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SUMMARY
The real-time balance PD control of an eight-link biped
robot using a zero-moment point (ZMP) dynamic model
is implemented using two alternative intelligent computing
control techniques that were compared: one based on support
vector regression (SVR) and another based on a first order
Takagi–Sugeno–Kang (TSK) -type neural-fuzzy (NF). Both
methods use the ZMP error, and its variation as inputs and
the output is the correction of the robot’s torso necessary for
its sagittal balance. The SVR and the NF were trained based
on simulation data, and their performance was verified with
a real biped robot. Two performance indexes are proposed
to evaluate and compare the online performance of the two
control methods.

The ZMP is calculated by reading four force sensors
placed under each robot’s foot. The gait implemented in this
biped is based on ankle and hip human trajectories that were
acquired and adapted to the robot’s size. Some experiments
are presented and the results show that the implemented gait
combined either with the SVR controller or with the TSK NF
network controller can be used to control this biped robot.
The SVR and the NF controllers exhibit similar stability, but
the SVR controller runs at 0.2 ms, about 50 times faster than
the NF controller and much faster than a controller based on
full ZMP dynamic model equations.

KEYWORDS: Neural-fuzzy (NF) networks; Support vector
regression (SVR); Biped robot; Balance; Zero-moment point
(ZMP).

1. Introduction
Quite a number of biped humanoid robots have been
developed, such as ASIMO by Honda,1 WABIAN 2R by
Waseda University,2 HUBO KHR-3 by KAIST3 and QRIO
by Sony.4 A biped robot’s leg has a structure similar to human
anatomy. To remain stable under dynamic situations such
a robotic system requires good mechanical design, force
sensors to acquire the zero-noment point (ZMP) and the
design of appropriate real-time controllers.

Vukobratović et al. have developed a mathematical model
of a biped robot and its method of control.5 Other researchers
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have proposed dynamic biped models and methods of
biped robot control.12,21,33,35–38 Many researchers6–8 have
investigated the gait of biped robots based on human
kinematics data, and Winter9 has published a very good study
of the kinematics of a human body. Because a biped robot
is easily knocked down, to assure its dynamic stability, Hirai
et al. proposed a standard method for gait synthesis based
on the ZMP.10 Basically, this method consists of designing a
desired ZMP trajectory with online control corrections being
made to the movement of the torso and pendulum afterward,
during the robot’s motion, based on the measurements from
the feet’s force sensors to achieve the defined ZMP trajectory.

Intelligent computing techniques have been widely used
in the advanced control of biped robots, due to their
strong learning and cognitive abilities and good tolerance
of uncertainty and imprecision. Many researchers have
been trying to solve the biped robot’s balance problem
by developing controllers, using intelligent computing
methods such as fuzzy, neural networks, or neural-fuzzy
(NF) networks,16–21 support vector regression (SVR),25

genetic algorithms,39,40 and wavelet networks.41,42 A survey
of these techniques has been undertaken by Katic and
Vukobratović22 Park et al.23 presented experimental results
on ZMP compensation in the standing posture of a biped
robot. They applied an external force in the sagittal plane to
the biped robot and developed a ZMP compensation scheme
using two-mode Q-learning. Recently, hybrid methods,
using different computational intelligent techniques like
reinforcement learning (RL) with simplified dynamics,
have attracted attention for robot movement planning and
control.31–35 Each of these paradigms has its own merits
and drawbacks. RL is a kind of learning algorithm half-way
between supervised and unsupervised learning algorithms.
The RL concept is based on trial and error methodology and
continuous evaluation of performance in constant interaction
with the environment.

Controlling a biped robot using the ZMP with an eight-
link model is more accurate than the methods based on a
two-link model with mass concentrations that are normally
used for their real-time balance control. These methods use
a two-link model centered in the ankle12–14 or in the hip15

to determine and apply the necessary torque for the robot’s
balance. In a recent past, it has been difficult to apply sagittal
balance control in real time using an eight-link model of the
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Fig. 1. (a) Implemented robot and (b) simplified robot model with global coordinate system axes and rotation axis of each joint.

robot due to the high computational effort. This problem is
also reported by Or and Takanishi in ref. [43], where they say
that the recent developments in the Sony QRIO and Honda
ASIMO robots allow them to dance without falling, but their
movements are prerecorded because the ZMP algorithms,
which allow them to walk stably, are too computationally
intensive to be applied in real time.

The present work solves this problem by using
computational intelligence techniques (SVR and NF). The
SVR and the NF are trained with the simulation data of an
eight-link robot model and data generated by empirical rules
based on the Ziegler–Nichols method.30 As the ZMP control
is nonlinear, an SVR is appropriate because it calculates the
optimal hyper plane for data training and is faster than a
neural network. The SVR technique was initially developed
by Vapnik.24 Another technique that is appropriate for this
kind of problem is a first-order Takagi–Sugeno–Kang (TSK)
type NF network. This technique offers the advantages of
both fuzzy systems and neural networks. Using the eight-link
biped model together with one of these two computational
intelligence techniques, it is possible to control the biped
robot in real time with greater precision than if the biped
robot’s simplified two-link model were used. These two
proposed balance control methods have been compared and
the results show that the gait used combined with the SVR
controller or TSK NF network controller are appropriate
for use in the control of this biped robot. Two performance
indexes are also proposed to evaluate and compare the online
performance of the biped robot’s control methods. Using
the proposed performance indexes, it is possible to conclude
that the performance of the SVR and of the NF controllers
is similar, although the SVR controller is much faster.

The gait implemented in this biped robot is based on ankle
and hip human trajectories. A human gait was acquired and
adapted to the size of the robot used. A feedforward (FF)
backpropagation neural network was then trained to generate
the robot’s joint trajectories.

2. Implemented Robot
The experiments were performed with a biped robot that was
designed and built at the Institute of System and Robotics

of the Department of Electrical and Computer Engineering
of the University of Coimbra, Portugal. The mechanical
structure of the robot, as shown in Fig. 1(a), has the main
joints of hip, knee, and ankle, for each leg, with 1-degree of
freedom (DOF) for each joint, as shown in Fig. 1(b). This
configuration was chosen because of its simplicity, the lateral
balance being performed with only one joint. The other joints
are used for the sagittal movement and balance control. There
is another joint, an active inverted pendulum that is used for
the lateral balance of the structure. The robot carries its own
motorization batteries at this inverted pendulum. The robot
is driven by seven servo motors, its structure is aluminum
and acrylic, it weighs 2.3 kg, and it is 0.5 m tall. The
robot was designed to move in both horizontal and inclined
planes, to go up and down stairs (about 3 cm in height), and
it moves at approximately 0.05 m/s. A 9600 bit/s RS232
wireless transmission link connects the control software,
which is running on a PC, to the robot’s electronic board.
The robot board has two programmable interface controller
(PIC) microprocessors, one to acquire the analog signals of
the force sensors and the other to control the servo motors.
The robot has a set of four force sensors under each foot,
which are used to calculate the real ZMP, enabling the use of
a closed-loop controller.

3. Designed Gaits
One of the best biped walkers is the human being. This is
why the joint trajectories of a human walk were obtained
and similar trajectories applied to this biped robot.45 A
gait was chosen for this work that was conceived to be
similar to human locomotion in horizontal planes. Only the
hip and ankle trajectories are needed to describe a robotic
human-like gait. The knee trajectory depends on these two
trajectories. The sagittal plane trajectories of hip, knee, ankle,
and torso during a gait cycle of a person were acquired.
The acquisition system used captures a sequence of images
and determines the trajectories of five reference points.8

Images were captured with a color webcam that had the
following characteristics: CMOS 640 × 480 (VGA) sensor,
maximum of 30 frames/s, USB 2 interface. Trajectory data
were obtained with a 26-year-old male, 1.85-m tall. Light
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Fig. 2. (a) White light LED used as reference points on the person
and (b) reference points on the person’s model.

emitting diodes (LED) were placed on five strategic points
on him [see Fig. 2(a)], chosen to acquire the ankle, knee,
hip, and torso sagittal trajectories according to the model in
Fig. 2(b), where H is a point on the heel, T is the tip of the foot,
K is a point on the knee, HI is a point on the hip, and SH is a
point on the shoulder.45 These reference points were captured

by placing the camera perpendicular to the background plane,
3 m away from it and 0.75 m from the floor. This latter
distance is half the distance from the floor to the highest
reference point, which is the shoulder mark. After the image
acquisition of the reference marks areas, the coordinates of
the mass centers of these reference areas were calculated, in
order to determine the trajectories of these points.

3.1. Normalized human gait trajectories
The trajectories acquired were normalized to be able to apply
them to any robot, using the height of the leg (ZL) and
the step length (XS) as scale factors. A set of polynomial
regressions was then applied to the trajectories of the hip
and the ankle resulting in the matrix expressions (1) and (2).
The R-square obtained in these regressions was greater than
0.996, and the degrees of the polynomials are between 1
and 5. The polynomials described by (1) correspond to the
trajectories during the first half of the gait cycle, when the foot
is grounded, and the polynomials described by (2) correspond
to the second half of the gait cycle, when the foot is moving.

⎡
⎢⎣

Xhip

Zhip

Xankle

Zankle

⎤
⎥⎦

T

gnd

= (AGgnd)T XZgnd, (1)

⎡
⎢⎣

Xhip

Zhip

Xankle

Zankle

⎤
⎥⎦

T

mov

= (AGmov)T XZmov. (2)

Fig. 3. Hip and ankle trajectories of the grounded foot (Xankle and
Zankle are zero).

A is a polynomial coefficient matrix, Ggnd is the percentage
of the gait cycle vector for the grounded foot, Gmov is the
percentage of the gait cycle vector for the moving foot, and
XZgnd and XZmov are scale factor matrices. These matrices
are given by

A =

⎡
⎢⎢⎢⎣

0 0 0 0 1.0263E − 2 2.49033E − 1

0 0 0 −1.58826E − 4 7.8736E − 3 8.97685E − 1

0 0 −1.567E − 5 1.21278E − 3 −1.4623E − 3 2.652E − 3

−1.80869E − 8 2.08426E − 6 −7.45788E − 5 5.85999E − 4 9.54539E − 3 −2.50062E − 4

⎤
⎥⎥⎥⎦

Ggnd =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

S%5

S%4

S%3

S%2

S%

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

XZgnd =

⎡
⎢⎢⎢⎣

XS 0 0 0

0 ZL 0 0

0 0 0 0

0 0 0 0

⎤
⎥⎥⎥⎦ ,

Gmov =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(S% − 50)5

(S% − 50)4

(S% − 50)3

(S% − 50)2

(S% − 50)

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

XZmov =

⎡
⎢⎢⎢⎣

XS 0 0 0

0 ZL 0 0

0 0 XS 0

0 0 0 ZL

⎤
⎥⎥⎥⎦,

where S% represents the gait cycle percentage and takes val-
ues from 0 to 50 in the Ggnd vector (grounded foot) and values
from 50 to 100 in the Gmov vector (moving foot). Fig. 3 shows
the hip and ankle trajectories of the grounded foot of the
biped robot, for a step length XS = 0.07 m and a leg height
ZL = 0.23 m (Xankle and Zankle are zero). Fig. 4 shows the
corresponding hip and ankle trajectories of the moving foot.

The trajectory of the human torso was obtained, and it was
verified that the torso angle trajectory of some human walks
can be approximated by a cosine function.45 The amplitude
(M) of this trajectory is determined by simulation of the
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Fig. 4. Hip and ankle trajectories of the moving foot.

biped robot in order to have the ZMP located at the center of
the grounded foot at the beginning of the swing phase (that
coincides with the end of the double phase). This amplitude
cannot be the same of the human’s, because our robot has
neither head nor arms and the mass distribution is different.
The designed torso angle trajectory was then chosen to be
given by

θtorso =

⎧⎪⎪⎨
⎪⎪⎩

M cos

(
2πS%

100

)
, if 0 < S% < 50

M cos

(
2π(S% − 50)

100

)
, if 50 < S% < 100

,

(3)
where M = X1CoMK(tstep). The constant X1CoM is equal to
the X coordinate of the center of mass (CoM) (XCoM) in
the double phase, with the torso vertical. During the double
phase S% is constant (equals 0, 50, or 100) and the torso angle
changes from −M to M or from M to −M. At the same time,
the pendulum moves to the opposite side (from left to right or
vice versa). During the swing phase, the S% is proportional
to time. The X coordinate system axis is pointing forward,
and its origin is in the center of the grounded foot. K(tstep),
where tstep is the time duration of the step, is the dynamic
torso angle correction for one unit length of XZMP deviation
(9) and will be presented in Section 4. The ground projection
of the CoM can be calculated in real time as

XCoM =

7∑
i=0

migxi

7∑
i=0

mig

, (4)

YCoM =

7∑
i=0

migyi

7∑
i=0

mig

, (5)

where mi is the mass of the link i and g is the gravity
acceleration. XCoM is used instead of XZMP to avoid the ZMP
calculation, which can only be done offline due to its large
processing time.

Fig. 5. Biped model with joint angles description.

The trajectories described above were also used for
walking on slopes after applying a rotation matrix R to the
hip and ankle Cartesian trajectories (6), and adding the slope
angle θ to the ankle’s joint angles so that the whole robot is
tilted.

⎡
⎢⎢⎢⎣

Xhip

Zhip

Xankle

Zankle

⎤
⎥⎥⎥⎦

slope

= R

⎡
⎢⎢⎢⎣

Xhip

Zhip

Xankle

Zankle

⎤
⎥⎥⎥⎦

horizontal

. (6)

with

R =

⎡
⎢⎢⎢⎣

cos θ − sin θ 0 0

sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎤
⎥⎥⎥⎦ .

Using inverse kinematics, all relevant joint angles of the
biped model presented in Fig. 5 are calculated.

3.2. Joint trajectories based on neural network
Using the above trajectories and inverse kinematics, the
joint angles’ trajectories were obtained and used for training
a FF backpropagation neural network, which is used to
generate the gait of the biped robot. This network has
four inputs (step length, step time, slope inclination, and
percentage of the gait cycle) and seven output angles:
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Table I. Physical characteristics of the biped robot.

Biped Mass (kg) Length (m) Ix(×10−4kg · m2) Iy(×10−4kg · m2)

Foot 0.28 × 2 0.035 2.64 3.51
Shank 0.15 × 2 0.115 7.23 6.81
Thigh 0.15 × 2 0.115 7.23 6.81
Haunches 0.60 0.065 21.25 9.70
Pendulum 0.54 0.170 159.58 160.17

θankle gnd, θknee gnd, θhip gnd, θhip mov, θknee mov, θankle mov, and
θlateral.θtorso value is defined by θhip gnd and θhip mov.

This network was first trained with 251 and then tested
with 64 uniformly distributed and normalized datasets. Mean
square errors (MSE) lower than 0.00001 and 0.001 were
needed, respectively, for training and testing. Levenberg–
Marquardt optimization was used to update the weight and
bias values of the network. The application of this method
requires a good balance between overfitting and underfitting
to obtain smooth joint angle behavior.

An FF network with two hidden layers with 24 neurons
each was chosen, after some simulations with different
configurations. The transfer functions for the hidden layers
are sigmoid functions and for the output layer they are linear
functions. The MSE obtained were 0.0000097 and 0.00066
for training and test data, respectively. This FF network is able
to predict the entire sequence of the gait with step lengths
between 0.04 m and 0.12 m and slope inclinations between
−10 degrees and +10 degrees. The use of this FF network
rather than the direct use of the previous subsection equations
will allow the future use of RL techniques.

4. Torso Trajectory Planning Simulation Algorithm
The method used to obtain the balance of the robot in the
sagittal plane consists of correcting the torso angle (actuating
the hip joints) using the SVR or the NF real-time output.
Balance in the lateral plane is achieved by positioning the
pendulum (θlateral) at its extreme lateral positions during the
single phase. This way Yzmp is neglected. Both the SVR
and the NF were trained with 239 uniformly distributed
and normalized data points and tested with another 68 data
points, generated by simulation, as described next. The ZMP
location, which is the balance control variable, is calculated
by the following expressions,11 given the robot mass model
of Fig. 6 and the physical characteristics presented in Table I.

Xzmp =

7∑
i=0

mi(z̈i + g)xi −
7∑

i=0

miẍizi −
7∑

i=0

Iiyαiy

7∑
i=0

mi(z̈i + g)

, (7)

Yzmp =

7∑
i=0

mi(z̈i + g)yi −
7∑

i=0

miÿizi +
7∑

i=0

Iixαix

7∑
i=0

mi(z̈i + g)

. (8)

Fig. 6. Biped eight-link mass model.

Fig. 7. Definition of the stability margin.

ẍ, ÿ, and z̈ are linear accelerations, Iix and Iiy , are inertia
coefficients, αix and αiy are angular accelerations, mi is the
mass of the link i, and g is the gravity acceleration.

The stability margin is the minimum distance between
the ZMP and the border of the stable region and can be
considered as an indicator of the quality of the robot’s
stability (Fig. 7). If the robot is in the swing phase (only
one foot on the ground) the stable region consists of the area
of contact of the foot on the ground. In the double phase, the
stable region is a polygon inscribing the contact areas of the
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Fig. 8. Torso trajectory planning simulation algorithm.

two feet. If the ZMP remains inside the stable region it can
be said that the biped robot’s walking is stable. When the
stability margin is large, that is, when the ZMP is next to the
center of the stable region, it can be said that the biped robot
exhibits a high stability.

It is described next the torso trajectory planning simulation
algorithm. It is executed offline, generating data used for
the SVR and the NF training. First, taking into account the
gait’s characteristics (step length and step time), thirteen
via-points (7) for the swing phase and 6 for the double
phase) of the ankle and hip trajectories are obtained using
(6), (1), and (2) for one step. After that, the trajectories of
all joints are calculated using inverse and direct kinematics
and cubic splines are generated for each of these trajectories.
Next, the XZMP is calculated by (7) and the stability margin
is determined. The stability margin is then used to make
iterative corrections to the torso angle, using the desired
XZMP (which is the center of the grounded foot) as reference,
until a predefined stability margin is reached. This procedure
is repeated for all 13 frames of the step. Fig. 8 shows the
algorithm just explained. This algorithm is executed for 50
steps (5 different lengths and 10 different step times).

With this algorithm, four splines (x, y, z linear accelera-
tions and angular acceleration) are needed for each link,
resulting in a high computational effort and making the real-
time computation difficult. So, these planned trajectories are
used to train the NF network and the SVR, which are then
used for the real-time control of the torso of the robot.

Another result of the simulation is the relation K(tstep)
between the torso angle correction (�θTorso) and the XZMP

error (difference between the actual XZMP and XZMPD, the
desired XZMP) (see Fig. 9). In this case XZMPD is zero, because
it is the origin of the coordinate system. The K(tstep) function
is used to design the trajectory of the torso angle, using (3).

Fig. 9. The relation K(tstep) = �θTorso/(XZMP − XZMPD).

Fig. 10. Balance control strategy of the biped robot.

Analyzing Fig. 9, it is possible to conclude that K(tstep) is
almost independent of the length of the step, depending on
the step time. Using a curve fitting algorithm the function

K(tstep) = 0.002t4
step − 0.0637t3

step + 0.7795t2
step

− 4.4803tstep + 2.7866 (9)

was obtained, where tstep is the step time of the gait (half-
stride time).

5. Real-Time Control Strategy
The control strategy is one of the most important issues
in controlling a biped robot. Many control strategies are
available, based on fuzzy systems, neural networks, classic
control, support vector machines (SVMs), and hybrid
systems. The main blocks of the biped robot control
are presented in Fig. 10. The control system block is
implemented by an SVR controller or by an NF controller,
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Fig. 11. Top view of the location of the force sensors under the foot.

both described in Section 6. In order to allow real-time
control, the actual (real) value of the ZMP is needed. When
the ZMP is within the stable region, the ZMP is equal to the
center of pressure (CoP).

To determine the CoP, four force sensors under each foot
of the robot are used (see Fig. 11). The CoP is calculated by

CoP =

4∑
i=1

Fi · r̄i

4∑
i=1

Fi

, (10)

where Fi is the measured force in sensor i, and r̄i is the
position vector, as defined in Fig. 11.

The force sensors’ reading are acquired by an analog to
digital converter (ADC) with 10 bits of resolution and a
maximum sampling rate of 30 Hz. The force measurements
are noisy because the force sensors are sensitive to vibrations
during the motion, so a second-order Butterworth low-
pass filter is used to remove the high-frequency noise from
the force sensor signals. A cutoff frequency of 3 Hz was
used. The difference equation for a second-order low-pass
Butterworth digital filter has the form:

yk = b1xk + b2xk−1 + b3xk−2 − a2yk−1 − a3yk−2, (11)

where y is the filtered variable, x is the unfiltered variable,
xk is the value of x at time tk, yk is the value of y at
time tk, tk = kT is the current time, T = tk − −tk−1 is the
sampling period, and k is an integer.

6. Intelligent Controllers for Biped Sagittal Balance
Among the computational intelligence techniques available,
a TSK first-order NF and a SVR were used and compared.
The first computational intelligence technique was chosen
because the training data were obtained in a nondeterministic
way from the Ziegler–Nichols method, and it is a traditional
approach. The second was chosen mainly due to its type
of regression and to its fast execution time. Moreover, it is
considered the state of the art in computational intelligence
techniques, and it has not been used often in the field of biped
robotics.

6.1. SVR controller
Support vector machines were first developed by Vapnik24 to
solve classification problems, and then successfully extended
to regression and density estimation problems.27 SVM are
gaining popularity due to their many attractive features and
promising empirical performance. The formulation of SVM
employs the structural risk minimization (SRM) principle,
which has been shown to be superior to the traditional
empirical risk minimization (ERM) principle employed in
conventional learning algorithms (e.g. neural networks).28

SRM minimizes an upper bound on the generalization error,
whereas ERM minimizes the error on the training data. This
difference makes SVM more attractive in statistical learning
applications. SVM are used for classification and regression.
In this work, a regression SVM (an SVR) is used.

• SVR

Given a set of data points, (x1, z1), . . . , (xk, zk), such that
xi ∈ Rn is an input vector and zi ∈ R is a target output, the
standard form of SVR24 is

min
w,b,ξ,ξ∗

1

2
wT w + C

k∑
i=1

ξi + C

k∑
i=1

ξ ∗
i (12)

subject to wT φ(xi) + b − zi ≤ ε + ξi,

zi − wT φ(xi) − b ≤ ε + ξ ∗
i ,

ξi, ξ
∗
i ≥ 0, i = 1, . . . , k.

Its dual is

min
α,α∗

1

2
(α − α∗)T Q(α − α∗) + ε

k∑
i=1

(αi + α∗
i ) (13)

+
k∑

i=1

zi(αi − α∗
i )

subject to
l∑

i=1
(αi − α∗

i ) = 0, 0 ≤ αi, α
∗
i ≤ C,

i = 1, . . . , k,

where Qij = k(xi, xj ) ≡ φ(xi)T φ(xj ).
The approximate function is

f (x) =
k∑

i=1

(−αi + α∗
i )k(xi, x) + b. (14)

To solve this problem, the Gaussian kernel

k(xi, xj ) = exp(−γ ||xi − xj ||2) = exp

(
− (xi − xj )2

2σ 2

)

(15)

was used.
Figure 12 shows the insensitive band (tube) of a typical

nonlinear regression function when the SVR method is used.
The LIBSVM29 was used to solve the SVR with the chosen

kernel. C, ε and γ parameters of (12) to (15) must be carefully
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Fig. 12. The insensitive band for a nonlinear regression function.

chosen to generate the best model. Parameter C symbolizes
the importance of the values (ξi and ξ ∗

i ) outside the regression
tube, ε corresponds to the radius of the regression function
tube, and γ represents the Gaussian kernel width. Therefore,
the number of support vectors is a decreasing function of
ε and a nonzero value of ε is required to avoid overfitting.
On the other hand, a too large value of ε could result in
underfitting.

6.1.1. Offline training of SVR controller. The SVR input
variables are the XZMP and DXZMP. XZMP is the x coordinate
of the ZMP and DXZMP is its time derivative. The SVR output
is the torso angular correction (�θtorso), which is applied
to the two hip joints. The training data are the �θtorso, the
XZMP and DXZMP. The �θtorso versus XZMP training data
were obtained by simulation, as described in Section 4.
The �θtorso versus DXZMP data were obtained through the
Ziegler–Nichols method,30 having a PD controller in mind. In
fact, for the biped robot system, the easiest way to determine
the proportional and derivative controller parameters is using
the second method proposed by Ziegler–Nichols, based on
the response of the closed-loop system at the limit of stability.
The first step of this method is to determine experimentally
the value of the critical proportional gain (Kc), defined as
the largest value that the gain of the controller can achieve
and that results in a curve of closed-loop response with
sustained oscillations when a pure proportional controller is
used. The frequency of oscillation is called critical frequency
of oscillation (ωc). Figure 13 shows the result of such
an experiment. The value of Kc obtained for the limit of
stability was 10.3. Thus, Kp equals 6.2, as Kp = 0.6 × Kc.
The derivative parameter (Kd ) of the PD controller is then
calculated using the relationship Kd = Kpπ/(4ωc). The
critical frequency of oscillation (ωc) is equal to 2.7rad/s,
leading to Kd equal to 1.8. Using (9) and making K(tstep)
equal to Kp results in a 4 s step time. This was the step time
chosen for data training.

In a first step, 34 points (XZMP, �θtorso) were obtained by
simulation of the biped robot, five steps with seven frames
each, excluding the point (XZMP, �θtorso) = (0, 0). In a second
step, for each of these 34 points, 9 new points were generated
with DXZMP varying uniformly between −0.002 and 0.002
m. These range values were determined by the maximum
velocity of the XZMP occurred in the above experiment, that

Fig. 13. XZMP and θtorso when the robot has one foot on the
ground, with the proportional controller active, using the critical
proportional gain.

Fig. 14. γ , C, and MSE against ε.

is, 0.043m/s and by multiplying it by the sampling time
(�t = 0.046 s). The �θtorso for each training and testing
point (�θtorso PDk

) was obtained by

�θtorsoPDk
= �θtorsok

(XZMPk
) + kdDXZMPk

/�t.

This way 307(34 × 9 + 1) points were obtained, 239(34 ×
7 + 1) points for training, and 68(34 × 2) for testing. The
values used were normalized, dividing �θtorsoPDk by 45◦,
Xzmp by 0.06 m, and DXzmp by 0.002 m.

To choose the SVR parameters, ε was varied from 0.01 to
0.2, C was varied from 0.1 to 2, and γ from 1 to 4. Fig. 14
shows the minimum MSE as a function of ε as well as the
corresponding C and γ parameters.

As the number of support vectors is a decreasing function
of ε, a big ε must be chosen in order to minimize the number
of support vectors (to speed up computation). On other hand a
small MSE must be obtained. The value ε = 0.13 was chosen
from the plot of MSE against ε (see Fig. 14) because it is
the largest ε in the region 0.09 ≤ ε ≤ 0.13 where the MSE
is approximately constant and small (equals 0.0017). For
this value of ε the other parameters are taken from Fig. 14 as
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Fig. 15. MSE and MAE against C (for ε = 0.13 and γ = 2.6).

Fig. 16. MSE and MAE against γ (for ε = 0.13 and C = 0.9).

Fig. 17. SVR output (normalized values).

γ = 2.6 and C = 0.9. Figures 15 and 16 show the variation of
the MSE and the mean absolute error (MAE) versus C and γ ,
respectively, confirming the correct choice of the parameters.

The execution time of this SVR is about 0.2 ms (on a 3
GHz PC), which is adequate for the real-time balance control
of the biped robot. Fig. 17 shows the SVR output.

6.2. Neural-fuzzy controller
The proposed NF network is a first-order Takagi–Sugeno–
Kang type26 with two antecedents, one consequent, and seven
membership functions. With three and five membership
functions, the behavior is not so smooth and the error is

Table II. Quadratic error of the NF system.

Type of membership
function MSE

Triangular 0.004138
Gaussian 0.003876
Sigmoid 0.003308

Fig. 18. Variation of the torso correction angle obtained with the
NF network using triangular membership functions.

Fig. 19. Variation of the torso correction angle obtained with the
NF network using Gaussian membership functions.

bigger. The antecedent variables are again the XZMP and
DXZMP. The net output (the consequent), �θtorso, is the torso
angular correction. The seven linguistic antecedent terms are:
negative big (NB), negative medium (NM), negative small
(NS), zero (ZE), positive big (PB), positive medium (PM),
and positive small (PS).

6.2.1. Offline training of neural-fuzzy controller. The same
set of 239 and 68 normalized data points were used for
training and for tests, respectively, as with the SVR. In order
to choose the type of membership functions to use, triangular,
Gaussian, and sigmoid functions were simulated. The MSE
and the behavior of the network in the range of the training
values were compared. The results are presented in Table II
and in Fig. 18–20 (normalized values).

After analyzing the figures and the table obtained it is
possible to conclude that the most suitable membership
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Fig. 20. Variation of the torso correction angle obtained with the
NF network using sigmoid membership functions.

Fig. 21. Xzmp, FF generated torso (θtorsoFF), torso (θtorso), and lateral
(θlateral) angles obtained with the robot walking on a flat horizontal
surface without torso control.

function for this system is the Gaussian. Although it does
not have the least quadratic error, its behavior is smoother.
As the execution time of the NF network is less than 10 ms,
the real-time control of the biped robot is possible.

7. Experimental Results
To test and compare the performances of the control systems
based on the SVR and on the NF, seven experiments were
performed, for a step length of 0.12 m. The results of these
experiments are shown in the figures below. The values
shown were normalized by dividing the data values by 25◦
for θtorso, by 55◦ for θlateral and by 0.047 m for Xzmp. All
the experiments were performed with a swing phase equal
to 2.2 s and with the Xzmpref (Xzmp reference) equal to zero
(corresponding to the center of the foot, see Fig. 11).

In the first experiment, the biped robot walked on a flat
horizontal surface without the torso controller active, using
the torso angle value generated by the FF net. Fig. 21 shows
the Xzmp behavior. It can be seen that the robot never falls,
although the Xzmp is not close to zero.

In the second and third experiments, the robot walked
on a flat horizontal surface with, respectively, the SVR and

Fig. 22. Xzmp, FF generated torso (θtorsoFF), torso (θtorso), and lateral
(θ lateral) angles obtained with the SVR controller with the robot
walking on a flat horizontal surface.

Fig. 23. Xzmp, FF generated torso (θtorsoFF), torso (θtorso), and lateral
(θlateral) angles obtained with the NF controller with the robot
walking on a flat horizontal surface.

NF torso balance controller active. The Xzmp behavior is
now closer to zero (see Fig. 22 and Fig. 23) increasing the
stability margin. Both the torso angle value generated by the
FF (θtorsoFF) and the torso angle value corrected by the SVR
or NF controller (θtorso) are plotted. These plots show the
effectiveness of these controllers, as the values of Xzmp are
lower than those in Fig. 21, where the controller is inactive.

In the fourth and fifth experiments, the biped robot walked
on an up slope with a 10◦ inclination with, respectively, the
SVR and the NF controllers active. The Xzmp behavior is
closer to zero, as in the previous experiments (see Fig. 24
and Fig. 25).

In the sixth and seventh experiments, the biped robot
walked on a down slope with a 10◦ inclination with,
respectively, the SVR and the NF controllers active. The Xzmp

behavior is closer to zero, as in the previous experiments (see
Fig. 26 and Fig. 27).

To analyze which is the best controller, and because the
plots are inconclusive, two performance indexes are pro-
posed. The first is the root of the mean squared of the normal-
ized XZMP − −XZMP ref (NXRMS); the second is the mean
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Fig. 24. Xzmp, FF generated torso (θtorsoFF), torso (θtorso), and lateral
(θlateral) angles obtained with the SVR controller with the robot
walking on an up slope.

Fig. 25. Xzmp, FF generated torso (θtorsoFF), torso (θtorso), and lateral
(θlateral) angles obtained with the NF controller with the robot
walking on an up slope.

Fig. 26. Xzmp, FF generated torso (θtorsoFF), torso (θtorso), and lateral
(θlateral) angles obtained with the SVR controller with the robot
walking on a down slope.

Fig. 27. Xzmp, FF generated torso (θtorso FF), torso (θtorso), and
lateral (θlateral) angles obtained with the NF controller with the
robot walking on a down slope.

Table III. Performance indexes.

Slope Controller NXRMS MNSM

0 None 0.336 0.726
0 SVR 0.228 0.819

NF 0.231 0.840
10 SVR 0.241 0.830

NF 0.243 0.805
−10 SVR 0.240 0.833

NF 0.276 0.810

of the normalized stability margin (MNSM). These indexes
were calculated during four walking steps and are described
by

NXRMS =

1
k

k∑
i=1

√√√√1

n

n∑
j=1

(XZMP(i, j ) − XZMP ref (j ))2

XS
, (16)

MNSM =

1
k

k∑
i=1

1

n

n∑
j=1

(XS − |XZMP(i, j )|)

XS
, (17)

where k is the number of steps, n is the number of the force
sensor samples and XS is the X absolute coordinate of the
force sensors’ locations, which corresponds to the maximum
possible value of Xzmp (in the present robot this is 0.047 m).
The optimal value for NXRMS is zero, and for MNSM it is
one.

Table III presents the two performance indexes for the
experiments. The values presented in bold are the best ones.
Analyzing this table, it is possible to conclude that the SVR
controller is a little better overall than the NF controller.

The typical execution time is 0.2 ms for the SVR controller
and 10 ms for the NF controller.

To confirm the robustness of the balance control system
based on an SVR, two other experiments were performed
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Fig. 28. XZMP, XZMPref , designed torso (θtorsoD), torso and lateral
angles obtained with the SVR control active with the robot walking
on a horizontal flat surface pulling a 1.5 kg mass.

with the robot dragging a mass. The values presented in the
next figures were normalized such that unit values correspond
to 25◦ for θtorso, 10◦ for θankle, 55◦ for the pendulum lateral
angle (θlateral), and 0.047 m for XZMP. In the two experiments,
the robot was walking on a flat surface, with a step length
of 0.07 m, dragging a mass of 1.5 kg (corresponding to a
pulling force of about 5 N), with (Fig. 28 and Fig. 29) and
without (Fig. 30 and Fig. 31) the SVR controller active. In
Fig. 28, it can be noticed that the θtorso is deviated forward
relative to the θtorsoD in order to keep the sagittal balance and
XZMP near zero (XZMPref = 0).

It is visible in Fig. 29 (with SVR balance control active)
that the robot is able to pull the mass along the step, i.e., the
mass moves forward 0.07 m (step length), while in Fig. 31
(without the balance control active) the mass moves forward
only 0.035 m and the robot falls down in the next step. In
Fig. 30, it is possible to see that the measured value of XZMP

is in the limit of the stable area (larger values of XZMP are
read as this maximum value). The effectiveness of the SVR
control is stated in Fig. 28, where the robot presents a good
stability margin, compared to Fig. 30, where the XZMP profile
is irregular and the stability margin is close to zero at time
about 4 s and zero at about 8 s, when the robot falls down.
In44 other experiments are presented in which this robot is
pushed with a force of about 9.8 N while walking and with a

Fig. 30. XZMP, designed torso (θtorsoD) and lateral angles with the
robot walking on a horizontal flat surface, pulling a 1.5 kg mass,
without active control.

force of about 5.5 N while standing on one foot only. In these
experiments, performed with the NF controller, the robot kept
its stability.

8. Conclusions
The real-time control of a biped robot using the full dynamic
model of the ZMP is very time demanding because of the
processing of the corresponding equations. The use of a NF
network or an SVR balance controller allows a faster control
cycle of the robot. Both control methods were tested and
satisfactory results obtained. These controllers use the real
ZMP, acquired through force sensors placed under the robot’s
feet. The biped robot did not fall in any of the experiments,
presenting a good stability margin with the balance controller
active, demonstrating that the SVR controller and the NF
controller are both good solutions for biped robot balance
control. The two proposed performance indexes show that the
biped robot with the SVR controller presents slightly better
stability than with the NF controller. The most important
advantage of the SVR is the fact that it is about 50 times faster
than the NF. The SVR was also tested with the robot pulling
a mass that is about 65% of the robot’s mass. This SVR
controller can also be applied to the lateral balance control.
The use of the FF network to generate the gait rather than the
direct use of recorded trajectories will allow the future use of
RL techniques for an automatic adjustment of the gait to the

Fig. 29. Walking snapshots of one step on a horizontal flat surface pulling a 1.5 kg mass with the SVR control active.
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Fig. 31. Walking snapshots on a horizontal flat surface, pulling a 1.5 kg mass without active control. The robot falls down at about t = 8 s.

robot and to a changing of the environment, such as walking
through grounds with different friction coefficients.
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Ribeiro, “Simulation Control of a Biped Robot with Support
Vector Regression,” 2007 IEEE International Symposium on
Intelligent Signal Processing—(WISP’07), Madrid, Espanha
(Out. 3–5, 2007) pp. 1–6.

26. J. S. R. Jang, “ANFIS: Adaptive-network-based fuzzy
inference system,” IEEE Trans. Syst. Man Cybern. 23(3), 665–
685 (May/June 1993).

27. R. M. Mohamed and A. A. Farag, “Classification
of Multispectral Data Using Support Vector Machines
Approach for Density Estimation,” IEEE Seventh International
Conference on Intelligent Engineering Systems, INES03,
Assiut, Egypt (March 2003).

28. V. Vapnik, S. Golowich and A. Smola, Support Vector Method
for Multivariate Density Estimation, Advances in Neural
Information Processing Systems, Vol. 12 (MIT Press, April
1999) pp. 659–665.

29. C.-C. Chang and C.-J. Lin, “LIBSVM: A Library for Support
Vector Machines,” January 2, 2007.

30. J. G. Ziegler and N. B. Nichols, “Optimum settings for
automatic controllers”, Trans. ASME 64, 759–768 (Nov. 1942).
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Appendix

Walking snapshots

Snapshots of walking on a 10◦ inclination slope

Snapshots of walking on a −10◦ inclination slope
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