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Dynamical Models and Explanation
in Neuroscience
Lauren N. Ross*y

Kaplan and Craver claim that all explanations in neuroscience appeal to mechanisms.
They extend this view to the use of mathematical models in neuroscience and propose
a constraint such models must meet in order to be explanatory. I analyze a mathematical
model used to provide explanations in dynamical systems neuroscience and indicate how
this explanation cannot be accommodated by the mechanist framework. I argue that this
explanation is well characterized by Batterman’s account of minimal model explanations
and that it demonstrates how relationships between explanatory models in neuroscience
and the systems they represent is more complex than has been appreciated.

1. Introduction. Recent philosophical discussion of explanation in the
special sciences has focused on mechanist theories of explanation. These
theories maintain that explanations appeal to the mechanisms that under-
lie the scientific phenomenon of interest. While there are different versions
of these theories, a significant number of them define mechanisms as the en-
tities, activities, and organizational features that produce a target phenom-
enon of interest.1 This general mechanist position provides an explanatory
structure that has been successfully identified in a number of special sci-
ences, including neuroscience, molecular biology, and genetics. However,
1. Most mechanist theories that fall under this general account originate from Macha
mer, Darden, and Craver ð2000Þ, while other versions can be found in Glennan ð1996Þ
Woodward ð2002Þ, and Bechtel and Richardson ð2010Þ.
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this success has led a number of philosophers to make the stronger claim that
in certain sciences mechanistic explanation is the only form of explanation.
One example of this stronger mechanist thesis is found in recent work by
Kaplan and Craver ð2011Þ who claim that all explanations in neuroscience
are mechanistic. They focus on dynamical systems neuroscience, where
there has been significant resistance to this strong mechanist position. This
resistance has been motivated by claims that mathematical models in this
field can provide explanations without referencing the mechanisms that un-
derlie neural systems. In response to these claims Kaplan and Craver ar-
gue for two main points in regard to the explanatory status of mathematical
models in dynamical systems neuroscience. They argue that these models
ð1Þ must meet a model-to-mechanism-mapping ð3MÞ constraint to be ex-
planatory and that ð2Þ their explanatory status increases as they include more
relevant mechanistic detail.
In this article I argue against Kaplan and Craver’s strong mechanist po-

sition and their claims regarding the explanatory status of mathematical mod-
els in dynamical systems neuroscience. I support this argument by analyzing
a dynamical model that provides an explanation, despite failing to meet their
mechanist requirements. I indicate how this explanation is well characterized
by Batterman’s account of minimal model explanations, which has been used
to clarify the structure of explanations in the physical sciences, and more re-
cently in biology ðBatterman and Rice 2014Þ. Understanding the explanation
in this example involves attending to mathematical models and abstraction
techniques that are common to dynamical systems neuroscience and used in
understanding neural behavior. Such models can bear complex relationships
to the neural systems they represent, and although they do not meet the mech-
anist mapping requirements or represent the causal mechanical details of
these systems, I show how this does not prevent them from providing expla-
nations.
This article is organized as follows. In section 2 I describe Kaplan and

Craver’s mechanist position in more detail. Section 3 contains a brief back-
ground on dynamical systems neuroscience and an example of an explana-
tion that these mathematical models provide. In section 4 I argue that this
type of explanation cannot be accommodated by the mechanist approach
and indicate how it is well characterized by Batterman’s account of minimal
model explanations. Section 5 contains concluding remarks on the relation-
ship between explanatory models and the systems they represent in the real
world.

2. Kaplan and Craver’s Mechanist Position. This section contains further
description of Kaplan and Craver’s claims regarding explanations in neu-
roscience, including their 3M constraint and the claim that the explanatory
power of a model increases as it includes more mechanistic detail. They di-
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rect these claims at mathematical models in neuroscience and use them to
distinguish between explanatory models and those that merely provide de-
scriptions or predictions.
According to Kaplan and Craver, all explanations in neuroscience appeal

to mechanisms as models in this field “carry explanatory force to the extent,
and only to the extent, that they reveal ðhowever dimlyÞ aspects of the
causal structure of a mechanism” ð2011, 602Þ. They define mechanisms as
the underlying component parts of a system and the features, activities, and
organization of these components that are relevant to the production of a
particular phenomena of interest ð605Þ. Explaining this phenomenon requires
citing all and only those actual components and activities that underlie and
produce it. For example, an adequate explanation of neural firing ðor the ac-
tion potentialÞ appeals to the relevant biological entities and activities that
underlie and produce this firing. These biological entities include the rele-
vant ion channels, ions, and the Na1/K1 pump, while the activities describe
what these entities do ðe.g., their attraction, blocking, diffusion; Craver 2008,
1025Þ. As an account of causal explanation, the mechanist position depends
on the rationale that explaining a phenomena of interest requires citing the
causal factors that produce it. In other words, it requires that the explanans
invoke factors that are causally relevant to the explanandum. If a model
merely describes or predicts the explanandum, without citing the causal factors
that produce it, the model is regarded as non-explanatory.2

There are two central claims that Kaplan and Craver make regarding the
explanatory status of mathematical models in neuroscience. The first is their
3M constraint, which states:
2. Th
predi
partic
his ac
causa
ventio
cause
were
mode
expla

8 Publ
ð3MÞ In successful explanatory models in cognitive and systems neuro-
science ðaÞ the variables in the model correspond to components, activities,
properties, and organizational features of the target mechanism that produces,
maintains, or underlies the phenomenon, and ðbÞ the ðperhaps mathematicalÞ
dependencies posited among these variables in the model correspond to
the ðperhaps quantifiableÞ causal relations among the components of the
target mechanism. ðKaplan and Craver 2011, 611Þ
e distinction between explanatory models and those that are merely descriptive or
ctive has received significant attention in the philosophical literature on explanation,
ularly in the context of the biological sciences. Woodward addresses this distinction in
count of causation, which Kaplan and Craver rely on in specifying their notion of a
l mechanism ðWoodward 2003; Kaplan and Craver 2011, 602, 613Þ. Woodward’s inter-
nist theory of causation maintains that explaining a phenomenon involves citing the
s that “make a difference” to the phenomenon, in the sense that if these causal factors
changed theywould change the explanandum in variousways.Descriptive and predictive
ls are not explanatory because they do not cite factors that are causally relevant to the
nandum but merely redescribe or predict the explanandum, respectively.
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Although this statement of 3M explicitly addresses models in cognitive and
systems neuroscience, Kaplan and Craver extend it to all models in neurosci-
ence.3 Their 3M constraint specifies two mapping relations that must be met
between the model and a target system in order for the model to be explanatory.
The first maps the variables of a model to components within the system, and
the second maps dependencies among variables in the model to causal relations
among components in the system. These criteria are intended to ensure that the
model accurately represents the “internal aspects of the system” ðKaplan and
Craver 2011, 616Þ. However, the degree to which a model needs to fulfill 3M in
order to be explanatory is not made entirely explicit in their work. They indicate
that models need not completely map to the target system or refrain from ideal-
izations and abstractions to be explanatory. Kaplan states that “3M requires only
that some ðat least oneÞ of the variables in the model correspond to at least some
ðat least oneÞ identifiable component parts and causal dependencies among com-
ponents in the mechanism responsible for producing the target phenomenon”
ðKaplan 2011, 347–48Þ. In this manner, the 3M constraint is stated such that it
requires only a minimal amount of mapping from the model to the target system.
The second main claim that Kaplan and Craver make is that among mod-

els meeting 3M, the explanatory power of a model increases as it includes
more relevant mechanistic detail ðKaplan 2011, 347Þ. According to Kaplan,
“As one incorporates more mechanistically relevant details into the model,
for example, by including additional variables to represent additional mech-
anism components, by changing the relationships between variables to better
reflect the causal dependencies among components, or by further adjusting
the model parameters to fit more closely what is going on in the target mech-
anism, one correspondingly improves the quality of the explanation” ð347Þ.
As including increasing amounts of detail into a model further reveals the
causal structure of the mechanism, it increases the explanatory status of the
model. Kaplan and Craver sometimes refer to this claim as a “fact” and at
other times a “highly plausible assumption” ðKaplan and Craver 2011, 613;
Kaplan 2011, 347Þ. In either case, it is presented as a complement to their
3M constraint. This more-details claim provides a natural way of assessing
the degree to which a model meets 3M or maps onto a causal mechanism.
A more detailed mechanistic model, with a higher degree of mapping, will
provide a better explanation because it will be able to answer a wider range
of questions about the physical system of interest.
3. They focus on cognitive and systems neuroscience to argue that mechanistic expla-
nation is the unique form of explanation in higher-level neuroscience, which they take to
have already been established for lower-level neuroscience ðKaplan and Craver 2011,
602–3Þ. In a separate paper, Kaplan argues for the 3M criteria in the context of compu-
tational neuroscience ðKaplan 2011Þ. For a helpful discussion of explanation in compu-
tational neuroscience and response to Kaplan’s paper, see Chirimuuta ð2013Þ.
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Kaplan and Craver defend a strong mechanist position in an ongoing
debate about the explanatory status of dynamical models in neuroscience.
They use their position to argue against the claim that dynamical models
can be explanatory when they do not reveal the causal structure underlying
system-level dynamics. However, as dynamical models often contain vari-
ables that represent macroscopic and behavioral features of neural systems,
these variables do not always appear to map onto mechanisms in the 3M
sense. In these cases, Kaplan and Craver claim that these variables “are not
components in the sense of being the underlying parts of the mechanism”

and merely provide mathematically compact characterizations of system-
level behavior ðKaplan and Craver 2011, 614–15Þ. They state that these
dynamical models provide at best descriptions or predictions of the behav-
ior of complex mechanisms and that those who consider them explanatory
“fundamentally misidentify the source of explanatory power in their mod-
els” ð602Þ. This criticism is directed toward those who have argued for dis-
tinctly dynamical, nonmechanistic explanations in neuroscience, which has
been argued, most notably, by Stepp, Chemero, and Silberstein.4 Unfortu-
nately, these dynamicist arguments have remained susceptible to such an
objection, because they have continued to reference the predictive success
of these models without providing another clear sense in which they are ex-
planatory. The strong mechanist position has likely benefited from the fact
that these arguments for nonmechanistic dynamical explanation have not
been viewed as entirely successful.

3. Dynamical Systems Neuroscience. With this description of Kaplan and
Craver’s mechanist position, I move on to providing some background on
dynamical systems neuroscience. In this section, I first discuss how neural
excitability is understood and modeled with the dynamical systems ap-
proach. To do this I characterize neural excitability from a molecular per-
spective and contrast this with the dynamical systems perspective. After
clarifying certain aims of dynamical modeling, I provide an example of an
explanatory dynamical model in neuroscience. I indicate why this dynam-
4. For example, Silberstein and Chemero claim that dynamical models allow for the
prediction of qualitative behavior and that “if models are accurate enough to describe ob-
served phenomena and to predict what would have happened had circumstances been dif-
ferent, they are sufficient as explanations” ð2008, 12Þ. Stepp, Chemero, and Turvey argue
that dynamical models are genuinely explanatory and claim that, similar to covering-law
explanations, “dynamical explanations show that particular phenomena could have been
predicted, given local conditions and some law-like general principles” ð2011, 432Þ. In a
recent paper, Silberstein and Chemero provide a different argument for nonmechanistic
explanation in neuroscience by claiming that some explanations fail to meet the mechanis-
tic requirements of localization and decomposition ð2013Þ. In n. 17, I discuss their posi-
tion in more detail.
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ical model is explanatory and what led neuroscientists to seek the expla-
nation it provides.

3.1. Dynamical Models in Neuroscience. A major topic of study in
neuroscience is the excitability of neurons, as this is important for under-
standing how they transmit information. From the molecular perspective,
neural firing, or the action potential, is explained with a generic neuron model
consisting of voltage-gated ion channels sensitive to Na1 and K1. When a
neuron receives a strong enough signal a number of things happen in suc-
cession that cause it to fire. First, the sodium channels open quickly and Na1

rushes into the cell causing the membrane potential to increase. This re-
sults in depolarization of the neuron and the upstroke of the action potential.
Shortly after this depolarization, the potassium channels open and K1 rushes
out of the cell, while the sodium channels begin to close, decreasing the in-
flux of Na1. These events cause the membrane potential to decrease, which
contributes to the repolarization of the neuron and downstroke of the action
potential. The action potential travels down the length of the neuron and con-
stitutes a single firing event.
In dynamical systems neuroscience, neural excitability is understood and

modeled in a different way: the main aim is to study qualitative features of
neural systems irrespective of their fine-grained molecular details. Qualita-
tive features of neural systems are studied by analyzing the graphical and to-
pological structures of dynamical models that represent these systems. A
dynamical model is a mathematical model that describes how variables rep-
resenting a particular system evolve with time. In neuroscience it is common
to model neural excitability in this way with coupled differential equations.
For example, consider the following two-variable dynamical model:

_V 5 f ðV ; nÞ; ð1Þ

_n5 gðV ; nÞ: ð2Þ

This is a system of coupled differential equations that describe how V and n
change over time. Here, V is the excitation variable, which represents neural
factors responsible for depolarization, and n is the recovery variable, which
represents neural factors responsible for repolarization. The functions f and
g describe the evolution of the two-dimensional state variable ðVðtÞ, nðtÞÞ.
With this two-variable model the dynamical system can be represented
graphically, as shown on the phase plane in figure 1. In this figure V is plot-
ted along the x-axis and n is plotted along the y-axis. To each point ðV, nÞ ∈ R2

there is a corresponding vector whose x component is _V and whose y com-
ponent is _n. The vector field plotted shows ð _V ; _nÞ at each ðV, nÞ.
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https://doi.org/10.1086/679038
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Graphical analysis of the vector field on the phase plane can provide in-
formation about the system that may not be obvious from the differential
equations alone. For example, a solution to the system of equations can be
obtained from an analysis of the figure, as it is the curve ðVðtÞ, nðtÞÞ on the
phase plane tangent to the vector field. The significance of a solution to
the system of equations is that it gives a full picture of how V and n change
over time. This solution and its portrayal as a trajectory corresponds to a
characterization of neural firing. Counter-clockwise movement on the tra-
jectory tracks changes in V and n throughout the action potential, and the
completion of this trajectory represents a single firing of the neuron.5

In dynamical systems neuroscience the qualitative features of neural sys-
tems are often studied without reference to their fine-grained molecular de-
tail. There are two main reasons for this. First, as graphical representations
and qualitative features are exhibited by systems of differing molecular de-
tails, explaining these qualitative features does not depend on a shared phys-
ical structure. For example, the phase plane in figure 1 represents the quali-
5. For more on graphical representations of neural excitability, see Izhikevich ð2007Þ
and Ermentrout and Terman ð2010Þ.
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tative behavior of neurons that differ in their physical structure ði.e., in terms
of their ion channels, ion permeabilities, etc.Þ. The fact that physically distinct
neural systems can exhibit the same qualitative behavior motivates the view
that this behavior is, in a sense, independent of any specific molecular mi-
crostructure. Hoppensteadt and Izhikevich express this sentiment when they
state that “behavior can be quantitatively different, but qualitatively the same”
ð1997, 33Þ.6 As the focus in dynamical systems neuroscience is on studying
and explaining the qualitative behavior of neural systems, the physical dif-
ferences among systems that exhibit these behaviors are rarely referenced ðand
sometimes the full extent of these differences are unknownÞ. A second reason
for this inattention to molecular detail is that preferred graphical analyses,
which concisely represent the comprehensive behavior of neural systems,
constrain the number of variables that can be implemented to characterize these
systems. This requires the use of simple models that abstract from the mo-
lecular details of neural systems, while preserving their system-level behavior.
The use of such techniques by Fitzhugh and Nagumo et al. in the early 1960s
essentially marks the beginning of dynamical systems neuroscience ðFitzhugh
1960; Nagumo, Arimoto, and Yoshizawa 1962Þ. Fitzhugh pioneered this work
by reducing the number of variables in the Hodgkin-Huxley model of the
action potential so that the system could be “easily visualized” in a phase space,
leading “to a better understanding of the complete system than can be obtained
by considering all the variables at once” ðFitzhugh 1960, 873Þ. He reduced the
number of variables in these neural models by exploiting their different
timescales and functional effects.7 This early work explicitly distinguished the
qualitative features of neurons and the topological properties of their phase
space, from an analysis of their physical constitution. As I discuss in the
following subsections, these techniques and the general aims of dynamical
systems neuroscience are central to understanding how some models in this
field are used to provide explanations.

3.2. Explanatory Dynamical Model: The Canonical Model. In this sub-
section, I give an example of a dynamical model in neuroscience and pre-
sent an account of its role in a particular explanation. In this example the
dynamical model, referred to as a canonical model, represents the shared
qualitative features of a number of physically distinct neural systems. I in-
dicate how this dynamical model is used to provide explanations, after
6. In other words, quantitative differences between neural models indicate physical dif-
ferences between the systems they represent, even though such models can exhibit the
same qualitative behavior.

7. For Fitzhugh’s use of these reduction techniques, see Fitzhugh ð1960, 1961Þ, and for
further discussion of them, see Abbott ð1994Þ and Doi and Kumagai ð2001, 69Þ.
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discussing the research findings that led neuroscientists to seek these ex-
planations.
In 1948 Hodgkin published important results from his voltage clamp stud-

ies of single crab neurons ðHodgkin 1948Þ. In these experiments he mea-
sured the electrical responses of neurons after injecting them with various
levels of current. He identified three different types of neural excitability,
which he referred to as class I, class II, and class III excitability, a catego-
rization still used today.8 Class I neurons exhibit a low frequency of firing
to low levels of current and smoothly increase their firing with increases
in current. Class II neurons begin firing when the current stimuli reaches a
higher level, and their firing frequency increases minimally with increases
in current, as represented by the step function in figure 2. The relationship
between current introduced into class I and class II neurons and the fre-
quency of their firing response is represented in the frequency-current ðF-IÞ
graph in figure 2. Class III neurons fail to maintain firing in response to
current stimuli ðand are not depicted in the figureÞ. The qualitative distinc-
tions between these classes is that for class I neurons the frequency-current
relationship starts at zero and increases continuously, for class II neurons it
is discontinuous, and for class III neurons it is not defined.
These excitability classes identify qualitative features that are shared among

large groups of physically distinct neurons. Hodgkin was particularly inter-
ested in class I excitability because it had been identified in neurons from
many different animals ð1948, 167Þ. Since his work, neuroscientists have
identified class I excitability in many other neural systems, including rat hip-
pocampal neurons, rat cortical neurons, crustacean motor neurons, and the
majority of neurons in the mammalian cortex ðConnor 1975; Cauli et al. 1997;
Tateno 2004; Jia, Gu, and Li 2011Þ. As neurons with class I excitability are
found in animals of different biological phyla and even throughout the ner-
vous systems of single species, it is unsurprising that this class encom-
passes neurons that differ in their microstructural details. What has been
surprising, however, is the astonishing degree of this variation and the
complexity of neural structures that has been revealed by recent advances
in patch-clamp recording, heterologous expression of cloned channels, and
genomic analysis ðBean 2007, 451Þ. For example, consider mammalian py-
ramidal neurons, the majority of which exhibit class I excitability. These
neurons have three main types of voltage-gated ion channels responsible for
excitability, including those selective for Na1, K1, and Ca21. Of those
channels that transmit distinct ions, each has an enormous variety of sub-
types; for example, there are over 100 molecularly distinct K1 channels
ðVacher, Mohapatra, and Trimmer 2008Þ. From this large selection of chan-
8. These categories are sometimes referred to as type I, type II, and type III neuronal
excitability ðHoppensteadt and Izhikevich 1997, 84Þ.
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nels a single neuron typically expresses over a dozen different types, which
vary in density along the neural membrane and result in many distinct
voltage-dependent conductances. These voltage-dependent conductances
contribute to the excitability of these neurons and can be composed of two
to five different currents of each ion ðNa1, K1, and Ca21; Bean 2007Þ. This
indicates a large degree of molecular difference among mammalian pyram-
idal neurons with class I excitability. The differences between all neurons that
share this behavior is, of course, much greater.
Neuroscientists have sought an explanation for why neurons that differ

so drastically in their microstructural details all exhibit the same type of ex-
citability. In this case the explanandum is a behavior displayed by a group
of physically distinct systems as opposed to a behavior produced by a single
physically unique system. In 1986 Ermentrout and Kopell provided the cru-
cial component of this explanation with their derivation of a canonical model
for class I excitability.9 Their work involves using mathematical abstraction
techniques to reduce models of molecularly diverse neural systems to a sin-
gle model, referred to as a canonical model. The canonical model and ab-
straction techniques used in this approach explain why molecularly diverse
neural systems all exhibit the same qualitative behavior and why this be-
havior is captured in the canonical model. The explanation for this shared
behavior is that when mathematical abstraction techniques are used to ab-
stract away from details of mathematical representations of neural systems,
all representations converge onto the same canonical model. In the next sub-
section, I further describe the abstraction steps, canonical model, and the
explanations they provide.
9. This model is also called the “Ermentrout-Kopell model” and sometimes the “theta
model” ðErmentrout, Rubin, and Osan 2002; Izhikevich 2004; Börgers, Epstein, and
Kopell 2008Þ.
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3.2.1. Reducing Models of Neural Excitability. The first step in this canon-
ical model approach involves reducing the number of variables in models of
neural excitability. Generally, variables characterizing the dynamics of neural
systems are classified into four groups depending on their timescale and
effect on membrane potential. These variables include ð1Þ the membrane po-
tential variable, ð2Þ excitation variables, ð3Þ recovery variables, and ð4Þ adap-
tation variables ðIzhikevich 2007, 8Þ. Excitation variables include neural
factors that contribute to the upstroke of the action potential and firing of
the neuron, while recovery variables represent neural factors that contribute
to the downstroke of the action potential and recovery of the neuron. Adap-
tation variables stand for neural features that increase during continued spik-
ing and can alter long-term neural excitability. This classification allows the
factors characterizing neural excitability to be collapsed into one of the four
variables that together characterize the dominant behaviors of the system.
Models for class I excitability do not contain variables of the fourth type,

so our analysis begins with dynamical models characterized by three var-
iables: the membrane potential variable, excitation variable, and recovery var-
iable. A model with these three variables can be reduced to a two-variable
model by exploiting differences in the rate of the kinetics between the ex-
citation and recovery variables.10 As the kinetics of the excitation variable
are often much faster than the kinetics of the recovery variable, an ideali-
zation is introduced into the model by replacing the excitation variable with
the value it quickly approaches ðRinzel and Ermentrout 1989Þ. This reduces
the model to two variables that characterize the macrolevel behavior and
dynamics of the system: the “new” excitation variable V, which was formerly
the membrane potential variable,11 and the recovery variable n. This two-
variable dynamical model takes the same form as the coupled differential
equations ð1Þ and ð2Þ.
When models of neural excitability are reduced to two variables and rep-

resented graphically, those systems with class I excitability all exhibit the
same change in topological structure as they transition from resting to sus-
tained firing. This qualitative feature is captured in dynamical systems theory
by the presence of a particular kind of bifurcation. In the case of neurons with
class I excitability, all exhibit the saddle node on invariant circle bifurcation
ðIzhikevich 2007, 164Þ. This reduction of mathematical models of neural ex-
citability to two-variable models is the first step in the canonical model ap-
10. The use of scale differences to reduce variables in mathematical models is a well-
known approach. For more on this approach, see Batterman ð2000Þ and Fowler ð2007Þ.
11. Once this reduction is performed, it is common to refer to the variable for the mem-
brane potential as the “excitation variable.” This is because the membrane potential var-
iable tracks changes in the neural membrane due to current stimuli, which can result in
excitation of the neural system.

8 Published online by Cambridge University Press

https://doi.org/10.1086/679038


DYNAMICAL MODELS AND EXPLANATION 43

https://doi.org/10.10
proach and begins to reveal the shared qualitative features in their topol-
ogy.12

3.2.2. Ermentrout-Kopell Theorem. Identifying this particular bifurcation
in all models of class I systems is significant because Ermentrout and Ko-
pell’s theorem for class I excitability proves that all models which exhibit
this bifurcation transform into the same model when they are reduced. They
prove this by providing a continuous piecewise transformation, represented
by h in figure 3, that transforms any one-variable model, among a family of
models with this bifurcation, into a single canonical model.
In other words, Ermentrout and Kopell prove that all dynamical systems

with the saddle node on invariant circle bifurcation of the form

_x5 f ðxÞ; x ∈ S
1; ð3Þ

can be mathematically transformed into the following canonical model:13

v
0
5 ð12 cos vÞ1 ð11 cosvÞr; v ∈ S

1; ð4Þ
where v represents the activity of a neural system given a particular current
input represented by r.14 Given a particular fixed value of the bifurcation
parameter r, the model describes how the activity of the neural system,
represented by v, changes over time by specifying the location of v on the
unit circle S

1. This is represented in figure 4, where the location of v on
the unit circle indicates whether the neural system is in the rest, threshold
potential, spike, or refractory phase. Every completion of the unit circle by
v represents a single firing event of the neural system. The model indicates
that with small values of r the neural system remains at rest, represented
12. This first step allows for the representation of system-level behavior in a two-
dimensional phase space and serves many important roles in understanding this behavior,
e.g., in identifying the particular bifurcation that characterizes the system. However, for
the purpose of reducing any model of neural excitability to the canonical model, so long
as the system exhibits the saddle node on invariant circle bifurcation, technically the
Ermentrout-Kopell theorem is all that is required ðHoppensteadt and Izhikevich 1997Þ.
13. Ermentrout and Kopell’s theorem pertains not just to single neurons but also to neural
networks. The equations that pertain to neural networks contain an extra term that ac-
counts for the connectivity and interactions between neurons. For the these equations,
see Hoppensteadt and Izhikevich ð1997, 225Þ. I have chosen the single neuron case for
simplicity of presentation.
14. Equations ð3Þ and ð4Þ use different notational conventions for derivatives. Dots de-
note derivatives with respect to time, while primes denote derivatives with respect to
some other specified variable. In eq. ð4Þ the prime represents a derivative taken with re-
spect to the variable t, where t 5

ffiffi

ε
p

t and ε is a small parameter ðHoppensteadt and
Izhikevich 1997, 225Þ.
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Figure 3. Modeling techniques in neuroscience ðIzhikevich 2007, 279Þ.
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by the variable v at the rest potential position. Larger values of r result in
continuous firing of the neural system, represented by the continuous move-
ment of v around the unit circle.
Ermentrout and Kopell’s theorem for class I excitability provides a con-

tinuous transformation h : S1 →S
1 that converts solutions of 3 to solutions

of 4, represented in figure 5. This figure shows how any point on the unit
circle S1 of the family model is represented on the unit circle S1 of the ca-
nonical model. This transformation preserves the behavior of the original
Figure 4. Physiological state of a class I neural system ðHoppensteadt and Izhikevich
1997, 228Þ.
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Figure 5. Solution xðtÞ of equation ð3Þ is mapped to the solution vðtÞ of equation
ð4Þ, the canonical model ðHoppensteadt and Izhikevich 1997, 119Þ.
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system and ensures that no artifacts or behavior not present in the original
system are inherited by the canonical model. Neuroscientists describe this
transformation as “extracting some particularly useful dynamical features”
from these models, which are represented in the canonical model for class I
excitability ðHoppensteadt and Izhikevich 1997, 115Þ. This approach re-
veals how all models of systems with class I excitability are transformed into
the same canonical model when they are reduced with principled mathemat-
ical techniques. This reveals how mathematical representations of class I
systems are stable under certain perturbations by abstracting away from de-
tails of each model.
One of the more impressive features of this canonical model is that it

provides the frequency with which any class I neuron will oscillate given a
particular fixed value of r ðHoppensteadt and Izhikevich 1997, 227–28Þ. The
canonical model approach is valued by mathematical neuroscientists be-
cause it provides a rigorous method for gaining information about classes
of neural systems that share a particular behavior without obscuring this
similarity behind the details of any one system ðIzhikevich 2007, 278Þ. As
Izhikevich notes, the “advantage of this approach is that we can study uni-
versal neurocomputational properties that are shared by all members of the
family because all such members can be put into the canonical form” ð278Þ.
Furthermore, as this canonical model approach pertains not just to single
neurons but also to neural networks, it indicates the relevance of this ex-
planatory approach to both cellular- and systems-level neuroscience.15

It is worth emphasizing that this approach depends crucially on both the
canonical model and mathematical abstraction techniques that relate it to
models of distinct neural systems. Referring to the canonical model alone
15. For more on Hoppensteadt and Izhikevich’s discussion of the canonical modeling
approach and its use in understanding weakly connected neural networks, see Hoppen-
steadt and Izhikevich ð1997, 111Þ.
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could be viewed as merely describing or predicting the behavior of class I
neurons, as opposed to explaining it. The canonical model approach, how-
ever, including the canonical model and abstraction techniques, does more
than just describe or predict the excitability of class I neurons. It explains
why physically distinct neural systems all share the same behavior, by show-
ing that principled mathematical abstraction techniques—which preserve
qualitative behavior—can be used to reduce all models of these distinct sys-
tems to the same canonical model. These abstraction techniques involve ex-
ploiting timescale differences to introduce idealizations into models and
transforming systems into simpler models that are topologically equivalent.
This approach provides an explanation for this shared behavior—when prin-
cipled mathematical techniques abstract from the details of different sys-
tems, they can all be simplified into the same canonical model that exhibits
this behavior.

4. Analysis of the Canonical Model Approach. In this section, I examine
whether Kaplan and Craver’s 3M constraint and claims regarding detailed
models—which they created to account for explanatory mathematical mod-
els in neuroscience—can accommodate the explanations provided by the
canonical model approach. I argue that their mechanist criteria and frame-
work cannot account for this type of explanation. I then describe Batter-
man’s account of minimal model explanations and argue that it well char-
acterizes the explanatory structure of the canonical model explanation, by
elucidating the role of abstraction techniques and the canonical model in
explaining a universal neural behavior.

4.1. Kaplan and Craver’s Mechanist Account. The canonical model
approach contrasts with Kaplan and Craver’s claims because it is used to
explain the shared behavior of neural systems without revealing their un-
derlying causal mechanical structure. As the neural systems that share this
behavior consist of differing causal mechanisms—different types of ion chan-
nels, with different distributions along the membrane, and permeabilities to
specific ions, and so on—a mechanistic model that represented the causal
structure of any single neural system would no longer represent the entire
class of systems with this behavior. Explaining this shared behavior requires
abstracting from the mechanistic details of these systems, a feature of the
canonical model explanation that conflicts with Kaplan and Craver’s claim
that explanations improve with further inclusion of mechanistic detail. A
mechanistic explanation can be provided to explain why any single system
displays class I excitability, but this answers a different question from that
answered by the canonical model, which takes the shared behavior of all
systems in the class as the desired explanandum. This explanandum does
8 Published online by Cambridge University Press
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not fit well with the mechanist framework. As Kaplan and Craver state, “it
is merely suggestive to note that a similar pattern is observed in a variety of
other systems. This information might be useful in our search for general
patterns in the organization of mechanisms, but it does nothing to explain
the phenomenon we wanted to explain in the first place. If anything, it merely
points out that many other similar phenomena require explanations as well,
and perhaps these explanations will be similar” ð2011, 618Þ.
In contrast with this claim, the canonical model approach is a case in

which a similar pattern or universal behavior is exactly what neuroscientists
want to explain. Furthermore, dynamical systems neuroscientists do not ex-
plain this shared behavior by referencing the causal mechanisms that underlie
the neural systems because their underlying mechanisms differ too greatly for
such an approach. Instead, they explain this shared behavior by using a dy-
namical model that abstracts from mechanistic details and maps onto neural
systems in a more complex fashion than the 3M criteria specify.
These points can be made clearer by considering Kaplan and Craver’s

3M constraint for explanatory models in neuroscience, which the canonical
model does not meet. Recall that the first part of this constraint requires
that the variables of a model map onto the mechanism of interest ði.e., the
entities, activities, and organizational features of the target system produc-
ing the phenomena of interestÞ. The canonical model contains a single vari-
able v and the bifurcation parameter r, representing the behavior of the neu-
ron and a fixed input to the neuron, respectively. The bifurcation parameter
does not represent a component ðor internal aspectÞ of the neural system but
rather an input stimulation to the system. This leaves the variable v as a can-
didate for the first part of the 3M constraint. This single variable ðvÞ cannot
fulfill this constraint because it does not map onto any identifiable entity,
activity, or organizational feature of the mechanisms that underlie these
neural systems. Rather it represents the overall behavior of the neural system
by indicating its location on the unit circle. The second 3M requirement—that
variables in the model map onto causal relations in the target system—is also
problematic. As the only candidates for a dependency relation in this model
are v and r, it may be claimed that they meet the second part of the 3M
constraint: a dependency relation between a fixed input to the neuron and
its behavior. However, the fact that these variables do not meet the first
part of the 3M requirement makes this dependency relationship difficult
to interpret with the mechanist framework. Furthermore, Craver considers
this type of input/output relation to be a “phenomenal model” that “black
boxes” the underlying causal mechanism. He claims that such phenomenal
models are not explanatory because they fail to represent the mechanism
between the input and the output relations. As he has stated, phenomenal
models “are complete black boxes; they reveal nothing about the underlying
86/679038 Published online by Cambridge University Press
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mechanisms and so merely ‘save the phenomenon’ to be explained” ðCraver
2006, 357Þ. Thus the only possible dependency relation in the canonical
model fails to meet 3M because it merely captures an input/output relation
and fails to map onto an underlying causal structure.
Indicating that the canonical model does not meet the 3M constraint is

not to say that the model does not represent or map onto neural systems in
a manner relevant to its explanatory power. Surely models must bear some
relationship to how things are in the real world in order to be explana-
tory. I am not arguing against there being an explanatorily relevant sense
in which the canonical model maps onto physical systems. Instead I am ar-
guing that the mechanists’ 3M requirement does not accurately characterize
this mapping relationship for all explanatory models in neuroscience. There
does not seem to be any straightforward modification of 3M that would al-
low the mechanist to accommodate the complex relationship between the
canonical model and systems with this type of shared behavior.
On this basis it is fair to conclude that the canonical model for class I

excitability cannot be accommodated by Kaplan and Craver’s mechanist
account. This model fails to meet their 3M criteria, their claims regarding
the inclusion of details in explanatory models, and their assertion that ex-
planatory models reveal the structure of mechanisms. The specific exam-
ple that I have provided indicates that even if the mechanist framework
accounts for many explanations in neuroscience, it cannot not account for
all of them.

4.2. Batterman’s Minimal Model Explanations. An account of ex-
planation that accommodates this canonical model example is Batterman’s
account of minimal model explanations. Explanations in science are often
considered answers to why-questions, and Batterman has distinguished be-
tween two different types of these questions: type i and type ii why-questions
ðBatterman 2001, 23Þ. A type i why-question asks why a phenomenon man-
ifests in a particular circumstance, while a type ii why-question asks why a
phenomenon manifests generally or in a number of different circumstances.
For example, a type i why-question might ask why a particular firing be-
havior is exhibited by a rat hippocampal neuron. An answer to this question
is likely to provide an account of how components of the rat hippocampal
neuron bring about the spiking behavior of interest. A type ii why-question,
however, might ask why a particular firing pattern is found generally among
a group of microstructurally distinct neurons ðe.g., rat hippocampal neurons,
crustacean motor neurons, and human cortical neuronsÞ. An answer to this
question is unlikely to reference the lower-level components of the systems
because the components vary from system to system. An explanation for why
all of these neurons exhibit the same firing behavior should explain why one
can abstract away from the details of each system to achieve the same higher-
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level behavior. Whenever the lower-level components of a single system are
invoked, explanation of the shared behavior of all these systems is lost.
While mechanistic explanations provide answers to type i why-questions,

Batterman’s minimal model explanations aim to answer type ii why-questions.
The first step in these explanations is the identification of a pattern or be-
havior that is shared among physically distinct systems. This shared behavior
is often referred to as universal behavior, and the group of systems that ex-
hibit it, as the universality class. The universality class can be delimited and
made precise by using mathematical abstraction techniques to show how dif-
ferent physical systems display the same universal behavior. Batterman de-
scribes this strategy as involving an abstract space of possible systems, where
each point in the space represents a particular physical system of interest.16 The
goal is to apply simplifying techniques to this space that allow for the elimi-
nation of details or degrees of freedom, while preserving the form of behavior
of each system in the space. Repeated application of these techniques ðwhich
involve the renormalization group theory in Batterman’s exampleÞ rescales the
systems and changes their representation in a way that can be tracked as the
movement of the system through this space. Studying the topological fea-
tures of this abstract space reveal fixed points, or points in the space where
many represented systems flow to and remain. Importantly, the systems in
this space that flow to the same fixed point are in the same universality class,
and their shared behavior is determined by the fixed point that they all flow
to. This procedure of creating, simplifying, and studying systems in this ab-
stract space provides a precise way of delimiting the universality class ðBat-
terman and Rice 2014Þ. This strategy of delimiting a universality class ex-
plains why physically distinct systems all share the same behavior because it
reveals that when details irrelevant to the behavior of each system are re-
moved from the models that represent them, all systems share a common
representation. As Batterman states, “explanation of universal behavior in-
volves the elucidation of principled reasons for bracketing ðor setting aside
as ‘explanatory noise’Þ many of the microscopic details that genuinely dis-
tinguish one system from another. In other words, it is a method for extract-
ing just those features of systems, viewed macroscopically, that are stable
under perturbation of their microscopic details” ð2001, 43Þ. Explaining this
universal behavior answers a type ii why-question in explaining why phys-
ically distinct systems exhibit the same behavior.
Delimiting the universality class can be used to identify what Batterman

calls a “minimal model,” which is known to be in the universality class and,
thus, shares features of all models in the class. A minimal model often pro-
16. For more on Batterman’s discussion of these points, see Batterman ð2001, 2010Þ and
Batterman and Rice ð2014Þ.
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vides a compact characterization of universal behavior and, as Nigel Gold-
enfeld states, is a model that “most economically caricatures the essential
physics” ðGoldenfeld, Martin, and Oono 1989; Batterman 2002Þ. Thus,
minimal models characterize the behavior of a universality class without
representing the lower-level physical details of systems in the class. Such
simple models are often used to study and explain universal behaviors, which
Batterman refers to as minimal model explanations. What justifies the use
of a minimal model in studying and explaining universal features? This jus-
tification is provided by the mathematical techniques that delimit the uni-
versality class and the identification of the minimal model as a member of
this class.
There are striking similarities between Batterman’s account of minimal

model explanations and the explanations provided by the canonical model
approach. Like minimal model explanations, the canonical model approach
is used to explain the universal behavior of class I neurons. It provides an
answer to a type ii why-question by explaining why a particular neural be-
havior is found among physically distinct neural systems. Models of these
systems are represented in the abstract space of phase diagrams where mathe-
matical techniques are used to identify the stable features of these models.
As Hoppensteadt and Izhikevich write, “instead of saying that the ½canonical�
model loses information about the original phenomena, we say that our
model is insensitive to the dynamics within an equivalence class . . . and
that it captures properties ½of models in the family� that are transversal to
the partitioning” ð1997, 116Þ.
The canonical model for class I excitability is a minimal model in the sense

that it provides a compact characterization of the behavior of a universality
class, which has been precisely demarcated and includes the canonical model
as a member. As Hoppensteadt and Izhikevich state, “Canonical ½m�odels
arise when one studies critical regimes, such as bifurcations in brain dy-
namics. It is often the case that general systems at a critical regime can be
transformed by a suitable change of variables to a canonical model that is
usually simpler, but that captures the essence of the regime” ð1997, 4Þ. More-
over, “Using comprehensive models ½which attempt to take into account all
known neurophysiological facts and data� could become a trap, since the
more neurophysiological facts are taken into consideration during the con-
struction of the model, the more sophisticated and complex the model be-
comes. As a result, such a model can quickly come to a point beyond rea-
sonable analysis even with the help of a computer. Moreover, the model is
still far from being complete” ð3, 5Þ. Mathematical neuroscientists abstract
away from the physical differences among systems that exhibit class I ex-
citability, in order to explain this shared behavior. This procedure involves
extracting such behavior with mathematical reduction techniques and rep-
resenting it with dynamical models. The dynamical models that concisely
8 Published online by Cambridge University Press
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capture these shared behaviors are often referred to as canonical models.
Neuroscientists consider the canonical model for class I excitability a “one-
dimensional caricature of a ‘real’ neuron,” and they use it to study and ex-
plain this universal neural behavior ðGutkin and Ermentrout 1998Þ.17
An all too common objection to the explanatory status of dynamical mod-

els has been the claim that—in the absence of representing components of
biological mechanisms—they are merely phenomenological models that
are only capable of describing or predicting scientific phenomena. Kaplan
and Craver insist that “there is no currently available and philosophically
tenable sense of ‘explanation’ according to which such models explain,” ar-
guing that their mechanist theory alone best represents the standards of neu-
roscience ð2011, 602Þ. This article is intended to refute such claims in light
of Batterman’s account of minimal model explanations and the similarity of
this explanatory structure to explanations neuroscientists provide with the
canonical model approach. This approach demonstrates how the techniques
of dynamical systems neuroscience are used to explain why such universal
behaviors are exhibited by physically distinct systems, as opposed to just
providing descriptions or predictions of these behaviors or revealing their
underlying causal mechanisms. Such explanations are provided by simplify-
ing neural models of these systems in a way that reveals their shared qualita-
tive features. That such features are represented by the canonical model is ex-
plained by using techniques to demarcate the universality class, of which the
canonical model is a member.
I have indicated why Kaplan and Craver’s mechanist position cannot ac-

count for the explanations provided by the canonical model approach and
how they can be characterized by Batterman’s account of minimal model
explanations. This analysis indicates that there are explanations in neuro-
science that do not meet Kaplan and Craver’s mechanistic account of expla-
17. In a recent paper, Silberstein and Chemero ð2013Þ argue that some explanations in
neuroscience fail to meet the mechanistic requirements of decomposition and localiza-
tion. They state that in these nonmechanistic explanations, “the essential explanatory
work is not being done by localization and decomposition . . . ½but� . . . the explanatory
work in these models is being done by their graphical/network properties and the dy-
namics thereupon” ð960Þ. My argument for the explanatory status of dynamical models
does not require that these models fail decomposition and localization. Rather, I argue
that the mechanist position fails to accommodate the explanations I discuss, because it
fails to capture the role of abstraction in explaining universal behavior. I take this failure
of the mechanist position to be what relates Batterman’s work to the example I discuss.
Silberstein and Chemero’s paper does not discuss the relationship between abstraction
and the failure of decomposition and localization, but this seems worth exploring in future
work. Additionally, I argue that dynamical models explain not in virtue of their “graphical/
network properties and . . . dynamics” but rather in virtue of abstracting away from details
of neural systems that are irrelevant to a behavior of interest.
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nation and, thus, that it should not be considered the sole form of explana-
tion in neuroscience.

5. Conclusion. Models that are viewed as explanatory all seem to bear
some relation to how things are in the real world. In the context of dynam-
ical systems neuroscience, much more can be said about the constraints that
explanation places on this relationship and how such constraints are jus-
tified. The canonical model approach indicates that this relationship can
be much more complex than a direct mapping from variables and their in-
terdependencies to components and their causal relations. Furthermore, it
demonstrates that clarifying these issues involves attending to the specific
phenomena scientists aim to explain and the techniques common to their
field, as these are likely to influence their approaches toward understanding
such phenomena. In a paper involving a dynamical systems analysis of
neural excitability, Rinzel and Ermentrout conclude with the following
remark: “Finally, we emphasize the value of using idealized, but biophys-
ically reasonable, models in order to capture the essence of system behavior.
If models are more detailed than necessary, identification of critical elements
is often obscured by too many possibilities. On the other hand, if justified by
adequate biophysical data, more detailed models are valuable for quantitative
comparison with experiments. The modeler should be mindful and appre-
ciative of these two different approaches: which one is chosen depends on the
types of questions being asked and howmuch is known about the underlying
physiology” ð1998, 290Þ.
The canonical model approach clarifies a type of question that neuroscien-

tists address but which has received little attention in this philosophical liter-
ature. Understanding the approach dynamical systems neuroscientists take
in explaining this neural behavior requires attending to their explanandum
of interest and the unique modeling tools common in their field. However,
such explananda and their respective explanations do not fit well with the
dominant mechanist account of explanation. Analysis of the practice and
techniques of dynamical systems neuroscience reveals that there are alter-
native patterns of explanation in this domain.
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