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Abstract

Many real world domains require the representation of a measure of uncertainty. The most

common such representation is probability, and the combination of probability with logic

programs has given rise to the field of Probabilistic Logic Programming (PLP), leading to

languages such as the Independent Choice Logic, Logic Programs with Annotated Disjunc-

tions (LPADs), Problog, PRISM, and others. These languages share a similar distribution

semantics, and methods have been devised to translate programs between these languages.

The complexity of computing the probability of queries to these general PLP programs is

very high due to the need to combine the probabilities of explanations that may not be

exclusive. As one alternative, the PRISM system reduces the complexity of query answering

by restricting the form of programs it can evaluate. As an entirely different alternative,

Possibilistic Logic Programs adopt a simpler metric of uncertainty than probability.

Each of these approaches—general PLP, restricted PLP, and Possibilistic Logic Programming—

can be useful in different domains depending on the form of uncertainty to be represented,

on the form of programs needed to model problems, and on the scale of the problems to be

solved. In this paper, we show how the PITA system, which originally supported the general

PLP language of LPADs, can also efficiently support restricted PLP and Possibilistic Logic

Programs. PITA relies on tabling with answer subsumption and consists of a transformation

along with an API for library functions that interface with answer subsumption. We show

that, by adapting its transformation and library functions, PITA can be parameterized to

PITA(IND,EXC) which supports the restricted PLP of PRISM, including optimizations that

reduce non-discriminating arguments and the computation of Viterbi paths. Furthermore, we

show PITA to be competitive with PRISM for complex queries to Hidden Markov Model

examples, and sometimes much faster. We further show how PITA can be parameterized to

PITA(COUNT) which computes the number of different explanations for a subgoal, and to

PITA(POSS) which scalably implements Possibilistic Logic Programming. PITA is a supported

package in version 3.3 of XSB.

KEYWORDS: Probabilistic Logic Programming, Possibilistic Logic Programming, Tabling,

Answer Subsumption, Program Transformation
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1 Introduction

Uncertainty, imprecision and vagueness are very important for modeling real world

domains where facts can often not be ascertained with complete confidence.

In the field of Logic Programming, there have recently been many efforts to

include these characteristics, originating whole research fields such as Probabilistic

Logic Programming (PLP), Possibilistic Logic Programming, and Fuzzy Logic

Programming. In all three fields many approaches have been proposed for modeling

uncertainty, imprecision and vagueness, obtaining new languages that are often

equipped with efficient inference algorithms.

In PLP, a large number of languages have been independently proposed. Many of

these however follow a common approach, the distribution semantics (Sato 1995),

and in fact there are transformations for converting a program in one PLP language

into another PLP language (Vennekens and Verbaeten 2003; De Raedt et al . 2008).

Examples of such PLP languages are Probabilistic Logic Programs (Dantsin 1991),

Probabilistic Horn Abduction (PHA; Poole 1993), Independent Choice Logic (ICL;

Poole 1997), PRISM (Sato 1995), Logic Programs with Annotated Disjunctions

(LPADs; Vennekens et al . 2004) and ProbLog (De Raedt et al . 2007). Most of

these languages impose few restrictions on the type of programs they can evaluate—

ICL, LPADs and others for instance, have been defined on normal programs with

function symbols. Accordingly, we term systems that evaluate large classes of PLP

programs general PLP systems. However a great deal of efficiency and scalability can

be obtained by restricting how different explanations are constructed and combined.

Such an approach is adopted by the PRISM system (Sato et al . 2010) which

we refer to as a restricted PLP system. Both general and restricted PLP systems

have advantages in different domains depending on the form of uncertainty to be

represented, the form of programs needed to model problems, and on the scale of

the problems to be solved.

Possibilistic Logic Programming models uncertainty by means of possibility theory

rather than probability theory. Possibilistic Logic Programming aims at computing

the degree of uncertainty of a query in the form of a necessity measure. Given

a possibilistic knowledge base, inference rules have been developed for answering

queries (Dubois and Prade 2004).

In this paper, we show that an inference technique and system developed for

general PLP called Probabilistic Inference with Tabling and Answer subsumption

(PITA), can be parameterized to efficiently reason with different measures of

uncertainty. PITA translates a general PLP program into a normal program that

is evaluated by a Prolog engine with tabling. The transformation adds an extra

argument to each subgoal to provide access to an auxiliary data structure used in

computing the uncertainty of the subgoal. The transformed program is evaluated

using tabling to memo intermediate results and to support well-founded negation,

along with a tabling feature named answer subsumption to combine explanations

from different clauses, and a set of library predicates to interface with the auxiliary

data structure.
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PITA was first presented in Riguzzi and Swift (2010b) and addressed general PLP

using Binary Decision Diagrams (BDDs) as auxiliary data structures. That version

of PITA, termed here PITA(PROB), was compared with ProbLog, cplint (Riguzzi

2007) and CVE (Meert et al . 2009) and found to be fast and scalable. In this paper,

we first consider a parameterization called PITA(IND,EXC) and compare to the

restricted PLP system PRISM, one of the first and most widely used systems for PLP.

Preliminary results show that PITA(IND,EXC) turns out to be faster than PRISM

on complex queries to a naive encoding of a Hidden Markov Model (HMM). When

the optimized encoding proposed by Christiansen and Gallagher (2009) is used, the

timing result depend on the input data, with PRISM faster on random sequences and

PITA(IND,EXC) faster on repeated sequences. When adapting PITA to compute

the most probable explanation of the query (or Viterbi’s path), we obtain similar

performances in relation to PRISM.

Moreover, we show that PITA can be also be parameterized to PITA(POSS)

to compute the necessity of formulas from Possibilistic Logic Programs, and show

the resulting implementation to be highly scalable. Together, these results show the

versatility of the PITA algorithm, and how the implementation can be easily adapted

to support different types of uncertain reasoning.

The paper is organized as follows. Section 2 presents PLP while Section 3 discusses

Possibilistic Logic Programming. Section 4 reviews tabling and answer subsumption;

while Section 5 presents the PITA program transformation and PITA(PROB). In

Section 6, we describe PITA(IND,EXC) together with experimental results on an

HMM data set. Section 7 presents PITA(POSS) for computing necessity levels from

possibilistic programs.

2 Probabilistic logic programming

Various languages have been proposed in the field of PLP, such as for example,

Bayesian Logic Programs (Kersting and De Raedt 2000), CLP(BN) (Santos Costa

et al . 2003) or P-log (Baral et al . 2009). A large group of languages follows the

distribution semantics (Sato 1995) or a variant thereof. In the distribution semantics

a probabilistic logic program defines a probability distribution over a set of normal

logic programs (called worlds). The distribution is extended to a joint distribution

over worlds and queries and the probability of a query is obtained from this

distribution by marginalization.

The languages differ in the way they define the distribution over logic programs.

Each language allows probabilistic choices among atoms in clauses: Probabilistic

Logic Programs, PHA, ICL, PRISM and ProbLog allow probability distributions

over facts, while LPADs allow probability distribution over the heads of clauses.

All these languages have the same expressive power: there are transformations

with linear complexity that can convert each one into the others (Vennekens and

Verbaeten 2003; De Raedt et al . 2008). In this paper, we will use LPADs because

their syntax is the most general.
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Example 1

The following LPAD T1 captures a Markov model of length two with three states

of which state 3 is an end state

C1 = s(0, 1) : 1/3 ∨ s(0, 2) : 1/3 ∨ s(0, 3) : 1/3.

C2 = s(1, 1) : 1/3 ∨ s(1, 2) : 1/3 ∨ s(1, 3) : 1/3 ← s(0, 1).

C3 = s(1, 1) : 0.2 ∨ s(1, 2) : 0.2 ∨ s(1, 3) : 0.6 ← s(0, 2).

The predicate s(T , S) models the fact that the system is in state S at time T . Clause

C1 selects the first state, while clauses C2 and C3 select the second state depending

on the value of the first. As state 3 is the end state, if s(0, 3) is selected at time 0, no

state follows.

LPADs are sets of disjunctive clauses in which each atom in the head is annotated

with a probability. If the probabilities in the head do not sum up to 1, an extra

dummy atom null is implicitly assumed to represent the remaining probability mass

and is such that it does not appear in the body of any clause. A ground LPAD

clause represents a probabilistic choice among the normal program clauses obtained

by selecting one of the heads.

We now define the distribution semantics for the case in which a program does not

contain function symbols so that its Herbrand base is finite.1 Let us first introduce

some terminology. An atomic choice is a selection of the ith atom for a grounding

Cθ of a probabilistic clause C and is represented by the triple (C, θ, i).

For example, (C2, {}, 1) is an atomic choice selecting atom s(1, 1) from C2 obtaining

the clause

s(1, 1)← s(0, 1).

A set of atomic choices κ is consistent if (C, θ, i) ∈ κ, (C, θ, j) ∈ κ ⇒ i = j, i.e., only

one head is selected for a ground clause. For example κ = {(C2, {}, 1), (C2, {}, 2)} is

not consistent.

A composite choice κ is a consistent set of atomic choices. The probability of

composite choice κ is

P (κ) =
∏

(C,θ,i)∈κ
P0(C, i),

where P0(C, i) is the probability annotation of head i of clause C . A selection σ is a

total composite choice (one atomic choice for every grounding of each probabilistic

statement/clause). For example, σ = {(C1, {}, 1), (C2, {}, 1), (C3, {}, 2)} is a selection

for T1. A selection σ identifies a logic program wσ called a world. The probability of

wσ is P (wσ) = P (σ) =
∏

(C,θ,i)∈σ P0(C, i). Since the program does not have function

symbols the set of worlds is finite: WT = {w1, . . . , wm} and P (w) is a distribution

over worlds:
∑

w∈WT
P (w) = 1

We can define the conditional probability of a query Q given a world: P (Q|w) = 1

if Q is true in w and 0 otherwise. The probability of the query can then be obtained

1 However, the distribution semantics for programs with function symbols has been defined as well (Sato
1995; Poole 2000; Riguzzi and Swift 2010a).
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by marginalizing over the query

P (Q) =
∑

w

P (Q,w) =
∑

w

P (Q|w)P (w) =
∑

w|=Q

P (w).

Inference in PLP is performed by finding explanations for queries. An explanation is

a composite choice such that the query is true in all the worlds that are compatible

with the composite choice. The query is true if one of the explanations happens, so

the query is true if the disjunction of the explanations is true, where each explanation

is interpreted as the conjunction of all its atomic choices. Each of these choices is

associated to a probability so the problem of computing the probability of the query

is reduced to the problem of computing the probability of a DNF formula, which is

an NP-hard problem (Kimmig et al . 2008). The most efficient way to date of solving

the problem makes use of BDDs that are used to represent the DNF formula in

a way that allows to compute the probability with a simple dynamic programming

algorithm (De Raedt et al . 2007; Riguzzi 2007; Kimmig et al . 2008; Riguzzi 2008,

2009; Riguzzi and Swift 2010a,b; Riguzzi 2010).

3 Possibilistic logic programming

Possibilistic Logic (Dubois et al . 1994) is a logic of uncertainty that allows reasoning

under incomplete evidence. In this logic, the degree of necessity of a formula expresses

to what extent the available evidence entails the truth of the formula and the degree

of possibility expresses to what extent the truth of the formula is not incompatible

with the available evidence.

Given a formula φ, we indicate with Π(φ) its degree of possibility and with N(φ)

its degree of necessity. Their relation is established by N(φ) = 1−Π(¬φ).

A possibilistic clause is a first order logic clause C to which a number is attached

taken as a lower bound of its necessity or possibility degree. We consider here the

possibilistic logic CPL1 (Dubois et al . 1991) in which only lower bounds on necessity

are considered. Thus (C, α) means that N(C) � α. A possibilistic theory is a set of

possibilistic clauses.

A possibility measure satisfies a possibilistic clause (C, α) if N(C) � α or

equivalently if Π(¬C) � 1 − α. A possibility measure satisfies a possibilistic theory

if it satisfies every clause in it. A possibilistic clause (C, α) is a consequence of a

possibilistic theory F if every possibility measure satisfying F also satisfies (C, α).

Inference rules of classical logic have been extended to rules in possibilistic logic.

Here we report two sound inference rules (Dubois and Prade 2004):

• (φ, α), (ψ, β) � (R(φ,ψ),min(α, β)) where R(φ,ψ) is the resolvent of φ and ψ

(extension of resolution)

• (φ, α), (φ, β) � (φ,max(α, β)) (weight fusion).

A Possibilistic Logic Programming language has been proposed in Dubois et al .

(1991). A Possibilistic Logic Program is a set of formulas of the form (C, α) where

C is a definite program clause

H ← B1, . . . , Bn
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and α is a possibility or necessity degree. We consider the subset of this language

that is included in CPL1, i.e., α is a real number in (0,1] that is a lower bound

on the necessity degree of C . The problem of inference in this language consists in

computing the maximum value of α such that N(Q) � α holds for a query Q. The

above inference rules are complete for this language.

Example 2

The following possibilistic program computes the least unsure path in a graph, i.e.,

the path with maximal weight, the weight of a path being the weight of its weakest

edge (Dubois et al . 1991).

(path(X,X), 1)

(path(X,Y )← path(X,Z), edge(Z, Y ), 1)

(edge(a, b), 0.3)

. . .

We restrict our discussion here to positive programs. However we note that

approaches for normal Possibilistic Logic programs have been proposed in Nieves

et al . (2007), Nicolas et al . (2006), Osorio and Nieves (2009) and Bauters et al .

(2010).

4 Tabling and answer subsumption

The idea behind tabling is to maintain in a table both subgoals encountered in

a query evaluation and answers to these subgoals. If a subgoal is encountered

more than once, the evaluation reuses information from the table rather than

re-performing resolution against program clauses. Although the idea is simple, it

has important consequences. First, tabling ensures termination for a wide class of

programs, and it is often easier to reason about termination with programs using

tabling than with basic Prolog. Second, tabling can be used to evaluate programs

with negation according to the WFS. Third, for queries to wide classes of programs,

such as datalog programs with negation, tabling can achieve the optimal complexity

for query evaluation. And finally, tabling integrates closely with Prolog, so that

Prolog’s familiar programming environment can be used, and no other language is

required to build complete systems. As a result, a number of Prologs now support

tabling including XSB, YAP, B-Prolog, ALS, and Ciao. In these systems, a predicate

p/n is evaluated using SLDNF by default: the predicate is made to use tabling by

a declaration such as table p/n that is added by the user or compiler.

This paper makes use of a tabling feature called answer subsumption. Most

formulations of tabling add an answer A to a table for a subgoal S only if A is a not a

variant (as a term) of any other answer for S . However, in many applications it may

be useful to order answers according to a partial order or (upper semi-)lattice. As an

example, consider the case of a lattice on the second argument of a binary predicate

p. Answer subsumption may be specified by means of a declaration such as table

p( ,join/3 - bottom/1) where bottom/1 returns the bottom element of the lattice and

join/3 is the join operation of the lattice. Thus if a table had an answer p(a, d1) and
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a new answer p(a, d2) were derived, the answer p(a, d1) would be replaced by p(a, d3),

where d3 is obtained by calling join(d1, d2, d3). In the PITA algorithm for LPADs

presented in Section 5, the last argument of atoms is used to store explanations for

the atom in the form of BDDs and the join/3 operation is the logical disjunction

of two explanations2; under the simplifying assumptions of PITA(IND,EXC) or/3

is simple addition; while for possibilistic logic or/3 takes the maximum of its input

arguments. Answer subsumption over arbitrary upper semi-lattices is implemented

in XSB for stratified programs (Swift 1999); in addition, the mode-directed tabling

of B-Prolog (cf. Zhou 2011) can also be seen as a form of answer subsumption.

For function-free programs, the tabling used by the PITA system terminates

correctly for left-to-right dynamically stratified LPADs. However, we note that the

termination results of Riguzzi and Swift (2010a) and PITA itself both apply to

a much larger class of well-defined LPADs with function symbols. As noted in

Section 2, the major probabilistic logic languages defined under the distribution

semantics can be finitely translated into one another, so that the termination

and correctness results for LPADs extend to other languages: in particular to

the restricted PLP language of Section 6. In addition, the results of Riguzzi and

Swift (2010a), which capture termination of general probabilistic programs that

give rise to multiple worlds, directly apply to the simpler case of Possibilistic Logic

Programs, which do not give rise to multiple worlds.

5 PITA for general probabilistic logic programming

The PITA transformation. PITA computes the probability of a query from a prob-

abilistic program in the form of an LPAD by first transforming the LPAD into a

normal program containing calls to manipulate uncertainty information. The idea

is to add an extra argument to each literal to access a data structure containing the

information that is necessary for computing the probability of the subgoal. The extra

arguments of these literals are combined using a set of general library functions:

• init, end : initialize and terminate the extra data structures necessary for

manipulating uncertainty information;

• zero(-D), one(-D), and(+D1,+D2,-DO), or(+D1,+D2, -DO), not(+D1,-DO):

Boolean operations between uncertainty information data structures;

• add var(+N Val,+Probs,-Var): addition of a new multi-valued random vari-

able with N Val values and list of probabilities Probs;

• equality(+Var,+Value,-D): D is a data structure representing Var=Value, i.e.

that the random variable Var is assigned Value in D; and

• ret prob(+D,-P): returns the probability of the data structure D.

The auxiliary predicate get var n(+R,+S,+Probs,-Var) is used to wrap add var/3

to avoid adding a new random variable when one already exists for a given clause

instantiation. As shown below, a new fact var(R,S,Var) is asserted each time a new

2 The logical disjunction d3 can be seen as subsuming d1 and d2 over the partial order af implication
defined on propositional formulas that represent explanations.
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random variable is created: Var is an integer that identifies the random variable

associated with clause R under the grounding represented by S. get var n/4 has the

following definition

get var n(R, S, P robs, Var)←
(var(R, S, Var)→ true;

length(Probs, L), add var(L, P robs, Var), assert(var(R, S, Var))).

The PITA transformation applies to clauses, literals and atoms. The transformation

for a head atom H , PITAH (H), is H with the variable D added as the last

argument. Similarly, the transformation for a body atom Aj , PITAB(Aj), is Aj with

the variable Dj added as the last argument. The transformation for a negative body

literal Lj = ¬Aj , PITAB(Lj), is the Prolog conditional

(PITA′B(Aj)→ not(DNj, Dj); one(Dj)),

where PITA′B(Aj) is Aj with the variable DNj added as the last argument. In other

words, the input data structure, DNj , is negated if it exists; otherwise the data

structure for the constant function 1 is returned.

The disjunctive clause

Cr = H1 : α1 ∨ . . . ∨Hn : αn ← L1, . . . , Lm,

where the parameters sum to 1, is transformed into the set of clauses PITA(Cr)

PITA(Cr, 1) = PITAH (H1)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

get var n(r, VC, [α1, . . . , αn], Var),

equality(Var, 1, DD), and(DDm,DD,D).

. . .

P ITA(Cr, n) = PITAH (Hn)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

get var n(r, VC, [α1, . . . , αn], Var),

equality(Var, n, DD), and(DDm,DD,D),

where VC is a list containing each variable appearing in Cr .

Example 3

Clause C1 from the LPAD of Example 1 is translated into

s(0, 1, D) ← one(DD0), get var n(1, [], [1/3, 1/3, 1/3], Var),

equality(Var, 1, DD), and(DD0, DD,D).

s(0, 2, D) ← one(DD0), get var n(2, [], [1/3, 1/3, 1/3], Var),

equality(Var, 1, DD), and(DD0, DD,D).

s(0, 3, D) ← one(DD0), get var n(3, [], [1/3, 1/3, 1/3], Var),

equality(Var, 1, DD), and(DD0, DD,D).
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To answer queries, the goal genl prob(Goal,P) is used, which is defined by

genl prob(Goal, P ) ← init, retractall(var( , , )),

add d arg(Goal, D, GoalD),

(call(GoalD)→ ret prob(D, P );P = 0.0),

end,

where add d arg(Goal, D, GoalD) implements PITAH (Goal).

Evaluating the transformed program. Various predicates of the transformed pro-

gram should be declared as tabled. For a predicate p/n, the declaration is table

p( 1,..., n,or/3-zero/1), which indicates that answer subsumption is used to form

the disjunct of multiple explanations. At a minimum, the predicate of the goal

and all the predicates appearing in negative literals should be tabled with answer

subsumption. However, it is usually better to table every predicate whose answers

have multiple explanations and are going to be reused often.

5.1 PITA library functions for the general probabilistic case

In the case of general probabilistic programs, the data structure for representing

probabilistic information is a BDD. With such a data structure, we can represent

the explanations for the queries in a form in which they are mutually exclusive and

so the computation of the probability can be performed by an effective dynamic

programming algorithm.

The predicates that manipulate the data structure in this case manipulate BDDs.

In our implementation, these calls provide a Prolog interface to the functions in the

CUDD C library (http://vlsi.colorado.edu/~fabio/CUDD). The predicates for

interfacing with CUDD are

• init, end : for allocation and deallocation of a BDD manager, a data structure

used to keep track of the memory for storing BDD nodes;

• zero(-B), one(-B), and(+B1, +B2, -B), or(+B1, +B2, -B), not(+B1, -B):

Boolean operations between BDDs;

6 PITA(IND,EXC)

As discussed in Section 2, general PLP requires the computation of the probability

of DNF formulas—a difficult problem. The PRISM system avoids this complexity

by imposing special requirements on the form of a program it can correctly evaluate.

These requirements are (Sato et al . 2010)

• the probability of a conjunction (A,B) is computed as the product of the

probabilities of A and B (independence assumption)

• the probability of a disjunction (A;B) is computed as the sum of the

probabilities of A and B (exclusiveness assumption).

It is possible to write programs so that these requirements are not met. For example,

consider the program

p← a, b. a : 0.3 ∨ b : 0.4.
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This program does not satisfy the independence assumption because the conjunction

a, b has probability 0, since a and b are never true in the same world. PITA(PROB)

correctly gives probability 0 for p while PRISM returns probability 0.12. In this

case the conjunction (a, b) is inconsistent and, while PITA(PROB) automatically

recognizes it, the inconsistency must be detected and the clause removed for PRISM

to return the correct probability. The following example also does not satisfy the

independence assumption because a and b both depend on c. PITA(PROB) returns

0.2 for the probability of q while PRISM returns 0.04.

q ← a, b. a← c. b← c. c : 0.2.

As a final example, the following program violates the exclusiveness assumption

as the two clauses for the ground atom q have non-exclusive bodies

q ← a. q ← b. a : 0.2. b : 0.4.

These restrictions required by PRISM simplify considerably the computation since

we can now ignore the dependencies between the explanations of different subgoals.

PITA can be optimized for PRISM-style programs by simplifying the program

transformation it uses, and by implementing simpler library functions. The clause

Cr = H1 : α1 ∨ . . . ∨ Hn : αn ← L1, . . . , Lm is transformed into the set of clauses

PITAP (Cr)

PITAP (Cr, 1) = PITAH (H1)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

equality([α1, . . . , αn], 1, DD),

and(DDm,DD,D).

. . .

P ITAP (Cr, n) = PITAH (Hn)← one(DD0),

P ITAB(L1), and(DD0, D1, DD1), . . . ,

P ITAB(Lm), and(DDm−1, Dm, DDm),

equality([α1, . . . , αn], n, DD),

and(DDm,DD,D).

The auxiliary data structure stored in the extra subgoal argument is no longer

a BDD, but simply a real number that represents the probability of a ground

instantiation of that subgoal. The library functions are now simple Prolog predicates.

equality(Probs,N, P )← nth(N,Probs, P ).

or(A,B, C)← C is A+ B. and(A,B, C)← C is A ∗ B.
not(P , P1)← P1 is 1− P .
zero(0.0). one(1.0).

ret prob(P , P ).

We call the resulting algorithm PITA(IND,EXC).

An example of a program satisfying the PRISM requirements encodes a HMM,

a graphical model with a sequence of unobserved state variables, a sequence of

observed output variables, and where each state variable depends only on its
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Fig. 1. Times for computing P (hmm(〈seq〉)) as a function of sequence length. Missing points

at the beginning of the X-axis correspond to a time smaller than 10−6 seconds, missing points

at the end of the X-axis correspond to a memory error. The experiments were performed on

a Core 2 Duo E6550 (2333 MHz) processor. (a) PITA(IND,EXC) and PRISM on random

sequences. (b) PITA(IND,EXC) and PRISM on repeated sequences.

preceding state. HMMs have a wide range of applications, including the modeling

of DNA sequences. The following program, taken from Christiansen and Gallagher

(2009) models DNA sequences using three states:

hmm(O) ← hmm1( ,O).

hmm1(S,O)← hmm(q1,[],S,O).

hmm(end,S,S,[]).

hmm(Q,S0,S,[L|O])← Q \ = end, succ(Q,Q1,S0), out(Q,L,S0),

hmm(Q1,[Q|S0],S,O).

succ(q1,q1, S):1/3 ∨ succ(q1,q2, S):1/3 ∨ succ(q1,end, S):1/3.

succ(q2,q1, S):1/3 ∨ succ(q2,q2, S):1/3 ∨ succ(q2,end, S):1/3.

out(q1,a, S):1/4 ∨ out(q1,c, S):1/4 ∨ out(q1,g, S):1/4 ∨ out(q1,t, S):1/4.

out(q2,a, S):1/4 ∨ out(q2,c, S):1/4 ∨ out(q2,g, S):1/4 ∨ out(q2,t, S):1/4.

To investigate the relative performances of PITA(IND,EXC) and PRISM, we

computed the execution time of queries to hmm/1 for increasing lengths of the

output sequence. Sequences used in Figure 1(a) are randomly generated, while those

in Figure 1(b) are repetitions of the sequence a,c,g,t. (Version 2.0 of Prism was

used in all the experiments.) In both cases, the costs for both algorithms grow

exponentially. Times for both systems are close for N up to 11; however beyond

N = 12, PITA(IND,EXC) begins to scale somewhat better than Prism, answering

queries through N = 18 whereas Prism can answer queries only through N = 14.

Beyond those numbers, both systems throw memory errors.

Christiansen and Gallagher (2009) proposed a technique for speeding up query

answering by removing non-discriminating arguments. These are arguments that

play no role in determining the control flow of a logic program with respect to

goals satisfying given mode and sharing restrictions. The computation trees of the

resulting program are isomorphic to those of the original program and the results

of the original program can be reconstructed from a trace of the transformed

program. The authors show that the removal of non-discriminating arguments is
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Fig. 2. Times for computing P (hmm(〈seq〉) as a function of sequence length (reduced program

with non-discriminating arguments removed). The experiments were performed on a Core 2

Duo E6550 (2333 MHz) processor. (a) PITA(IND,EXC) and PRISM on random sequences.

(b) PITA(IND,EXC) and PRISM on repeated sequences.

very useful with tabling because the calls to a tabled predicate differing only in the

non-discriminating arguments will merge into a single table that is much smaller

and has a higher chance of reuse. After removing non-discriminating arguments, the

HMM program above becomes

hmm(O)← hmm(q1,O).

hmm(end,[]).

hmm(Q,[L|O])← Q \ = end, succ(Q,Q1,S0),out(Q,L,S0),hmm(Q1,O).

plus the clauses defining succ/2 and out/2.

Figures 2(a) and (b) show the computation time for PITA(IND,EXC) and PRISM

on the reduced HMM program as a function of the sequence length for randomly

generated and repeating sequences. For random sequences, PITA(IND,EXC) and

Prism are competitive, with Prism slightly faster; however for the repeating sequences

PITA(IND,EXC) is much faster, and in fact scales well up to input sequences

of length O(105). The reason for the scalability of PITA(IND,EXC) on repeated

sequences is apparently due to XSB’s use of trie-based tables, which allows good

indexing and space sharing for repeating subsequences. The tabling of Prism, which

is based on hash tables, loses discrimination in this case.

Computing the Viterbi Path. In HMMs, it is common to look for the sequence of

state values that most likely gave the output sequence, also called the Viterbi path,

while the probability of this sequence of states is called the Viterbi probability. This

is equivalent to finding the most probable explanation for the goal.

The Viterbi path and probability are computed by PRISM with the viterbif /3

predicate but can be computed also by PITA(IND,EXC) by modifying it so that the

probability data structure includes not only the highest probability of the subgoal

but also the most probable explanation for the subgoal. In this case the support

predicates are modified as follows:

equality(R,S,Probs,N,e([(R,S,N)],P))← nth(N,Probs,P).

or(e(E1,P1),e( E2,P2),e(E1,P1))← P1 >= P2, !.
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Fig. 3. Times for computing the Viterbi path and probability of hmm(〈seq〉) as a function of

sequence length (reduced program with non-discriminating arguments removed). The timings

were taken on an Intel Core i5 (2.53 GHz) processor. (a) PITAVIT(IND) and PRISM on

random sequences. (b) PITAVIT(IND) and PRISM on repeated sequences.

or(e( E1, P1),e(E2,P2),e(E2,P2)).

and(e(E1,P1),e(E2,P2),e(E3,P3))← P3 is P1*P2,append(E1,E2,E3).

zero(e(null,0)). one(e([],1)). ret prob(B,B).

In this way we obtain PITAVIT(IND), which is also sound if the exclusiveness

assumption does not hold.

Figures 3(a) and (b) show times for PITAVIT(IND) and PRISM to compute

Viterbi paths and probabilities on the reduced HMM program. PITAVIT(IND) is

slower than PRISM for short random sequences and roughly the same on long

sequences. On repeated sequences it is much more scalable.

Counting Explanations PITA(IND,EXC) can be used to count explanations for

goals with a slight modification when explanations for different goals are not

incompatible. To obtain PITA(COUNT), the only auxiliary predicate to be modified

is equality/3: equality( Probs, N, 1).

7 Application to possibilistic logic programming

PITA also can be used to perform inference in Possibilistic Logic Programming

where a program is composed only of clauses of the form H : α ← B1, . . . , Bn
which we interpret as possibilistic clauses of the form (H ← B1, . . . , Bn, α). For space

reasons we do not discuss negation here, however the publicly available version of

PITA computes possibilistic programs that are left-to-right dynamically stratified

(Section 4) according to the semantics of Bauters et al . (2010).

The transformation PITAP used for the PRISM optimization can be used

unchanged provided the support predicates are defined as

equality([P, P0], N,P).

or(A,B,C)← C is max(A,B). and(A,B,C)← C is min(A,B).

zero(0.0). one(1.0). ret prob(P,P).

We obtain in this way PITA(POSS). The input list of the equality/3 predicate

contains two numbers because we used the same preprocessing code as for LPADs.
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Table 1. Number of paths

Edges 200 400 600 800 1000 1200

Explanations 10 42 380 1,280 3,480 612,140
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Fig. 4. Time for computing the least unsure path in a graph. The experiments were

performed on an Intel Core 2 Duo E6550 (2333 MHz) processor and 4 GB of RAM.

Specializing the transformation for possibilistic logic programs would remove the

need for the equality/3 predicate.

To experiment with PITA(POSS), we consider the networks of biological concepts

of De Raedt et al . (2007) and the definition of path/2 of Example 2. In these

networks the nodes encode biological entities and the edges conceptual relations

among them. In each program the edges are associated to a real number. The

programs have been sampled from a very large graph and contain 200, 400, . . .,

10,000 edges. Sampling was repeated 10 times, to obtain 10 series of programs

of increasing size. In each program we query the possibility that the two genes

HGNC 620 and HGNC 983 are related.

We use PITA(COUNT) to compute the number of explanations for the query in

the first series of programs. In this problem, an explanation is a path from source to

target that does not contain loops. In fact, paths with loops are subsumed by paths

without loops so they do not contribute to the overall probability. Table 1 shows the

number of paths for the networks in series 1 for which the computation terminated

in 24 hours. As you can see, the number of paths grows very fast.

Figure 4(a) shows the average over the ten series of the execution time for

computing the possibility of path(‘HGNC 620’,‘HGNC 983’) as a function of the

number of edges. Figure 4(b) shows the number of graphs solved for each graph size.

These figures also contain data for PITA(PROB), for the equivalent deterministic

program (i.e. computing whether there is a path between nodes) and for the system

posSmodels Nicolas et al . (2006).3 As these figures show, computing the possibility

is much easier than computing the general probability, which must solve the disjoint

3 For PITA(PROB), we used the definition of path of Kimmig et al . (2008) because it gave smaller
timings. PITA(IND,EXC) was not tested because this problem does not satisfy the independence and
exclusiveness requirements
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sum problem to obtain answers. With respect to the posSmodels system, PITA(POSS)

is faster for smaller graphs and slower for larger ones, but the averages of posSmodels

have been computed on less graphs since on some it gave a lack of memory error.

8 Conclusions

We have shown how the probabilsitic inference system PITA can be easily adapted

for different settings. In particular, we have considered programs that respect the

independence and exclusion assumptions that are required by PRISM and show

how PITA can be modified to exploit these assumption. Preliminary results show

the algorithm to be faster than PRISM for complex queries to a naive encoding of

an HMM, while the performance on an optimized encoding depend on the input

data. Moreover, PITA can be used also for computing the Viterbi path, i.e., the most

probable explanation for a goal. Finally, we have shown how PITA can be modified

to perform inference on Possibilistic Logic Programs.

PITA is a supported package in version 3.3 of XSB, and handles programs

that include both negation and function symbols. Because PITA consists of a

program transformation plus library functions that implement an API for answer

subsumption, the approaches of general PLP, restricted PLP and Possibilistic Logic

Programming can be combined within a single program. Thus, if it is known

that, say, predicates in a given module satisfy independence and exclusiveness

assumptions, the module can use PITA(IND,EXC) and avoid the expense of BDD

maintenance. Furthermore, simple modifications to PITA would allow the use of

general versus restricted PLP to be decided on a predicate basis, possibly supported

in the future by an optimizing compiler that could check exclusiveness of clauses,

and independence of literals within the body of a clause. This approach is not

only general, but portable. For Prologs that implement tabling, the additional effort

needed for answer subsumption is relatively small so that implementations of PITA

need not be restricted to XSB.

Finally, we believe that the techniques presented can be applied also to Soft

Constraint Logic Programming (SCLP) Bistarelli and Rossi (2001), as advocated

in Bistarelli et al . (2007). In this case, PITA’s API to answer subsumption would

interface with a constraint handling system rather than to BDDs or to simple

Prolog predicates. In fact, PITA, PITA(IND,EXC) and PITA(POSS) can be as seen

as implementing SCLP over the semirings 〈P,∨,∧, false, true〉, 〈[0, 1],+,×, 0, 1〉 and

〈[0, 1],max,min, 0, 1〉, respectively, where P is the set of propositional formulas built

over a fixed and finite set of propositions.
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