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1. Introduction

Let G be a non-compact (real or complex) semi-simple Lie group with Lie algebra g.
The purpose of this paper is to describe various realizations of the homogeneous spaces
G/ZH with ZH the centralizer in G of an element H belonging to a Cartan subalgebra
of g. We then use these descriptions to study the symplectic geometry of adjoint orbits
and to identify a family of Lagrangian submanifolds.

Our motivation in studying these homogeneous spaces is the construction of Lefschetz
fibrations in [4]. The full description of these fibrations requires a further understanding
of the symplectic geometry (or, rather, geometries) of G/ZH , and particularly of those
properties related to the description of the Fukaya category of the Lagrangian vanishing
cycles. In this paper we study concepts that are relevant to questions motivated by mirror
symmetry (see [5] and [10]) and that are also of general interest in Lie theory.

To be more specific, let a be a Cartan–Chevalley algebra of g, that is, the Lie algebra
of the A component of an Iwasawa decomposition G = KAN . We select a Weyl cham-
ber a+ ⊂ a and pick H0 ∈ cl a+. The adjoint orbit Ad(G)H0 is diffeomorphic to the
homogeneous space G/ZH0 . Also the subadjoint orbit Ad(K)H0 is diffeomorphic to a
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flag manifold FH0 = G/PH0 , where PH0 is the parabolic subgroup defined by H0, which
contains ZH0 .

In this paper we get other realizations of G/ZH0 . First we prove that G/ZH0 has the
structure of a vector bundle over FH0 isomorphic to the cotangent bundle T ∗FH0 . This
fact was proved before by Azad, van den Ban and Biswas [2] using a different approach.
Here we exploit more decisively the associated vector bundle construction obtained by
PH0-representations by viewing G → FH0 = G/PH0 as a PH0-principal bundle (see § 2.1).

The isomorphism Ad(G)H0 ≈ T ∗FH0 provides the adjoint orbit with two different
actions: namely, the natural transitive action on Ad(G)H0 and the linear action on T ∗FH0

obtained by lifting the action of G on FH0 . The latter action is not transitive since the zero
section is invariant. One is therefore asked to build a transitive action on the cotangent
bundle T ∗FH0 that is different from the linear action. We do so by constructing a Lie
algebra θ(g) of Hamiltonian vector fields (with respect to the canonical symplectic form
Ω of T ∗FΘ) that is isomorphic to g. The elements of θ(g) are complete vector fields and
hence the infinitesimal action given by θ(g) integrates to an action of a Lie group, by a
classical theorem of Palais [7]. This action is transitive and Hamiltonian by construction.
The isotropy subgroup of the transitive action is ZH0 and thus T ∗FH0 gets identified with
G/ZH0 . It turns out that the moment map μ : T ∗FH0 → g of the Hamiltonian action takes
values in Ad(G)H0 and is the inverse of the previously defined map Ad(G)H0 → T ∗FH0 .

In another realization of G/ZH0 , it is compactified to an algebraic projective variety,
namely, the product FH0 × FH∗

0
, where FH∗

0
is the flag manifold dual to FH0 (see § 3).

This is obtained by the diagonal action g(x, y) = (gx, gy) of G on FH0 × FH∗
0
, which has

just one open and dense orbit whose isotropy group is ZH0 = ZH∗
0

and hence realizes
G/ZH0 . The embedding G/ZH0 → FH0 × FH∗

0
induces several geometric structures on

G/ZH0 inherited from those of FH0 ×FH∗
0
. The point is that FH0 ×FH∗

0
is a flag manifold

of G×G and hence admits Riemannian metrics (Hermitian in the complex case) that are
invariant by the compact group K × K. These metrics on FH0 ×FH∗

0
induce new metrics

on G/ZH0 , as well as new symplectic structures in the complex case.
The embedding G/ZH0 → FH0 ×FH∗

0
combined with representations of g yields realiza-

tions of G/ZH0 as orbits on V ⊗V ∗, where V is the space of an irreducible representation
of g with highest weight defined by H0 (see § 4).

The last two realizations of G/ZH0 are used in §§ 5 and 6 to build a class of Lagrangian
submanifolds in G/ZH0 with respect to the symplectic structures inherited from the
embedding G/ZH0 → FH0 × FH∗

0
.

2. Adjoint orbits and cotangent bundles of flags

Let g be a non-compact semi-simple Lie algebra (real or complex) and let G be a con-
nected Lie group with finite centre and Lie algebra g (e.g. G may be Aut0(g), the com-
ponent of the identity of the group of automorphisms).

The usual notation is given below.

(1) The Cartan decomposition: g = k ⊕ s, with global decomposition G = KS.

(2) The Iwasawa decomposition: g = k ⊕ a ⊕ n, with global decomposition G = KAN .
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(3) Π is a set of roots of a, with a choice of a set of positive roots Π+ and simple roots
Σ ⊂ Π+ such that n+ =

∑
α>0 gα and gα is the root space of the root α. The

corresponding Weyl chamber is a+.

(4) A subset Θ ⊂ Σ defines a parabolic subalgebra pΘ with parabolic subgroup PΘ

and a flag FΘ = G/PΘ. The flag is also FΘ = K/KΘ, where KΘ = K ∩ PΘ. The
Lie algebra of KΘ is denoted by kΘ.

(5) HΘ ∈ cl a+ is characteristic for Θ ⊂ Σ if Θ = {α ∈ Σ : α(HΘ) = 0}. Then,
pΘ =

⊕
λ�0 gλ, where λ runs through the non-negative eigenvalues of ad(HΘ).

Conversely, starting with H0 ∈ cl a+ we define ΘH0 = {α ∈ Σ : α(H0) = 0},
and for the several objects requiring a subscript Θ we use H0 instead of ΘH0 . For
instance, FH0 = FΘH0

, etc.

(6) bΘ = 1 · KΘ = 1 · PΘ denotes the origin of the flag FΘ = K/KΘ = G/PΘ.

(7) We write
n
+
Θ =

∑
α(HΘ)>0

gα, n
−
Θ =

∑
α(HΘ)<0

gα,

so that g = n
−
Θ ⊕ zΘ ⊕ n

+
Θ, where zΘ is the centralizer of HΘ in g.

(8) ZΘ = {g ∈ G : Ad(g)HΘ = HΘ} is the centralizer in G of the characteristic element
HΘ. Its Lie algebra is zΘ. Moreover, KΘ is the centralizer of HΘ in K:

KΘ = ZK(HΘ) = ZΘ ∩ K = {k ∈ K : Ad(k)HΘ = HΘ}.

Theorem 2.1. The adjoint orbit O(HΘ) = Ad(G) · HΘ ≈ G/ZΘ of the characteristic
element HΘ is a C∞ vector bundle over FΘ that is isomorphic to the cotangent bundle
T ∗FΘ. Moreover, we can write down a diffeomorphism ι : Ad(G) · HΘ → T ∗FΘ such that

(1) ι is equivariant with respect to the actions of K, that is, for all k ∈ K,

ι ◦ Ad(k) = k̃ ◦ ι,

where k̃ is the lifting to T ∗FΘ (via the differential) of the action of k on FΘ; and

(2) the pullback of the canonical symplectic form on T ∗FΘ by ι is the (real) Kirillov–
Kostant–Souriaux form on the orbit.

The diffeomorphism ι : O(HΘ) → T ∗FΘ (see (2.1)) will be defined in two steps: first
O(HΘ) is proved to be diffeomorphic to a vector bundle V → K/KΘ associated with the
principal bundle K → K/KΘ, built from a representation of KΘ; then V → K/KΘ is
proved to be isomorphic to T ∗FΘ.

Remark 2.2. The equivariance of item (1) holds only for the action of K. However,
there exists also an action of G on the vector bundle, obtained via the diffeomorphism
with O(HΘ). Unlike the action of K, this action is nonlinear since the linear action is
not transitive.
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The projection π : O(HΘ) → FΘ is obtained via the action of G. Given the homoge-
neous spaces O(HΘ) = G/ZΘ and FΘ = G/PΘ, the centralizer ZΘ is contained in PΘ.
We obtain a canonical fibration gZΘ 
→ gPΘ with fibre PΘ/ZΘ. On the one hand, in
terms of the adjoint action the fibre is Ad(PΘ) ·HΘ, whereas on the other hand, it is the
affine subspace HΘ + n

+
Θ, where n

+
Θ is the sum of the eigenspaces of ad(HΘ) associated

with eigenvalues greater than 0: that is,

n
+
Θ =

∑
gα,

with the sum running over the positive roots α outside 〈Θ〉, i.e. with α(HΘ) > 0. Indeed,
if g ∈ PΘ, then Ad(g)HΘ = HΘ + X, with X ∈ n

+
Θ. Moreover, if NΘ = enΘ , then the

map g ∈ NΘ 
→ Ad(g)HΘ − HΘ ∈ nΘ is a diffeomorphism.

Example 2.3. The example of sl(n) (R or C) is enlightening: PΘ is the group of
matrices that are block upper triangular. The diagonal part (in blocks) is ZΘ, whereas
n
+
Θ is the upper triangular part above the blocks. HΘ is a diagonal matrix that has one

scalar matrix in each block. Thus, conjugation Ad(g)HΘ = gHΘg−1 keeps HΘ inside the
blocks and adds an upper triangular part above the blocks, that is, gHΘg−1 = HΘ + X

for some X ∈ n
+
Θ.

The fibre of π : O(HΘ) → FΘ is a vector space. This alone does not guarantee the struc-
ture of a vector bundle. Nevertheless, the structure of a vector bundle can be obtained
as a bundle associated with the principal bundle K → K/KΘ with structure group KΘ.

2.1. O(HΘ) → FΘ is a vector bundle

The adjoint representation of KΘ on g leaves invariant the subspace n
+
Θ and, conse-

quently, Ad(k) takes eigenspaces of ad(HΘ) to eigenspaces. It follows that the restriction
of Ad defines a representation ρ of KΘ on n

+
Θ. This allows us to define the vector bundle

K ×ρ n
+
Θ associated with the principal bundle K → K/KΘ. To define a diffeomorphism

between O(HΘ) and K ×ρ n
+
Θ recall that O(HΘ) =

⋃
k∈K Ad(k)(HΘ + n

+
Θ).

Proposition 2.4. The map γ : O(HΘ) → K ×ρ n
+
Θ defined by

Y = Ad(k)(HΘ + X) ∈ O(HΘ) 
→ k · X ∈ K ×ρ n
+
Θ

is a diffeomorphism satisfying that

(1) γ is equivariant with respect to the actions of K,

(2) γ maps fibres onto fibres, and

(3) γ maps the orbit Ad(K)HΘ onto the zero section of K ×ρ n
+
Θ.

Proof. To see that γ is well defined: if Ad(k)(HΘ + X) = Ad(k1)(HΘ + X1), then
Ad(u)(HΘ + X) = HΘ + X1, where u = k−1

1 k. By equivariance, it then follows that

u · bΘ = u · π(HΘ + X)

= π(Ad(u)(HΘ + X))

= π(HΘ + X1)

= bΘ.
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Consequently, u ∈ KΘ, and therefore Ad(u)(HΘ +X) = HΘ +Ad(u)X = HΘ +X1, with
X1 = Ad(u)X. Hence,

k1 · X1 = ku−1 · ρ(u)X = k · X,

showing that γ is well defined. Surjectivity follows because of k ·X = γ(Ad(k)(HΘ +X)).
For injectivity, since k1 · X1 = k · X implies k1 = ku and X1 = Ad(u−1)X, u ∈ KΘ.
Hence,

Ad(k1)(HΘ + X1) = Ad(k)(Ad(u)HΘ + Ad(u)X1)

= Ad(k)(HΘ + X).

Now, the fibre of O(HΘ) over k ·bΘ is Ad(k)(HΘ +n
+
Θ), which is taken by γ to elements

of the type k ·X, which are in the fibre over k ·bΘ of K ×ρ n
+
Θ. Also, γ(Ad(k)(HΘ)) = k ·0,

which is in the zero section of K ×ρ n
+
Θ. Equivariance holds because

γ ◦ Ad(u)(Ad(k)(HΘ + X)) = γ(Ad(uk)(HΘ + X)) = uk · X

and the last term is the left action of u ∈ K on the vector bundle. Finally, diffeomorphism
follows from the manifold constructions of O(HΘ) (as a homogeneous space) and K×ρn

+
Θ

(as an associated bundle). �

From the diffeomorphism γ we endow O(HΘ) with the structure of a vector bundle
coming from K ×ρ n

+
Θ. Its fibres are the affine subspaces Ad(k)(HΘ + n

+
Θ).

2.2. Isomorphism with T ∗FΘ

Let L be a Lie group, let M be a closed subgroup, and let ι : M → Gl(Tx0(L/M)) be
the isotropy representation of M on the tangent space of L/M at x0. The tangent bundle
T (L/M) is isomorphic to the vector bundle L ×ι Tx0(L/M), associated with the principal
bundle L → L/M via the representation ι. Similarly, if ι∗ is the dual representation,
then T ∗(L/M) is isomorphic to the vector bundle L ×ι∗ (Tx0(L/M))∗. Observe that if
Q ×ρ1 V and Q ×ρ2 W are vector bundles associated with the principal bundle Q → X,
via equivalent representations ρ1 and ρ2, then Q ×ρ1 V is isomorphic to Q ×ρ2 W .

The tangent space TbΘ
FΘ can be identified with n

−
Θ =

∑
α(HΘ)<0 gα, and the isotropy

representation becomes the restriction of the adjoint representation. The subspace n
+
Θ is

isomorphic to the dual (n−
Θ)∗ of n

−
Θ via the Cartan–Killing form 〈·, ·〉 of g. Thus, the map

X ∈ n
+
Θ 
→ 〈X, ·〉 ∈ (n−

Θ)∗

is an isomorphism.
Therefore, T ∗FΘ = T ∗(K/KΘ) is isomorphic to K×ρn

+
Θ, which in turn is diffeomorphic

to the adjoint orbit O(HΘ). Both diffeomorphisms permute the action of K. This finishes
the proof of the first part of Theorem 2.1, as well as of item (1). Thus, the diffeomorphism
ι : O(HΘ) → T ∗FΘ is obtained by composing γ : O(HΘ) → K ×ρ n

+
Θ with the vector

bundle isomorphism between K ×ρ n
+
Θ and T ∗FΘ. It is explicitly given by

ι : Ad(k)(HΘ + X) ∈ O(HΘ) 
→ 〈Ad(k)X, ·〉 ∈ T ∗
kbΘ

FΘ, (2.1)

where X ∈ n
+
Θ and TkbΘ

FΘ is identified with Ad(k)n−
Θ.

Item (2) of Theorem 2.1 is a consequence of Proposition 2.16 below.
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2.3. The action of G on T ∗FΘ

The diffeomorphism ι : O(HΘ) → T ∗FΘ induces an action of G on T ∗FΘ by gα =
ι ◦ Ad(g) ◦ ι−1(α), g ∈ G, α ∈ T ∗FΘ. The action of K is linear since it is given by the
lifting of the linear action on FΘ. However, the action of G is not linear because the linear
action on T ∗FΘ is not transitive (the zero section is invariant). It is therefore natural
to ask how the action of G behaves in terms of the geometry of T ∗FΘ. The description
of this action will be made via an infinitesimal action of the Lie algebra g of G, that is,
through a homomorphism θ : g → Γ (T ∗FΘ), which associates with each element of the
Lie algebra g a Hamiltonian vector field on T ∗FΘ.

Let Ω be the canonical symplectic form on T ∗FΘ. Given a vector field X on FΘ

denote by X# the lifting of X to T ∗FΘ. The flow of X# is linear and is defined by
α ∈ T ∗

x FΘ 
→ α ◦ (dφ−t)φt(x), where φt is the flow of X. The lifting satisfies

(1) π∗X
# = X, where π : T ∗FΘ 
→ FΘ is the projection;

(2) X# is the Hamiltonian vector field with respect to Ω for the function hX(ξ) =
ξ(X(x)), ξ ∈ T ∗

x FΘ; and

(3) if X and Y are vector fields, then [X, Y ]# = [X#, Y #], that is, X 
→ X# is a
homomorphism of Lie algebras.

Now, for Y ∈ g we denote the vector field on FΘ whose flow is etY by Ỹ or simply by
Y if there is no confusion.

Since the action of K in T ∗FΘ is linear, it follows that the vector field induced by
A ∈ k on T ∗FΘ is X#, that is, θ(X) = X# if X ∈ k. Using the Cartan decomposition
g = k ⊕ s, it remains to describe θ(X) when X ∈ s. This is done by modifying the vector
field X# by a vertical one so that the new vector field still projects on X.

The following lemma is well known. We include it here for the sake of completeness.

Lemma 2.5. Let M be a manifold and let f : M → R. Define F : T ∗M → R by
F = f ◦ π (π : T ∗M → M is the projection). Let VF be the Hamiltonian vector field of
F with respect to Ω. Then, VF is vertical (π∗VF = 0), and VF is the constant parallel
vector field whose restriction to a fibre T ∗

x M is −dfx ∈ T ∗
x M .

Proof. A straightforward way to see this is to use local coordinates q, p of M and the
fibre, respectively. The Hamiltonian vector field is then

VF =
∑

i

∂F

∂pi

∂

∂qi
− ∂F

∂qi

∂

∂pi
.

Since the function F does not depend on p, only the second term remains, showing that
the vector field is vertical. If x = (q1, . . . , qn) ∈ M is fixed, then the second term becomes∑

i

−∂F

∂qi

∂

∂pi
= −dfx,

since ∂F/∂qi = ∂f/∂qi. �
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We return to FΘ, which coincides with the adjoint orbit Ad(K) ·HΘ ⊂ s. Given X ∈ s,
we can define the height function

fX(x) = 〈x, X〉,

where 〈·, ·〉 is the Cartan–Killing form, which is an inner product when restricted to s.
Now choose a K-invariant Riemannian metric (·, ·)B on FΘ. The most convenient for

our purposes is the so-called Borel metric, which has the property that for any X ∈ s

the gradient of fX is exactly the vector field X induced by X (see [3]).
For X ∈ s set FX = fX ◦ π and denote by VX its Hamiltonian vector field on T ∗FΘ.

By Lemma 2.5 VX is vertical.
The following lemma will be used to evaluate the symplectic form on the several

Hamiltonian vector fields defined above.

Lemma 2.6. We have the following directional derivatives.

(1) If A ∈ k and X ∈ s, then A#FX = F[A,X].

(2) If X, Y ∈ s, then X#FY = Y #FX .

(3) If X, Y ∈ s, then VXFY = 0.

Proof. Straightforward calculation. �

Remark 2.7. In the computation of the partial derivative of item (1) we used the
fact that the Lie algebra of G is formed by right invariant fields. For the bracket
[·, ·] in g formed by the right invariant vector fields, the following equality holds:
Ad(eA) = e− ad(A). The reason to use right invariant vector fields is so that we can project
onto homogeneous spaces.

We deduce the Lie brackets between the Hamiltonian vector fields.

Corollary 2.8. We have the following Lie brackets.

(1) If A ∈ k and X ∈ s, then [A#, VX ] = V[A,X].

(2) If X, Y ∈ s, then [X#, VY ] = [Y #, VX ].

(3) If X, Y ∈ s, then [VX , VY ] = 0.

Corollary 2.9. The map θ defined on g and taking values on vector fields of T ∗FΘ

defined by θ(A) = A# if A ∈ k and θ(X) = X# +VX is a homomorphism of Lie algebras.

Proof. This follows directly from the brackets in Corollary 2.8. �

In other words, θ is an infinitesimal action of g on T ∗FΘ. By a classical result of Palais
this action is integrated to an action of a connected Lie group G whose Lie algebra is g,
provided the vector fields are complete.

Lemma 2.10. The vector fields θ(Z), Z ∈ g are complete.
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Proof. Take Z = A + X with A ∈ k and X ∈ s so that θ(Z) = A# + X# + VX =
(A + X)# + VX . Suppose by contradiction that there exists a maximal trajectory z(t)
of Z defined in a proper interval (a, b) ⊂ R, with, for example, b < ∞. This implies that
limt→b z(t) = ∞. Let x(t) be the projection of z(t) onto FΘ. Then x(t) is a trajectory of
the vector field Ã + X on FΘ induced by A+X. Since Ã + X is complete (by compactness
of FΘ), there exists limt→b x(t) = x(b).

In a local trivialization T ∗FΘ ≈ U × Rn around x(b) we have z(t) = (x(t), y(t)). The
second component y(t) satisfies a linear equation

ẏ = A(t)y + c(t),

where A(t) is the derivative at x(t) of the vector field Ã + X and c(t) = VX(x(t)). The
solution of this linear equation is defined in a neighbourhood of b, contradicting the fact
that z(t) → ∞ as t → b. �

As a consequence we obtain the following result.

Proposition 2.11. The infinitesimal action θ integrates to an action a : G×T ∗FΘ →
T ∗FΘ of a connected Lie group G with Lie algebra g. This action a(g, x) = g · x satisfies

(1) θ(Y )(x) = d
dta(etY , x)|t=0 for all Y ∈ g;

(2) the action is Hamiltonian since the vector fields θ(Y ), Y ∈ g are Hamiltonian vector
fields;

(3) the projection π : T ∗FΘ → FΘ is equivariant with respect to this new action and
the action of G on FΘ; and

(4) the action a is transitive.

Proof. The first two items are due to the construction of θ and a. As to equivariance,
it holds because for any Y ∈ g the projection π∗θ(Y ) is the vector field Ỹ induced by Y

via the action on FΘ.
To prove transitivity we observe that the Cartan decomposition g = k ⊕ s induces the

Cartan decomposition G = KS. The group K acts on T ∗FΘ by linear transformations
among the fibres, since θ(A) = A# for A ∈ k. Since K acts transitively on FΘ, it suffices
to verify that G acts transitively on a single fibre.

Let bΘ ∈ FΘ be the origin of FΘ, which is also seen as the null vector of T ∗
bΘ

FΘ. The
orbit G · bΘ on T ∗FΘ is then open, because the tangent space to the orbit

{θ(Z)(bΘ) : Z ∈ g}

coincides with the tangent space TbΘ
(T ∗FΘ).

In fact, TbΘ
(T ∗FΘ) is the sum of the (horizontal) tangent space TFΘ with the (vertical)

fibre T ∗
bΘ

FΘ. The transitive action of K on FΘ guarantees that TFΘ = {θ(A)(bΘ) : A ∈ k}.
On the other hand, given X ∈ s there exists A ∈ k such that X̃(bΘ) = Ã(bΘ). In such
a case, X̃ − A(bΘ) = 0, which implies that (X − A)#(bΘ) = VX(bΘ). The vertical vector
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VX(bΘ) is the linear functional of TbΘ
FΘ given by v 
→ (X̃(bΘ), v)B = (dfX)bΘ

(v). These
linear functionals generate T ∗

bΘ
FΘ, since X̃(bΘ), X ∈ s, generates TbΘ

FΘ. This shows
that the vertical space is contained in the space tangent to the orbit, concluding the
proof that the orbit is open.

Finally, take H ∈ a+. Then, VH(bΘ) = 0, since H̃(bΘ) = 0. Moreover, H# is vertical
in the fibre over bΘ and restricts to the fibre as a linear vector field. Since H was chosen
in the positive chamber a+, such a linear vector field is given by a linear transformation
whose eigenvalues are all negative. This implies that any trajectory of H# in the fibre
intercepts every neighbourhood of the origin. Since G · bΘ contains a neighbourhood of
the origin, we conclude that G is transitive in the fibre T ∗

bΘ
FΘ, showing that the action

is transitive. �

The next step is to identify T ∗FΘ as a homogeneous space of G, via the transitive
action of the previous proposition. First of all we will find the isotropy algebra l at bΘ,
that is,

l = {Y ∈ g : θ(Y )(bΘ) = 0},

where the origin of the flag bΘ is also seen as the null vector of T ∗
bΘ

FΘ.

Lemma 2.12. The isotropy subalgebra l = {Y ∈ g : θ(Y )(bΘ) = 0} coincides with the
isotropy subalgebra at HΘ of the adjoint orbit, that is, l = zΘ.

Proof. Let Y ∈ g with θ(Y )(bΘ) = 0 and Y = A + X, A ∈ k and X ∈ s. Then,
θ(Y ) = A# + X# + VX , and since A#(bΘ) = X#(bΘ) = 0, it follows that VX(bΘ) = 0.
However, as in the previous proof, VX(bΘ) is the linear functional v 
→ (X̃(bΘ), v)B.
Therefore, X̃(bΘ) = 0. On the other hand, θ(Y )(bΘ) = 0 implies that Ỹ (bΘ) = 0, and
consequently Ã(bΘ) = −X̃(bΘ) = 0. This shows that A ∈ pΘ∩k ⊂ zΘ and B ∈ pΘ∩s ⊂ zΘ,
thus Y ∈ zΘ. Therefore,

{Y ∈ g : θ(Y )(bΘ) = 0} ⊂ zΘ.

Equality follows from the fact that these algebras have the same dimension, since they
are isotropy algebras of spaces of equal dimension. �

The equality of isotropy Lie algebras l = zΘ immediately shows the equality of isotropy
subgroups if we know in advance that they are connected, as happens in the case of
complex Lie algebras, for instance. The next statement shows that the isotropy groups
do indeed coincide.

Proposition 2.13. Let L be the isotropy group of the action a : G × T ∗FΘ → T ∗FΘ

at bΘ. Then, L = ZΘ.

Proof. By the previous lemma the Lie algebras of these groups coincide, and therefore
their connected components of the identity (ZΘ)0 and L0 are equal. Since L normalizes
its Lie algebra, it follows that L normalizes zΘ. Nevertheless, the normalizer of zΘ is ZΘ.
Therefore, L ⊂ ZΘ.

To verify the opposite inclusion, consider the restriction of the action a to the subgroup
K. For A ∈ k, θ(A) = A#. Thus, the action of K on T ∗FΘ is linear. Therefore, the
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isotropy group K ∩ L coincides with the isotropy group of the action on FΘ at bΘ, that
is, K ∩ L = KΘ. Now, we know that KΘ intercepts all connected components of ZΘ:
see [11, Lemma 1.2.4.5]. Therefore, the relations KΘ ⊂ L and (ZΘ)0 = L0 imply that
ZΘ ⊂ L. �

Remark 2.14. Lemma 2.12 and Proposition 2.13 are needed to verify that the homo-
geneous space obtained via the infinitesimal action indeed coincides with the homoge-
neous space of the adjoint orbit. Although the manifolds are isomorphic, it is not granted
a priori that the group actions agree.

Remark 2.15. The group G that integrates the infinitesimal action θ is necessarily
the adjoint group Aut0(g), whose centre is trivial. This happens because the action of G

on T ∗FΘ is effective, as G is a subgroup of diffeomorphisms of T ∗FΘ. An effective action
on the adjoint orbit only happens for the adjoint group, since the centre Z(G) ⊂ ZΘ,
and if z ∈ Z(G), then Ad(z) = id.

2.4. Moment map on T ∗F

The action a : G×T ∗FΘ → T ∗FΘ defined above is a Hamiltonian action, since θ(Y ) is
a Hamiltonian field for each Y ∈ g. We can then define a moment map μ : T ∗FΘ → g∗, by
μ(ξ)(Y ) = enY (ξ), where enY : T ∗FΘ → R is the energy function of θ(Y ) and ξ ∈ T ∗FΘ.
That is,

• if A ∈ k, then μ(ξ)(A) = ξ(Ã(x)), x = π(ξ); and

• if X ∈ s, then μ(ξ)(X) = ξ(X̃(x))+ 〈X, x〉, x = π(ξ), where 〈·, ·〉 is Cartan–Killing.

Associated with μ we define a cocycle c : G → g∗ by

c(g) = μ(g · ξ) − Ad∗ μ(ξ),

where ξ ∈ T ∗FΘ is arbitrary since the right-hand side is constant as a function of ξ

(see [1]). The map c is a cocycle in the sense that

c(gh) = Ad∗(g)c(h) + c(g),

which means that c is a 1-cocycle of the cohomology of the coadjoint representation of
G on g∗.

In the case when g is semi-simple, the Cartan–Killing form 〈·, ·〉 interchanges the
representations: coadjoint Ad∗ and adjoint Ad. With this we can define a moment
map μ : T ∗FΘ → g (same notation) by 〈μ(ξ), ·〉 = enY (ξ). So the cocycle becomes
c(g) = μ(g · ξ) − Ad(g)μ(ξ), which satisfies c(gh) = Ad(g)c(h) + c(g).

Theorem 2.16. Let μ : T ∗FΘ 
→ g be the moment map of the action a : G × T ∗FΘ →
T ∗FΘ constructed above, and let c : G → g be the corresponding cocycle. Then,

(1) c is identically zero, which means that μ : T ∗FΘ → g is equivariant, that is, μ(g·ξ) =
Adμ(ξ);
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(2) μ is a diffeomorphism between T ∗FΘ and the adjoint orbit Ad(G)HΘ;

(3) μ∗ω = Ω, where Ω is the canonical symplectic form of T ∗FΘ and ω the (real)
Kirillov–Kostant–Souriaux form on Ad(G)HΘ; and

(4) μ : T ∗FΘ → Ad(G)HΘ is the inverse of the map ι : Ad(G)HΘ → T ∗FΘ of Theo-
rem 2.1 given in (2.1).

Proof. The result is a consequence of the following items.

(1) μ(bΘ) = HΘ, where bΘ is the origin of FΘ, which is also regarded as the null vector
in T ∗

bΘ
FΘ. In fact, if A ∈ k, then μ(bΘ)(A) = bΘ(Ã(bΘ)) = 0. Whereas if X ∈ s,

then

μ(bΘ)(X) = bΘ(X̃(bΘ)) + 〈X, HΘ〉
= 〈X, HΘ〉.

Therefore, HΘ ∈ g satisfies μ(bΘ)(Y ) = 〈Y, HΘ〉 for all Y ∈ g, which means that
μ(bΘ) = HΘ.

(2) If x ∈ FΘ with x = Ad(k)HΘ, k ∈ K, then μ(x) = Ad(k)HΘ. This follows by the
same argument as in the previous item, where we regard x as the zero vector in
TxFΘ and thus obtain x(X̃(x)) = 0 for any X ∈ g.

(3) c(k) = 0 if k ∈ K, as follows by definition c(k) = μ(k · bΘ) − Ad(k)μ(bΘ) and the
previous items.

(4) c(h) = 0 if h ∈ A. In fact, Ad(h)μ(bΘ) = Ad(h)HΘ = HΘ. On the other
hand, if H ∈ a, then θ(H)(bΘ) = 0, since H#(bΘ) = 0 and VH(bΘ) = 0,
since (dfH)bΘ

(·) = (H̃(bΘ), ·) = 0. This implies that bΘ is a fixed point by the
action of A on T ∗FΘ. Therefore, μ(h · bΘ) = μ(bΘ) = HΘ, which tells us that
c(h) = μ(h · bΘ) − Ad(h)μ(bΘ) = 0.

(5) c ≡ 0, that is, μ is equivariant: μ(g · ξ) = Adμ(ξ). This follows from the polar
decomposition G = K(clA+)K and two applications of the cocycle property. In
fact, if g = uhv ∈ K(clA+)K, then

c(g) = c(uhv) = Ad(uh)c(v) + c(uh)

= Ad(u)c(h) + c(u)

= 0.

(6) Since μ is equivariant and μ(bΘ) = HΘ, its image is contained in the adjoint orbit
Ad(G)HΘ. The diffeomorphism property is due to equivariance, transitivity of G

on the spaces, and the fact that the isotropy subgroups on both spaces coincide.
The pullback of item (3) is a standard fact about moment maps of Hamiltonian
actions.
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(7) To see the inverse of μ take ξ = ι(HΘ + Z) ∈ T ∗
bΘ

FΘ. If A ∈ k and x ∈ s, then

〈μ(ξ), A〉 = ξ(Ã(bΘ)), 〈μ(ξ), X〉 = ξ(X̃(bΘ)) + fX(bΘ).

Write A = A− + A0 + A+ ∈ g = n
−
Θ ⊕ zΘ ⊕ n

+
Θ. Then Ã(bΘ) = Ã−(bΘ), so

ξ(Ã(bΘ)) = 〈Z, A−〉. Since n
+
Θ is Cartan–Killing orthogonal to zΘ ⊕ n

+
Θ, we have

ξ(Ã(bΘ)) = 〈Z, A−〉 = 〈Z, A〉, that is,

〈μ(ξ), A〉 = 〈Z, A〉 = 〈HΘ + Z, A〉

because 〈HΘ, A〉 = 0. Similarly, ξ(X̃(bΘ)) = 〈Z, X〉 and, since fX(bΘ) = 〈HΘ, X〉,
we have 〈μ(ξ), X〉 = 〈HΘ + Z, X〉. Hence μ(ι(HΘ + Z)) = HΘ + Z, showing that μ

and ι are inverse to each other.

�

Remark 2.17 (other actions). Besides the action defined above, there are other
infinitesimal actions g on T ∗FΘ that play the same role.

(1) Take θ−(A) = A# if A ∈ k and θ−(X) = X# − VX if X ∈ s. Then, θ− is still an
infinitesimal representation, which gives rise to another action of G.

(2) If (·, ·) is a K-invariant Riemannian metric on FΘ such that each X̃, X ∈ s, is a
gradient of the function f̂X , then the same game can be played with the Hamiltonian
vector field of F̂X = f̂ ◦ π in place of VX .

3. Embedding of adjoint orbits into products

We recall here a known realization of the homogeneous space G/ZΘ as an orbit in a
product of flag manifolds (see [9, § 3] for details).

Let w0 be the principal involution of the Weyl group W, that is, the element of highest
length as a product of simple roots. Then −w0a

+ = a+ and −w0Σ = Σ, so that −w0 is
a symmetry of the Dynkin diagram of Σ. For a subset Θ ⊂ Σ we put Θ∗ = −w0Θ and
refer to FΘ∗ as the flag manifold dual to FΘ. Clearly, if HΘ is a characteristic element
for Θ, then −w0HΘ is characteristic for Θ∗. (Except for the simple Lie algebras with
diagrams Al, Dl and E6, all the flag manifolds are self-dual. In Al = sl(n), n = l + 1, we
have, for instance, that the dual to the Grassmannian Grk(n) is Grn−k(n).)

Next we check that the diagonal action of G on the product FΘ × FΘ∗ as (g, (x, y)) 
→
(gx, gy), g ∈ G, x, y ∈ F, has just one open and dense orbit, which is G/ZΘ.

Let x0 be the origin of FΘ. Since G acts transitively on FH , all the G-orbits of the
diagonal action have the form G·(x0, y), with y ∈ FΘ∗ . Thus, the G-orbits are in bijection
with the orbits of the action of PΘ∗ on FΘ∗ , which is known to be the orbits through
wy0, w ∈ W, where y0 is the origin of FΘ∗ . Hence the G-orbits are G · (x0, wy0), w ∈ W.

Now let w0 be the principal involution of W.

Proposition 3.1. The orbit G·(x0, w̃0y0) is open and dense in FΘ ×FΘ∗ and identifies
to G/ZH . (Here and elsewhere w̃ stands for a representative in K of w ∈ W.)
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Proof. The isotropy subgroup at the point (x0, w̃0y0) is the intersection of the isotropy
subgroups at x0 and w0y0. The first one is the parabolic subgroup P−H associated with
w̃0H

∗ = −H and the second one is PH , where H is a characteristic element of Θ. Since
ZH = PH ∩ P−H , the identification follows. Now the Lie algebra zH = pH ∩ p−H of
PH ∩ P−H is complemented in g by n

+
H ∩ n

+
−H , with n

+
−H =

∑
α(H)<0 gα. Hence, the

dimension of G · (x0, w̃0y0) is the same as the dimension of FΘ × FΘ∗ , so the orbit is
open. Analogous reasoning shows that this is the only open, and hence dense, orbit. �

In terms of this realization of G/ZΘ as an open orbit, the map G/ZΘ → FΘ is just
the projection onto the first factor. Also, if Θ ⊂ Θ1, the projection G/ZΘ → G/ZΘ1 is
inherited from the projections FΘ → FΘ1 and FΘ∗ → FΘ∗

1
.

A flag manifold FΘ = G/PΘ is in bijection with the set of parabolic subalgebras
conjugate to pΘ, since PΘ is the normalizer of pΘ. From this point of view the open orbit
G · (x0, w̃0y0) ⊂ FΘ × FΘ∗ is characterized by transversality: two parabolic subalgebras
p1 ∈ FΘ and p2 ∈ FΘ∗ are transversal if g = p1 + p2 or, equivalently, if n(p1) ∩ p2 =
p1∩n(p2) = {0}, where n(·) stands for the nilradical (see [8]). The open orbit G·(x0, w̃0y0)
is then the set of pairs of transversal subalgebras. In particular, the set of subalgebras
transversal to the origin x0 ∈ FΘ is the open cell N+w̃0y0 with y0 the origin of FΘ∗ . More
generally, the set of subalgebras transversal to gx0, g ∈ G, is the open cell gN+w̃0x0.

The fixed points of a split-regular element h ∈ A+ = ea
+

in a flag manifold FΘ are
isolated. The set of fixed points is the orbit through the origin of NormK(a) and factors
down to the Weyl group W = NormK(a)/CentK(a).

4. Adjoint orbits and representations of g

In this section we give realizations of the coset spaces G/ZΘ based on representations of
g. It will be convenient to assume that g is a complex algebra, even though the theory
works, with some adaptations, for real algebras. This new description helps to establish
a bridge between the adjoint orbit and the open orbit in the product.

4.1. The adjoint action of G on End(V )

Let h be a Cartan subalgebra of g and denote by hR the real subspace of h spanned
by Hα, α ∈ Π, where α(·) = 〈Hα, ·〉. Fix a Weyl chamber h

+
R

and let Σ = {α1, . . . , αl}
be the corresponding system of simple roots, with fundamental weights {μ1, . . . , μl}. If
μ = a1μ1 + · · · + alμl with ai ∈ N, then there exists a unique irreducible representation
ρμ of g with highest weight μ. If H ∈ h

+
R
, then μ(H) is the largest eigenvalue of ρμ(H).

If w0 is the main involution, then w0μ is a lowest weight: that is, (w0μ)(H) = μ(w0H)
is the smallest eigenvalue of ρμ(H) if H ∈ h

+
R
.

If K ⊂ G is the maximal compact subgroup, then V can be endowed with a K-invariant
Hermitian form (·, ·)μ such that the weight spaces are pairwise orthogonal. Such a Her-
mitian form is unique up to scale, because the representation of K on V is irreducible.

In § 5 we study Lagrangian submanifolds of the adjoint orbits Ad(G)H0 with H0 ∈
cl(h+

R
) embedded into products FH0 ×FH∗

0
. There is freedom of choice to pick the element

H0, producing the same flag FH0 . In what follows we will choose a convenient H0.
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Let Θ0 = Θ(H0) = {α ∈ Σ : α(H0) = 0}; that is, H0 is characteristic for Θ0. Let μ be
a highest weight such that, for α ∈ Σ, 〈α∨, μ〉 = 0 if and only if α ∈ Θ0. (For example,
μ = μi1 + · · · + μis

if Σ \ Θ0 = {αi1 , . . . , αis
}.) Define Hμ ∈ hR by μ(·) = 〈Hμ·〉. Then,

the centralizers of Hμ and H0 coincide, since Θ0 is the set of simple roots that vanish on
H0 as well as on Hμ. Hence the adjoint orbits Ad(G)Hμ and Ad(G)H0 give rise to the
same homogeneous space G/ZH0 = G/ZHμ and the flags FH0 and FHμ coincide. From
now on we take H0 = Hμ, with μ a highest weight, μ = μi1 + · · · + μis

.
Let G be the linear connected group with Lie algebra ρμ(g) ≈ g, and consider its action

on the projective space P(V ) of the representation space V = V (μ). It is well known that
this choice of μ guarantees that the projective orbit of G by the subspace of highest
weight Vμ ∈ P(V ) is the flag FHμ

= FΘ0 .
Consider the dual representations ρ∗

μ of g and G on V ∗ as ρ∗
μ(X)(ε) = −ε ◦ ρμ(X) and

ρ∗
μ(g)(ε) = ε ◦ ρμ(g−1) if ε ∈ V ∗, X ∈ g and g ∈ G. Choose a basis {v0, . . . , vN} of V

adapted to the decomposition in weight spaces with v0 ∈ Vμ. Denote by {ε0, . . . , εN} the
dual basis εi(vj) = δij . Then ε0 generates a subspace of ‘lowest’ weight of V ∗, in the
sense that

(1) ρ∗
μ(H)(ε0) = −μ(H)ε0 if H ∈ h; and

(2) ρ∗
μ(X)(ε0) = 0 if X ∈

∑
α<0 gα, and ρμ(X) takes a weight space Vν to a sum of

spaces of weights smaller than ν.

Therefore, −μ is the lowest weight of V ∗. So the highest weight is μ∗ = −w0μ. This
means that the projective orbit of the highest weight (and of ε0) on V ∗ is the dual
flag FH∗

μ
.

Example 4.1. If g = sl(n, C), then the fundamental weights are λ1, λ1 + λ2, . . . ,
λ1 + · · · + λn−1, where λi is the functional that is associated with the ith eigenvalue of
the diagonal matrix H ∈ h. If μ is a fundamental weight μ = λ1 + · · · + λk, then the
irreducible representation with highest weight μ is the representation of g on the kth
exterior power ΛkCn of Cn. The highest weight space is generated by e1 ∧ · · · ∧ ek (ei are
the basis vectors of Cn). The G-orbit of e1 ∧ · · · ∧ ek is the set of decomposable elements
of ΛkCn, so the projective G-orbit is identified with the Grassmannian Grk(n). The dual
flag of Grk(n) is Grn−k(n), which is the projective orbit on Λn−kCn, identified with the
dual ΛkCn by a choice of volume form on Cn. The lowest weight space on Λn−kCn is
generated by ek+1 ∧ · · · ∧ en.

Keeping the same highest weight μ, consider the tensor product V ⊗ V ∗. G gets rep-
resented on V ⊗ V ∗ by g · (v ⊗ ε) = ρμ(g)v ⊗ ρ∗

α(g)ε, which is isomorphic to the adjoint
representation of G on End(V ).

Once again, let v0 and ε0 be generators of the spaces of highest weight of V and lowest
of V ∗, respectively. Our fourth model of the adjoint orbit is the G-orbit of v0⊗ε0. To prove
that this orbit is indeed G/ZH0 we shall consider the moment map of the representation.
Namely, the map M̄ : V ⊗ V ∗ → g∗ defined by

M̄(v ⊗ ε)(Z) = ε(ρμ(Z)v), v ∈ V, ε ∈ V ∗, Z ∈ g.
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Since g is semi-simple and g ≈ g∗ via the Cartan–Killing form 〈·, ·〉, we can take the
moment map M : V ⊗ V ∗ → g given by

〈M(v ⊗ ε), Z〉 = ε(ρμ(Z)v), v ∈ V, ε ∈ V ∗, Z ∈ g.

It is well known and easy to prove that M is equivariant with respect to the representa-
tions on V ⊗ V ∗ and g. In fact, since ρμ(Ad(g)Z) = ρμ(g)ρμ(Z)ρμ(g−1) we have

〈Ad(g)M(v ⊗ ε), Z〉 = 〈Ad(g)M(v ⊗ ε), Ad(g−1)Z〉
= ε(ρμ(g−1)ρμ(Z)ρμ(g)v)

= ρμ(g)v ⊗ ρ∗
μ(g)ε = g · (v ⊗ ε).

The same calculation shows that M̄ is equivariant with respect to the coadjoint repre-
sentation.

In the semi-simple case the moment map has the following geometric interpretation:
ρμ is a faithful representation, thus g ≈ ρμ(g) ⊂ End(V ). The trace form tr(AB) on
End(V ) is non-degenerate. Thus, the moment map is just the orthogonal projection with
respect to the trace form of End(V ) ≈ V ⊗ V ∗ onto ρμ(g) ≈ g.

As a consequence of equivariance, it follows that the image of a G-orbit on V ⊗ V ∗ by
M is an adjoint orbit.

Lemma 4.2. The image of the G-orbit G · (v0 ⊗ ε0) by M is the adjoint orbit of Hμ

defined by μ(·) = 〈Hμ, ·〉.

Proof. If α is a root and X ∈ gα, then

ε0(ρμ(X)v0) = (ρμ(X)v0) ⊗ ε0 = −v0 ⊗ (ρ∗
μ(X)ε0).

The second term vanishes if α > 0, whereas if α < 0, the third term vanishes. Hence
〈M(ε0 ⊗ v0), X〉 = 0. But, if H ∈ h, then

ε0(ρμ(H)v0) = μ(H)ε0(v0) = μ(H),

that is, 〈M(ε0 ⊗ v0), H〉 = μ(H), which shows that M(ε0 ⊗ v0) = Hμ. Consequently,
M(G · (v0 ⊗ ε0)) = Ad(G)Hμ. �

Proposition 4.3. The G-orbit G · (v0 ⊗ ε0) is the homogeneous space G/ZHμ .

Proof. Set G · (v0 ⊗ ε0) = G/L. We want to show that L = ZHμ . The equivariance
of M together with the equality M(G · (v0 ⊗ ε0)) = Ad(G)Hμ imply that the isotropy
subgroup at v0 ⊗ ε0 is contained in the isotropy subgroup at Hμ, that is, L ⊂ ZHμ . Since
ZHμ is connected, to show the opposite inclusion it suffices to show that the Lie algebra
zHμ of ZHμ is contained in the isotropy algebra of v0 ⊗ ε0.

To verify this, we observe that the isotropy algebra of v0 is

ker μ +
∑
α>0

gα +
∑

α∈〈Θ0〉−

gα,
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where 〈Θ0〉− is the set of negative roots generated by Θ0, which in turn is the set of
simple roots that vanish on H0 (or Hμ). In this sum, the first term is given by elements
H ∈ h such that ρμ(H)v0 = 0. The second term appears in the isotropy algebra because
v0 is a highest weight vector. Finally, the last term comes from the fact that if α is a
negative root and X ∈ gα, then ρμ(X)v0 = 0 if and only if 〈α∨, μ〉 = 0. The roots that
satisfy this equality are precisely the roots in 〈Θ0〉−. Analogously, the isotropy algebra
at ε0 is given by

ker μ +
∑
α<0

gα +
∑

α∈〈Θ0〉+
gα,

where 〈Θ0〉+ is the set of positive roots generated by Θ0.
Now, set

X ∈ zHμ = h ⊕
∑

α∈〈Θ0〉±

gα.

If X ∈
∑

α∈〈Θ0〉± gα, then ρμ(X)v0 ⊗ ε0 + v0 ⊗ ρ∗
μ(X)ε0 = 0 since X belongs to the

isotropy algebras of v0 and ε0. Whereas if H ∈ h, then

ρμ(H)v0 ⊗ ε0 + v0 ⊗ ρ∗
μ(H)ε0 = μ(H)v0 ⊗ ε0 − μ(H)v0 ⊗ ε0 = 0.

Therefore, zHμ is contained in the isotropy subalgebra of v0 ⊗ ε0. �

Corollary 4.4. The restriction of the moment map defines a diffeomorphism M : G ·
(v0 ⊗ ε0) → Ad(G)Hμ.

Via this diffeomorphism, the height function fH : Ad(G)Hμ → C defines a function,
also denoted by fH , on the orbit G · (v0 ⊗ ε0). This function has a simple expression.

Proposition 4.5. Let v ⊗ ε ∈ G · (v0 ⊗ ε0). Then

fH(v ⊗ ε) = ε(ρμ(H)v) = tr((v ⊗ ε)ρμ(H)).

Proof. For a moment, denote by f̃H the function fH defined on G · (v0 ⊗ ε0). Then

f̃H(v ⊗ ε) = fH(M(v ⊗ ε)) = 〈M(v ⊗ ε), H〉,

which is ε(ρμ(H)v) by the definition of M . In the expression involving the trace, v ⊗ ε

is regarded as an element of End(V ) and the second equality follows from ε(Sv) =
tr((v ⊗ ε)S), which holds for any S ∈ End(V ). �

4.2. Isomorphism with the open orbit in FHμ × FH∗
μ

As mentioned earlier, the flags FHμ and FH∗
μ

are obtained as projective orbits in P(V )
and P(V ∗), respectively. The origin of FHμ

is identified with the highest weight space
[v0], and in the identification with the adjoint orbit of the compact group K, this origin
is precisely Hμ.

On the other hand, [ε0] is the lowest weight space in V ∗. The isotropy algebra at [ε0]
contains

∑
α<0 gα. Thus, [ε0] ∈ P(V ∗) is identified with w0b

∗ ∈ FH∗
μ
, where b∗ is the
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origin of FH∗
μ
. Under the identification of FH∗

μ
with the adjoint orbit of the compact

group K, the origin is −Hμ = w0H
∗
μ.

We use these identifications to see FH0 × FH∗
0

as the product of the projective orbits
G · [v0]×G · [ε0] ⊂ P(V )×P(V ∗). The open orbit in FH0 ×FH∗

0
then becomes the diagonal

G-orbit of ([v0], [ε0]) ∈ P(V ) × P(V ∗). Denote this orbit by G · ([v0], [ε0]), that is,

G · ([v0], [ε0]) = {(ρμ(g)[v0], ρ∗
μ(g)[ε0]) ∈ P(V ) × P(V ∗) : g ∈ G}.

Now we describe the diffeomorphism between the orbit G · (v0 ⊗ ε0) ⊂ V ⊗V ∗ and the
orbit G · ([v0], [ε0]) ⊂ FHμ × FH∗

μ
⊂ P(V ) × P(V ∗). In fact, the diffeomorphism associates

g · ([v0], [ε0]) = (ρμ(g)[v0], ρ∗
μ(g)[ε0]) with g · (v0 ⊗ ε0) = ρμ(g)v0 ⊗ ρ∗

μ(g)ε0. We obtain
the following proposition.

Proposition 4.6. Let Φ : G ·(v0 ⊗ε0) → G ·([v0], [ε0]) be the diffeomorphism obtained
by identification of both orbits with G/ZHμ . If v⊗ε ∈ G·(v0⊗ε0), then Φ(v⊗ε) = ([v], [ε])
with inverse Φ−1([v], [ε]) = (v ⊗ ε).

Proof. Our previous argument already proved this. Nevertheless, it is worth observing
that the maps v⊗ε 
→ ([v], [ε]) and ([v], [ε]) 
→ v⊗ε are well defined, since v1⊗ε1 = v⊗ε is
equivalent to v1 = av and ε1 = a−1ε, which is also equivalent to ([v1], [ε1]) = ([v], [ε]). �

4.3. Isomorphism with T ∗FHμ

First of all, we recall the isomorphism between the adjoint orbit O(Hμ) and the
cotangent bundle T ∗FΘ. Here, Hμ remains fixed and is characteristic for Θ, that is,
Θ = {α ∈ Σ : α(Hμ) = 0}.

By the Iwasawa decomposition G = KAN we can write G = KPΘ, and the adjoint
action of PΘ on Hμ is given by Ad(Pθ) · Hμ = Hμ + n

+
Θ, where n

+
Θ =

∑
Π+\〈Θ〉 gα. Thus,

O(Hμ) = Ad(G)Hμ = Ad(K)(Hμ + n
+
Θ) =

⋃
k∈K

Ad(k)(Hμ + n
+
Θ).

The identification of the adjoint orbit with the cotangent bundle is given by the map
that associates with each element of the adjoint orbit Ad(k)(Hμ +X), X ∈ n

+
Θ, the linear

functional f ∈ (Tkb0FΘ)∗ given by f(Y ) = 〈Ad(k)X, Y 〉, Y ∈ Tkb0FΘ.

Proposition 4.7. Let μ be a highest weight and let v0 and ε0 be the generators of
the highest weight space on V and the lowest weight space on V ∗, respectively. The
diffeomorphism between G · (v0 ⊗ ε0) and T ∗FΘ is given by

g · (v0 ⊗ ε0) 
→ (Y 
→ 〈Ad(k)X, Y 〉, Y ∈ Tkb0FΘ), (4.1)

where g = kp is the Iwasawa decomposition, Ad(p)Hμ = Hμ + X, and the flag FΘ is
determined by Hμ.
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5. Compactified adjoint orbits

We compactify adjoint orbits O(H0) to products of flags FH0 × FH∗
0

as an auxiliary
tool to identify Lagrangian submanifolds of the orbits. We choose canonical complex
structures on FH0 and FH∗

0
so that, for an element w0 of the Weyl group W, the right

action Rw0 : FH0 → FH∗
0

is anti-holomorphic (Proposition 5.7). Consequently, the map
Rw0 : FH0 → FH∗

0
is anti-symplectic with respect to the Kähler forms on FH0 and FH∗

0

given by the Borel metric and canonical complex structures (Corollary 5.9). We then
obtain further examples of Lagrangian graphs by composites (either on the left or on the
right) of Rw0 with symplectic maps.

5.1. Lagrangian graphs in adjoint orbits

On the one hand, O(H0) can be embedded as an open dense submanifold in a product of
two flags (§ 3); on the other hand, graphs of symplectic maps are Lagrangian submanifolds
inside the product, due to the following general fact.

Let (M, ω) and (N, ω1) be symplectic manifolds. The Cartesian product M × N can
be endowed with the symplectic form ω × ω1. If φ : M → N is anti-symplectic, that
is, φ∗ω1 = −ω, then graph(φ) ⊂ M × N is a Lagrangian submanifold with respect to
ω × ω1. Similarly, we could use a symplectic map (symplectomorphism) φ : M → M

taking ω1 = −ω, which is also a symplectic form.
With this in mind, to construct an assortment of Lagrangian submanifolds in O(H0)

we use an embedding O(H0) ↪→ F1 × F2 into a product of flags. Taking symplectic
forms ω1 and ω2 on F1 and F2 we obtain a symplectic form ω1 × ω2 on F1 × F2 and
consequently on O(H0) by restriction. If φ : F1 → F2 is anti-symplectic, then graph(φ)
and graph(φ) ∩ O(H0) are Lagrangian submanifolds of F1 × F2 and O(H0), respectively.
The intended construction involves, first of all, a discussion about the right action of the
Weyl group.

5.2. The right action of the Weyl group

Let g be a non-compact semi-simple Lie algebra (real or complex), let G be the adjoint
group of g, and let K ⊂ G be the maximal compact subgroup. The maximal flag of g is
given by F = G/P = K/M , where P = MAN is the minimal parabolic subgroup. The
adjoint orbit of a regular element H ∈ a = log A is given by O(H) = G/MA. The flag F

is contained in O(H) since F is a K-orbit of H.
The Weyl group W is isomorphic to NormG(A)/MA = NormK(A)/M . We obtain

right actions of W on F = K/M (with W = NormK(A)/M) and on O(H) = G/MA

(with W = NormG(A)/MA). Moreover, the fibrations G/MA → G/NormG(A) and
F = K/M → K/NormK(A) are principal bundles with structural group W.

Example 5.1. Let g = sl(n, R) or g = sl(n, C). Hence, a regular element H is a diag-
onal matrix H = diag{a1, . . . , an} with a1 > · · · > an. O(H) = {gHg−1 : g ∈ Sl(n, R)}
(or C), that is, the orbit is the set of diagonalizable matrices with the same eigenvalues
as H. The Weyl group W is the permutation group of n elements, whereas NormK(A)
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is the set of signed permutation matrices (matrices such that each row or column has
exactly one non-zero entry ±1). The right action of a permutation w ∈ W is given by

Rw : gHg−1 
→ gw̄H(gw̄)−1 = g(w̄Hw̄−1)g−1,

where w̄ ∈ NormK(A) is the permutation matrix that represents w ∈ W. In this expres-
sion for Rw the term w̄Hw̄−1 is the matrix whose diagonal entries are the same as the
ones of H permuted by w in the permutation group W.

The right action Rw of w ∈ W is in general completely different from the left action of
any of its representatives w̄ ∈ NormK(A). For example, in the case of sl(2, C), the Weyl
group is {1, (12)} and the right action of w = (12) in the flag S2 = CP 1 is the antipodal
map. On the other hand,

w̄ =

(
0 −1
1 0

)
∈ NormK(A)

is a representative of (12). The left action of w̄ has two fixed points.

The right action of W leaves invariant the induced vector fields.

Proposition 5.2. Given an element A in the Lie algebra, denote by Ã the induced
vector field on the homogeneous space (G/MA or K/M). Then, (Rw)∗Ã = Ã for all
w ∈ W.

Proof. Indeed, Rw commutes with the flow of Ã, which is the left action of etA. �

5.3. The K-orbit and graphs

In § 3, we defined an embedding of the adjoint orbit into the product FH0 ×FH∗
0
, where

FH∗
0

is the dual flag of FH0 .
Consider first of all the case when FH = F is the maximal flag, which is self-dual.

In this flag, the right action of W is well defined. Denote by b0 the origin of F and set
bw = Rwb0, w ∈ W.

Let w0 ∈ W be the principal involution (the element of largest length as a product of
simple reflections). The embedding of O(H0) is given by the G-orbit of (b0, bw0) under
the diagonal action g(x, y) = (gx, gy). This G-orbit is identified with the adjoint orbit
O(H0) = G/MA for any H0 regular and real. Let K be the maximal compact subgroup
of G (the real compact form in the case of complex G).

Proposition 5.3. For w ∈ W, the K-orbit of (b0, bw) by the diagonal action coincides
with the graph of Rw.

Proof. Take x = k ·b0 ∈ F, k ∈ K. Then, Rw(x) = Rw(k ·b0) = k ·Rw(b0) since the left
and right actions commute. Thus, (x, Rw(x)) = (k · b0, k · Rw(b0)) = k · (b0, bw) belongs
to the K-orbit of (b0, bw). Conversely, an element of the orbit k · (b0, bw) = (x, Rw(x)),
x = k · b0, belongs to the graph of Rw. �
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Remark 5.4. In the case when w = w0 is the principal involution, the K-orbit of
Proposition 5.3 corresponds to the zero section of T ∗F when O(H0) = G/MA is identified
with the cotangent bundle. This happens because the origin G/MA gets mapped to
H0 ∈ O(H0) and the K-orbit of H0 is identified to the zero section. On the other hand,
the origin of the open orbit G · (b0, bw0) ∈ F × F is (b0, bw0), so that its K-orbit gets
identified to the K-orbit of H0.

Remark 5.5. It follows directly from Proposition 5.3 that the graphs of right transla-
tions Rw, w ∈ W, are contained in the diagonal G-orbits and consequently are compact
inside these orbits. This does not happen with left translations, not even by elements of
NormK(A), which represent elements of the Weyl group.

5.4. Example

For sl(2, C) the flag is CP 1 = S2 and W = {1, (12)}. The right action of R(12) on S2 is
the antipodal map. Another way to see this right action is to identify CP 1 with the set of
Hermitian matrices with eigenvalues ±1 (the adjoint orbit of the compact group SU(2)).
This identification associates with a Hermitian matrix the eigenspace associated with the
eigenvalue +1. In this case, if ξ = 〈(x, y)〉 ∈ CP 1, then R(12)(ξ) is the eigenspace of the
Hermitian matrix associated with the eigenvalue −1. That is, R(12)(ξ) is the Hermitian
orthogonal ξ⊥ of ξ, which is generated by (−ȳ, x̄) if ξ = 〈(x, y)〉.

Consider now the Cartesian product S2 ×S2 with the diagonal action of G = Sl(2, C):
g(ξ, η) = (gξ, gη). There are two orbits, as follows.

(1) The diagonal Δ = {(ξ, ξ) : ξ ∈ S2}.

(2) An open and dense orbit {(ξ, η) : ξ, η ∈ S2, ξ �= η}. As a homogenous space of G

this open orbit is given by G/MA, where MA is the Cartan subgroup of diagonal
matrices. Thus, it can be identified with the adjoint orbit of

H0 =

(
1 0
0 −1

)
.

The right action R(12) on G/MA admits good descriptions in terms of the identifica-
tions with the adjoint orbit Ad(G)H0 and with the open orbit G · o in S2 ×S2. They are
as follows.

(1) If A ∈ Ad(G)H0, then R(12)(A) is the unique 2 × 2 matrix with eigenvalues ±1
that has the same eigenspaces as those of A, but with the order of the eigenvalues
switched.

(2) If (ξ, η) ∈ G · o, then R(12)(ξ, η) = (η, ξ), since in the first case the order of the
eigenspaces is switched.
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5.5. Hermitian structures and symplectic forms

Suppose here that g is a complex algebra and take a Weyl basis Xα ∈ gα. The real
compact form u is generated by Aα = Xα−X−α and Zα = iSα = i(Xα+X−α) with α > 0.
If uα = span{Aα, Zα}, then the tangent space at the origin bH0 of FH0 is isomorphic to

TH0 =
∑

α(H0)>0

uα

via the isomorphism

Y ∈ TH0 
→ Ỹ (bH0) =
d
dt

(etY · bH0)|t=0 ∈ TbH0
FH0 .

The canonical complex structure J on FH0 is invariant by the compact group K = eu,
and at the origin of the subspaces uα, α > 0, it is given by

JAα = Zα, JZα = −Aα.

If w̃ is a representative of w ∈ W. Then the tangent space to w̃H0 is identified with

Tw̃H0 =
∑

α(w̃H0)>0

uα,

and the canonical complex structure Jw on Tw̃H0 is given by

JAα = Zα, JZα = −Aα

with Aα and Zα, with the caveat that we take roots α such that α(w̃H0) > 0 (which are
not in general positive roots).

Every K-invariant Riemannian metric on FH0 is almost Hermitian with respect to J

(see [6]). In general, the corresponding Kähler form Ω is not closed and, consequently, is
not symplectic. However, the Kähler form is symplectic for the case of the Borel metric
(·, ·)B, which is the K-invariant metric defined at the origin by (uα, uα)B = 0 if α �= β

and satisfying

(Ãα(H0), Ãα(H0))BH0
= (Z̃α(H0), Z̃α(H0))BH0

= α(H0),

(Ãα(H0), Z̃α(H0))BH0
= 0

if α(H0) > 0.
This description of the Borel metric also holds at other points of FH0 = Ad(U) · H0.

For example, the tangent space at Ad(w̃) · H0 is
∑

α(w·H0)>0 uα and the metric at uα is
given by the same expression provided α(w · H0) > 0.

Proposition 5.6. The map Rw0 : FH0 → FH∗
0

is an isometry of Borel metrics.

Proof. Since Rw0 is equivariant by the left actions on FH0 and FH∗
0

and the metrics
are K-invariant, it suffices to verify the isometry at the origin. Equivariance also implies
that (Rw0)∗Ã = Ã. Thus, for x ∈ FH0 ,

((dRw0)xÃ(x), (dRw0)xB̃(x))BRw0 (x) = (Ã(Rw0(x)), B̃(Rw0(x)))BRw0 (x).
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At x = H0 ∈ FH0 we have Rw0(H0) = w0H
∗ = −H0. Now, if α(H0) > 0, then

(Ãα(H0), Ãα(H0))BH0
= α(H0)

and the second term of the previous equality for A = B = Aα is

(Ãα(−H0), Ãα(−H0))BH0
= −α(−H0) = α(H0).

The same holds true for Zα corresponding to any root α with α(H0) > 0, so

((dRw0)H0Ã(H0), (dRw0)H0B̃(H0))B−H0
= (Ã(H0), B̃(H0))BH0

for arbitrary A and B. This shows that Rw0 is an isometry. �

Having obtained the isometry Rw0 , its holomorphicity provides us with the symplectic
isomorphism.

Proposition 5.7. The map Rw0 : FH0 → FH∗
0

is anti-holomorphic with respect to the
canonical complex structures on FH0 and FH∗

0
.

Proof. Let w̃0 be a representative of w0 such that Ad(w̃0)H∗
0 = −H0, and denote by

J0 and Jw0 the complex structures on TH0FH0 and T−H0FH∗
0
, respectively. Take a root

α with α(H0) > 0, that is, (−α)(−H0) > 0. We have

J0(Ãα(H0)) = Z̃α(H0), J0(Z̃α(H0)) = −Ãα(H0),

since α(H0) > 0, and

Jw0(Ãα(−H0)) = −Jw0(Ã−α(−H0)) = −Z̃α(−H0),

Jw0(Z̃α(−H0)) = −Ã−α(−H0) = Ãα(−H0),

since (−α)(−H0) > 0.
On the other hand, (Rw0)∗Ãα = Ãα and (Rw0)∗Z̃α = Z̃α. Therefore,

Jw0((dRw0)H0Ãα(H0)) = Jw0(Ãα(−H0)) = −Z̃α(−H0),

Jw0((dRw0)H0Z̃α(H0)) = Jw0(Z̃α(−H0)) = Ãα(−H0),

whereas

(dRw0)H0J0(Ãα(H0)) = Z̃α(−H0),

(dRw0)H0J0(Z̃α(H0)) = −Ãα(−H0),

which shows that Rw0 is anti-holomorphic at the origin and, consequently, on the whole
flag by the invariance of the complex structures. �

Corollary 5.8. If k ∈ K, then the composites Rw0 ◦ k and k ◦ Rw0 are anti-
holomorphic.

Corollary 5.9. Let ΩH0 and ΩH∗
0

be the Kähler forms of the Hermitian structures
on FH0 and FH∗

0
given by the Borel metric and the canonical complex structures. Then

Rw0 is anti-symplectic, that is, R∗
w0

ΩH∗
0

= −ΩH0 .

https://doi.org/10.1017/S0013091516000286 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000286


Adjoint orbits of semi-simple Lie groups and Lagrangian submanifolds 383

5.6. Hermitian structures on products

The product FH0 × FH∗
0

is a flag of the product G × G associated with (H0, H
∗
0 ), that

is, FH0 × FH∗
0

= F(H0,H∗
0 ). This flag has Borel metric and invariant complex structures.

The adjoint orbit O(H0) is identified to the orbit G · (H0,−H0) by the diagonal rep-
resentation (recall that −H0 ∈ FH∗

0
since Ad(w̃0)H∗

0 = −H0 if w̃0 is a representative
of w0). The adjoint orbit O(H0) has a complex structure inherited from the inclusion
into g. On the other hand, the graphs considered above are Lagrangian with respect to
a symplectic form defined from the complex structures of the flags. Hence, to continue
our analysis we must compare these different complex structures.

We take h × h as a Cartan subalgebra in g × g. The roots of h × h are those of h in
each component, and the root spaces are of the form gα × {0} or {0} × gα.

The tangent space T(H0,−H0)F(H0,H∗
0 ) is generated by (Aα, 0), (Zα, 0), (0, Aα) and

(0, Zα). To obtain these generators, we can take the positive roots α > 0. Here, if α is
a positive root, then α(H0) > 0 but α(−H0) < 0, determining a difference between the
complex structures of the first and second components.

In fact, if α > 0 and (u × u)α denotes the space generated by the four vectors above,
then the canonical complex structure on (u × u)α ⊂ T(H0,−H0)F(H0,H∗

0 ) is given by

J(Aα, 0) = (Zα, 0), J(Zα, 0) = −(Aα, 0),

J(0, Aα) = −(0, Zα), J(0, Zα) = (0, Aα).

}
(5.1)

Remark 5.10. These expressions show that the canonical complex structure on
F(H0,H∗

0 ) = FH0×FH∗
0

is the product of the canonical complex structures on FH0 and FH∗
0
.

Another basis of the tangent space T(H0,−H0)F(H0,H∗
0 ) is given by

(X̃−α(H0), 0), (ĩX−α(H0), 0), (0, X̃α(−H0)), (0, ĩXα(−H0)),

with α running over the positive roots. These satisfy

J(X̃−α(H0), 0) = −(ĩX−α(H0), 0)J(ĩX−α(H0), 0) = (X̃−α(H0), 0),

J(0, X̃α(−H0)) = −(0, ĩXα(−H0))J(0, ĩXα(−H0)) = (0, X̃α(−H0)).

}
(5.2)

Using these calculations we obtain the following statement.

Proposition 5.11. Let J in and J be the following complex structures on O(H0) ≈
G · (H0,−H0).

(1) J in is the complex structure on O(H0) ⊂ g inherited from g.

(2) J is the complex structure on G · (H0,−H0) obtained by restriction of the complex
structure on FH0 × FH∗

0
, defined at the origin by (5.2).

Then J in = −J .
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Proof. It suffices to verify that equality holds at the origin, since both complex
structures are G-invariant. The tangent space to O(H0) at the origin is generated by
W̃ (H0) = [W, H0], with W in g±α and α running over all positive roots. If W ∈ g−α,
α > 0, then W̃ (H0) is ‘horizontal’ in the identification with G · (H0,−H0), whereas
W̃ (H0) is ‘vertical’ if W ∈ gα, α > 0. For the complex structure on g we have Xα 
→ iXα

and iXα 
→ −Xα. Thus the complex structure J in is given in the product by

J in(X̃−α(H0), 0) = (ĩX−α(H0), 0)J in(ĩX−α(H0), 0) = −(X̃−α(H0), 0),

J in(0, X̃α(−H0)) = (0, ĩXα(−H0))J in(0, ĩXα(−H0)) = −(0, X̃α(−H0)),

which is precisely the negative of (5.2). �

Let (·, ·)B be the Borel metric on FH0 × FH∗
0

= F(H0,H∗
0 ). If follows immediately from

the definition that (·, ·)B is the product of the Borel metrics on FH0 and FH∗
0
.

This metric together with the canonical complex structure J define a Hermitian struc-
ture on FH0 ×FH∗

0
, which is invariant by K ×K (compact group) but is not invariant by

G × G, because the metric itself is only invariant by K × K. This Hermitian structure
restricts to a Hermitian structure in the open orbit G · (H0,−H0) ≈ O(H0), which is
invariant by the action of K (but not by that of G). Denote by Ω(·, ·) = (·, J(·))B the
corresponding Kähler form, which is a symplectic form. Since (·, ·)B is the product metric
and J is the product complex structure, it follows that Ω is the product of the Kähler
forms in FH0 and FH∗

0
.

6. Lagrangian graphs in products of flags

By Corollary 5.9 the map Rw0 : FH0 → FH∗
0

is anti-symplectic with respect to the Kähler
forms on FH0 and FH∗

0
given by the Borel metric and canonical complex structures.

Therefore, graph(Rw0) is a Lagrangian submanifold of the product symplectic structure.
We now obtain further examples of Lagrangian graphs by composites (either on the left
or on the right) of Rw0 with symplectic maps.

Example 6.1. If k1, k2 ∈ K, then the induced maps k1 : FH0 → FH0 and k2 : FH∗
0

→
FH∗

0
are symplectic. Therefore, k1 ◦ Rw0 ◦ k2 is anti-symplectic, hence its graph is a

Lagrangian submanifold of FH0 × FH∗
0

= F(H0,H∗
0 ). Such a graph is not contained in G ·

(H0,−H0); nevertheless, its intersection with the orbit is still a Lagrangian submanifold
(non-compact if the graph is not contained in the orbit).

The tangent space T(x,φ(x)) graph(φ) is given by the vectors (u, dφx(u)). For maps
k ◦ Rw0 , with k ∈ K, the tangent spaces admit the following description in terms of the
adjoint representation.

Proposition 6.2. Let k ∈ K. The tangent space to graph(k ◦ Rw0) at (x, y) = (x, k ◦
Rw0(x)) is given by

{(A, Ad(k)A)∼(x, k ◦ Rw0(x)) : A ∈ u},

where (A, Ad(k)A)∼ is the vector field on FH0 × FH∗
0

= F(H0,H∗
0 ) that is induced by

(A, Ad(k)A) ∈ u × u (u is the Lie algebra of K).
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Proof. If A ∈ u, then (Rw0)∗Ã = Ã, thus (dRw0)x(Ã(x)) = Ã(Rw(x)). Applying
dkRw(x) to this equality we get

(dk ◦ Rw0)x(Ã(x)) = dkRw(x)(Ã(Rw(x)))

= Ãd(k)A(k ◦ Rw0(x)).

It follows that the tangent space to the graph is (Ã(x), Ãd(k)A(k ◦ Rw0(x))). But the
action of K × U on FH0 × FH∗

0
works coordinatewise. Hence

(Ã(x), Ãd(k)A(k ◦ Rw0(x))) = (A, Ad(k)A)∼(x, k ◦ Rw0(x)),

which completes the proof, because the vectors Ã(x), A ∈ u, exhaust the tangent space
at x. �

In conclusion, we have described the following families of Lagrangian submanifolds of
the adjoint orbit O(HΘ) = Ad(G) · HΘ ≈ G/ZΘ.

Theorem 6.3. For k1, k2 ∈ K and for m ∈ T ,

• graph(k1 ◦ Rw0 ◦ k2) corresponds to a Lagrangian submanifold of O(HΘ) and

• graph(m ◦ Rw0) corresponds to a Lagrangian submanifold of O(HΘ).
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