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Abstract

One of the most fascinating aspects of brain research is the subject of language. As in many other cases, the
malfunctions that occur in different persons for various reasons give us insight on the mechanisms that support our
ability to talk, read and listen. Following the work of Plaut and associates, we deal with the dyslexia disorder, which
is the overall name for a large number of reading disorders. A Boltzmann machine neural network scheme was
trained to implement the nonlinear mapping task of graphic representation into semantic representation, which may
model the brain sections responsible for the translation of a written word into meanings and syllables. After training,
various types of lesions were applied and the performance of the network was tested in order to measure the effect
of each lesion on the error rate and type distribution that were detected. The system’s errors were classified into
several categories and the distribution of errors between the categories was studied. Using the simulations, it is
demonstrated that a finite scheduling process in the Boltzmann machine causes the distribution of the network’s
errors to be unique and different from its expected error distribution. The phenomenon is given a mathematical
explanation rooted in the statistical mechanics basics of the Boltzmann machine. Test results suggest the localization
of certain reading functions within the network. Comparison is made to relevant types of dyslexia and shows
resemblance in major symptoms as well as in certain known side effects. (JINS, 2000,6, 620–626.)

Keywords: Neural networks, Boltzmann machines, Nonlinear mapping, Simulated annealing, Limited scheduling,
Lesions, Pruning, Errors analysis, Dyslexia

INTRODUCTION

The Reading System and Dyslexia

The widely accepted model of the human reading system
was presented by Adams (1990). The model describes four
specialized processors: graphic, phonetic, semantic, and con-
text (Figure 1). The reading process utilizes two different
pathways of translation: (1) graphic–phonetic–semantic
(using the skills of the spoken language), and (2) graphic–
semantic (imaging the word as a picture).

Dyslexia is a developmental disorder that characterizes
the unexpected failure of a child to acquire the skills of read-
ing. It is a name for a wide variety of reading disorders in-
cluding (1) visual word–form dyslexia, (2) central dyslexia,

(3) surface dyslexia, and (4) deep dyslexia. The most com-
mon disorders are surface and deep dyslexia. In the view of
the Adams model of the reading system, deep dyslexia can
be explained as a fault in the connection between the graphic
and phonetic processors, while surface dyslexia can be ex-
plained as a fault in the connection between the graphic and
semantic processors. These explanations give reasons for
most of the disorder’s symptoms, though there are some
symptoms left unsolved.

Boltzmann Machines and Neural Networks

Artificial neural networks (ANN) are mathematical models
motivated by the structure of neural cells. Wide spans of
industrial applications utilize the ANN model, including pat-
tern recognition, control systems, and adaptive filters. An
interesting aspect of the ANN is the modeling of cognitive
functions.
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Boltzmann machines (Hinton & Sejnowski, 1983) are neu-
ral networks based on statistical thermodynamics. While the
scheme is slower and more complex than others, more pop-
ular algorithms (likeback-propagation), it has several fea-
tures that make it more appealing for physiology-like
nonlinear mapping tasks. The convergence (as well as the
learning) algorithm of the system is a simulated annealing
process that consists of continuous convergence cycles per-
formed using a slowly decreasing random parameter called
temperature. This random parameter enables the system to
escape local minima and converge into the global mini-
mum. The process is scheduled theoretically to reach the
global minimum state at zero temperature. In actual imple-
mentations, however, practical reasons, like quantization and
finite numbers handled by a computer, force the decrease in
temperature to be neither continuous nor to reach zero value.
Furthermore, the small residual final temperature can be re-
garded as a model for noise and for operation in extreme
conditions.

Boltzmann machines have been applied to a number of
problems including constraint satisfaction problems in vi-
sion (Hinton & Sejnowski, 1983), the encoder problem (Ack-
ley et al., 1985; Parks, 1987), learning symmetries in two
dimensions (Hinton & Sejnowski, 1986), statistical pattern
recognition (Kohonen et al., 1988), and speech recognition
(Lippmann, 1989).Although the algorithm is extremely slow,
Boltzmann machines were found to be very effective. In a
detailed comparison on a statistical decision tree (Kohonen
et al., 1988), the Boltzmann machine achieved considera-
bly better accuracy than a back-propagation network, and
came close to the theoretical Bayes limit. Some specialized
electronic and optoelectronic hardware has been developed
for the Boltzmann machine.

In this work, we examine a Boltzmann machine imple-
mentation of a nonlinear graphic–semantic mapping task.
The effect of the final temperature limitation on the system
was specifically studied. In the first section of the introduc-
tion we define relevant parameters of the Boltzmann ma-

chine neural network. In its second section the nonlinear
graphic–semantic mapping problem is described and the def-
initions of mistake categories are given. Different types of
lesions were applied to the model and the simulation results
are presented in the result section. Simulation results showed
that the temperature limitation lesion causes a unique dis-
tribution of errors. The phenomenon receives a mathemat-
ical treatment in the appendix. We conclude with a discussion
of possible applications and interpretations, which suggests
that the results are valuable for performance enhancement
and error detection and correction of the Boltzmann ma-
chine. The possible relevance of the work to understanding
dyslexia is also discussed.

METHODS

The Boltzmann Machine

Boltzmann machines are made ofunits(neurons), which can
be divided into three groups:input, outputandhidden(Fig-
ure 2). The hidden units have no direct connection to the
outside world, while the input units are set to the input vec-
tor on each activation of the network, and the output units
will hold the output vector after a convergence process. The
network is recurrent and the connections between units are
symmetricwi, j 5 wj, i .

The units are stochastic, taking the valueSi 5 11 with
probabilityg~hi ! or the valueSi 5 21 with probability 12
g~hi !, whereh is defined:

hi 5 (
j

wi, j Sj (1)

andg~h! is defined:

g~h! 5
1

11 e
22h

T

(2)

as the connections are symmetric, an energy function can
be defined over the system. This energy function has min-
ima whenever there is a stable state:

Ea 5 2
1

2 (
i, j

wi, j Si
a Sj

a . (3)

Fig. 1. The common model of the human reading system.

Fig. 2. The three layers of the Boltzmann machine.
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The probability of a change in the system’s state is a func-
tion of the difference in the energies of the two states and is
given by the Boltzmann distribution function:

P~Sa n Sb ! 5 P~Ea 2 Eb! 5
1

11 e
DE
T

. (4)

Convergence of the system is achieved in a simulated an-
nealing process, in which cycles of convergence are per-
formed while the temperature parameterT is exponentially
slowly decreased until reaching zero. WhenT reaches zero
the system is completely deterministic; however, the expo-
nentially slow decrease in the value ofT (Geman & Geman,
1984) ensures that the system will converge into a global
minimum of its energy function.

In order to speed up convergence on a computer simula-
tion, it is common to use a mean field method, which is
sometimes called deterministic Boltzmann machines. Using
the mean field approximation method, we make the follow-
ing assumption:

^Si Sj & ' mi mj (5)

wherem is the mean of the activation of each unit:

mi 5 tanhS(
j

wi, j mj

T
D. (6)

Throughout the simulations that follow, the above ap-
proximation will be used.

The Model

A wide variety of tasks are analogous to the mapping task,
especially when dealing with arbitrary mappings that can
be nonlinear. Among those are coding and decoding, image
recognition, semantic analysis and so on. We choose to view
the problem with a semantic interpretation (Adams, 1990;
Hinton et al., 1993; Plaut & Shallice, 1993).

Let M be a mapping from a set of vectorsV 5 $vi % i51
N

over the vector spaceG ~V , G! to another set of vectors
U 5 $ui % i51

N over another vector spaceS~U , S!. Each ele-
ment of the vector spaces is binary1.

In our graphic–semantic mapping, the source vector space
G is a graphic representation of a word. Its elements repre-
sent visual features of the written words, like diagonal lines,
round objects, closed shapes and so on (Table 1). The target
vector spaceS is a semantic representation of a word. Its
elements represent semantic features of the word, likegood,
big, green, heavy, mystical, etc. (Table 2). The setsU andV
are projections of the same set of words, in the graphic and
semantic spaces respectively (Figure 3).

The described mapping is nonlinear in the sense that the
distance between two source vectors in the input vector
space, tells us little or nothing about their distance in the
output vector space, even though we demand that our map-
ping system apply some linearization over the stable points—
which means that small changes in the input vector will result
in changes as small in the output vector.

A Boltzmann machine was taught to realize the mapping
M, in that, when given an input vectorv [ G, the vector
u [ Sproduced by it is equal toM(v). Using the semantic
analogy of the model, the Boltzmann machine was taught
the task of reading–translation of the written word (the in-
put vectorv [ V ! into concept (the output vectoru [ U !.
The training process was performed until perfect perfor-
mance of the system was achieved on the given vocabulary
while in normal conditions. On the other hand, when apply-
ing lesions such as pruning or amplification, the system be-
comes error-prone.

The various mistakes produced will be classified into two
main categories:input-orientedmistakes andoutput-oriented
mistakes. An output mistake, analogous to a semantic mis-
take, occurs when the output vectoru is not actually equal
to M~v!, but is similar to it. An input or graphic mistake
occurs when the output vectoru is not close to the expected
valueM~v!, but is the mapping pointM~v' ! for another input
vectorv' similar tov as explained in Figure 4. Similarity is
defined in the sense of Euclidean distance over the relevant
vector space.

1MeaningG 5 ZDG ; S5 ZDS; Z 5 $0,1% , thus the cardinal of each set
is limited by: 6V 6 # 2DG ; 6U 6 # 2DS and is equal6V 65 6U 65 N.

Table 1. Graphic representation of letters

Graphic representation

Letter
Side
open

Top
open

Bottom
open Round

Has
angles

Horizontal
lines

Vertical
lines

A 0 0 1 0 1 1 0
B 0 0 0 1 1 1 1
C 1 0 0 1 0 0 0
D 0 0 0 1 1 1 1
E 1 0 0 0 1 1 1
F 1 0 1 0 1 1 1

Table 2. Semantic representation of words

Semantic representation

Word Inanimate Fauna Flora Food Fruit Human Family Verb

Plum 1 1 1
Tree 1
Drum 1
Dumb 1
Ring 1
Sing 1
Reef 1
Gold 1
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The mistakes categories are more formally defined. The
input vectorv [ V, is given to the system and an output
vector u [ S is returned. If the u is sufficiently close to
M~v! [ U:

d~u, M~v!! , e (7)

and is closer toM~v! from all other possible output vectors:

d~u, M~v!! # d~u, M~vi !!, ∀i (8)

then we can say that the output is correct. Otherwise, a mis-
take category should be found. If the output vectoru is suf-
ficiently close to another possible output vectorM~v' !, and
the two output vectors are close to each other:

d~u, M~v ' !! , e

d~M~v!, M~v ' !! , do (9)

then anoutputmistake has been made. On the other hand, if
the output vectoru is sufficiently close to another possible
outputM~v' ! and its input vectorv' is close to the original
input vectorv:

d~u, M~v ' !! , e

d~v,v ' ! , di (10)

then aninputmistake has been made. Aninputmistake and
anoutputmistake can also occur simultaneously, in which
case we call it amixedmistake. In a case where the mistake
can not be categorized into any of the above, we assign it to
theothermistake category.

The thresholdse, do, anddi are arbitrary; they adjust the
trade-off between the false-detection of the system and its
false alarms. Any setting of these parameters will set a work-
ing point to the system, to which all results should be related.

RESULTS

Different types of lesions, such as pruning of the connec-
tions between the layers, adding noise and bounding the low-
est temperature, were applied to the network and the resulting
errors were analyzed. The effect of scheduling limitation by
stopping convergence before reaching zero temperature was
demonstrated using several different simulations, in order
to generalize the results. Here we bring one such simula-
tion example followed by a mathematical treatment of the
problem.

Simulation

A Boltzmann machine was taught the task of translating a
word from its graphic representation to its semantic repre-
sentation. The words were taken from a limited vocabulary
of 43 words (Table 2). Each word consisted of three to four
letters. Each element in the graphical representation of a
word described a visual feature likeside open, top open,
andhorizontal lines(Table 1). The elements of the seman-
tic representation included semantic features likeinani-
mate, fauna, etc. (Table 2).

The network, constructed of 128 neurons, is divided into
three layers: an input layer with 48 neurons, a hidden layer
with 40 neurons and an output layer with 40 neurons (Fig-
ure 2). Several connection schemes were tested and results
proved to be independent of any specific architecture. The
network was trained with a vocabulary of 43 English words
of three to four letters each, until a near-zero error rate in
the semantic translation was achieved and no mistakes were
made over the given set of words. The vocabulary is far from
being uniform and as such is very biased as regards dis-
tance between words in each projection space (semantic,
graphic). The inherent grouping of the vocabulary was cal-
culated and is presented in Figure 5. As we can see there is
a much greater probability for graphic (input) errors than
for semantic (output) errors2.

2The inherent grouping is very dependent on the definitions of our group
criteria; nevertheless, upon defining these criteria, we set a working point
that all our results will be viewed with respect to.

Fig. 3. An example of a nonlinear graphic–semantic mapping task.

Fig. 4. Graphicversussemantic mistakes.
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Next, a series of lesions were applied on the network to
model different kinds of defects. As we describe in details
the effect of temperature lesions, it is valuable to consider,
as a reference, the effect of other types of lesions on the
same system. The lesion types that were applied to the net-
work include: (1)pruning: cutting out some connections or
cells; (2)noise: Changing the values of activation or con-
nection weights; and (3)temperature limitation: Stopping
the system’s convergence before reaching the final stage.
The various tests differ in the outcome distribution of er-
rors, and can be explained in terms of the system’s dynam-
ics. The distributions of errors resulting from the pruning of
connections between the different layers are shown in Fig-
ure 6. The frequency ofothererrors is lower than expected,
but the graphic–semantic errors are close to the inherent
probability.

The most extreme variation in the error distribution (from
the inherent one shown in Figure 5) was found in the tem-
perature limitation case and is shown in Figure 7. The next
section and the Appendix focus on the temperature limita-
tion, which gives insight to the system’s dynamics and its
robustness features. In this case we receive a totally differ-
ent distribution, graphic errors are sparse or nonexistent,
while semantic errors are common as is displayed in Fig-
ure 7. This occurs while the temperature is in a range close
to the normal final temperature; larger temperature lesions
result in the total malfunctioning of the system and pro-
duces almost no correct answers—in this case, the distribu-
tion of the error types is closer to the inherent one.

Simulation of a General Nonlinear
Graphic–Semantic Mapper

In this realization, the network is constructed of three lay-
ers and a total of 18 neurons. An input layer which con-

sisted of five neurons, a hidden layer of eight neurons and
an output layer of five neurons. Connections between the
layers were full between the input and hidden layers and
between the hidden and output layer, while there are no di-
rect connections between the input and output layer. The
network was taught a mapping of 10 input–output vector
pairs and the task was learned successfully after approxi-
mately 100 iterations.

Fig. 5. Distribution of various error types.

Fig. 6. Effect of connection pruning between the different layers.
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Again, various lesions were tested. In this case we choose
a mapping that is less biased in respect to the distance be-
tween the various vectors in each vector space, which is im-
portant to the generalization of the results. The inherent error
distribution in this system is close to the uniform distribu-
tion; as the mapping is quite arbitrary, chances for an input
or an output mistake are similar. The system indeed showed
distributions close to the uniform one for all types of le-
sions, though the slight variations between the lesions ap-
plied can show localization of tasks. Yet, the temperature
limitation lesion again showed extreme results, in which out-
put mistakes are made much more often than input ones.
The mathematical analysis of this interesting case is given
in the Appendix.

DISCUSSION

In Boltzmann machines, as well as in other neural net-
works, robustness and resistance to damage is a noted fact.
It is said that applying a small change to the parameters of
the network usually produces only a small degradation in
its performance—a feature hardly implemented in any ar-
bitrary system. The robustness of the Boltzmann machine is
particularly interesting when using temperature as the dam-
aging parameter, while this might indicate time saved in a
simulation, quantization error in a digital system, noise on a
VLSI circuit, or the effect of stress and drugs in a biological
system.

Extensive testing was carried out on the network in order
to examine its functioning under different types of lesions.
The major points that stood out in the tests were (1) the er-
ror probability is proportional to the extent of the lesion at
all sites; (2) lesion of the graphic intermediate connection
increases all types of errors dramatically as it blocks the
input from the system; (3) by analyzing the corresponding
error types it was possible to interpret the major processing
task of each connection path, as follows:

A. Lesions in the graphic–hidden path increase the graphic
errors that occur right at the beginning of the network
convergence process. It seems that this path is related
to the separation between visually similar words, that
is, it maps visually similar words into different inner
representation.

B. The hidden–semantic path corresponds to the process
of convergence into the pretrained semantics. Lesion
in this path increases the semantic errors that occur at
the end of the network convergence process.

C. The semantic internal connections are responsible for
the process of convergence into the exact semantic rep-
resentation. Lesions in this path lead to a moderate
increase in the semantic error rate, but the recognition
is late and not clear. It suggests that this path is re-
sponsible for the final conversion into the right attrac-
tor. Lesion of these internal high level connections may
explain some symptoms of slowness and bad predic-
tion of the word’s meaning in dyslexia.

D. Limiting the minimal temperature of the network causes
mainly semantic errors and few or no graphic errors.
This is perhaps the most surprising and interesting
result of this research. It may simulate human reac-
tion under mental stress or attention deficit, where the
automatic functions, such as the visual recognition
tasks, are functioning but the higher functions are dis-
rupted. The temperature limitation shows that a dif-
fuse (nonlocalized) damage that affects the network’s
convergence process may lead to specific semantic
errors, which are well-known symptoms of dyslexia.

The results described here have relevance for evaluating
the robustness of the Boltzmann network, as well as for un-
derstanding the convergence process in both normal and
damaged operation. For the artificial network, we can use
the information in the error distribution to correct errors and
to accelerate the convergence process by eliminating its final
stage.

The Boltzmann machine can be viewed as an informa-
tion channel with a specific input and output coding. We
have demonstrated that in respect to the temperature limi-
tation, the system is much less sensitive to its input than to
its output mapping. For the cognitive modeling of the read-
ing system, the temperature limitation may represent men-
tal stress or learning disruptions, and the unique error
distribution may be analogous to the degradation of higher
mental skills. In all cases, extreme lesions lead to total fail-
ure of the system while modest damage leads to dyslexia-
like symptoms, which fits the “minimal damage” assumption
in dyslexia. In summary, this stage of the research can only
give us limited insight into the neural mechanism of dys-
lexia; the model should be adjusted and tested according to
further results of neurophysiological and neuropsycholog-
ical experiment in order to achieve a deeper understanding
of the disorder.

Fig. 7. Error distribution under temperature lesion.
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Appendix

MATHEMATICAL ANALYSIS OF THE
TEMPERATURE LIMITATION ERRORS

From the description of the Boltzmann machine basics it is
clear that when the temperature is higher than zero and the sys-
tem is at a global minimum of the energy function, there is still
a chance for a flip of any unit’s state that will increase the total
energy. So, for a case where the system’s output is sampled at
a low, positive temperature, an error is possible3.

Two points in the state space that have the same energy
seem to have also the same Boltzmann probability, so this
substantial difference of probabilities is not trivial. It’s only
when we take into consideration the dynamics of the con-
vergence process that we can justify this behavior. Observ-
ing the Boltzmann function we see that in the continuing
convergence process toward the global minimum there is
an increasing probability (along with temperature decline)
of the global minimum state, so when dealing with the final
stages of the process, it can be assumed that to reach every
other state, different from the minimum, the system must
go through a path of flips from the global minimum to that
different state. In this way, the time parameter, together with
the distance from the minimum state, plays an important
role in the probability calculation.

Consider an ensemble of states with an energy that isDE
higher than the minimum (as shown in Figure 8). The path
of N flips that has to be taken from the minimum state will
have a probability of:

PSN,$DEi % i51
N *(

i51

N

DEi 5 DED5 )
i51

N 1

1 1 e
DEi
T

(11)

It can be shown that for all paths$DEi % i51
N with total energy

DEof lengthNarealwaysmoreprobable thenapathsof length

M whereM . N—shorter paths are more probable.When we
examine the probability expression it is easy to show with
Lagrange multipliers that the minimal probability will be
achieved when all the energy deltas of all flips are equal, and
that themaximalprobabilitywill beachievedwhenall energy
deltas but one equal zero (and one that equalsDE!:

min$P~N,$DEi % i51
N !% 5 S 1

1 1 e
DE
NT DN

(12)

max$P~N,$DEi % i51
N !% 5 S1

2DN21S 1

1 1 e
DE
T D (13)

ReplacingC 5 e
DE
NT and comparing the minimal probability

of an N flips route and maximal probability of anN 1 1
flips route we get:

min~PN!
max~PN11!

5
2N~1 1 CN!

~1 1 C!N . 1 (14)

min$P~N,$DEi % i51
N !% . max$P~N 1 1,$DEj % j51

N11!%

∀N,$DEi % i51
N ,$DEj % j51

N11 (15)

which means that output errors (shorter paths) are more prob-
able than error types that require longer paths.

3Note, however, that some flips from the global minimum state do not
necessarily mean an error, as the flips can all take place in the hidden units;
moreover, a small distance from the correct result will not be considered a
mistake.

Fig. 8. Two points of equal energy but different distance from
global minimum.
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