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A small eddy viscosity or mass diffusivity that varies with height has been found to
have unexpected effects on the Kelvin–Helmholtz (KH) instability of a stably stratified
shear layer near the neutral stability boundary. In particular, varying viscosity can
increase the growth rate of the instability in contrast to the effect of uniform viscosity.
Here, these results are extended to parameter ranges relevant in many geophysical
and engineering contexts. We find that linearization of the viscous terms based on
the assumption of weak viscosity/diffusivity is valid for non-dimensional values
(inverse Reynolds number) up to ∼10−2. Decreasing the Richardson number far
below its critical value 1/4 can change, or even reverse, the effects of eddy viscosity
and diffusivity. A primary goal is to explain the unexpected destabilization by
viscosity. Varying viscosity affects vorticity (and other fluid properties) in a manner
identical to advection with an advecting velocity equal to minus the gradient of
viscosity. Destabilization occurs when this viscous ‘advection’ reinforces the vorticity
distribution of a growing mode.
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1. Introduction
Kelvin–Helmholtz (KH) instability of a stratified shear layer is an important

mechanism in all natural (and many fabricated) fluid systems because it can trigger
turbulence (e.g. Smyth & Moum 2012). The standard theory assumes that the initial
state is laminar and inviscid (Rayleigh 1880), whereas naturally occurring shear
layers invariably coexist with some level of ambient turbulence (e.g. remnants of
previous instability events). Thorpe, Smyth & Li (2013, hereafter referred to as T13)
investigated the stability of a stratified shear layer in which ambient turbulence was
represented as vertically variable eddy viscosity and diffusivity. That study found,
counterintuitively, that in some circumstances variable viscosity acts to amplify
instability. This amplification could speed the onset of a new turbulent episode or
allow its development in flows that would otherwise be stable.

We are motivated by these results to (i) explain the physics underlying the
destabilization phenomenon and (ii) assess its relevance over a broader range of

† Email address for correspondence: lilin@onid.orst.edu
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2 L. Li, W. D. Smyth and S. A. Thorpe

(a) (b)

FIGURE 1. Schematic representation of the positive feedback that regulates shear
instability: (a) vorticity accumulation due to horizontal advection; (b) amplification of the
initial wave by induced vertical motions. Buoyancy perturbations (indicated as δb < 0,
δb> 0) generate a baroclinic torque that retards growth.

initial conditions. This line of research is part of an ongoing effort to understand the
relationship between instability and turbulence in the ocean. The resulting theory has
found useful application in studies of mixing in tidally driven stratified shear flows
in the Clyde Sea (west of Scotland; Liu, Thorpe & Smyth 2012) and has led to a
potential explanation for diurnally varying, near-surface turbulence in the equatorial
Pacific (Smyth, Moum & Li 2013, hereafter referred to as S13).

T13 worked with a perturbation theory that assumed (i) the wavenumber was close
to a stability boundary and (ii) that viscosity and diffusivity were small. In this paper,
we extend the method numerically to allow arbitrarily large viscosity and diffusivity
and mean flows that are far from any stability boundary, e.g. the fastest-growing
instability for a given initial state. We explore these effects over a broad range
of initial states and propose a mechanistic explanation for the amplification of
instability. In geophysical flows, observed mean profiles of velocity, density and
turbulence magnitude vary greatly (e.g. S13). Here, we seek conceptual understanding
by focusing on a few idealized profile shapes that are expected to have general
relevance. Our model for a stratified shear layer is the Holmboe flow, in which mean
velocity and buoyancy are both proportional to tanh(z), where z is the height. Eddy
viscosity and diffusivity are assumed to act on vertical gradients only, and have one
of three simple vertical profiles (uniform, minimum within shear layer and maximum
within shear layer).

We begin by reviewing the mechanism of shear instability and considering the
potential effects of stable stratification and uniform viscosity and mass diffusivity.
Imagine two fluid layers moving opposite to one another, separated by a transition
layer (or shear layer) in which the vorticity is concentrated. Now suppose that the
transition layer suffers a sinusoidal vertical displacement (figure 1a). This creates
constrictions in the upper and lower layers where the horizontal flow must accelerate.
The accelerated flow preferentially advects vorticity toward a convergence point
(located at the centre of 1a). The resulting accumulation of vorticity (figure 1b)
induces enhanced clockwise motion that acts to amplify the original sinusoidal
displacement. The result is a positive feedback loop that leads to exponential growth.

If the fluid is stably stratified, the vertical displacement induces buoyancy
perturbations δb of opposite sign in the crests and troughs (figure 1b). This creates
a counterclockwise baroclinic torque that acts to impede growth. Only when the
former effect (vorticity accumulation) dominates the latter (baroclinic torque) can the
perturbation grow.

The effect of uniform viscosity is to disperse the vorticity accumulation and
hence to weaken the instability. In contrast, uniform diffusivity reduces the buoyancy
contrast and its attendant baroclinic torque, allowing the perturbation to grow more
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Destabilization of a stratified shear layer by ambient turbulence 3

rapidly. These effects operate the same whether the eddy viscosity and diffusivity act
on vertical gradients, horizontal gradients or both. As we will see, though, spatial
non-uniformities in the viscosity and diffusivity can lead to very different effects.

The destabilizing influence of uniform mass diffusivity has been documented
recently by T13. The stabilizing effect of viscosity has been demonstrated explicitly
in many studies. Betchov & Szewczyk (1963) studied the stability of a uniformly
viscous, homogeneous, hyperbolic tangent shear layer. Viscosity was found to damp
the growth rate for a perturbation of any wavenumber. Maslowe & Thompson (1971)
extended this work to include stable stratification, with the Prandtl number (the ratio
of viscosity to diffusivity) Pr = 0.72, as is typical of air. They found that instability
is damped as viscosity and diffusivity are increased.

Defina, Lanzoni & Susin (1999) explored the effect of uniform viscosity on
the instability of a stratified shear flow in a tilted tube both theoretically and
experimentally. This study assumed Pr � 1 (i.e. the diffusion is small compared
with viscosity). The damping action of viscosity was found to reduce the critical
Richardson number with respect to the inviscid limit Ri=0.25. The critical Richardson
number decreases as viscosity increases.

These studies find that both viscosity and diffusivity have a stabilizing effect on
KH instability. In each case, however, the viscosity and diffusivity were assumed to
be uniform, and the range of Prandtl numbers tested was limited. Here, we allow
viscosity and diffusivity to vary in space, and test values of Pr covering two orders
of magnitude. This gives a more comprehensive, and in some respects very different,
view of viscous and diffusive effects.

Section 2 describes the background profiles of the shear flow and methods used in
the analysis. Section 3 reviews the results near the neutral stability boundary (T13).
Section 4 gives the numerical results away from the stability boundary, retaining
the assumption of small viscosity and diffusivity. Section 5 extends viscosity and
diffusivity to larger values. In § 6 an analysis of the enstrophy budget is applied to
identify the mechanism of destabilization, and an explanation is proposed for the
anomalous effects of viscosity variations. In § 7, we describe the dependence on the
Prandtl number. Conclusions are summarized in § 8.

2. Methods

Our calculation is carried on a vertical plane measured by Cartesian coordinates
x (streamwise) and z (vertical). The fluid is assumed to be incompressible. Because
small-scale turbulent fluxes in geophysical flows are primarily vertical, we assume
here that eddy viscosity and diffusion act on vertical gradients only. The Boussinesq
equations for this case are

∂u
∂t
+ (u · ∇)u=−∇p

ρ0
+ bẑ+ ∂

∂z

(
A
∂u
∂z

)
(2.1a)

db
dt
= ∂

∂z

(
K
∂b
∂z

)
(2.1b)

∇ · u= 0. (2.1c)

The buoyancy is defined by b=−g(ρ−ρ0)/ρ0 where ρ0 is a reference density, ẑ is the
vertical unit vector and p is the pressure. Here A(z) and K(z) denote the vertical eddy
viscosity and mass diffusivity, respectively. Eddy viscosity and diffusivity components
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4 L. Li, W. D. Smyth and S. A. Thorpe

that act on horizontal gradients (e.g. Liu et al. 2012) are not included in the present
study.

Following Liu et al. (2012), we assume a steady mean flow with stable stratification,
and use the method of normal modes to study the evolution of small perturbations.
Velocity, buoyancy and pressure are expressed in terms of a mean profile and a small
perturbation: u = [U(z) + u′(x, z, t), w′(x, z, t)] where U(z) is the horizontal mean
flow and u′(x, z, t) and w′(x, z, t) are velocity perturbations. Buoyancy b = B(z) +
b′(x, z, t) and pressure p = P(z) + p′(x, z, t). The normal mode form is assumed
for the perturbation φ′ = φ̂(z) exp(ikx + σ t) where φ represents u, w, b or p. Here
σ = σr + iσi where σr is the growth rate and σi is the frequency. The wavenumber
k of the perturbation is real. The complex vertical structure function φ̂ depends only
on z.

Linearizing the equations of motion for small perturbations leads to

σ

(
∂2

∂z2
− k2

)
ŵ=

[
−ikU

(
∂2

∂z2
− k2

)
+ ik

∂2U
∂z2
+ Fw

]
ŵ− k2b̂ (2.2a)

σ b̂=−N2ŵ+ [−ikU + Fb]b̂ (2.2b)

where N2 = dB/dz. In (2.2) ŵ and b̂ are structure functions of vertical velocity and
buoyancy perturbation. The effects of eddy viscosity and diffusivity are expressed by

Fw = d2

dz2

(
A

d2

dz2

)
− k2 d

dz

(
A

d
dz

)
, (2.2c)

Fb = d
dz

(
K

d
dz

)
. (2.2d)

This can be written in a matrix form and treated as a generalized eigenvalue problem:

σ

[∇2 0
0 I

] [
ŵ
b̂

]
=
[−ikU∇2 + ikUzz + Fw −k2

−N2 −ikU + Fb

] [
ŵ
b̂

]
, (2.3)

where I is the identity matrix. The submatrix ∇2 = d2/dz2 − k2 and the second
derivative d2/dz2 is replaced by a second-order finite difference. Given a certain
background velocity U(z), buoyancy frequency profile N(z) and eddy coefficients
A(z) and K(z), eigenvalues of σ and corresponding eigenfunctions ŵ and b̂ can be
calculated using standard numerical methods.

A hyperbolic tangent profile is assumed for both the background velocity and
buoyancy:

U(z)
1U
= B(z)
1B
= tanh

z
h

(2.4)

where h is the half-thickness of the shear layer and 1U and 1B are the half-changes
of velocity and buoyancy, respectively (figure 2a). Three choices are made for eddy
coefficients of viscosity and diffusivity:

A
A0
= K

K0
=


1 profile 1

tanh2 z
h

profile 2

sech2 z
h

profile 3.

(2.5)
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FIGURE 2. (a) Background profiles of scaled velocity and buoyancy; (b) scaled vertical
eddy viscosity and diffusivity. Only the centre part of the shear layer is shown in this
figure. The boundaries for the calculation are at z=±10h.

In each profile A0 and K0 characterize the maximum values of the vertical eddy
coefficients of viscosity and diffusivity. Note that Pr = A/K is independent of z in
these profiles.

For profile 1 the viscosity/diffusivity is uniform through the whole depth, as in
previous studies (Betchov & Szewczyk 1963; Maslowe & Thompson 1971; Defina
et al. 1999). Profile 2 represents a viscosity/diffusivity distribution that is smaller
within the shear layer and larger away from it. Profile 2 may be thought of as
a layer of locally weak ambient turbulence where instability is about to begin,
e.g. a thermohaline staircase (Gregg & Sanford 1987), or a stable layer of the sort
formed when eddy diffusivity varies inversely with stratification (e.g. Phillips 1972;
Posmentier 1977), exposed to shear due to internal waves (e.g. Kimura, Smyth &
Kunze 2011). In profile 3 the viscosity/diffusivity is greatest in the shear layer and
decays away from it. Profile 3 may represent a region where instability has occurred
recently and has left behind a layer of turbulence.

After scaling with h and 1U, the solution depends on four non-dimensional
parameters. The Richardson number Ri= h1B/1U2. The non-dimensional maximum
viscosity A0/h1U, and diffusivity K0/h1U are the inverses of the Reynolds and
Péclet numbers, respectively. The Prandtl number is Pr = A/K = A0/K0. In what
follows all quantities are non-dimensionalized by h and 1U.

Ideally, we would assume an infinite vertical domain, as in T13. Due to finite
computer capacity, we must assume a finite domain. We choose the domain half-depth
H= 10 and the increment of the vertical coordinate dz= 0.01. We run the calculation
with different values of H and dz and confirm that the results are well converged.
Boundary conditions ŵ = 0 and b̂ = 0 are imposed at upper and lower boundaries
z=±H.
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FIGURE 3. The solid curve, Ri = k(1 − k), is the neutral stability boundary on which
the growth rates are zero (J. Holmboe 1960, personal communication). The dashed line
shows where the fastest growing modes lie, obtained with numerical method. The arrow
represents the departure from T13.

3. Effects of weak ambient turbulence near the stability boundary

We now review pertinent results from the perturbation theory of T13. Near the
stability boundary in the inviscid, non-diffusive limit, the change of the growth rate
due to a small viscosity and diffusivity is

δσr = A0kfA(k)+K0kfK(k) (3.1)

where the coefficients kfA(k) and kfK(k) quantify the sensitivity of σr to small
increments of viscosity and diffusivity. Equation (3.1) shows that the effects of
the two eddy coefficients are additive, so it is convenient to study them separately.

The circle at the top of figure 3 represents the case where instability first appears
as shear is increased or stratification is decreased. The solid curve is the stability
boundary for A0=K0= 0 (Holmboe’s inviscid and non-diffusive solution); everywhere
below this curve σr > 0 (unstable), while above it σr = 0 (neutral). For a given Ri,
the fastest growing inviscid and non-diffusive mode is shown by the dashed curve.
With the introduction of small viscosity or diffusivity, modes on the inviscid stability
boundary shown in figure 3 generally acquire non-zero growth rates δσr, with δσr <

0 (>0) indicating that viscosity/diffusivity has a stabilizing (destabilizing) effect.
Changes to the growth rate by vertically variable viscosity and diffusivity profiles

near the neutral stability boundary curve are discussed in detail by T13. Values of kfA

and kfK computed for the profiles used here are in table 1. For profile 2, kfA> 0. This
tells us that, near the neutral stability boundary, the effect of eddy viscosity profile 2 is
to destabilize the flow. This presents a striking contrast with the finding of all previous
studies that viscosity stabilizes a shear layer (Betchov & Szewczyk 1963; Maslowe
& Thompson 1971; Defina et al. 1999). Also interesting is that adding a small eddy
diffusivity K with profile 2 stabilizes the shear flow. This effect is opposite to that of
the other two profiles of K.
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Destabilization of a stratified shear layer by ambient turbulence 7

Eddy coefficient Effect kfA

A= A0 Stab −3.75
A= A0 tanh2z Destab 0.52
A= A0sech2z Stab −4.24

kfK

K =K0 Destab 1.69
K =K0 tanh2z Stab −0.12
K =K0sech2z Destab 1.82

TABLE 1. Effects on stability for three vertical eddy viscosity and diffusivity profiles.
Results pertain to the limiting case of small viscosity and diffusivity and close proximity
to the inviscid stability boundary (T13).

4. Effects of weak ambient turbulence away from the stability boundary
Here we explore the effects of moving Ri away from the small neighbourhood of

0.25 considered by T13 (dashed curve and arrow on figure 3), with A0 and K0 kept
small. The results of increasing A0 and K0 will be examined separately.

In the inviscid limit, the fastest growth rate for a given Ri decreases from 0.1897
at Ri = 0 (where k = 0.445) to 0 at Ri = 0.25 (k = 0.5) as shown in figure 4(a).
Here we will describe the change of this growth rate due to variable eddy viscosity
or diffusivity (figure 4b,c):

1σr = σr(Ri, A0,K0, k, n)− σr(Ri, 0, 0, k0, n), (4.1)

where the wavenumbers k and k0 correspond to the fastest-growing modes of the
viscous case and in the inviscid limit, respectively, and n = 1, 2, 3 specifies profiles
1–3 given by (2.5). The change of growth rate due to viscosity or diffusivity of profile
2 is small relative to the other two profiles and is therefore plotted in a separate panel.

4.1. Effects of non-zero eddy viscosity A
The three solid curves in figure 4(b,c) show the change of the fastest growth rate when
a small eddy viscosity with vertical dependence (2.5) is added to the inviscid flow. In
this calculation A0 = 10−5 and K0 = 0. For profiles 1 and 3 the change of the growth
rate is negative for all 0<Ri< 0.25 so these two viscosity profiles are stabilizing. The
stabilizing effect is stronger at higher Ri. In the limit Ri→ 0.25, 1σr approaches the
value predicted using the T13 perturbation theory as expected (figure 4b, asterisks).
When Ri > 0.13, viscosity with profile 3 (the sech2z case) has a stabilizing effect
greater than that of uniform viscosity.

In the case of profile 2 (the tanh2z viscosity profile), at higher Richardson numbers,
the change of the fastest growth rates is positive, i.e. the addition of viscosity with this
profile is destabilizing as predicted by T13 for the limiting case Ri→ 0.25 (asterisk
on 4c). Farther from the stability boundary (i.e. for Ri< 0.25), this change is reduced.
When Ri< 0.13 the destabilizing effect is reversed. We conclude that the anomalous
destabilizing effect of the tanh2z viscosity profile is not restricted to the immediate
vicinity of the stability boundary (as explored by T13) but instead operates over a
range of Ri extending down to Ri= 0.13.

Because (3.1) is linear in A0, the changes due to the different viscosity profiles
described above are related to each other through the identity tanh2z + sech2z = 1.
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FIGURE 4. Numerical results for three profiles, A0 = 10−5, K0 = 10−5. (a) Fastest growth
rate of the inviscid flow. (b) The change of the fastest growth rate due to a small viscosity
or diffusivity disturbance from the inviscid flow for profiles 1 and 3. (c) The change of
the fastest growth rate due to a small viscosity or diffusivity disturbance from the inviscid
flow for profile 2. The asterisks at the right are values at k= 0.5; Ri= 0.25 from table 1
of T13.

The change of the fastest growth rates due to profile 1 is equal to the summed effects
of profiles 2 and 3. For example, in the parameter range Ri> 0.13 where profile 2 is
destabilizing, profile 3 is more stabilizing than profile 1. While for Ri< 0.13, profile 3
is less stabilizing than profile 1, and correspondingly profile 2 becomes stabilizing.
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K

FIGURE 5. Growth rate increase versus eddy viscosity (diffusivity) for profile 2. The
results are obtained for Ri= 0.2 and on the maximum growth rate curve of figure 3. The
dashed line has unit slope.

4.2. Effects of non-zero eddy diffusivity K

In this calculation K0 = 10−5 and A0 = 0. The three dashed curves in figure 4(b,c)
show 1σr for the three profiles of K described in (2.5). For profiles 1 and 3, K is
destabilizing as we expect, and increases with Ri to match the asymptotic results of
T13. In the case of profile 2, diffusivity is destabilizing for most Ri, but the effect is
reversed when Ri > 0.22. In contrast to viscosity, the effects of diffusivity approach
zero in the limit Ri→ 0, because there are no buoyancy perturbations on which the
diffusivity can act.

5. Effects of strong ambient turbulence
So far, the calculations are performed at small values of eddy viscosity and

diffusivity where 1σr is small and varies linearly with A0 and K0 as described by (3.1).
At larger values, the variation of 1σr becomes more complicated. A representative
example, with Ri= 0.2, is shown in figure 5. In this log–log representation, the slopes
are very close to unity for small A0 and K0, indicating that the linear relationship
(3.1) remains approximately correct. The linear relationship breaks down when A0
(or K0) exceeds ∼10−2. At that extreme, 1σr is comparable with the inviscid growth
rate. In the common case Pr = 1, this criterion is equivalent to Re < 100. This is
consistent with existing indications of the magnitude of Re at which viscous effects
are no longer ‘small’. For example, when Ri= 0.2, instability is damped completely
when Re < 25 (Maslowe & Thompson 1971). At the other extreme, viscous effects
on KH instability are generally negligible when Re is greater than a few hundred
(e.g. Smyth, Klaassen & Peltier 1988).

6. Destabilization mechanism of the eddy viscosity for the tanh2z profile

The destabilization by eddy viscosity ∝tanh2z (profile 2) bears further discussion.
Here, we offer a physical explanation based on the perturbation enstrophy budget.
Perturbation enstrophy is defined as

Z = 1
2 |ω|2 (6.1)
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10 L. Li, W. D. Smyth and S. A. Thorpe

where ω = ŵx − ûz is the vorticity. The subscripts x and z denote partial derivatives.
Based on (2.1c), the eigenfunction of horizontal velocity is û= iŵz/k.

The equation of motion (2.1a) implies the normal mode enstrophy balance,

∂Z
∂t
=

E1︷ ︸︸ ︷
R(ŵω∗)Uzz +R(b̂xω

∗)︸ ︷︷ ︸
E2

E3︷ ︸︸ ︷
−A|ωz|2 −AzZz︸ ︷︷ ︸

E4

E5︷ ︸︸ ︷
−R[(Azŵx)zω

∗] + ∂

∂z
(AZz + 2AzZ)︸ ︷︷ ︸

E6

. (6.2)

(i) Here E1 is analogous to the shear production term in the kinetic energy budget
(e.g. Smyth & Peltier 1989). The asterisk denotes the complex conjugate and R
indicates the real part. Here E1 is a correlation between the perturbation vorticity
and its rate of change due to vertical advection of the mean gradient Uzz. If
vertical advection reinforces the existing vorticity distribution, as is the case with
KH billows, the term supports growth.

(ii) We use E2 to represent changes in enstrophy due to buoyancy. In contrast with
the corresponding term in the kinetic energy budget, this buoyancy production
term is positive definite for all growing modes. In the case of KH instability,
the baroclinic torque opposes the vorticity concentration that drives the growth of
the large vortex (figure 1), but it also generates intense shear in the thin braids
separating the billows of the wave train (Corcos & Sherman 1976; Staquet 1995;
Smyth 2003) and thereby contributes positively to the net enstrophy.

(iii) Here E3 is dissipation due to viscosity. It is negative definite.
(iv) The term E4 is non-zero only for variable viscosity profiles. We will see later

that this is the main factor in the destabilization mechanism.
(v) Like E4, E5 is only non-zero for variable viscosity. Its magnitude is negligible in

the present case.
(vi) The final term, E6, is a flux divergence which vanishes when (6.2) is integrated

over the whole range of z.

We now integrate (6.2) over −H 6 z 6 H and divide each side by 〈2Z〉 = 2
∫

Z dz,
isolating σr on the left-hand side. The growth rate can now be decomposed into
several partial growth rates, each corresponding to a term on the right-hand side of
(6.2):

σr = σSP + σBP + σε + σA1 + σA2. (6.3)

The partial growth rate terms on the right-hand side are defined as

σSP = E1/〈2Z〉 (6.4a)
σBP = E2/〈2Z〉 (6.4b)
σε = E3/〈2Z〉 (6.4c)
σA1 = E4/〈2Z〉 (6.4d)
σA2 = E5/〈2Z〉. (6.4e)

The change of the fastest growth rates 1σr from the inviscid limit is determined by
the balance among the changes of these partial growth rates of (6.3). For profile 2,
the effect of viscosity is to increase σSP and decrease σBP (figure 6), the only two
non-zero partial growth rate terms in the inviscid limit. The change of the growth
rate due to the shear production, 1σSP, is always positive, but decreases to a value
very close to zero as Ri approaches 0.25. Hence, it cannot be the main contribution to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.150


Destabilization of a stratified shear layer by ambient turbulence 11

 0

 –2

 –4

2

4

6

8

10

 –6

 –8
0 0.05 0.10 0.15 0.20 0.25

Ri

FIGURE 6. The change of partial growth rate from inviscid case due to eddy viscosity
profile 2 with A0=10−5. It is the term 1σA1 that makes the change of growth rate positive.
Note that 1σε = σε , 1σA1 = σA1 and 1σA2 = σA2 since none of the three processes exist
in the inviscid limit.

the destabilization effect of this viscosity profile. The change of the growth rate due
to the buoyancy production term 1σBP is always negative. Due to dissipation 1σε
is always negative and does not vary much with the increase of Ri. Here 1σA2 is
negative, and its magnitude is small. As Ri approaches 0.25, 1σA1 is the dominant
source of destabilization (thick solid line in figure 6).

To understand how σA1 makes the growth rate increase, we interpret −AzZz ((6.2),
(6.4d)) as an advection process, with equivalent vertical velocity we = −Az. For
profile 2, we is negative for z > 0 and positive for z < 0 (figure 7a); hence, the
effective vertical velocity converges. The enstrophy maximum (figure 7b) is thereby
reinforced, and the growth rate increases. At lower Ri (e.g. figure 7c), this mechanism
is less effective due to the double-peaked structure of Z.

If we diverges, as in profile 3 where A is a maximum at z= 0, the effect is opposite:
the enstrophy maximum at the centre of the flow is diffused and viscosity tends to
damp the instability. This explains why, when 0.13<Ri<0.25, viscosity with profile 3
has a damping effect greater than that of uniform viscosity as noted in § 4.1.

The change in the enstrophy profile with Ri, which governs the behaviour of the
destabilizing term σA1, can be understood in terms of the wave resonance mechanism
of shear instability. At low Ri, the instability is primarily a resonance between waves
supported by the vorticity gradients on the upper and lower flanks of the shear layer,
so enstrophy is concentrated there (Baines & Mitsudera 1994; Carpenter et al. 2013).
When stratification is stronger (i.e. as Ri approaches 0.25), the resonance includes a
gravity wave centred at the stratification maximum, z = 0, and that wave dominates
the enstrophy profile.

7. Dependence on the Prandtl number for small viscosity and diffusivity
When viscosity and diffusivity are small, the effect of varying Pr is easily predicted

because (3.1) holds (see figure 5 and the accompanying discussion). Figure 4(b) shows
that for profiles 1 and 3, if the same amounts of viscosity and diffusivity are added
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FIGURE 7. (a) Equivalent vertical velocity we =−Az for profile 2. Enstrophy profiles for
high-Ri (b) and low-Ri (c) cases.

to the inviscid flow (i.e. if Pr = 1), the stabilizing effect of viscosity is greater than
the destabilizing effect of diffusivity. Only if diffusivity is much greater than viscosity
(Pr � 1) does the destabilizing effect dominate, and this is not generally true for
geophysical turbulence. This is why diffusive destabilization was not evident in the
studies of Maslowe & Thompson (1971) and Defina et al. (1999) who used Pr ∼ 1
and Pr� 1, respectively.

Now we explore the dependence of 1σr on Ri and Pr for profile 2. Profile 2 is
more complicated than cases 1 and 3. Diffusion is destabilizing (figure 4c) except
for a very small range of 0.22 < Ri 6 0.25. Viscosity, in contrast, is destabilizing
for Ri > 0.13 but stabilizing for Ri < 0.13. For Ri < 0.13, if Pr is sufficiently large,
the stabilizing effect of viscosity dominates the destabilizing effect of diffusion and
the net effect is stabilization. The Prandtl number needed for viscous stabilization to
dominate becomes smaller as Ri decreases (and vice versa). At Pr= 1, a typical value
for geophysical turbulence, stabilization occurs for 0< Ri< 0.08, and destabilization
occurs for 0.08< Ri< 0.22. For 0.22< Ri< 0.25, diffusion is weakly stabilizing, but
the destabilizing effect of viscosity dominates unless Pr < 0.23 (calculated with the
values of kfA and kfK at k= 0.5 in table 1).

8. Conclusions
We have examined the effects of vertically varying turbulent viscosity and mass

diffusion on the KH instability of a stratified shear layer. In the double limit of weak
turbulence and Ri approaching 0.25, these effects are accurately predicted by the
perturbation analyses of T13. When non-dimensional eddy viscosity and diffusivity
(or the inverse Reynolds and Péclet numbers, respectively) exceed O(10−2), the
results change quantitatively, though not qualitatively. When Ri departs from the
neighbourhood of 0.25, dramatically different results may be found depending on the
vertical structure of the turbulence.

When turbulent eddy coefficients are localized within the shear layer (profile 3), as
might happen if the latter is colocated with a previous turbulent event, the effects of
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FIGURE 8. The Prandtl number dependence for profile 2, i.e. A,K ∝ tanh2z. On the two
curves the change of growth rate 1σr=0. In the shaded area 1σr>0 which means the net
effect from viscosity and diffusivity is destabilizing in this area. Outside this area 1σr < 0
and the viscosity and diffusivity are stabilizing.

turbulence are similar to those of uniform viscosity and diffusivity: viscosity tends to
stabilize the flow; diffusion tends to destabilize it.

The results are very different when an unstable shear layer develops in a region
of weak ambient turbulence (profile 2), as is often observed (S13). In that case,
eddy viscosity tends to diffuse vorticity inward from the flanks of the shear layer
to the centre. When Ri> 0.13, the enstrophy profile is sharply peaked at z= 0, and
is therefore reinforced by this turbulent vorticity diffusion, resulting in accelerated
growth. When Ri < 0.13, enstrophy is concentrated away from the shear layer, and
vorticity diffusion has the opposite effect, impeding growth. This difference in the
shape of the perturbation enstrophy profile, which determines its response to turbulent
vorticity diffusion, can be understood in terms of the wave resonance mechanism of
instability growth (e.g. Baines & Mitsudera 1994; Carpenter et al. 2013).

For Ri < 0.13 and profile 2, the effects of eddy viscosity and mass diffusion
act oppositely, and the net effect can be stabilizing or destabilizing depending on
the turbulent Prandtl number. For any Pr, there is a value of Ri below which the
stabilizing effect of eddy viscosity dominates, while at larger Ri, the destabilizing
effect of mass diffusion dominates. At Pr = 1, for example, the flow is destabilized
if Ri > 0.08. When Ri > 0.13, the flow is destabilized regardless of Pr since eddy
viscosity and diffusion act in the same sense.

This stability theory has already proven useful in the analysis of oceanographic
observations by Liu et al. (2012) and S13. The analyses of S13 revealed that the
damping of unstable modes by pre-existing turbulence is an important facet of the
diurnal cycle of near-surface turbulence. Observed profiles are complicated, however,
and conceptual understanding of the instability characteristics is aided considerably by
the study of simple, canonical profiles such as those examined here. Future work will
include a broader range of velocity, buoyancy, viscosity and diffusivity profiles.

This theory may also lend insight into marginal instability, the property of sheared,
stratified turbulence wherein the Richardson number fluctuates about the critical value
1/4 due to the interaction of external forcing, instabilities and ambient turbulence
(Thorpe & Liu 2009; Smyth & Moum 2013).

The effects of ambient turbulence on instability evolution will ultimately be
investigated via direct numerical simulations that include small-scale turbulence
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as part of the initial conditions (e.g. Brucker & Sarkar 2007). This will bypass two
important idealizations made in the present model: the neglect of nonlinear terms and
the representation of turbulence via eddy coefficients.

Acknowledgements
The authors are most grateful to the three reviewers for the very helpful suggestions.

This work was funded by the US National Science Foundation under grant OCE-
1030772.

REFERENCES

BAINES, P. G. & MITSUDERA, H. 1994 On the mechanism of shear flow instabilities. J. Fluid Mech.
276, 327–342.

BETCHOV, R. & SZEWCZYK, A. 1963 Stability of a shear layer between parallel streams. Phys.
Fluids 6, 1391–1396.

BRUCKER, K. & SARKAR, S. 2007 Evolution of an initially turbulent stratified shear layer. Phys.
Fluids 19, 105105.

CARPENTER, J. R., TEDFORD, E. W., HEIFITZ, E. & LAWRENCE, G. A. 2013 Instability in stratified
shear flow: review of a physical interpretation based on interacting waves. Appl. Mech. Rev.
64 (6), 060801, 1–17.

CORCOS, G. M. & SHERMAN, F. S. 1976 Vorticity concentration and the dynamics of unstable free
shear layers. J. Fluid Mech. 73, 241–264.

DEFINA, A., LANZONI, S. & SUSIN, F. M. 1999 Stability of a stratified viscous shear flow in a
tilted tube. Phys. Fluids 11, 344–355.

GREGG, M. C. & SANFORD, T. B. 1987 Shear and turbulence in thermohaline staircases. Deep-Sea
Res. 34, 689–1696.

KIMURA, S., SMYTH, W. D. & KUNZE, E. 2011 Sheared, double-diffusive turbulence: anisotropy
and effective diffusivities. J. Phys. Oceanogr. 41, 1144–1159.

LIU, Z., THORPE, S. A. & SMYTH, W. D. 2012 Instability and hydraulics of turbulent stratified
shear flows. J. Fluid Mech. 695, 235–256.

MASLOWE, S. A. & THOMPSON, J. M. 1971 Stability of a stratified free shear layer. Phys. Fluids
14, 453–458.

PHILLIPS, O. M. 1972 Turbulence in a strongly stratified fluid: is it unstable? Deep-Sea Res. 19,
79–81.

POSMENTIER, E. S. 1977 The generation of salinity finestructure by vertical diffusion. J. Phys.
Oceanogr. 7, 298–300.

RAYLEIGH, L. 1880 On the stability or instability of certain fluid motions. Proc. Lond. Math. Soc.
11, 57–70.

SMYTH, W. D. 2003 Secondary Kelvin–Helmholtz instability in a weakly stratified shear flow.
J. Fluid Mech. 497, 67–98.

SMYTH, W. D., KLAASSEN, G. P. & PELTIER, W. R. 1988 Finite amplitude Holmboe waves.
Geophys. Astrophys. Fluid Dyn. 43, 181–222.

SMYTH, W. D. & MOUM, J. N. 2012 Ocean mixing by Kelvin–Helmholtz instability. Oceanography
25 (2), 140–149.

SMYTH, W. D. & MOUM, J. N. 2013 Marginal instability and deep cycle turbulence in the eastern
equatorial Pacific ocean. Geophys. Res. Lett. 40, 6181–6185.

SMYTH, W. D., MOUM, J. N. & LI, L. 2013 Diurnal shear instability, the descent of the surface
shear layer, and the deep cycle of equatorial turbulence. J. Phys. Oceanogr. 43, 2432–2455.

SMYTH, W. D. & PELTIER, W. R. 1989 The transition between Kelvin–Helmholtz and Holmboe
instability: an investigation of the overreflecion hypothesis. J. Atmos. Sci. 46, 3698–3720.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.150


Destabilization of a stratified shear layer by ambient turbulence 15

STAQUET, C. 1995 Two-dimensional secondary instabilities in a strongly stratified shear layer.
J. Fluid Mech. 296, 73–126.

THORPE, S. A. & LIU, Z. 2009 Marginal instability? J. Phys. Oceanogr. 39, 2373–2381.
THORPE, S. A., SMYTH, W. D. & LI, L. 2013 The effect of small viscosity and diffusivity on the

marginal stability of stably stratified shear flows. J. Fluid Mech. 731, 461–476.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

15
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.150

	Destabilization of a stratified shear layer by ambient turbulence
	Introduction
	Methods
	Effects of weak ambient turbulence near the stability boundary
	Effects of weak ambient turbulence away from the stability boundary
	Effects of non-zero eddy viscosity A
	Effects of non-zero eddy diffusivity K

	Effects of strong ambient turbulence
	Destabilization mechanism of the eddy viscosity for the tanh 2z profile
	Dependence on the Prandtl number for small viscosity and diffusivity
	Conclusions
	Acknowledgements
	References




