiment took approximately five
minutes to complete, with a total 18 trials. The splicing condition in which each
item was presented was counterbalanced across participants (e.g., half of the children
heard boat in the SAME-SPLICE condition, and half in the CROSS-SPLICE condition).

Results

Analysis procedure

Eye movement data (right eye only) was extracted using DataViewer 2.16 in 50-ms time
bins. Proportions of fixations to the target images within the time bins were calculated
as:

% fixations = duration of fixations to target
duration of fixations to competitor+ duration of fixation to target

The data were statistically analyzed using generalized additive mixed models (GAMMs;
Wood, 2017), which can account for nonlinear trends through time, as found in eye
tracking data. GAMMs can also include (linear or nonlinear) random effects, and
account for autocorrelation in the time-dependent data (i.e., one data point in time
is necessarily correlated to the preceding data point, which can yield to an
overconfidence of model estimates; Baayen, van Rij, de Cat & Wood, 2018; Porretta,
Kyröläinen, van Rij & Järvikivi, 2018). Furthermore, GAMMs do not assume normal
distribution of the data, which makes them appropriate for eye fixation data. We will
present two models in the current paper: first, a GAMM for the fixations to the
target (e.g., the boat image) in the CROSS-SPLICE splicing condition only to assess
sensitivity to English nasal coarticulation in monolinguals and bilinguals as well as
competitor inhibition patterns, and a second GAMM on the fixations to the target
image in the filler trials to assess group differences between mono- and bilinguals in
unspliced words.
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The dependent variable of the GAMMs was the empirical-logit-transformed
fixations (Barr, 2008) to the target. Empirical logits are an approximation of the log
odds of looking to one image (e.g., the target) compared to the other image (e.g., the
competitor), calculated as:

elog = log
y + 0.5

N − y + 0.5

( )

where y corresponds to the number of samples during which the target was fixated, and
N corresponds to the total number of samples within the time bin (i.e., eye tracker
sampling at 500 Hz, thus 25 samples per 50-ms time bin).

The independent factors of interest for the GAMMs were the TIME window of
analysis (between 300 ms and 2000 ms for experimental trials, and between 300 ms
and 1000 ms for filler trials, see below) and language BACKGROUND (young
monolingual, old monolingual or old bilingual). We chose a shorter window of
analysis for the filler trials since these were not spliced, were unambiguous, and there
was no expected effect of phonological competition (e.g., the item star was presented
next to the item keys). The peak in average fixations to the target in the filler trials
occurred at approximately 750 ms for all three groups.

For the GAMM on experimental trials, we modeled empirical-logit-transformed
fixations in the CROSS-SPLICE condition in order to assess sensitivity to phonetic
mismatch. The time window of interest was chosen for analysis of experimental trials
between 300 ms after word onset to account for eye movement programming delay
(Buckler & Fikkert, 2016; Zamuner et al., 2016) until 2000 ms after word onset, a time
at which it is likely that children will continue to look at the images based on the
prompt. Similarly to other GAMM analyses (Porretta, Tucker & Järvikivi, 2016;
Porretta et al., 2018), random effects corresponded to a combination of participant and
trial (i.e., EVENT), allowing each trial (for each participant) to have its own intercept in
the model. An AR-1 autocorrelation value of 0.868 was empirically determined based
on the data and included in the experimental GAMM formula, and a value of 0.706 for
the filler items GAMM. Autocorrelation values correspond to the average correlation of
a given data point with the preceding one in the time series. We present below a
difference curve (fixations to the target by young monolinguals minus fixations by old
monolinguals), generated from the GAMM, between younger monolinguals and older
monolinguals to assess the differences in fixations to the target in the cross-splice
condition, and thus examine if one or the other group was more sensitive to phonetic
mismatches (i.e., sensitivity to coarticulation). We also present a difference curve
between older bilinguals and monolinguals to assess the group differences concerning
sensitivity to nasal coarticulation.

Analysis of proportions of fixations, experimental trials

In this analysis, we were interested in the effect of LANGUAGE BACKGROUND (bilingual or
monolingual) and participant AGE (young monolinguals and old monolinguals) on
sensitivity to nasal coarticulation. Eye tracking results in Figure 1 show the general
effects of SPLICING condition on fixations to the target image. Higher values on the
y-axis suggest that children tended to fixate the target image more. In all groups,
participants looked more to targets in the SAME-SPLICE condition (grey lines)
compared to the CROSS-SPLICE condition (blue lines). Focusing on the SAME-SPLICE
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condition (grey lines), there does not seem to be a difference between monolinguals and
bilinguals, as demonstrated by similar shapes and overlapping error bars throughout the
analysis window. However, young monolinguals fixated to the target slightly less than
older monolinguals between 500 ms and 1000 ms within the trial, although the error
bars seem to overlap with older children. This suggests relatively similar processing
abilities for all children for SAME-SPLICE words.

In the CROSS-SPLICE condition (blue lines in Figure 1), bilinguals (triangles)
maintained similar proportions of fixations to the target as older monolinguals, but
young monolinguals (empty squares) fixated more to the target (e.g., boat) than both
the older groups. Note that in our procedure, proportions of fixations were calculated
based on fixations to the images only, which then suggests that young monolinguals
shifted their gaze between the target (e.g., boat) and (nasal) competitor (e.g., bone)
more than the other groups. This suggests that the younger group was disrupted by
the phonetic mismatch, but that they also fixated less to the competitor image, which
suggests less sensitivity to coarticulatory nasalization. In other words, young
monolinguals did not inhibit the target (e.g., boat) as much as the older groups
when hearing phonetic cues that corresponded to the nasal competitor (e.g., bone),
thus that they might not consider coarticulation as much when processing words.

This finding is also supported by the statistical analysis presented in the difference
curves in Figure 2 (also see Table A1 in Appendix). For illustration purposes, this
figure presents difference curves in fixations to the target (e.g., blue empty-squares
curve minus blue circles curve in Figure 1, and blue triangle curve minus blue circles
curve in Figure 1) between young monolinguals and older monolinguals (Figure 2A),
as well as between older bilinguals and older monolinguals (Figure 2B) within the

Figure 1. Overall fixation patterns to the target by SPLICING condition and participant LANGUAGE BACKGROUND. Higher
proportions of fixations on the y-axis correspond to more fixations to the target (e.g., boat) and lower
proportions of fixations on the y-axis correspond to more fixations to the competitor (e.g., bone).
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TIME window (x-axis) on separate panels. These curves were computed with the plot_diff
function of the itsadug package (van Rij, Wieling, Baayen & van Rijn, 2017). This
function plots difference curves in predicted (mean and confidence intervals) data by
the model. Portions of the difference curves that are significantly above or below 0
represent a significant difference between the two groups for a given time interval,
and are noted with red-shaded intervals below. Y-values below 0 represent more
fixations to the competitor by young monolinguals or bilinguals than old
monolinguals, and y-values above 0 represent more fixations to the target image.

We were thus able to establish that young monolinguals fixated significantly more to
the target in cross-spliced trials between 950 ms and 1385 ms when compared to older
monolinguals (deviance explained of 39.7%). This supports our observation that young
monolinguals shift their gaze between the two images in the coarticulatory mismatch
condition more than older monolinguals, thus that they might not be as sensitive to
coarticulation as the latter group. Furthermore, towards the end of the trials, no
differences in the raw data or statistical analysis emerged between younger and older
monolinguals, suggesting that the older group did not resolve the phonetic mismatch
better than the younger group.

The lack of apparent difference between older bilinguals and older monolinguals in
the raw data (Figure 1) suggests that bilingual listeners were as equally sensitive to
nasal coarticulation as monolingual children overall: both groups were sensitive to
coarticulation (i.e., see dip in blue curve for both groups in the time window of
analysis in Figure 1). This is also borne out by the statistical analysis of cross-splice
items, where no difference emerged when computing the difference curve in fixations
to the target between bilinguals and monolinguals (Figure 2B). Although we are aware
that it is difficult to formulate strong conclusions from null results, the overwhelming
similarity of the fixation curves between older monolinguals and bilinguals in the
cross-splice condition (Figure 1) points in the direction of similar sensitivity to nasal
coarticulation in both groups. It is possible that using a different type of measure, age
group or coarticulation contrast, one may see differences in processing between
monolinguals and bilinguals. However, for the contrast tested in this study, we
observed no statistical difference between the groups of monolinguals and bilinguals.

Figure 2. Difference curves (experimental trials) as predicted by the GAMM analysis for young monolinguals
against old monolinguals (A) and old bilinguals against old monolinguals (B) in the cross-splice condition
only. (Red) shaded area corresponds to the interval in which the difference is significant. Grey bands around
the average curve correspond to 95% confidence intervals.
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Analysis of filler trials

This analysis compared all groups’ fixations to targets on the filler trials (Figure 3) in
order to assess the potential differences across groups when processing regular
speech. In Figure 4, we show difference curves between young monolinguals and
older bilinguals (A) as well as between older bilinguals and older monolinguals (B).
Visualization of the GAMM results (see Table A2 in Appendix for the numeric
output of the model; deviance explained of 56.2%) in Figure 4 shows that young
monolinguals fixated significantly less to the target for the entire duration of the
trials (Figure 4A). However, there was no significant difference between monolingual
and bilingual children in filler trials (Figure 4B). This means that, on the one hand,
younger monolinguals were less efficient than older monolinguals at fixating to the
target, but that (older) monolingual and bilingual participants process English filler
words similarly. While it would be informative to have independent measures of
children’s language skills using standardized tests, this analysis of filler trials suggests
that there are no differences in processing abilities for non-cross-spliced items in
age-matched monolinguals and bilinguals, in addition to less efficient general
processing in younger monolingual children compared to older children.

Discussion

Bilingual spoken word recognition is made more complex because two languages exist in
a listener’s mind. While research has found that monolingual adults and toddlers are able
to use English vowel nasalization during spoken word recognition (Beddor et al., 2013;
Zamuner et al., 2016), little research has focused on the development of these abilities
over time, and on how bilingual children process phonetic details during spoken word

Figure 3. Overall fixation patterns to the target for filler trials by participant LANGUAGE BACKGROUND and AGE. The
green bars/lines represent the window of analysis.
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recognition. Thus, we investigated the development of English monolingual children’s
sensitivity to English coarticulatory vowel nasalization. We also examined how
English–French bilingual children process English coarticulatory vowel nasalization.

First, we compared data from a group of younger monolingual children (aged 2 to 3
years) to a group of older monolingual children (aged 4 to 6 years). The statistical analysis
showed that younger monolingual children tended to fixate slower and less to targets in
filler trials, which can be explained by a less mature word processing system. In the
cross-splice condition, listeners were presented with targets that contained a
mismatched nasalized vowel. This led all groups to fixate more to the competitor
(bone) and less to the target (boat) for a portion of the trial. However, fixations to the
target in the cross-splice condition were significantly higher for younger monolinguals
than older monolinguals (i.e., closer to 50% fixations than older monolinguals, since
both groups had fixations well below 50% in this splicing condition). Thus, our data
suggest that the older monolinguals were more sensitive to coarticulation (i.e., young
monolinguals were not capable of inhibiting the non-nasalized target as much as old
monolinguals), and the activation of the target was more disrupted by the mismatch
(since, at that point within the trial, the competitor is hypothesized to be activated).
Consequently, one could argue that the older monolingual children were better at
resolving the phonetic mismatch because they recovered from a larger disruption.
However, looking at the amount of looking to the target in the cross-splice condition,
both the younger monolinguals and older bilinguals peak at 50% looking to the target.
Thus, fixation data indicate that even older monolingual children cannot resolve the
phonetic mismatch (fixations hover around chance in the CROSS-SPLICE condition, 2000
ms after word onset), similar to the younger toddler participants. This corresponds to
the Huang and Snedeker (2011) explanation that children have sustained competitor
interference, and it is not until children are older that they have more adult-like
processing patterns (see also Rigler et al., 2015).

The second goal was to compare the processing of coarticulation cues that vary across
languages in bilinguals and compare those results with a group of monolinguals. To do
this, we examined English vowel nasalization in a group of English monolinguals and a

Figure 4. Difference curves (filler trials) as predicted by the GAMM analysis for young monolinguals against old
monolinguals (A) and old bilinguals against old monolinguals (B). (Red) shaded area corresponds to the interval
in which the difference is significant. Grey bands around the average curve correspond to 95% confidence
intervals.
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group of English–French bilinguals. English and French are ideal languages to investigate
this question, since French uses vowel nasalization as a phonological distinction (Cohn,
1990), while English contains vowel nasalization as merely a coarticulatory property
(Beddor, 2009). We initially predicted that bilingual children would be sensitive to
nasal coarticulation in English, but made no strong prediction on the potential
differences between monolingual and bilingual children’s processing of nasal
coarticulation. Past research has argued that monolinguals and bilinguals process
language similarly (Byers-Heinlein et al., 2013), in which case no difference is expected
between our groups. However, others have suggested a bilingual advantage (Bialystok
et al., 2012) or disadvantage (Pelham & Abrams, 2014), in which cases we would have
expected to find differences across the groups concerning sensitivity to nasal
coarticulation. We found that monolingual and bilingual children displayed similar
sensitivity to vowel nasalization (Legacy et al., 2018), as shown by similar patterns of
fixations to the target images, across the time course, and in both the same-splice and
cross-splice conditions. This is in line with some research showing that monolinguals and
bilinguals process certain aspects of language similarly. Given that the children in our
study were relatively-balanced bilinguals and exposed to both English and French from a
young age, perhaps it is not surprising that the bilinguals were not different from the
monolinguals in processing the coarticulation cues. Moreover, while French has a
phonological contrast between oral and nasal vowels and English has pervasive nasal
coarticulation between nasal consonants and oral vowels, this also means that English
monolingual children are being exposed to cues of nasalization in their linguistic
environment. Perhaps this is enough for English monolinguals to develop similar
sensitivity to nasal coarticulation as English–French bilinguals, even though the way the
cues are used in the different languages varies. It is possible that if one were to test a cue
that occurs in only one of the two languages, there would be evidence of differences
between bilinguals and monolinguals.

In summary,we find that children’s sensitivity to coarticulationcues growsbetween theages
of two to six years; however, older children continue to have sustained competitor interference.
We also found that bilingual children’s sensitivity to coarticulatory information in their L1
patterns similar to that of monolinguals’, even when the coarticulatory cue is contrastive in
their L2. Our results are in line with previous studies showing equal sensitivity to phonetic
details for bilinguals and monolinguals (Liu & Kager, 2018).

There are a number of possible directions for future research. First, a parallel study in
French with French monolingual and English–French bilingual children would answer
whether there are any bi-directional effects in how bilingual and monolingual children
process phonological and coarticulatory vowel nasalization differently from
monolinguals. Second, one could examine a group of younger English–French
bilinguals to establish whether they are similar to the English monolinguals. We
predict that a similar group of younger bilinguals would perform like the younger
monolinguals. This is because our older bilinguals were relatively balanced in their
exposure to English and French – recall that the bilingual children’s average exposure
to French across development was 45.1%. This leads to another avenue for future
research, which would be to examine processing in bilinguals with different language
experience, to see whether less proficient bilinguals would be more likely to draw on
the phonemic inventory of their L1 to facilitate speech perception in their L2, and
vice versa (Desmeules-Trudel, 2018). For example, to see whether children who were
more dominant in French would show more sensitivity to English nasalization, as a
cross-over transfer from French.
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While the current findings raise a number of intriguing questions, our findings
support the idea that phonological representations are rich and include phonetic
details (Browman & Goldstein, 1986; Pierrehumbert, 2002), such as coarticulation.
This research also highlights that, in some instances, bilinguals can show similar
processing to their monolingual peers. The historically monolingual focus in language
research belies the fact that a majority of the world’s children are exposed to more
than one language (Grosjean, 1982). It is therefore crucial to understand how speech
perception, and linguistic skills more generally, develop in this, the majority population.
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Appendix

Table A1. Summary of the GAMM (experimental trials) output.

Parametric coefficients Estimate Std. Error t-value p-value

Intercept −1.461 0.36 −4.056 <0.001 ***

BACKGROUND[MONO.YOUNG] 0.563 0.542 1.04 0.298

BACKGROUND[BI.OLD] 0.109 0.505 0.216 0.829

Smooth terms edf Ref.df F-value p-value

s(TIME) 5.719 6.86 32.833 <0.001 ***

s(TIME):BACKGROUND[MONO.OLD] 1.009 1.016 0.468 0.498

s(TIME):BACKGROUND[MONO.YOUNG] 2.35 3.151 10.426 <0.001 ***

s(TIME):BACKGROUND[BI.OLD] 1.149 1.278 0.288 0.569

RANDOM_EVENT 147.167 156 17.743 <0.001 ***

Significance codes: ‘0’ *** ‘0.001’ ** ‘0.01’ * ‘0.05

Table A2. Summary of the GAMM (fillers) output.

Parametric coefficients Estimate Std. Error t-value p-value

Intercept 2.691 0.212 12.671 <0.001 ***

BACKGROUND[MONO.YOUNG] −0.84 0.318 −2.638 <0.01 **

BACKGROUND[BI.OLD] −0.014 0.299 −0.046 0.963

Smooth terms edf Ref.df F-value p-value

s(TIME) 3.772 4.66 63.478 <0.001 ***

s(TIME):BACKGROUND[MONO.OLD] 1.001 1.002 6.61 <0.05 *

s(TIME):BACKGROUND[MONO.YOUNG] 0.011 0.021 0.097 0.964

s(TIME):BACKGROUND[BI.OLD] 2.058 2.565 1.402 0.216

RANDOM_EVENT 421.541 457 12.782 <0.001 ***

Significance codes: ‘0’ *** ‘0.001’ ** ‘0.01’ * ‘0.05’
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