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SUMMARY
This paper presents a solution to the global adaptive partial
state feedback control problem for rigid-link, flexible-joint
(RLFJ) robots. The proposed tracking controller adapts for
parametric uncertainty throughout the entire mechanical
system while only requiring link and actuator position
measurements. A nonlinear filter is employed to eliminate
the need for link velocity measurements while a set of linear
filters is utilized to eliminate the need for actuator velocity
measurements. A backstepping control strategy is utilized to
illustrate global asymptotic link position tracking. An output
feedback controller that adapts for parametric uncertainty in
the link dynamics of the robot manipulator is presented as
an extension. Experimental results are provided as verifica-
tion of the proposed controller.

KEYWORDS: Tracking control; Flexible-joint robots; Adaptive
feedback; Backstepping strategy.

1. INTRODUCTION
Due to the elastic nature in which some gearing mechanisms
(i.e. harmonic drives, belts, long shafts, etc.) transmit torque
to the robot links, it is a widely accepted fact that the
inclusion of joint flexibility in the dynamics for robot
manipulators yields a more accurate model. In addition, the
model for a rigid-link flexible-joint (RLFJ) robot includes
uncertain parameters (i.e. inertia, friction, and stiffness
effects); hence, controllers that can account for the para-
metric uncertainty seem highly desirable. Furthermore,
from an implementation point of view, it is desirable that
controllers be designed to require fewer measurements (i.e.
due to the increased cost, complexity, and/or noise that
additional sensors add to the system).

For some background on the design of controllers for
rigid-link (RL) robot manipulators without link velocity
measurements, the reader is referred to reference [1] and the
references therein. With regard to the control of RLFJ robot
manipulators, much of the previous research targeted
setpoint control2-4 although current research efforts have

targeted the tracking control problem.1,5-8 Specifically,5 Qu
proposed an input-output robust partial state feedback RLFJ
tracking controller; however, link velocity measurements
are required. Motivated by the desire to eliminate the
dependence on velocity measurements, Nicosia and Tomei6

proposed a semi-global exact knowledge (EMK) RLFJ
tracking controller which only requires link position
measurements. In reference [7], Lim et al. was able to
employ a model-based observer approach to eliminate link
and actuator velocity measurements to obtain semi-global
exponential link position tracking for RLFJ robot manip-
ulators. Moreover, Lim et al.,8 also proposed an adaptive
controller for the same problem given in reference [7].
Recently, solutions to the global output feedback tracking
control problem were presented by Loria9 and Zhang et al.10

Specifically, the one-degree-of-freedom (DOF) robot
manipulator control strategy, proposed in reference [9],
provided motivation for the global adaptive and robust
output feedback tracking controller designs for the n-DOF
RL robot manipulator, proposed in references [10] and [11].
Based on the nonlinear link velocity filter structure,10 and a
model based observer for actuator position and velocity
measurements, a global output feedback EMK link position
tracking controller for RLFJ robot manipulators was
proposed by Dixon et al.1

In this paper, we build on the previous work of [7] and
[10] to design a global asymptotic link position tracking
controller for RLFJ robot manipulators that only requires
link and actuator position measurements and adapts para-
metric uncertainty throughout the entire mechanical system.
Specifically, the proposed global adaptive partial state
feedback tracking controller utilizes: i) a nonlinear link
velocity filter, which is instrumental in eliminating link
velocity measurements and maintaining the global stability
result, ii) the output feedback control paradigm presented in
[12] to eliminate actuator velocity measurements, and iii)
the integrator backstepping technique to fuse the two
aforementioned, dissimilar techniques together. This paper
is organized as follows. Section 2 provides a mathematical
model for an n-RFLJ, revolute, direct-drive robot and its
associated properties. Section 3 presents the control objec-
tive and control design based on the RFLJ dynamics and
Section 4 gives the main result of the paper. Section 5
presents an adaptive output feedback extension. Experi-
mental verification of the proposed controller is provided in
Section 6 and concluding remarks are given in Section 7.
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2. ROBOT MANIPULATOR MODEL AND
PROPERTIES
The mathematical model for an n-RFLJ, revolute, direct-
drive robot is given by the following expression13,14

M(q) q̈ + Vm(q, q̇) q̇ + G(q) + Fd q̇ = Km (qm 2q) (1)

Robot Link Dynamics

Jq̈m + Bq̇m + Km (qm 2q) = u

Robot Actuator Dynamics

where q(t), q̇(t), q̈(t)PRn denote link position, velocity, and
acceleration, respectively, qm (t), q̇m (t), q̈m (t)PRn denote
joint position, velocity, and acceleration, respectively,
M(q)PRn3 n represents the link inertia effects,
Vm (q, q̇)PRn3 n represents the centripetal-Coriolis effects,
G(q)PRn denotes gravity terms, Fd, Km, J, BPRn3 n are
constant, diagonal, positive-definite matrices that represent
link viscous friction, actuator flexibility, actuator inertia,
and actuator viscous friction, respectively, and u(t)PRn

denotes the control torque input.
The dynamic equations of (1), exhibit the following

properties10,15 which are utilized in the subsequent controller
development and analysis.

Property 1: M(q) is a symmetric, positive-definite matrix,
satisfying the following inequalities

m1 i j i 2 ≤j TM(q)j≤m2 i j i 2 ;jPRn (2)

where m1, m2 are known positive constants, and i · i denotes
the standard Euclidean norm.

Property 2: A skew symmetric relationship exists between
the time derivative of the inertia matrix, Ṁ(q) and the
centripetal-Coriolis matrix, Vm (q, q̇). This useful relation-
ship can be written in the following form

j TS 1
2

Ṁ(q)2Vm (q, q̇)Dj =0 ;j P Rn. (3)

Property 3: The dynamic equation of (1) can be linear
parameterized as follows

Yd (qd , q̇d , q̈d )u = M(qd )q̈d +Vm (qd , q̇d )q̇d

+G(qd )+Fd q̇d
(4)

where known functions of the desired link position,
velocity, and acceleration, qd(t), q̇d(t), q̈d(t)PRn, respec-
tively are contained in the desired regression matrix Yd (qd ,
q̇d , q̈d )PRn3 p, and uPRp contains the constant unknown
system parameters. As in reference [7] we assume that the
left-hand side of (1) is second-order differentiable, and that
qd (t) is selected to be fourth-order differentiable; hence, we
know that Yd (qd , q̇d , q̈d ) is second-order differentiable.

Property 4: The norm of the centripetal-Coriolis, and
viscous friction terms of (1) can be upper bounded as
follows

iVm (q, q̇)ii∞ ≤ zc1i q̇ i, iFd ii∞ ≤ z f , (5)

where zc1 and z f are positive bounding constants, and i · ii∞

denotes the induced infinity norm for a matrix.

Property 5: The centripetal-Coriolis matrix satisfies the
following relationship

Vm(q, j )v=Vm(q, v)j ;j, vPRn. (6)

Property 6: The vector function Tanh(·)PRn, and the
matrix functions Cosh(·)PRn3 n and Sinh(·)PRn3 n are
defined as follows

Tanh(j )=[tanh(j1), . . . , tanh(jn )]T (7) 

Cosh(j )=diag{cosh(j1), . . . , cosh(jn )} (8) 

and

Sinh(j )=diag{sinh(j1), . . . , sinh(jn )} (9)

where j (t)=[j1, . . . ,jn ]TPRn, and diag{·} denotes the
standard diagonal matrix operation with only non-zero
entries being on the diagonal. Based on these definitions, the
following inequalities are true for all j (t) and v (t)PRn

1

2
tanh2(ij i) ≤ ln (cosh(ij i)) ≤On

i=1

ln(cosh(ji )) ≤ ij i2

tanh2(ij i) ≤ iTanh(j )i2 = TanhT(j )Tanh(j )

(10)

U cosSOn

i=1

jiD2cosSOn

i=1

niDU ≤ 8On

i=1

utanh(ji 2ni )u

U sinSOn

i=1

jiD2sinSOn

i=1

niDU ≤ 8On

i=1

utanh(ji 2ni )u

(11)

where ji (t) and vi (t) are the i-th elements of the vectors j (t)
and v(t), respectively, and u·u denotes the standard absolute
value operation.

Assumption 1: The inertia, centripetal-Coriolis, and grav-
ity terms of (1) can be upper bounded as shown by the
following inequalities

iM(j )2M(v)i i ∞ ≤ zm iTanh(j2v) i
iG(j )2G(v) i ≤ zg iTanh(j2v) i

iVm (j, q̇)2Vm (v, q̇) i i∞ ≤ zc2 i q̇ i iTanh(j2v)i
(12)

where zm , zg , and zc2 are positive bounding constants. Zhang
et al.10 illustrate how the bounds given in (12) hold for the
six DOF Puma robot; hence, from a practical point of view,
Assumption 1 resembles a property more than an assump-
tion.
Assumption 2: We assume that known upper bounds for
the unknown actuator parameter matrices J and K can be
determined as follows

lmax{J}<J̄ lmax{Km}<K̄m (13)

where J̄, K̄m PR1 are known positive constants, and lmax{·}
is used to denote the maximum eigenvalue.

3. CONTROL DEVELOPMENT
The control objective of this paper is to design a global
adaptive partial state feedback tracking controller for the

RLFJ robots326

https://doi.org/10.1017/S0263574799002167 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574799002167


RLFJ robot modeled by (1). Specifically, the controller
should force the links to asymptotically follow a desired
trajectory despite the fact that the system parameters are
uncertain and that link/actuator velocity measurements are
unavailable. In order to quantify the control performance,
the link position tracking error e(t)PRn is defined as

e = qd 2q (14)

where it is assumed that qd (t), and its first four time
derivatives, are bounded functions of time. To quantify the
effects of parametric uncertainty, we define a parameter
estimation error vector ũ(t)PR p as follows

ũ = u2û (15)

where û(t)PRp represents a dynamic estimate of u(t)PRp

defined in (4). Furthermore, motivated by the desire to
compensate for the unknown parameter matrix Km given in
(1) and the need to eliminate velocity measurements, we
introduce an expanded regression matrix16 Ydx(qd , q̇d ,
q̈d )PRn3 np and the parameter vector uxPRnp based on
Yd (qd , q̇d , q̈d ) and u as follows

Ydx = Blockdiag[Ydi ]i=1, . . . , n (16)

and

ux(t) = [u T, . . . , u T ]T (17)

where Ydi (qd, q̇d, q̈d )PR13 p represents the i-th row vector of
Ydi (qd, q̇d, q̈d ), and the notation Blockdiag [·] denotes a
block diagonal matrix. We also define a new parameter
matrix KmxPRnp3 np as follows

Kmx = Blockdiag[Kmi Ip]i=1, . . . , n (18)

where Kmi represents the i-th diagonal element of Km, and
IpPRp3 p represents the standard identity matrix. Based on
the definitions given in (16), (17), and (18), we can now
rewrite the desired regression matrix in the following form

Yd (qd, q̇d, q̈d )u=Ydx Kmx K 21
mx ux =Ydx KmxFv (19)

where the new parameter vector FvPRnp is defined as
follows 

Fv =K21
mx ux. (20)

3.1. Control formulation
In order to achieve the aforementioned control objective, we
separate the control design into two stages. The first stage of
the design is based on the link dynamics of (1), and the
second stage is based on the actuator dynamics of (1). The
global adaptive control design for the link dynamics entails
implementing a link velocity independent control law that is
comprised of a nonlinear link velocity filter. The control
design for the actuator dynamics is developed through the
use of a set of linear filters to eliminate the need for actuator
velocity measurements.

3.2. Adaptive partial state feedback controller
In this subsection we present the development of a nonlinear
link velocity filter for the link dynamics. After the closed-
loop error development, we present a partial Lyapunov-like
stability analysis for the controller.

3.2.1. Link velocity filter error system. To facilitate the
control development, we define a filtered tracking error-like
term h(t)PRn as follows

h = ė + a1Tanh(e) + a2Tanh(ef ) (21)

where a1, a2PR1 are positive constant filter gains, Tanh (·)
and e(t) are defined in (7) and (14) respectively, and
ef (t)PRn is an auxiliary filter variable designed to have the
following dynamic relationship

ėf = 2a3Tanh(ef) + a2Tanh(e)2kCosh2(ef)h, (22)

where kPR1 is a positive constant control gain, a3PR1 is a
positive constant filter gain, and Cosh(·) is defined in (8).
We also define a second auxiliary tracking error term
hL(t)PRn as follows

hL = qmd 2qm (23)

in order to quantify how well the actual actuator position
qm (t) tracks the desired actuator position qmd (t)PRn (Note,
the explicit expression for qmd (t) is motivated by the
subsequent stability analysis).

After taking the time derivative of (21), premultiplying
both sides by M(q), substituting (1), (21), and (22), adding/
subtracting Km qmd and Ydu to the right-hand side of the
resulting equation, and then utilizing Property 5, we obtain
the following expression

M(q)ḣ = 2Vm(q, q̇)h2a2kM(q)h + x + Ydu

+ Km q2Km qm + Km qmd 2Km qmd (24)

where x (e, ef, h, t)PRn3 1 is an auxiliary term defined as

x = a1M(q)Cosh22(e)(h2a1Tanh(e)2a2Tanh(ef))

+ a2M(q)Cosh22(ef )(a2Tanh(e)2a3Tanh(ef))

+ Vm(q, q̇d + a1Tanh(e) + a2Tanh(ef))(a1Tanh(e)

+ a2Tanh(ef)) + M(q)q̈d + Vm(q, q̇d)q̇d + G(q) + Fd q̇

+ Vm (q, q̇d)(a1Tanh(e) + a2Tanh(ef))

2Vm(q, h)(q̇d + a1Tanh(e) + a2Tanh(ef))2Ydu. (25)

Remark 1 Based on the properties of Tanh(·) defined in (7),
and Cosh(·) defined in (8) utilizing Properties 1, 4, 5,
Assumption 1, and the fact that qd(t) and its first four time
derivatives are all bounded, it can be shown that

ix i ≤z1ixi (26)

where z1 is a positive bounding constant, and x(t)PR3n is
defined as follows

x = [hT TanhT(e) TanhT(ef)]
T. (27)

Based on the open-loop error system given by (24) and
the subsequent stability analysis, we design qmd(t) in the
following manner

qmd = YdxF̂y + q2kCCosh 2(ef )Tanh(ef ) + CTanh(e) (28)

where CPR1 is a positive constant control gain, the control
gain kPR1 is defined as 

k =
1

m1

(1+kn1z
2
1 ), (29)
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kn1PR1 is a positive constant nonlinear damping gain, and
F̂y (t)PRnp is an estimate for Fy of (20) via the following
adaptive update law

˙̂Fy = GY T
dxh (30)

where GPRnp3 np is a positive definite, constant, diagonal,
adaptation gain matrix. After substituting (19), (23), and
(28) into (24), we obtain the final expression for the closed-
loop dynamics for h (t) as follows

M(q)ḣ = 2Vm(q, q̇)h2a2kM(q)h + KmYdxF̃y

+ kCKmCosh 2(ef )Tanh(ef )

2CKmTanh(e) + KmhL + x (31)

where F̃y(t)PRnp is defined as 

F̃y =Fy 2F̂y. (32)

Remark 2 Note that the adaptive update law given by (30)
can be integrated by parts to obtain an implementable
control signal for F̂y(t) that only depends on link position
measurements (see [10]).

Remark 3 Based on the structure of h(t) defined in (21), it
is clear that link velocity measurements are required for
control implementation of equations (22), (23), (28), and
(30); however, a link velocity independent, implementable
form of the control law can easily be constructed in exactly
the same manner as in [1]. That is, due to the fact that the
control does not require measurement of ef(t), rather only
functions of ef(t) (i.e., Tanh(ef), Cosh2(ef), Sinh(ef)Cosh(ef)),
we can make use of the following definition

yi = tanh(efi) (33)

and standard relationships between hyperbolic functions to
construct the following non-link-velocity dependent version
for the filter given by (22)

ṗi = 2 (12 (pi 2kei )
2 )(a3(pi 2kei )2a2 tanh(ei ))

2k(a1 tanh(ei ) + a2(pi 2kei ) ),

pi (0 ) = kei (0 )

yi = pi 2kei (34).

As similarly illustrated in reference [1] for a different
control law, the above filter and standard hyperbolic
relationships can be utilized to remove link velocity
measurements from the above control signals and the
subsequently designed control signals as well. For example,
we note that the adaptive update law given by (30) can be
integrated by parts to obtain an implementable control
signal for F̂y(t) that only depends on link position
measurements (see reference [10])

3.2.2. Partial stability analysis for the robot and filter
dynamics. In this subsection, we present a partial stability
analysis based on the dynamics given (21), (22), (30), and
(31). This intermediate result will be used in the ensuing
composite stability analysis of the closed-loop system. We
begin the analysis by defining a non-negative, scalar
function V1(t) as follows

V1 =On

i=1

CKmi[ln(cosh(ei )) + ln(cosh(efi ))]

+
1
2

h TM(q)h +
1
2

F̃T
y Kmx G21F̃y. (35)

After taking the time derivative of (35), substituting (21),
(22), (26), (29), (30), (31), and then cancelling common
terms, making use of Properties 2, and 4, and the fact that
˙̃Fy = 2 ˙̃Fy, V̇1(t) can be upper bounded by the following
inequality

V̇1 ≤ 2lmin{Km}a1CiTanh(e)i2 + hTKmhL 2a2ih i2

2lmin{Km}a3CiTanh(ef)i2 + [z1ixi ih i
2a2kn1z

2
1ih i 2 ] (36)

where z1 and k were defined in (26) and (29), respectively.
After applying the nonlinear damping tool17 to the bracketed
terms in (36), a final upper bound can be placed on V̇1(t) as
follows

V̇1 ≤ 2min{lmin{Km}a1C, lmin{Km}a3C, a2}ix i2

+
1

a2kn1

ix i2 +hTKmhL (37)

where x(t) was defined in (27). From the structure of (37),
we are now motivated to design an actuator torque input
control to drive hL(t) to zero.

3.3. Actuator torque input control design
In this subsection*, we develop the actuator control torque
input in a manner that ensures hL(t) is forced to zero. To this
end, we present the development of a set of linear filters to
compensate for the lack of actuator velocity measurements.
At each step, a partial stability analysis is presented to
motivate the control design procedure.

3.3.1. Actuator velocity filter design. From the actuator
dynamics given in (1), we obtain the following expression

q̈m =J21(u2Bq̇m 2Km(qm 2q)). (38)

Motivated by the need to formulate a surrogate expression
for q̇m(t), the auxiliary state variables r1(t), r2(t)PRn are
defined as follows

F r1

r2
G=F qm

ṙ1 + J21Br1
G. (39)

After taking the time derivative of r2(t) and then substituting
(38) and (39), we have

ṙ2 =J21u2J21Km(r1 2q). (40)

In order to rewrite the actuator subsystem in a convenient
state space form, we combine the time derivative of r1(t) of
(39) with the expression given by (40) to yield

* Although the actuator velocity filter design is very similar to that
of reference [19], we present the full development here for
completeness of the paper, in addition to some notational
differences.
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F ṙ1

ṙ2
G= A0r +F kf1In

kf2In
G r1 + A1F r1

0n
G

+ A2F 0n

r1 2q G+F 0n

J21u G (41)

where kf1, kf2PR1 are constant, positive filter gains, the
auxiliary matrices A0, A1, A2PR2n3 2n are defined as follows

A0 =F 2kf1In

2kf2In

In

0n3 n
G, A1 =F 2J21B

0n3 n

0n3 n

2J21B G (42)

A2 =F 2J21Km

0n3 n

0n3 n

2J21Km
G

In PRn3 n represents the standard indentity matrix, 0n3 n

represents the zero matrix, and 0n PRn represents the zero
vector. From the definition of kf1, kf2, J, B, and Km , it is
straightforward to show that A0, A1, and A2 are Hurwitz
matrices.18 Based on this fact and the form of (41), we
follow the design procedure outlined in references [12] and
[19] to formulate the following bounded-input, bounded-
output, linear, actuator velocity independent filters 

«̇0 = A0«0 +F kf1In

kf2In
Gr1 «0 = [«01 «02]

TPR2n

«̇1 = A0«1 +F r1

0n
G «1 = [«11 «12]PR2n

«̇2 = A0«2 +F 0n

r1 2q G «2 = [«21 «22]
TPR2n

(43)

ẏ 0 = A0y 0 +F 0
u G y 0 = [y 01 y 02]

TPR2n.

Based on the structure of (43), we now design the state
estimate for r(t) as follows

r̂=«0 + A1«1 + A2«2 +F J21

0n3 n

0n3 n

J21 G y0. (44)

From the definition of the parameter dependent state
estimate for r(t) given in (44), we define the state estimation
error vector r̃(t)PR2n as shown below

r̃=r2 r̂ (45)

where upon making the substitution for r̂(t) of (44) yields

F r̃1

r̃2
G=F r1 2«01 +J21(B«11 +Km«21 2y01)

r2 2«02 +J21(B«12 +Km«22 2y02)
G . (46)

We now substitute (46) for r2(t) in (39) to obtain the
surrogate expression for q̇m(t) as follows

q̇m = ṙ1 = r̃2 +«02 2J21B(qm +«12)2J21Km«22 +J21y 02. (47)

After examining (47), it is clear that we have separated the
expression for the actuator velocity into i) measurable
signals, ii) unknown parameters which will be adapted for in
subsequent design, and iii) an unmeasurable signal (i.e.,
r̃2(t)) which will be forced to zero through the use of the
nonlinear damping tool as shown in the subsequent stability
analysis. Thus, the expression given by (47) will be used in
lieu of q̇m(t) during the ensuing stability analysis.

As an aid in the following stability analysis, we
differentiate (46) with respect to time to obtain the
following error system

˙̃r= ṙ2«̇0 2A1«̇1 2A2«̇2 +F J21

0n3 n

0n3 n

J21 Gẏ 0. (48)

After substituting ṙ(t) of (41) and the set of linear filters
from (43) into (48), we can rewrite the dynamics for ˙̃r(t)
into the following convenient form

˙̃r=A0r̃. (49)

3.3.2. Partial stability analysis for the actuator velocity
filter. We now present a partial stability analysis for the
error system given by (49). Specifically, we define the non-
negative, scalar function V2(t) as follows

V2 = r̃T P0r̃ (50)

where P0PR2n3 2n is a positive definite, symmetric, constant
matrix, chosen such that 

AT
0P0 +P0 A0 =2 I2n. (51)

After taking the time derivative of (50), we have 

V̇2 = ˙̃r T P0r̃+ r̃TP0
˙̃r, (52)

which after making substitutions for (49) and (51), reduces
to the following expression

V̇2 =2 r̃ T r̃. (53)

From (53), it is straightforward task to upper bound V̇2(t) as
follows

V̇2 ≤2 i r̃1i2 2 ir̃2i2. (54)

3.3.3. Error system for the auxiliary tracking error
signalhL. From the previous analysis of the link dynamics,
we obtained motivation from (37) that illustrated that the
signal hL(t) should be driven to zero. To calculate the
dynamics for hL(t), we take the time derivative of (23),
substitute (47) for q̇m(t) and the time derivative of (28) for
q̇md (t), and then premultiply both sides of the resulting
equation by J to obtain
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JḣL =JSẎdxF̂y +Ydx

˙̂
Fy +q̇22kCSinh2(ef)ėf 2kCėfD

+J(CCosh22(e)ė2 r̃2 2«02)+B(qm +«12)

+Km«22 2y02. (55)

Based on the structure of (55), we define the following
linear parametrization

YLuL = JẎdxF̂y +Jq̇d 2J«02 +B(qm +«12)+Km«22 (56)

2J(CCosh22(e)2 In)(a1Tanh(e)+a2Tanh(ef ))

2kCJ(2Sinh2(ef)+In)(a2Tanh(e)2a3Tanh(ef ))

where YL(e, ef, «02, «12, «22, F̂y , t)PRn3 3n denotes a known
regression matrix, and uLPR3n denotes an unknown constant
parameter vector. After substituting (56) and (30) into (55),
and then adding/subtracting an embedded control term
um(t)PRn to the right-hand side of the resulting equation, we
have the following expression

JḣL =YLuL +JV1h2J r̃2 +hm 2um (57)

where the measurable auxiliary variable V1(e, ef, t)PRn3 n is
defined as

V1 =YdxGYT
dx +CCosh22(e)2 In

+k2CCosh2(ef)(2Sinh2(ef)+In), (58)

and the auxiliary tracking error signal hm(t)PRn, defined as
follows

hm =um 2y 02 (59)

has been introduced to quantify how well the embedded
control input um(t) tracks the filter variable y02(t). Based on
the previous development and the ensuing stability analysis,
we design um(t) in the following manner

um =kLhL +YLûL +kn2K̄
2
mhL +kn3J̄

2V2
1hL +kn4J̄

2hL (60)

where kLPR1 is a constant scalar control gain, kn2, kn3, kn4

PR1 are constant scalar nonlinear damping gains, J̄, K̄m are
defined in (13), and the update law for ûL(t)PR3n is given
by

˙̂uL =GLY
T
LhL (61)

with GLPR3n3 3n being a positive definite, constant, diagonal,
adaptation gain matrix. After substituting (60) into (57), we
obtain the following closed-loop system for hL(t)

JḣL =YLũL +hm 2kLhL +JV1h2J r̃2 2kn2K̄
2
mhL

2kn3J̄
2V2

1hL 2kn4J̄
2hL (62)

where ũL(t)PR3n is defined as follows

ũL =uL 2ûL. (63)

3.3.4. Partial stability analysis for the auxiliary tracking
error signalhL(t). Continuing with the backstepping meth-
odology, we now present a partial stability analysis for the
error system given by (57). We begin by defining a non-
negative, scalar function as follows

V3 =
1
2
hT

L JhL +
1
2
ũ T

L G21
L ũL. (64)

After taking the time derivative of (64), substituting (61),
(62), and using the fact that ˙̂uL(t)=2 ˙̃uL(t), we can obtain the
following upper bound for V̇3(t)

V̇3 ≤ hT
Lhm 2kLihLi2 2kn2K̄

2
mihLi2 +[J̄iV1i ihT

Li ihi

2kn3J̄
2iV1i2 ihLi2] + [J̄ir̃2i ihLi2kn4J̄

2 ihLi2]. (65)

After applying the nonlinear damping tool [12] to the
bracketed term in (65), we have

V̇3 ≤2kLihLi2 2kn2K̄
2
mihLi2 +

ihi2

kn3

+
ir̃2i2

kn4

+hT
Lhm. (66)

3.3.5 Error system for the auxiliary tracking error
signal hm. From (66), we are motivated to continue the
control design procedure to ensure that hm(t) is forced to
zero. With this strategy in mind, we calculate the dynamics
for hm(t) by taking the time derivative of hm(t) given in (59),
and then substituting (43), (60), and (61) to obtain the
following expression

ḣm =ẎLûL +YLGLY
T
LhL +2kn3J̄

2V1V̇1hL +kf 2y01 2u

+(kLIn +kn2K̄
2
mIn +kn3J̄

2V2
1 +kn4J̄

2In)ḣL (67)

where the terms ḣL(t) and V̇1(t) can be calculated as
follows

ḣL = J21YLuL +V1h2 r̃2 2J21y 02 (68)

and

V̇1 =2YdxGẎT
dx +2k2CCosh(ef)Sinh(ef)ėf(2Sinh2(ef)+1)

22CCosh22(e)Tanh(e)ė+4k2CCosh3(ef)Sinh(ef)ėf.
(69)

After substituting (68) and (69) into (67), we now write the
dynamics for ḣm(t) in the following advantageous form

ḣm =V2 +Yfuf +V3h+V4r̃2 2u (70)

where the known regression matrix Yf (B̂, qm, «12, «22, y 02, e,
ef, t)PRn3 3n, and the unknown constant vector ufPR3n are
defined by the following linear parameterization

Yfuf = B̂[2J21B(qm +«12)2J21Km«22 +J21y02]

+[kLIn +kn2K̄
2
mIn +kn3J̄

2V2
1 +kn4J̄

2In](J
21B(qm +«12)

+J21Km«22 2J21y02) (71)

where the explicit expressions for the auxiliary terms
V2(t)PRn, and V3(t), V4(t)PRn3 n are given in reference
[20]. Motivated by the open loop error system for hm (t)
given in (70) and the ensuing stability analysis, we now
design the control torque input u(t) as follows

u = kmhm +V2 +Yf ûf +kn5V2
3hm +kn6V2

4hm +hL (72)

where ûf (t)PR3n is updated via the following law
˙̂uf = Gf Y

T
f hm (73)

km P R1 is a constant scalar control gain, kn5, kn6 P R1 are
constant scalar nonlinear damping gains, and Gf P R3n3 3n is
a positive definite, constant, diagonal, adaptation gain
matrix. After substituting the control torque input given by
(72) into (70), we obtain the closed-loop system for hm (t) as
shown below
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ḣm = Yfũf + V3h + V4r̃2 2kmhm 2kn5V
2
3hm 2kn6V2

4hm 2hL (74)

where ũf (t) P R3n is defined as follows

ũf = uf 2ûf.

3.3.6. Partial stability analysis for the auxiliary sig-
nalhm(t). We begin the analysis by defining a non-negative,
scalar function as follows

V4 =
1
2

hT
mhm +

1
2

ũ T
f G21

f ũf. (75)

After taking the time derivative of (75), substituting (73)
and (74), and then utilizing the fact that ˙̂uf (t) = 2 ˙̃uf (t), we
have

V̇4 = hT
m [V3h + V4r̃2 2kn5V

2
3hm 2kn6V

2
4hm ]

2hT
m (kmhm + hL ) (76)

which after the applying the nonlinear damping tool [12] to
the bracketed terms, can be upper bounded as follows

V̇4 ≤ 2km ihm i2 +
ih i2

kn5

+
ir̃2 i2

kn6

2hT
mhL. (77)

4. MAIN RESULT
The closed-loop stability result and the appropriate condi-
tions that guarantee global asymptotic link position tracking
are developed in the following theorem.

Theorem 1. Given the above control strategy, global
asymptotic link position tracking is obtained in the sense
that

lim
t→∞

e(t) = 0 (78)

provided the nonlinear damping gains are selected to satisfy
the following condition

min{lmin{Km}a1C, lmin{Km}a3C, a2, 1, kL, km }

>
1

a2kn1

+O6

i = 2

1
kni

. (79)

Proof.We begin the proof of Theorem 1 by making use of
(35), (50), (64), and (75) to construct the following non-
negative, scalar function

V =O4

k=1

Vk. (80)

After taking the time derivative of (80), substituting (37),
(54), (66), and (77), and then simplifying the resulting
expression, we obtain the following inequality

V̇ ≤2min{lmin{Km}a1C, lmin{Km}a3C, a2}ixi2 i r̃1i2 2 ir̃2i2

2kLihLi2 2kmihmi2 +
ixi2

a2kn1

+
ixi2

kn2

+
ixi2

kn3

+
ir̃2i2

kn4

+
ixi2

kn5

+
ir̃2i2

kn6

.

(81)

The expression given by (81) can be further upper bounded
as follows

V̇ ≤ 2Smin{lmin{Km}a1C, lmin{Km}a3C, a2, 1, kL, km}

2
1

a2kn1

2O6

i=2

1
kni
Dizi2 (82)

where z(t)PR7n is defined as follows

z = [ xT r̃T
1 r̃T

2 hT
L hT

m ]T . (83)

If the gain condition given in (79) is satisfied, then (82) can
be expressed as the following negative semi-definite
function

V̇ ≤2b izi 2 (84)

where b is some positive bounding constant.
Based on the properties of ln(cosh(·)) and the manner that

V(t) given in (80) was defined, we can easily see that V(t) is
a radially unbounded, globally positive-definite function for
all e(t), ef (t), h(t), hL(t), hm (t), r̃1(t), r̃2(t), F̃y(t), ũL(t) ũf (t),
and t. From (84), we can see that V̇(t) is negative semi-
definite; hence, V(t)PL∞ . Since, e(t), ef (t), h(t), hL(t), hm (t),
r̃1(t), r̃2(t), F̃y (t), ũL(t), and ũf (t) are bounded for all time.
From this fact and the assumptions on the desired link
position trajectory, standard signal chasing arguments can
be used to show that all signals in the RLFJ system and the
proposed controller remain bounded for all time; hence, we
can utilize (21), (22), (31), (62), and (74), to state that ė(t),
ėf (t), ḣ (t), ḣL(t), and ḣm (t) are bounded for all time. Based
on the preceding imformation, the definition of z(t) in (83),
and the structure of (84), we can conclude that z(t), ż(t)PL7n

∞

and that z(t)PL7n
2 . Standard arguments can now be used [18]

to show that lim
t→∞

z(t)=0. Since lim
t→∞

z(t)=0, we can utilize the

definitions of z(t) and x(t) from (83) and (27), respectively,
to conclude that lim

t→∞
Tanh(e(t))=0. The properties of the

hyperbolic tangent function directly lead to the results given
by (78).h

5. ADAPTIVE OUTPUT FEEDBACK EXTENSION
Provided exact model knowledge of the actuator dynamics
is available, we can modify the adaptive PSFB design
presented above to develop a global asymptotic link position
tracking controller that adapts for parametric uncertainty in
the link dynamics while only requiring link position
measurements. To foster the development of a control
torque input that is independent of actuator measurements,
we utilize an actuator state observer.

5.1. Actuator state observer design
To facilitate the development of an observer which obviates
actuator position and actuator velocity measurements, we
rearrange the actuator dynamics of (1) into the following
state space form
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F ẋ1

ẋ2
G=F x2

J21Km(q2x1)2J21Bx2 +J21uG (85)

where x1(t) = qm(t)PRn, and x2(t) = q̇m(t)PRn. Based on the
structure of (85), we construct the following state observer

%̇ = x̂2 2Km(Tanh(e) + Tanh(ef )) (86) 
˙̂x2 = J21Km(q2 x̂1)2J21Bx̂2 + J21u (87) 

x̂1 = %2Kme (88)

where x̂1(t), x̂2(t)PRn denote the estimates of the actuator
position and velocity, respectively, and %(t)PRn is an
auxiliary variable which allows the observer to be imple-
mented without actuator measurements.

5.2 Control torque input design and stability result.
Based on the control design for the link dynamics given in
link (21), (22), (28), (29), (30), and the actuator state
observer design given in (86), (87), and (88), we can
construct the control torque input as follows

ui = Jii kshai + Jii V3i (q, e, ef, hL, ha, t) + Jii hLi

+ Jii nkn8On

j=1

V 2
4ij (q, e, ef, hL, t)hai 2Kmii (qi 2 x̂1i)

+ Bii x̂2i (89)

where ha(t)PRn denotes the actuator velocity tracking error
defined as follows

ha = x2d 2 x̂2 (90)

x2d(t)PRn denotes the desired actuator velocity designed as

x2di = kshLi + nkn7On

j=1

(V2ij(q, e, ef, t) + 2Kfij )
2hai

+ V1i(q, e, ef, t) (91)

hL(t) was defined in (23), the auxiliary terms denoted by
V1(q, e, ef, t), V2(q, e, ef, t), V3(q, e, ef, hL, ha, t), and V4(q,
e, ef, hL, t) are obtained as shown below

q̇md = V1(q, e, ef, t) + V2(q, e, ef, t)h (92)

ẋ2di = V3i(q, e, ef, hL, hb, t) +On

j=1

V4ij (q, e, ef, hL, t)hj (93)

and kn7, kn8, ksPR1 are positive constant control gains.
We can now define a non-negative, scalar function V5(t)

as follows

V5 = V1 + 1
2 x̃T

1 x̃1 + 1
2 x̃T

2K
21
m Jx̃2 + 1

2 hT
aha + 1

2 hT
LhL (94)

where x̃1(t), x̃2(t)PRn are defined as

x̃1 = x1 2 x̂1 x̃2 = x2 2 x̂2 (95)

and V1(t) was defined in (35), to prove that all closed-loop
signals remain bounded for all time, and that the control
torque input yields global asymptotic link position tracking
as shown below

lim
t→∞

e(t) = 0 (96)

provided that

min{a1Clmin{Km}, a3Clmin{Km}, a2, ks}> 1
a2kn1

+ 1
kn7

+ 1
kn8

. (97)

Fig. 1. Link position tracking errors.
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6. EXPERIMENTAL VERIFICATION
The proposed controller was implemented on a modified
2-link, revolute, direct-drive robot manipulator manu-
factured by Integrated Motion Inc. The robot modifications*
include the addition of a new hub to decouple the link
actuator from its respective link, and a pair of linear
extension springs that serve as a new coupling between the
actuator and the link. The actuator positions were measured
with the built-in NSK resolvers, and the link positions were
measured by 2 BEI 5000 line encoders. The links of the
manipulator are actuated by switched-reluctance motors
which are controlled through NSK torque controlled
amplifiers. A Pentium 266 MHz PC operating under QNX
(a real-time micro-kernal based operating system) hosts the
control program. The control program was written in “C”,
and implemented using Qmotor 2.0, a Clemson University
in-house graphical user interface. Data acquisition and
control implementation were performed at a frequency of
2.5 kHz using the MultiQ I/O board. The dynamics of (1)
for the experimental RLFJ robot manipulator can be
characterized as follows

M(q) =F 5.68 + 0.2C2

0.43 + 0.01C2

0.43 + 0.01C2

0.43 Gkg·m2/rad,

Vm (q, q̇) =F 20.10s2q̇2

0.10s2q̇1

20.10s2(q̇1 + q̇2)
0 GNm·sec/rad,

Fd = diag{0.7, 0.10}Nm·sec/rad,
Km = diag{150, 18}Nm/rad,

J = diag{2.5 0.20}kg·m2/rad,
B = diag{1.3, 0.8}Nm·sec/rad

where c2 denotes cos(q2) and s2 denotes sin(q2).
The desired trajectory for links 1 and 2 were selected as

the following smooth-start sinusoid

qd1 = qd 2 = 1.0 sinS2.5tS12e20.01t 4DDrad. (98)

The controller was tuned with the adaptation gains set to
zero, and all of the initial adaptive estimates set to zero. The
feedback, nonlinear filter, and the nonlinear damping gains
were adjusted to reduce the link position tracking error. At

* A more in-depth description of the mechanical modifications to
the IMI direct drive robot, including a schematic depiction, and
photo of the modifications, can be found in [21].

Table I. Comparison of Link Position Tracking Performance

Proposed Controller PSFB-EMK controller [21]

Desired Trajectory (rad) 1.0 sin (2.5t (12e20.01t 4
)) 1.0 sin (2.4t (12e20.01t 4

))

Spring Constant Link 1: 150 Link 1: 363
Link 2: 18 Link 2: 22

Maximum Steady-State Link 1: 0.09 Link 1: 0.22
Tracking Error (deg.) Link 2: 0.25 Link 2: 0.20

Maximum Required Torque (Nm) Link 1: 40.0 Link 1: 40.0
Link 2: 3.5 Link 2: 5.0

Table II. Gain values for experimental varrification of PSFB RLFJ robot
manipulator

Link 1 Link 2

control gains k1 = 3.05 kL1 = 40 km1 = 67 k2 = 1.625 kL2 = 7 km2 = 40

filter gains C1 = 1.3 kf1 = 1 C1 = 1.85 kf2 = 5

G1 = 0.19 G2 = 0.04 G8 = 0 G9 = 0.01
G3 = 0.001 G4 = 0.31 G10 = 0.002 G11 = 0
G5 = 0 G6 = 0.10 G12 = 0.05 G13 = 0parameter
G7 = 0 G14 = 0.01update
GL1 = 3.1 GL3 = 6.4 GL2 = 0.5 GL4 = 2gains
GL5 = 55 GL6 = 25
Gm1 = 0.0005 Gm3 = 0.06 Gm2 = 1.031025 Gm4 = 1.031026

Gm5 = 5.031025 Gm6 = 1.031026

nonlinear damping gains kn2 = 0.0015, kn3 = 1.031026, kn4 = 5.031026,

kn5 = 7.531025, kn6 = 1.031024

filter gains a1 = 1.7, a2 = 0.6, a3 = 1.25
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some point, we noted that improved link position tracking
error response could not be attained by adjustments of these
controller gains. We then adjusted the adaptation gains to
allow the parameter estimation to reduce the link position

tracking error (see Figure 1 and Table I). After the tuning
process was completed, the final gain values were recorded
in Table II. The joint deflection for link 1 and link 2 is
shown in Figure 2, the corresponding torque control inputs

Fig. 2. Actuator/Link deflection.

Fig. 3. Control torque input.
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are shown in Figure 3, and the parameter estimates shown in
Figures 4, and 5.

Remark 4. It is important to note, that due to the manner
in which the expanded regression matrix was formed, there
are several zero column vectors. As a result, we can set the

corresponding adaptation gains (i.e., G5, G7, G8, G11, and
G13) to zero for simplicity.

Remark 5. An experimental comparison between several
simpler, reduced-order RLFJ control strategies and a
complex full-order controller was given in [21]. Speci-

Fig. 4. Selected link dynamic parameter estimates.

Fig. 5. Parameter estimates for the actuator dynamics.
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fically, the full-order controller experimentally verified in
[21] was an exact model knowledge, partial state feedback,
link position tracking controller that required only link
position and actuator position measurements and achieved
semi-global link position tracking. The proposed controller
represents a theoretical improvement over the full-order
controller experimentally verified in [21] in that a global
stability result is obtained (as opposed to semi-global), and
that the proposed controller alleviates the need for exact
model knowledge. That is, based on a comparison of the
tracking performance of the two controllers (see Table I),
we determine that despite 2.4 times more flexibility in the
joint for Link 1, we are able to decrease the steady-state
tracking error by 59%, for similar amplitude values of
control torque. For the second link, we required 30% less
control for a joint that is 1.2 times more flexible than in
reference [21]; however 20% higher error was obtained.

Remark 6. We also noticed that the proposed controller
was much easier to tune than the full-order controller
experimentally verified in reference [21]. We attribute this
change in tunability to the fact that the proposed controller
is an adaptive controller, and hence, has some automatic
tuning features (i.e., the adaptive update laws).

7. CONCLUSIONS
In this paper, we have developed an adaptive, partial state
feedback, link position tracking controller for rigid-link
flexible-joint robots that exhibits global asymptotic link
position tracking. Specifically, we utilize a nonlinear filter
and a set of linear filters to remove the need for link and
actuator velocity measurements. The controller compen-
sates for parametric uncertainty throughout the entire
mechanical system. A global output feedback extension was
presented that adapts for parametric uncertainty in the link
dynamics provided exact model knowledge of the actuator
dynamics is available. Experimental results are given to
illustrate the link position tracking performance of the
proposed adaptive partial state feedback controller in
comparison to an exact model knowledge partial state
feedback controller.
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