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We define and investigate a number of small inductively defined classes (idc’s), à la

Gregorczyk, that are based on argument-bounded initial functions and the bounded

minimalisation and bounded counting schemata. We establish equivalences between these and

other classes in the literature, with an emphasis on minimalism. We also obtain

characterisations of the classes in terms of well-known fragments of first-order predicate

logic.

1. Introduction

This paper is based on the talk given by the author at the TAMC 2008 conference, which

was held between 25–29 April in Xi’an, China, and emerges from some investigations

into very small sub-recursive classes, the so-called inductively defined classes (idc’s). At the

talk I presented results from the pre-proceedings paper A Characterisation of the Relations

Definable in Presburger Arithmetic (Barra 2008) in addition to various results which were

either unfinished at deadline or omitted due to space limitations.

The original motivation for this work was to discard all non-argument-bounded (defini-

tions follow) functions from the set of initial functions of idc’s, and then compare the res-

ulting classes to otherwise similar classes. This approach of banning all growth has proved

successful in the past, and has repeatedly yielded surprising and enlightening results –

see, for example, Jones (1999; 2001); Kristiansen and Voda (2003a) and Kristiansen and

Voda (2003b) for work with functionals of higher types and imperative programming

languages, respectively; Kristiansen and Barra (2005) for work with function algebras

and the λ-calculus; and Kristiansen (2005; 2006).

Recently, argument-bounded idc’s have found a new use in the context of detour degrees

à la Kristiansen and Voda (see Kristiansen and Voda (2008)), and I expect that some of

the results presented here will be very useful in the further development of that theory.

However, to find the source of inspiration for the specific work in this paper, we

must look further back in time. A. Grzegorczyk’s seminal paper Some classes of recursive

functions (Grzegorczyk 1953) was the source of great inspiration to many researchers
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during the decades following its publication. A significant contribution was made in

Harrow’s Ph.D. dissertation (Harrow 1973), the findings of which were later summarised

and enhanced in Harrow (1975). Harrow answered several questions, which had been

originally posed by Grzegorczyk, with regard to the interchangeability of the bounded

primitive recursion and bounded minimalisation schemata in the small Grzegorczyk-classes

Ei (i = 0, 1, 2). Another result from Harrow (1973) is that G1
� (this and other classes

mentioned below are defined later in the paper) is identical to the set of predicates PrA� –

those subsets of �k that are definable by a formula in the language of Presburger

Arithmetic.

We will show that the classes Gi contain redundancies in the sense that the increasing

functions ‘S’, ‘+’ and ‘×’ can be substituted with their argument-bounded inverses

predecessor, (truncated) difference and integer division and remainder, without affecting the

induced relational classes Gi�. That is, the growth provided by, for example, addition, in the

restricted framework of composition and bounded minimalisation, does not contribute to

the number of computable predicates. In fact, we show that the quantifier-free fragment

of Presburger Arithmetic may be captured in a much weaker system: essentially, only

truncated difference and composition is necessary.

Next, we investigate the seemingly stronger schemata of bounded counting and bounded

n-ary counting, and show that an analogous result holds. Indeed, with bounded counting,

not only are the increasing functions substitutable for their argument-bounded inverses –

in some cases they are completely redundant.

2. Notation and basic definitions

Unless otherwise specified, a function in this paper means a function f :�k → �, and the

arity of f is then k.

A function is argument-bounded† (a.b.) if, for some cf ∈ � we have‡ f(�x) � max(�x, cf)

for all �x ∈ �k .

We say that f has top-index i if f(�x) � max(xi, cf). If cf = 0, we say that f is strictly

argument-bounded, and that i is a strict top-index.

Whenever a symbol ‘x’ occurs under an arrow, for example, ‘�x’, we will usually not

mention the length of the list explicitly but adopt the convention that �x has length k and

�g has length �.

The bounded f, denoted f̂, is the (k + 1)-ary function f̂(�x, b)
def
= min(f(�x), b). These

bounded versions, in particular the bounded versions of increasing functions like Ŝ(x, b) =

min(x + 1, b) (bounded successor), will be of major importance for the ensuing develop-

ments. The predecessor, denoted P, is defined by P(x)
def
= max(x − 1, 0). The case function,

† In Barra (2008) we employed the term non-increasing rather than argument-bounded, but, following the advice

of one of the referees, we have changed it here.
‡ For readers familiar with E0, the bound that holds for f in G0 and E0 is f(�x) � max(�x) + cf – note the

distinction. The latter bound is sometimes referred to as 0-boundedness.
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denoted C, and the (truncated) difference function, denoted ·−, are defined by

C(x, y, z)
def
=

{
x if z = 0

y otherwise

x ·−y def
= max(x− y, 0)

def
=

{
0 if x � y

x− y if x > y.

When we use the symbol ‘−’ without the dot in an expression or formula, we mean the

usual minus on �.

Let φ(x, y, n, r)
def⇔ 0 � r < y ∧ x = ny + r. The remainder function and integer division

function, denoted rem and
⌊ ·

·
⌋
, respectively, are defined by⌊

x

y

⌋
def
=

{
x if y = 0

n if φ(x, y, n, r)

rem(x, y)
def
=

{
x if y = 0

r if φ(x, y, n, r).

The choice of
⌊
x
0

⌋ def
= x makes the functions total on �2. We also have � x

y
�y+rem(x, y) = x

for all x and y.

I is the set of all projections Iki (�x) = xi, and N is the set of all constant functions

c(x) = c for all c ∈ �.

A relation is a subset R of �k for some k. Relations are also, and interchangeably,

called predicates. Sets of predicates are usually sub-scripted with a ‘�’. For a set F� of

relations, we say that F� is Boolean, when F� is closed under finite intersections and

complements.

When R = f−1(0)
def
=
{
�x ∈ �k | f(�x) = 0

}
, the function f is referred to as a characteristic

function for R, and is denoted χR . However, this function is not unique, and we use χcR to

denote the unique characteristic function for R satisfying χcR(x) = c when x 	∈ R.

Let F be a set of functions. F� denotes the set of relations of F, in other words, those

subsets R ⊆ �k with χR ∈ F: formally, F�
def
=
{
f−1(0) | f ∈ F

}
.

The graph of f, denoted Γf , is the relation
{
(�x, y) ∈ �k+1 | f(�x) = y

}
. We overload Γf

by using it to denote its characteristic function as well.

When A is a set, we use |A| to denote the cardinality of A, and f�A to denote the

restriction of the function f to the set A.

3. Schemata, idc’s and overview

In this section we set the stage for the later development. We first introduce our most

fundamental notions, schemata, or operations, for defining new functions from previously

defined functions, and inductively defined classes, which form our computational model.

Next we give a pointer to the kind of results to expect†. We will then prove a few useful

lemmas.

† Since quite a lot of notation will be needed, we will not give an overview of the results until the final section

since at this stage they would either be too cumbersome to state or incomprehensible.
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In the main sections following this one, we will consider each of our classes in turn by

first introducing it and then presenting our main results with respect to it, together with

the corresponding proofs.

3.1. Schemata

In this paper we are concerned with the following schemata:

Definition 1 (Composition and bounded minimalisation). We say that f is generated from

h and �g by composition when f(�x)
def
= h(g1(�x), . . . , g�(�x)). The schema of composition will

be denoted by comp, and we also write h ◦�g for the generated function.

We say that f is generated from g1 and g2 by bounded minimalisation‡ when f(�x, y)

equals the least z � y satisfying the equation g1(�x, z) = g2(�x, z), if such exists, and y

otherwise. The schema is denoted bmin, and we write μz�y[g1(�x, z) = g2(�x, z)], or simply

μz�y[g1, g2], for the generated function.

In Barra (2008) we considered a slightly different version of the bounded minimalisation

schema. There, a failed search would return 0 rather than y. In most contexts the two

versions are equivalent, but in some very restricted settings this may not be the case. We

shall have more to say about this in Section 4.3.

The third and fourth schema we will study are actually families of schemata: for each

n � 1 we will define the schemata of n-ary bounded counting and argument-bounded n-ary

bounded counting.

Definition 2 (n-ary bounded counting). The function f is generated from g1(�x,�z) and

g2(�x,�z), where |�z| = n, by n-ary bounded counting when

f(�x, y)
def
= |{�z | max(�z) < y ∧ g1(�x,�z) = g1(�x,�z)}| .

The schema is denoted bcount
n, and we write ��z<y[g1(�x, z) = g2(�x, z)], or ��z<y[g1, g2], for

the generated function.

The function f is generated from g1(�x,�z) and g2(�x,�z), where |�z| = n, by argument-

bounded n-ary bounded counting when

f(�x, y)
def
= max

(
y, |{�z | max(�z) < y ∧ g1(�x,�z) = g1(�x,�z)}|

)
.

The schema is denoted bcount
n, and we write ��z<y[g1, g2] for the generated function.

3.2. Inductively defined classes

A fundamental notion underlying the work presented here is that of an inductively defined

class of functions (an idc). An idc is generated from a set X, whose contents are called

the initial, primitive or basic functions, as the least class containing X and closed under

the schemata, functionals or operations of some set op of functionals. We write [X ; op]

for this set†.

‡ Bounded minimalisation is also known as bounded search or limited minimum.
† This notation is adopted from Clote (1996), where an idc is called a function algebra.
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We will always assume that our classes contain projections and constants, and that

they are are closed under composition, and we will omit I ∪ N and comp from our

notation. Thus, for example,
[
{C} ; bmin

]
abbreviates

[
I ∪ N ∪ {C} ; comp, bmin

]
. This

simply means that our idc’s are closed under so-called explicit definitions.

Remark 3. The careful reader will notice that none of the proofs presented depend on

the presence of any constants other than 0 and 1. Consequently, all results regarding the

induced relational classes are valid under the assumption that I ∪ {0, 1} is substituted for

I ∪ N, and all other results will also hold by minor modifications of some definitions.

Informally, all results will hold almost everywhere. Whether we choose N or {0, 1} is

largely a matter of style, and my preference is for the straightforwardness afforded by

having N available over the (unnecessary) exception-handling incurred by the more

minimalist {0, 1}.

3.3. Results

The results of this paper fall roughly into one of three categories:

(1) Results on the strength of our schemata when working on their own: in other words,

we investigate idc’s of the type [ ; op] where op is bounded minimalisation or bounded

counting. We also investigate the strength of the truncated difference function in the

context
[
{ ·−} ;

]
.

(2) Results concerned with the redundancy of basic functions when the (only) operator is

counting, and the equivalence of basic functions with argument-bounded inverses when

the operator is minimalisation.

(3) Descriptive-complexity-like characterisations of the induced relational classes. That is,

we characterise them by well-known fragments of first-order logics. We will introduce

these fragments and suitable notation on the fly.

3.4. Preliminary lemmas

Lemma 4. Let G be any idc closed under bmin, and let f(�x) be any function satisfying

either f(�x) � xi or f(�x) � c. Then:

Γf ∈ G ⇒ f ∈ G.

Proof. The fact that Γf ∈ G means that for some function, Γf ∈ G satisfies Γf(�x, y) =

0 ⇔ f(�x) = y. By hypothesis, we either have f(�x) � xi for fixed i, in which case

f(�x) = μz�xi [Γf(�x, z) = 0] ∈ G, or we have f(�x) � c for fixed c, in which case f(�x) =

μz�c[Γf(�x, z) = 0] ∈ G.

Lemma 5. Let G and G′ be arbitrary idc’s. Assume χ= ∈ G, and that for every f ∈ G′, we

have Γf ∈ G. Then G′
� ⊆ G�.

Proof. Let f′ ∈ G′ be arbitrary. We must show that the predicate R
def
= (f′)−1(0) is also

the pre-image of some function f ∈ G. By hypothesis, χ=,Γf′ ∈ G, and thus, so is the
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function f
def
= χ=(Γf′ (�x, 0), 0). The fact that

f(�x) = 0 ⇔ χ=(Γf′ (�x, 0), 0) = 0 ⇔ Γf′ (�x, 0) = 0 ⇔ f′(�x) = 0

then allows us to conclude the proof.

Lemma 6. Let h,�g be argument-bounded. Then so are the functions h◦�g, μz�y[g1, g2] and

��z<y[g1, g2]. Hence, if all f ∈ X are a.b., then all f ∈ [X ; op] are a.b., when op is any of

comp, bmin or bcount
n.

Proof. By definition, for some ch, c1, . . . , c�, we have

h ◦�g(�x) � max(g1(�x), . . . , g�(�x), ch) � max(�x,max(�c, ch)),

which proves the case of composition. The two remaining cases are trivial since

μz�y[g1, g2], ��z<y[g1, g2] � y

by definition.

4. The class Fμ

The first class we will consider is the class Fμ def
= [ ; bmin]. Note that there are no initial

functions except projections and constants.

4.1. Bootstrapping with bmin

The following section represents a recurrent theme of this paper: bootstrapping, or,

establishing the existence of various functions in our small idc’s.

Proposition 7.

(i) χ=, χ=n ∈ Fμ.

(ii) min ∈ Fμ.

(iii) Fμ
� is Boolean.

(iv) Fμ
� is closed under ∃z�y-type quantifiers.

(v) χ<, χ�, χ	= ∈ Fμ.

Proof. Recall that χ1
R denotes the characteristic function of R, which is 1 on the

complement.

(i) Set

f(x1, x2, y) = μz�y

[
I31(x1, x2, z) = I32(x1, x2, z)

]
.

Then

χc=(x1, x2) = f(x1, x2, c) =

{
0 if x1 = x2

c otherwise,

which, since χ=n(x) = χc=(x, n), gives the result.

(ii) Clearly,

min(x, y) = μz�y[x = z].
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Hence, if χR ∈ F, then so is χ1
R(�x) = min(χR(�x), 1), and, finally,

χcR = μz�c[χR(�x) = 0].

(iii) We have

χcR∧S = χc= ◦
(
χ1
R, χ

2
S

)
and χc¬R = χc= ◦

(
χ1
R, 1
)
.

Hence χc	= ∈ F.

(iv) This part is especially easy to show since bounded minimalisation is tailor-made for

the purpose:

∃z � y
(
R(�x, z)

)
⇔ χR(�x, μz�y[χR(�x, z) = 0]) = 0.

(v) This part follows because

x < y ⇔ ¬∃z < y
(
x = z

)
and Fμ is Boolean by (iii).

We can also do some argument-bounded basic arithmetic, as in the following proposi-

tion.

Proposition 8. Ŝ,P ∈ Fμ.

Proof. Observe that Ŝ(x, b)
def
= min(x+ 1, b) = μz�b[χ<(x, z) = 0]. Next, set

P′(x, y) = μz�y[Ŝ(z + 1, x) = x].

Then P(x) = P′(x, x) = μz�x[Ŝ(z + 1, x) = x].

Proposition 9. Ĉ ∈ Fμ.

Proof. Since Ĉ(x, y, z, b) has strict top-index b, by Lemma 4 it is sufficient to show that

the graph of Ĉ belongs in Fμ. But

Ĉ(x, y, z, b) = u ⇔
∨⎧⎨⎩

z = 0 ∧ x � b ∧ u = x

z 	= 0 ∧ y � b ∧ u = y

u = b ,

and the formula to the right is a Fμ
�-formula by Proposition 7.

4.2. Fμ versus the classes G0 and PL

Let G0 def
=
[
{P,S} ; bmin

0
]
, where the superscript ‘0’ to ‘bmin’ indicates that the schema

we have in mind is the variant of bounded minimalisation mentioned above, which is

a class that was originally defined by Grzegorczyk in Grzegorczyk (1953). Hence G0 is

the smallest Grzegorczyk-class E0 with minimalisation substituted for primitive recursion.

Grzegorczyk posed the problem of whether the inclusion G0 ⊆ E0 was proper or not, and

the question remained open for some twenty years until K. Harrow answered the question

in the negative by proving the following theorem.

Theorem 10 (Harrow 1975). G0 = E0 ∩ PL.
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In the title of this section, PL refers to the set of piecewise linear functions – see

Definition 11.

Part of my motivation for this research was to find classes of argument-bounded

functions that characterise previously studied classes. The reader will have noticed that

Fμ is ‘G0 without successor’, and that all f ∈ Fμ are argument-bounded (Lemma 6). Our

question is thus: how do G0 and Fμ compare?

Definition 11 (Piecewise linear). A function is piecewise linear if it may be written in the

form

f(�x) = y ⇔
∨

1�i��

(y = L3i(�x) ∧ L3i+1 � L3i+2)

for some � ∈ �, where each sub-scripted ‘L’ is either a constant or of the form xj
·−c or

xj + c.

Note that there are finitely many clauses†.

Lemma 12. f ∈ PL ⇒ Γf ∈ Fμ.

Proof. We have already shown that χ�, P ∈ Fμ. By nesting the predecessor function, we

have that the function x ·−c is in Fμ for all (fixed) c ∈ �. Observe next that for x, y ∈ �,

we have x � y+ c ⇔ x ·−c � y, since x < c implies both x ·−c = 0 � y and x < c+ y, and

because c � x implies x ·−c = x− c. We also have the function Ŝ ∈ Fμ, so, by nesting, we

obtain min(x+ c, y) ∈ Fμ. Furthermore, x+ c � y ⇔ min(x+ (c− 1), y) 	= min(x+ c, y).

The above means we can decide any predicate of the form L3i+1 � L3i+2. Let f be

represented by L3i ⇔ L3i+1 � L3i+2 for i � �. Clearly,

f(�x) = y ⇔
∨

1�i��

(y = L3i ∧ L3i+1 � L3i+2) ,

which, by the above, is an Fμ
�-predicate.

Theorem 13. Fμ
� = G0

� = PL� and Fμ � G0.

Proof. Since Fμ ⊆ G0 ⊆ PL, we need only show that PL� ⊆ Fμ
� . Since χ= ∈ Fμ by

Proposition 7, the theorem now follows from Lemmas 5 and 12. The fact that Fμ � G0

as function classes is clear since S ∈ G0, but S(x) > x is not a.b.

4.3. A remark on the failed-search-value of bmin

As we mentioned earlier, in Barra (2008) we employed a μz�y-schema that returned the

value ‘0’ upon a failed search rather than the value ‘y’. During this discussion, we will use

μ0
�y and μ

y
�y , respectively, to denote these variants. We also let Fμy and Fμ0

have the

obvious meaning, and define Cμ0 def
= [{Ĉ}; μ0

�y].

† For example, f(x1, x2) =

{
5 if x1 � x2 ∧ 3 � x1

x2 + 4 otherwise
is a member of PL, since the ‘otherwise clause’ can

be split into the two clauses x2 + 1 � x1 and x1 � 2.
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Now, it is quite easy to see that Fμ0 ⊆ Fμy since

μ0
z�y[g1, g2] = Ĉ(μyz�y[g1, g2], 0, χ=(g1(�x, μ

y
z�y[g1, g2], g2(�x, μ

y
z�y[g1, g2]), y)

and that the function on the right-hand side belongs in Fμy , since it involves composing

functions, which has already been shown to belong to Fμy .

By verifying that Ĉ(1, 0, x, 1) = 1 ·−x and that Ĉ(0, Ĉ(0, 1, y, 1), x, 1) is zero exactly when

either x or y is zero, we conclude that Cμ0

is Boolean. Also, the fact that

μ0
z�y[z = x] =

{
x if x � y

0 otherwise

implies

χ�(x, y) = Ĉ
(
0, 1 ·−μ0

z�y[z = x], x, 1
)

∈ Cμ0

.

Since Cμ0

is Boolean, we also have characteristic functions for the other standard order-

predicates. Since

μ
y
z�y[g1, g2] = Ĉ(μ0

z�y[g1, g2], y, χ=(g1(�x, μ
0
z�y[g1, g2]), g2(�x, μ

0
z�y[g1, g2]), y),

we also see that Fμy = Cμ0

. This means that we have the following theorem.

Theorem 14. Fμ0 ⊆ Fμy = Cμ0

.

The status of the inclusion above remains open. I conjectured in Barra (2008) that it is

proper, but a proof is lacking. The class Fμ0

seems to be very ill-behaved in the sense that

if f(�x) ∈ Fμy , then there is some function f′(�x,�y) ∈ Fμ0

and c such that f′(�x,�y) = f(�x)

when max(�x) + c < min(�y), but otherwise the function degenerates.

5. The class D

In this section we study the class D def
=
[
{ ·−} ;

]
. Note that composition is the sole closure

operation of D.

5.1. Bootstrapping with ·−

The lemma below is our starting point for showing that the class D is surprisingly

powerful.

Lemma 15 (bounded addition). The function min(x+ y, z) belongs to D.

Proof. Set f(x, y, z)
def
= z ·−((z ·−x) ·−y). If x + y � z, then (z ·−x) ·−y = 0, which yields

z ·−((z ·−x) ·−y) = z− 0 = z On the other hand, if z > x+y � x, then z ·−x = z−x > y > 0.

Hence (z − x) ·−y = ((z − x) − y) > 0. But now z > (z − (x+ y)) > 0, so

z ·−((z ·−x) ·−y) = z − (z − (x+ y)) = z − z + (x+ y) = x+ y.

This function is the key to proving several properties of D and D�.

https://doi.org/10.1017/S0960129510000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129510000198


M. Barra 762

Proposition 16.

(i) min(x, y) ∈ D.

(ii) D� is Boolean.

(iii) χ=, χ< ∈ D.

(iv) Γmax,ΓC ∈ D.

(v) If A or �k \ A is finite, then A ∈ D�.

Proof.

(i) Clearly, min(x, y) = min(x+ 0, y), which gives part (i).

(ii) Given χR1
and χR2

, we have

χR1∩R2
= min(χR1

+ χR2
, 1) and χ�k\R = 1 ·−χR1

,

which gives part (ii).

(iii) This part follows from x ·−y = 0 ⇔ x � y and y ·−x = 0 ⇔ y � x in conjunction

with part (ii).

(iv) This part follows from

max(x, y) = z ⇔
(
y � x ∧ z = x

)
∨
(
x < y ∧ z = y

)
and

C(x, y, z) = w ⇔
(
z = 0 ∧ w = x

)
∨
(
z < 0 ∧ w = y

)
.

(v) This part follows from parts (ii) and (iii) and the observation that any singleton {n}
have characteristic function in D by χ{n}(x) = χ=(x, n).

Armed with Proposition 16, we can prove the following lemma.

Lemma 17. Let r ∈ {<,=}, and let 1 � j < k ∈ � be arbitrary. Then, the following

relations belong to D�:

j∑
i=1

xi r

k∑
i=j+1

xi.

Proof. Observe first that the function f(x,�y) = x ·−
(∑k

i=1 yi
)

∈ D, by k consecutive

applications of composition. Note also that when R(�x) ∈ D� and �f ∈ D, the relation S(�y)

defined by S(�y)
def⇔ R(f1(�y), . . . , fk(�y)) belongs to D�.

We prove the lemma by induction on k:

Induction start: This is given by Proposition 16.

Induction step: Note that

j∑
i=1

xi =

k∑
i=j+1

xi ⇔ ¬

⎛
⎝ j∑

i=1

xi <

k∑
i=j+1

xi

⎞
⎠ ∧ ¬

⎛
⎝ k∑
i=j+1

xi <

j∑
i=1

xi

⎞
⎠ .

Hence, it is sufficient to perform the induction step when r is ‘<’. Moreover, as D� is

Boolean, we may invoke the induction hypothesis for r ∈ {�,�, <,>,=}.
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We proceed to the case k + 1, with 2 � k, and first prove the special cases of j = k.

Clearly,
k∑
i=1

xi < xk+1 ⇔ 0 < xk+1
·−
( k∑

i=1

xi

)
.

This shows that
∑k

i=1 xi < xk+1 ∈ D� by the initial remarks.

Next consider the general case 1 � j < k.

j∑
i=1

xi <

⎛
⎝ k∑
i=j+1

xi

⎞
⎠+ xk+1 ⇔

(
j∑
i=1

xi < xk+1

)
∨

⎛
⎜⎜⎜⎜⎜⎝
(
xk+1 �

j∑
i=1

xi

)
︸ ︷︷ ︸

ψ

∧

⎛
⎝(( j∑

i=1

xi

)
·−xk+1

)
<

k∑
i=j+1

xi

⎞
⎠

︸ ︷︷ ︸
φ

⎞
⎟⎟⎟⎟⎟⎠.

The conjunct marked φ above requires special attention. Consider the function

gj(x1, . . . , xj , xk+1) =

(
j∑
i=1

xi

)
·−xk+1.

Now gj is not in D, but we see that gj(�x, y) is equal to

(x1
·−y) + (x2

·−(y ·−x1)) + · · · + (xj
·−(y ·−x1

·−x2
·− · · · ·−xj−1)) · · · )). (†)

Furthermore, when ψ is true, we have gj(�x, y) =
(∑

i xi
)

− y. Importantly for us, the

expression (†) is a sum of j summands, each summand being a D-function of the

variables involved. Hence,

ψ ∧ φ ⇔ ψ ∧

⎛
⎝ j∑

i=1

(
xi

·−
(
xk+1

·−
i−1∑
�=1

x�

))
<

k∑
i=j+1

xi

⎞
⎠

︸ ︷︷ ︸
φ′

,

which, since the φ′ is in D� by the induction hypothesis, concludes the proof when r

is ‘<’.

5.2. Presburger Arithmetic and D�

Let PrA be the first-order language {0,S,+, <,=} with the intended structure N
def
=

(�, 0,S,+, <) – the natural numbers with the usual order, successor and addition. Terms,

(atomic) formulae and the numerals m are defined in the standard way. As usual, we use

abbreviations extensively: for example, we use t � s for t = s ∨ t < s.

Many readers will no doubt have recognised PrA as the language of Presburger

Arithmetic, see, for example, Enderton (1972, page 188). It is known that the theory of

N is decidable (we will return to this point in Section 6), and that it does not admit

quantifier elimination.
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We overload the symbol PrA and use it to denote the set of PrA-formulae as well. For

φ(�x) ∈ PrA, we define Rφ ⊆ �k by

Rφ
def
=
{
�m ∈ �k | N |= φ(�m)

}
and set

PrA�
def
= {Rφ | φ ∈ PrA} .

We use PrA
qf to denote the set of quantifier free PrA-formulae and PrA

Δ0 for the

Δ0-formulae. PrA
qf
� and PrA

Δ0
� are defined as expected.

Any PrA-term t is clearly equivalent to some term
(∑

i�k aixi
)
+m, which is shorthand

for

(x1 + · · · + x1︸ ︷︷ ︸
a1−times

) + · · · + (xk + · · · + xk︸ ︷︷ ︸
ak−times

) + m.

Thus, any atomic formula φ(�x) ∈ PrA is equivalent to a formula of the form†∑
aixi + a r

∑
biyi + b. (‡)

The main result of this section is given by the following theorem.

Theorem 18. PrA
qf
� = D�.

Lemma 17 provides us with most of the proof of PrA
qf
� ⊆ D�.

Proof of PrA
qf
� ⊆ D�. Let R ∈ PrA

qf
� . Then, by definition, we have R = Rφ for some

φ(�x) ∈ PrA
qf . Since D� is Boolean, it is sufficient to prove the lemma for φ atomic.

Let φ(�x) be atomic. Hence, it has the form specified in (‡) above. If we let R be the

relation

R(�x,�y)
def
=
∑

aixi + z r
∑

biyi + w ,

we have, by Lemma 17, that χR ∈ D. But then

χR(�n, �m, a, b) = 0 ⇔
∑

aini + a r
∑

bimi + b ⇔ N |= φ(�n, �m),

so χR(�x,�y, a, b) = χRφ . Hence χRφ ∈ D.

To facilitate the proof of the opposite inclusion, we first consider the language PrA
·− def

=

PrA ∪ { ·−,−}, in other words, PrA augmented with new function symbols ‘ ·−’ and ‘−’,

and with intended model Z
def
= (�, 0,S,+,−, ·−, <). Note that ·− is well defined on all of �2

by its original definition max(x − y, 0). We also note the fact that for φ ∈ PrA variable

free, we have Z |= φ ⇔ N |= φ.

Also, to every function f ∈ Dk , there is a PrA
·−-term tf(�x) such that for all �n,m ∈ �

we have Z |= tf(�n) = m ⇔ f(�n) = m.

Lemma 19. Let φ(�x) ∈ PrA
·− be atomic. Then there is a φ′(�x) ∈ PrA

qf such that for all

�n ∈ � we have N |= φ′(�n) ⇔ Z |= φ(�n).

† We continue to use r as a meta variable ranging over {<,=}, unless we specify otherwise.
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Proof. For a PrA
·−-term t, we define rk ·−(t) to be the number of occurrences of the

symbol ·− in t. Note that when φ ∈ PrA
·− is atomic, it has the form t1 r t2, and that

rk ·−(t1) + rk ·−(t2) = 0 implies that either φ ∈ PrA
qf or it is equivalent to φ′ ∈ PrA

qf by

basic arithmetical considerations.

The proof is by induction on rk ·−(t1) + rk ·−(t2):

Induction start: This is given by the comments above.

Induction step: Let rk ·−(t1)+rk ·−(t2) = �+1. At least one of the ti must contain a sub-term

s of the form s1
·−s2, and with rk ·−(s) = 1, that is, s may be chosen to satisfy rk ·−(s1) =

rk ·−(s2) = 0. Now consider the terms defined by t−i
def
= ti[s := s1−s2] and t

0
i

def
= ti[s := 0],

where ti[s := s′] denotes the result of substituting s′ for all occurrences of the sub-term

s. Note that rk ·−(t−i ) = rk ·−(t
0
i ) < rk ·−(ti) for at least one i since we have removed

at least one occurrence of ·− from one of the ti in each construction. So we have

rk ·−(t−1 ) + rk ·−(t2) = rk ·−(t
0
1) + rk ·−(t2) � �, and, moreover,

t1(�x) r t2(�x) ⇔
∨{ s1(�x) < s2(�x) ∧ t01(�x) r t

0
2(�x)

s2(�x) � s1(�x) ∧ t−1 (�x) r t−2 (�x).

By the induction hypothesis, the relation t1(�x) r t2(�x) is in PrA
qf
� since each disjunct

above is a conjunction of atomic PrA
·−-terms of rank strictly less than �+ 1.

We are now ready to finish the proof of Theorem 18.

Proof of D� ⊆ PrA
qf
� . Let R ∈ Dk

�. Then R = f−1(0) for some f ∈ Dk . We now fix a

PrA
·−-term tf such that Z |= t(�x) = y if and only if f(�x) = y and apply Lemma 19 to

obtain φ ∈ PrA
qf satisfying

N |= φ(�x, y) ⇔ Z |= t(�x) = y.

But then we also have

�x ∈ f−1(0) ⇔ N |= φ(�x, 0),

so f−1(0) = Rφ ∈ PrA
qf
� .

Bearing in mind that no increasing functions are available in D, and, perhaps even more

strikingly, that composition is the only schema, the class D really delivers rather more

than one would at first glance expect†.

It is also of interest that when only composition is available, none of the standard linear

initial functions add anything to D�. More precisely, we have the following theorem.

Theorem 20.
[
{max,min,C,S,P,+, ·−} ;

]
�

= D�.

Proof. It is sufficient to show that[
I ∪ N ∪ {C, ·−,+} ; comp

]
�

⊆ PrA
qf
� ,

† In contrast, for example,
[
{C} ;

]
�

consists essentially of �, {0}, � \ {0} and � (and their products), and

most other familiar functions, like S, P or +, even fail to produce a Boolean set of relations.
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since max,min,S and P are clearly definable in this idc To this end, we augment the

language PrA with function symbols ‘ ·−’, ‘C’ and ‘−’, and define a ( ·−,C)-rank analogously

to the ‘ ·−’-rank defined above.

The proof is now almost identical to the one given for Lemma 19, except that in the

induction step we must also allow for the case where the minimal positive-rank-sub-term

is C(s0, s1, s2) rather than s1
·−s2:

Induction step:

— Case s ≡ C(s0, s1, s2)):

We have

t1(�x) r t2(�x) ⇔
∨{ s2(�x) = 0 ∧ t1[s := s0](�x) r t2[s := s0](�x)

s2(�x) > 0 ∧ t1[s := s1](�x) r t2[s := s1](�x)

As before, the formula on the right-hand side has strictly smaller rank than the

formula on the left-hand side, and we are done. We do not need to worry about

‘+’ since it is already accommodated for in the language PrA.

6. The class Dμ

In this section we turn our attention to the class Dμ def
=
[
{ ·−} ; bmin

]
: that is, the

class produced by merging D and Fμ. Obviously, D,Fμ ⊆ Dμ, so all of the required

bootstrapping has already been carried out in the previous sections. Indeed, the first thing

we will do is to prove a proposition that limits the possible candidates for membership

in Dμ. We will prove a slightly stronger version than we actually need for this section by

including bcount
n, because this stronger result will be useful later in the paper.

Proposition 21 (top-index). Let f ∈
[
{ ·−} ; bmin, bcount

n
]
. Then f has a top-index.

Furthermore, if f(�k) is infinite, the top-index is strict.

Proof. We use induction on f:

Induction start: This is f ∈ I ∪ N ∪ { ·−}, and the result is obvious since constants are

bounded by themselves, Iki (�x) � xi and x ·−y � x.

Induction step: We need to analyse three cases:

— Case f = h ◦�g:
We have that f is bounded by the xi such that i is the top-index of gj where j is

the top-index of h. The cf may be fixed to max(ch,�c). A prerequisite for f(�k) to

be infinite is that h(��) is infinite. Hence, the j is a strict top-index for h by the

induction hypothesis. Also, since h(�y) � yj , again if f is to have infinite image, gj
must have infinite image, so a second appeal to the induction hypothesis implies

that i is a strict top-index for gj . But then i is a strict top-index for f.

— Case f = μz�y[g1, g2]:

f has strict top-index y by definition.

— Case f = ��z<y[g1, g2]:

As in the previous case, f has strict top-index y by definition.
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6.1. Presburger Arithmetic and Dμ
�

We define PrA
ΔV as the set of PrA-formulae, where all quantifiers occur in the context

∃z(z � y ∧ φ), which we abbreviate by ∃z�yφ. The ‘V ’ in ‘ΔV ’ is meant to reflect the

requirement that the quantified variable must be bounded by a variable, and not a general

term, which is also known as finite or linear quantification.

Lemma 22. If f ∈ Dμ, then Γf ∈ PrA
ΔV
� .

Proof. We use induction on f:

Induction start: This is given by D� = PrA
qf
� .

Induction step:

— Case f = h ◦�g:
Let ij (for 1 � j � m) be the strict top-index of gj if gj(�k) is infinite, and

max gj(�k) otherwise. We fix PrA
ΔV -formulae φh(�z, y) and φj(�x, zj) representing

the graphs of h and the gj ’s, respectively. Then

(h ◦�g)(�x) = y ⇔ ∃z1�t1 · · · ∃zm�tm

(( ∧
1�i�m

φ(�x, zi)

)
∧ φh(�z, y)

)
,

where tj = xij for unbounded gj , and ij otherwise. Clearly, quantification bounded

by a constant is merely a finite disjunction, and, as such, even PrA
qf
� is closed

under ∃x�c type quantifiers.

— Case f = μz�y[g1, g2]:

Let φi represent gi(�x) = y, and define

φ(�x, y, w) ⇔
∨⎧⎨⎩

w = y ∧ ¬∃z�y(φ1(�x, z) ∧ φ2(�x, z))

∃z�y

(∧{ w = z ∧ φ1(�x, z) ∧ φ2(�x, z)

∀u�z(¬φ1(�x, u) ∨ ¬φ2(�x, u) ∨ u 	= z)

)
Then φ ∈ PrA

ΔV , and N |= φ(�x, y, w) ⇔ f(�x, y) = w as required.

Corollary 23. Dμ
� = PrA

ΔV
� .

Proof. The Dμ
� ⊆ PrA

ΔV
� -direction follows immediately from Lemma 22. The opposite

direction follows from the definition of PrA
ΔV
� since PrA

qf
� ⊆ D� ⊆ Dμ

� and the fact that

just like Fμ
� , the class Dμ

� is closed under linear quantification.

Theorem 24. Dμ
� = PrA�.

Theorem 24 follows from the original proof that the theory of PrA is decidable. In

1930, Mojżes Presburger demonstrated this now well-known fact in Presburger (1930)† by

proving that the theory of the intended structure N≡ = (�, 0,S,+, <,≡2,≡3, . . .) for the

† I consulted D. Jaquette’s excellent translation – see Presburger and Jaquette (1991).
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language PrA
≡ def

= PrA ∪ {≡2,≡3, . . .} does admit quantifier elimination. In particular, for

any PrA-formula φ, there is a φ′ ∈ PrA
≡,qf such that

N≡ |= φ′ ⇔ N≡ |= φ ⇔ N |= φ.

The relation ‘congruence modulo λ’ is definable by

x ≡λ y ⇔ ∃u�x

(
x = y + u+ · · · + u︸ ︷︷ ︸

λ-terms

)
∨ ∃u�y

(
y = x+ u+ · · · + u︸ ︷︷ ︸

λ-terms

)
.

Since the right-hand side is clearly PrA
ΔV
� , by Corollary 23, these predicates belong to Dμ

�

for all λ ∈ �. But we can do even better.

Lemma 25. Let p, q ∈ �[�x] be linear polynomials, and let λ ∈ �. Then, the relation

p(�x) ≡λ q(�x) is in Dμ
� .

Proof. First note that the unary function remλ(x)
def
= rem(x, λ) ∈ Dμ for each fixed

λ ∈ � since rem(x, λ) = μz�λ[χ≡λ
(x, z) = 0].

Write p(�x) =
∑kp

i=1 a
p
i xi + mp. Set Ap =

∑kp
i=1 ai, and note that Ap is independent of �x.

Also, since remλ(x) < λ, we have

sp(�x) =

kp∑
i=1

ai remλ(xi) < Apλ.

We can argue similarly for q(�x). So p(�x) ≡λ q(�x) ⇔ sp(�x) ≡λ s
q(�x).

We still need to show that the relation sp(�x) ≡λ s
q(�x) is in Dμ

� . Since bounded addition

is in D, we also have ŝp(�x, z)
def
= min(sp(�x), z) in Dμ. But then, for A = max(λAp, λAq), we

have p(�x) ≡λ q(�x) ⇔ ŝp(�x, A) ≡λ ŝ
q(�x, A).

Because Lemma 25 yields a decision procedure for all atomic PrA
≡-formulae within

Dμ
� , and since Dμ

� is Boolean, we have PrA
≡,qf
� ⊆ Dμ

� . So, using Presburger’s original

results, we have

Dμ
� ⊇ PrA

≡,qf
� = PrA� ⊇ PrA

ΔV
� = Dμ

�,

which constitutes a proof of Theorem 24. Note that this also proves the following corollary.

Corollary 26. PrA
ΔV
� = PrA�.

6.2. Dμ versus the class G1

The class G1 is defined by G1 def
=
[
{0,S,+} ; bmin

0
]
. K. Harrow proved the following

theorem.

Theorem 27 (Harrow 1975). PrA� = G1
� � E1.

Here E1 is the familiar Grzegorczyk-class – see the discussion in Section 4.2. As with G0

and Fμ, we obtain the following theorem on the induced relational classes.
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Theorem 28. Dμ
� = G1

� and Dμ � G1.

Proof. The only part we have not already proved is Dμ � G1, and, again, S ∈ G1 \ Dμ
suffices as proof for this: S is not argument-bounded, while all functions of Dμ are.

7. The class DDμ

We let PA
def
= PrA ∪ {×} be the language of Peano Arithmetic, and use the notational

conventions of the previous sections.

The relational class PA
Δ0
� can thus be described as those predicates that are definable

by a Δ0-formula in the language PA of Peano Arithmetic. This class has been the focus of

intense and varied studies over the years, and is known by many names. Perhaps the most

widely used are Δ�
0 or R. The class is known to equal the set of Rudimentary relations, and

the class of Constructive Arithmetic (both defined by Smullyan – see Smullyan (1961)),

and has many other characterisations.

The definition of the class G2, using our notation, is

G2 def
=
[
{0,S,+,×} ; bmin

0
]
.

Theorem 29 (Harrow). PA
Δ0
� = G2

� and PA
Δ0
� = PA

ΔV
� .

Of course, the fact that PA
Δ0
� � PA� is well known.

Consider the class DDμ def
=
[{ ·−,

⌊ ·
·
⌋}

; bmin

]
: informally, DDμ is obtained by adding

integer division to Dμ. Now, since we can think of division being in some way to

multiplication what difference is to addition, a natural question to ask is whether the

inclusion of this new function makes DDμ to G2 what Dμ is to G1. The answer is yes.

We need the following proposition.

Proposition 30. rem ∈ DDμ.

Proof. We have already seen that Ĉ and Ŝ belong to sub-classes of DDμ. Now

rem(x, y) = Ĉ

(
0,min

(
μz�x

[⌊
x ·−z
y

⌋
	=
⌊
x

y

⌋]
+ 1, x

)
, y, x

)
.

Then, because rem(x, y) � y, we have rem ∈ DDμ by Lemma 4.

Theorem 31. DDμ
� = PA

Δ0
� = G2

�.

Proof. Note that

xy = z ⇔
(
y > 0 ∧ x =

z

y

)
∨ φ ⇔

(
y > 0 ∧ rem(z, y) = 0 ∧

⌊
z

y

⌋
= x

)
∨ φ,

where φ(x, y, z) is, for example, y = 0∧z = 0, so the graph of multiplication is computable

in DDμ
� .

Next, the class CA of Constructive Arithmetic predicates, as introduced by Smullyan (see

Smullyan (1961)), is defined as the closure of the graphs of addition and multiplication

under explicit transformations, Boolean operations and quantification bounded by a
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variable. Hence CA ⊆ DDμ
� . Next, since Harrow proved in Harrow (1975) that G2

� = PA
Δ0
� ,

and since DDμ ⊆ G2 trivially, we clearly have DDμ
� ⊆ PA

Δ0
� .

This is sufficient, since results in Bennett (1962), Wrathall (1978) and Lipton (1979)

imply the non-trivial identities CA Ben
= RUD Wra

= LH
Lip
= PA

Δ0
� , which completes the proof

of Theorem 31. (Here RUD are Smullyan’s Rudimentary relations and LH is the Linear

Hierarchy.)

8. The classes Fn,� and Fn,�

In this section we study classes

Fn,� def
=
[

; bcount
n+1
]

and Fn,� def
=
[

; bcount
n+1
]
.

First note that for the case n = 0 above, the two schemata bcount
1 and bcount

1

are the same. When we count solutions �z<y[g1(�x, z) = g2(�x, z)], the answer is already

bounded by y = |{0, . . . , y − 1}|. Accordingly, we will identify the two, and simply write

F� for F0,�
= F0,�.

Now, observe that the schema bcount
n+1 for n � 1 does not necessarily generate

argument-bounded functions from argument-bounded functions, and as such, the resulting

classes Fn,μ do not really fit the profile of the other classes introduced in this paper.

However, as we shall see in Sections 8.3 and 8.4, we actually have F1,�
= F1,� = F2,�

=

F2,� = · · ·.
Also, bcount will prove to be the strongest schema considered so far. So-called

counting-quantifiers and counting-operations have been subjected to extensive studies in

the literature, see, for example, Paris and Wilkie (1985), Schweikardt (2005), Esbelin (1994)

and Esbelin and More (1998).

We will first take a closer look at F�.

8.1. Bootstrapping with bcount
1

Let f be any function, and let R = f−1(0), so f is a characteristic function for R. Consider

the function

F(�x, y)
def
= �z<y[f(�x) = 0] =

{
y if �x ∈ R

0 if �x 	∈ R .

In particular, F(�x, c) is the specific characteristic function for ¬R, which we denoted using

χc¬R earlier. Thus, by applying the above construction, twice if necessary, when a relation

R belongs to F�
� , we may form χcR and χc¬R for all c > 0. Hence:

(i) F�
� is closed under negation.

Moreover, and not surprisingly, when R ∈ F�
� we may count the number of z < y for

which R(�x, z). We will use χ�R to denote the functions that satisfies

χ
�
R(�x, y)

def
= |{z < y | R(�x, z)}| .

Clearly, χ�R(�x, y) = �z<y[χR(�x, z) = 0], so:
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(ii) R ∈ F�
� ⇒ χ

�
R ∈ F�.

Next, we have that

�z<y[x = z] =

{
0 if x � y

1 if x < y

�z<1[x1 = x2] =

{
0 if x1 	= x2

1 if x1 = x2

belong to F� by applying bcount to suitable projections, so we conclude that:

(iii) χ�, χ	= ∈ F�.

Closure under negation yields χ<, χ= ∈ F�. Since χR∧S = χ= ◦ (χ1
R, χ

2
S ) we also have

closure under logical ‘and’, so we have:

(iv) F�
� is Boolean.

Consider the function χ
�
�. By (i)–(iii), we have χ�� ∈ F�. This function counts the set

D, defined by

D
def
= {z < y | x � z } = {z | x � z < y } .

Since y � x � z < y is contradictory, when y � x, we have |D| = |�| = 0 = y ·−x. On the

other hand, if y > x, say x+ c, then

|D| = |{x, x+ 1, x+ 2, . . . , x+ (c− 1)}| = c = y ·−x.

We conclude that:

(v) χ�� = ·− ∈ F�, and thus D ⊆ F�.

We can now prove closure of F� under bmin. Recall that the schema we consider

returns y upon a failed search. Set f = 1 ·−
(
1 ·−�v<z[g1, g2]

)
. We need to verify that f is

0–1-valued and satisfies

f(�x, z) = 1 ⇔ ∃v<z (g1(�x, v) = g2(�x, v)) .

Set

h(�x, y)
def
= �z<y[f(�x, z) = 1].

Given �x, we assume v0 is the least element of

{v | g1(�x, v) = g2(�x, v)} .

Now, because of the way we defined f, the function h counts the set

My
def
= {z < y | v0 < z } = {z | v0 < z < y } .

We have

My =

{
� if y � v0 + 1

{v0 + 1, . . . , v0 + (n+ 1)} if y = v0 + (n+ 2)

⇒

|My| =

{
0 if y � v0 + 1

n+ 1 if y = v0 + (n+ 2).
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The above implies that

h′(�x, y)
def
= y ·−h(�x, y) =

{
y if y � v0 + 1

v0 + 1 if y = v0 + (n+ 2)

}

=

{
y if y � v0
v0 + 1 if v0 < y.

Finally, for

h′′(�x, y)
def
= h′(�x, y) ·−χ	=

(
g1(�x, h

′(�x, y) ·−1), g2(�x, h
′(�x, y) ·−1)

)
,

we get

h′′ =

{
y ·−χ	=(g1(�x, y

·−1), g2(�x, y
·−1)) if y � v0

(v0 + 1) ·−χ	=(g1(�x, v0), g2(�x, v0)) if v0 < y.

By the definition of v0, we see that

χ	=(g1(�x, y
·−1), g2(�x, y

·−1)) = 0.

Therefore

χ	=(g1(�x, v0), g2(�x, v0)) = 1.

We can then conclude that

h′′ =

{
y ·−0 = y if y � v0
(v0 + 1) ·−1 = v0 if v0 < y

}

=

{
y if y < v0
v0 if v0 � y

}
= μz�y[g1, g2].

If there is no solution v0, the same function works since we are conceptually always in

the case y < v0.

Hence, we have:

(vi) F� is closed under bmin.

Clearly, (i)–(vi) provide a complete proof of the following proposition.

Proposition 32. Dμ ⊆ F�. Hence PrA� ⊆ Fμ
� .

8.2. Counting quantifiers and counting operations

Counting in PA
Δ0 has been extensively studied in the literature. Most notably, while we

know that when R(�x, y) ∈ E0
�, then so is the predicate

S(x, z, y)
def⇔ z = |{u < y | R(�x, u)}| ,

the analogous statement with respect to PA
Δ0 is an open problem. The predicate S above

can be viewed as having been generated from R by a so-called counting operation. This

terminology is found in, for example, Esbelin and More (1998).

The fact that z = |{u � y | R(�x, u)}| ⇔ �u<y[χR(�x, u) = 0] = z, yields the following

proposition.
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Proposition 33. F�
� is closed under the counting operation

Schweikardt (2005) contains a study and survey of the concept of counting-quantifiers.

The approach taken in Schweikardt (2005) was to extend first-order logic with counting

quantifiers ‘∃=z
y ’, with the intended interpretation that ∃=z

u R(x, u) holds if and only if

z = |{u | R(�x, u)}|. These counting quantifiers are unbounded a priori, but can obviously

be made bounded, in the sense that, for example,

S(�x, z, y)
def
= ∃=z

u (u < y ∧ R(�x, u)) ,

takes on the meaning:

There are u0 < u1 < · · · < uz < y such that:

(i) for each i < z we have R(�x, ui); and

(ii) if v < y satisfies R(�x, v), then for some i < z we have v = ui.

We abbreviate this construction by ∃=z
u<yR(�x, u).

Also, since

∀u<yR(�x, u) ⇔ ∃=y
u<yR(�x, u)

and

∃u�yR(�x, u) ⇔ R(�x, y) ∨ ∃u<yR(�x, u),

we see that the closure of a set of relations R� under the bounded counting operation,

which we denote by R�, is also closed under variable-bounded (∃z�y-type) quantifiers.

Incidentally, we have the following theorem.

Theorem 34 (Schweikardt). PrA� = PrA�.

The theorem in Schweikardt (2005) actually asserts that one can extend the underlying

first-order logic of Presburger Arithmetic with full unbounded counting quantifiers, and

still retain equality. The important thing for us is that we can now easily prove the

following theorem.

Theorem 35. F�
� = PrA�.

Proof. The proof is by induction on f:

Induction start: The base-cases are obvious since we only need to consider I∪N-functions.

Induction step:

— Case comp:

This is exactly as in the proof of Lemma 22.

— Case f = �u<y[g1, g2]:

For �u<y[g1(�x, u) = g2(�x, u)], let φi(�x, u, w) represent the graphs of the gi’s, and

consider the formula†:

ψ(�x, y, z)
def
= ∃=z

u<y∃w�max(�x,u) (φ1(�x, u, w) ∧ φ2(�x, u, w)) .

† In the expression, the ‘∃w�max(�x,y)’-quantifier is formal shorthand for the finite disjunction ∃w�x1
φ∨ ∃w�xkφ∨

· · · ∨ ∃w�yφ, which is a PrA-formula when φ is.
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Clearly, f(�x, y) = z ⇔ N |= ψ(�x, y, z). Since Schweikardt’s proof implies that one

may find an equivalent PrA-formula ψ′ when the φi ∈ PrA, we are done.

That is, in a quite precise sense:

Presburger Arithmetic is exactly counting!

8.3. The classes Fn,� for n � 2

The first thing to note is that n-ary bounded counting, as defined above, is not an

argument-bounded schema. The bound is actually polynomial in the sense that the

number of n-tuples �z that may be counted by ��z<y[g1, g2] is bounded only by yn.

Still, a top-index-like phenomenon arises for functions in Fn,�. We generalise the top-

index-notion by saying that f(�x) has polynomial top-index i, if, for some c, n ∈ �, we have

f(�x) � max(xni , c); and i is a strict (polynomial) top-index if c = 0.

Lemma 36 (polynomial top-index). Let f ∈ Fn,�. Then f has a polynomial top-index.

Furthermore, if f(�k) is infinite, then the top-index is strict.

Proof. The assertion has already been proved for f ∈ I ∪ N.

Induction step:

— Case f = h ◦�g:
Let h(�y) � max(ynhj , ch) and gj(�x) � max(x

nj
i , cj). Then

f(�x) � max
((
gj(�x)

)nh
, cj
)

�

max
(
(max(x

nj
i , cj))

nh , ch
)

� max
(
x
nhnj
i ,max

(
cnhj , ch

))
.

As before, if f is to have infinite image, then h must have infinite image, so ch = 0.

Thus f(�x) � (g(�x))nh . Unless g has infinite image, this function is bounded, so

cj = 0 as well.

— Case f = ��z<y[g1, g2]:

|�z| = n trivially implies strict top-index yn.

Hence, functions like max, C, or x · y are excluded from Fn,�. Also, any function in Fn,�

is bounded by a polynomial, which can be expressed as Fn,� ⊆ E2 for all n ∈ �.

Next, observe that g(x)
def
= �z1 ,z2<x[0 = 0] satisfies

g ∈ F1,� and g(x) = x2.

Hence, by composing g with itself k times, we have g(k)(x) = x2k ∈ F1,�. In particular,

any polynomial p ∈ �[x] with constant term equal to zero† is in F1,�.

Let f(x, y, b)
def
= �z1 ,z2<b[z1 < x ∧ z2 < y]. Then f(x, y, b) = min(x·y, b2) ∈ F1,�. Equipped

with this function from the ‘bounded multiplication family’, we can easily define enough

† For example, p(x) = x3 + 5 cannot be in Fn,� since it has infinite image, yet p(1) = 6 > 1m for any m.
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to get F1,� off the ground. We have

⌊
x

y

⌋
= v ⇔

∨
⎧⎪⎪⎨
⎪⎪⎩

(y = 0 ∨ y > x) ∧ v = 0

∧⎧⎨⎩
0 < v, y � x

min(y(v ·−1), x2) < x

∃u�y

(
min(vy, x2) + u = x

)
.

Since this predicate is obtainable by substituting the F1,�-function min(xy, b2) into a

PrA�-predicate, we conclude that
⌊ ·

·
⌋

∈ F1,�. So DDμ ⊆ F1,�. Since Fn,� is trivially

closed under the counting-operation we obtain the following proposition.

Proposition 37. PA
Δ0

� ⊆ F1,�
� .

Definition 38. Let Bky
def
=
{
�x ∈ �k | max(�x) < y

}
and define eky :Nk → � by

eky(�x) =

k∑
i=1

xi · y(i−1).

It is well known that eky�Bky is a bijection between Bky and
∣∣Bky ∣∣ = yk . We use πk,yi (z)

to denote any function such that πk,yi (eky(�x)) = xi for �x ∈ Bky . Exactly what πk,yi does for

z = eky(�x) when �x 	∈ Bky is insignificant; we may simply let πk,yi (z) = z for such z �
∣∣Bky ∣∣.

Also, for each fixed k > 0, the functions

Ek(�x, y) :�k+1 → �; Ek(�x, y) = eky(�x)

Πk
i :�

2 → �; Πk
i (z, y) = π

k,y
i (z),

all have PA
Δ0-graphs. Because of the way we defined π

k,y
i , we have Πk

i (x, y) � x. This

means Πk
i has a top-index, so Πk

i ∈ F1,� directly. Also, since Ek(�x, y) < yk and is a

polynomial in �x and y, we have Ek ∈ F1,� since it is equal to min(Ek(x, y), yk).

Esbelin and More have shown (Esbelin and More 1998) that PA
Δ0

� is closed under

polynomially bounded quantification. We therefore easily obtain Fn,�
� ⊆ PA

Δ0

� , or,

equivalently, the following lemma.

Lemma 39. f ∈ Fn,� ⇒ Γf ∈ PA
Δ0

� .

Proof. The proof is by induction on f, for all n simultaneously:

Induction start: This is just as in previous proofs.

Induction step:

— Case f = h ◦�g:
Let φh(�y, w) and φj(�x, zj) be the representing formulae of h and the gj ’s, respectively.

Consider

ψm(�x, w)
def⇔ ∃�z�max(xm1 ,...,x

m
k
)

⎛
⎝ ∧

1�j��

φj(�x, zj) ∧ φh(�z, w)

⎞
⎠ .

As usual, the bound in the quantifier poses no problem with respect to taking a

max. Since PA
Δ0

� is closed under polynomially bounded quantification, ψm is in
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PA
Δ0

� for all m. By choosing m sufficiently large, viz. so that m is larger than the

maximal degree of the polynomial top-indices of the gj ’s, we see that ψm represents

the graph of h ◦�g.
— Case f = ��z<y[g1 = g2]:

Let φ(�x,�z) be the PA
Δ0

� formula asserting that g1(�x,�z) = g2(�x,�z), we have

f(�x, y) = v ⇔ v =

∣∣∣∣∣
{
u < yn

∣∣∣∣∣ ∃�z < y

((
n∧
i=1

(
zi = Πn

i (u, y)
))

∧ φ(�x,�z)

)}∣∣∣∣∣ ,
which is again clearly a PA

Δ0

� -formula.

Define Fω,� def
=
⋃
n∈� Fn�. Then the above means that we have the following theorem.

Theorem 40. F� � F1,� = Fω,�. Furthermore, Fω,�
� = PA

Δ0

� .

Proof. By Proposition 37, we have PA
Δ0

� ⊆ F1,�
� . Combined with Lemma 39 this implies

that the graph of any f ∈ Fω,� belongs to F1,�, and thus also f−1(0) for any such function.

This result is not very surprising, and is only included for completeness. There is no

way of achieving exponential growth in Fn,� for any n, and, growth-wise, F1,� dominates

the whole ‘hierarchy’. In fact, it is easy to see that we have the following corollary.

Corollary 41. [× ; bcount]� = PA
Δ0

� .

This follows because we can still capture the graph of a [× ; bcount]-function in

PA
Δ0

� by essentially the same formula as above: since PA
Δ0

� is closed under polynomial

substitutions, we do not depend upon a top-index.

8.4. The classes Fn,�
for n � 2

Recall that for these classes, the situation returns to ‘normal’ – we have already proved

the relevant top-index result as Lemma 21.

Is the n-ary schema any stronger than the unary? That is, do we have, for example,

F0,�
� F1,�

, when all functions are argument-bounded? The answer is yes.

We may still count pairs, and pairs have to do with multiplication. The point is that we

can do most of what we have done in the previous section by observing that a bounded

multiplication function is still available:

f(x, y, b) = min(b, �z1 ,z2<b[z1 < x ∧ z2 < y])

= min(b,min(x · y, b2))

= min(x · y, b).

This means that the analogue of Proposition 37 still holds for F1,�
since we can substitute

x for the two occurrences of x2 without destroying the equivalence. This means we have

the following proposition.
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Proposition 42. PA
Δ0

� ⊆ F1,�

� .

Proof. The result follows simply because PA
Δ0
� = DDμ

� ⊆ F1,�

� , and because we inherit

closure under the counting operation from the fact that F1,�

� is closed under bounded

counting.

By combining the obvious fact that Fn,� ⊆ Fn,� and Lemma 39 we have the following

lemma.

Lemma 43. f ∈ Fn,� ⇒ Γf ∈ PA
Δ0

� .

Defining Fω,� def
=
⋃
n∈� Fn�

, we again get the following result.

Theorem 44. F� � F1,�
= Fω,�

. Furthermore, Fω,�

� = PA
Δ0

� .

We see that the only essential use of the polynomial growth possible in F1,�, is in defining⌊ ·
·
⌋
: the computational difference between PrA

�
� and PA

Δ0

� can be thought of as being the

ability to divide.

Theorem 45.

F1,� = [{
⌊ ·

·
⌋
} ; bcount] =�

[
{×} ; bcount

]
,

where ‘=�’ indicates that the equality only holds for the relational classes.

9. Summary of results and concluding discussion

The following diagram summarises the results of this paper:

Fμ
� = G0

�
HAR
= PL�

�

D� = PrA
qf
�

�

Dμ
� = F�

� = G1
�

HAR
= PrA�

�

DDμ
� = G2

�
HAR
= PA

Δ0
�

⊇

F1,�

� = · · · = Fω,�

� = PA
Δ0

�

=

F1,�
� = · · · = Fω,�

� = PA
Δ0

�

PrA�
SCH
= PrA� = F�

� � PA
Δ0
�

?

⊆ PA
Δ0

� = F1,�
� = Fω,�

�

The first feature to note in these results are the three equalities Fμ
� = G0

�, Dμ
� = G1

� and

DDμ
� = G2

�, which formed the original motivation for this research. In each equality we

have:

(1) On the functional level there is strict inclusion to the right.
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(2) The class on the left results from the class on the right by substituting an argument-

bounded almost-everywhere inverse for the non-argument-bounded functions of that

class.

By this we mean that with, for example, G1, the non-argument-bounded function is +,

and ·− is an a.e. inverse in the sense that for n fixed (n + m) ·−m = n
a.e.
= (n ·−m) + m. A

similar equation holds for multiplication and the pair
⌊ ·

·
⌋

and rem. It is sensible to view

an idc as a structure that has some connection with the notion of an algorithm; functions

are inductively built up using more basic functions. Hence, our findings say that with

the non-iterative schemata bmin and bcount
n it is their ability or inability to define and

compute with P, ·−,
⌊ ·

·
⌋

and rem that decides the induced relational class.

A second note-worthy detail is the way that the class D� provides a fresh view at

what happens in Presburger Arithmetic with respect to quantification. There is a D–Dμ-

dichotomy, which induces a PrA
qf
� –PrA�-dichotomy. Intuitively, this result states that in

Dμ, bounded minimalisation plays exactly the role of a quantifier: if R is the matrix of

some prenex normal form PrA-formula, then R is a D�-predicate.

In contrast, in the case of DD versus DDμ (where DD is ‘DDμ without bmin’) there

is no such dichotomy. Our proof that DDμ = PA
Δ0
� only appeared to be easy. What we

have proved in this paper was simply that CA ⊆ DDμ
� ⊆ PA

Δ0
� . The proof of the missing

inclusion, PA
Δ0
� ⊆ CA, is highly non-trivial.

A third point is that the pair of equalities F�
� = PrA� and F1,� = PA

Δ0

� are rather

striking:

PrA� is simply unary counting and PA
Δ0

� is simply binary counting.

Finally, in this paper we have studied non-iterative schemata, where the term non-

iterative is not very precise, but simply refers to the contrast with schemata like primitive

recursion or iteration. Whether bcount should be counted as a non-iterative schema is

not totally clear. Let I− def
= [P ; it], where it is the schema of pure iteration. Esbelin (1994)

proved the second inclusion in the chain

PA
Δ0
� ⊆ PA

Δ0

� ⊆ I−
� ,

but whether the inclusions are proper or not is still unknown. Moreover, Esbelin and

More (1998) showed that PA
Δ0

� = I−
� implies PA

Δ0

� = E2
�. Thus, informally, bcount is

‘quasi-iterative’ since its idc hovers between PA
Δ0
� , where many believe one cannot count,

and the idc I−
� , where one can count – precisely because one can iterate.
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