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Time-frequency tomographic imaging of a
rotating object in a narrow-band radar

ewa swiercz

The backscatter from radar object carries Doppler information of scatterers on the object determined by the radial velocity of
scattering points and the radar transmitted frequency. For a rotating object this information is contained in the frequency
characteristics over varying aspect angle. Frequency characteristics are used to create projections for Doppler radar tomo-
graphic imaging. This paper presents a method for high resolution imaging of a rotating target using a time-frequency trans-
form of a returned signal as tomographic projections. The resolution of a tomographic image depends not only on radar
system parameters but also depends on the resolution of input projections. The reassigned spectrogram is proposed for build-
ing of tomographic projections, due to its possibility of squeezing of frequency spread. The reassigned spectrogram is sensitive
to noise so the denoising procedure in the time-frequency domain must be performed before the reassignment procedure. The
denoising is performed by removing Short Time Fourier Transform (STFT) noise coefficients below the appropriate threshold.
The STFT is a linear time-frequency transform and coefficients, which belong to the signal and coefficients which belong to noise
can be analyzed separately. The efficiency of the proposed idea of imaging is supported by results of numerical experiments.
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I . I N T R O D U C T I O N

Electromagnetic backscattering from moving objects is sub-
jected to different modulations of Doppler spectra. These
characteristics of spectra carry a lot of useful information
about the object used in many areas, such as imaging of
moving targets, missile defense, space security, target recogni-
tion, and so on. Imaging of moving targets using radar
has been a major challenge. The Synthetic Aperture Radar
(SAR)/Inverse Synthetic Aperture Radar (ISAR) are well-
known methods used in radar imaging. These methods
require wideband signals to achieve high resolution in an
imaging process. The narrow-band radar with a small signal
bandwidth can be also used, but such a signal requires differ-
ent approach to radar imaging [1–3]. Generally radar tomog-
raphy refers to object imaging, usually in the plane range and
cross-range, via inverse two-dimensional (2D) Fourier trans-
form from a collection of 1D projections obtained from mea-
surements of radar echo. Instead of range profiles used widely
in SAR/ISAR wideband methods, the frequency character-
istics over an aspect angle are the base of tomographic projec-
tions in Doppler radar tomography [1–4]. It implies that using
narrowband signals, the resolution achieved by bandwidth is
changed for resolution achieved by spatially diverse angular
imaging. In X-ray tomography the projections are measure-
ments of tissue density, whereas in radar tomography

projections are range profiles or Doppler profiles. Doppler
radar tomography exactly means a tomographic technique
using only Doppler profiles, not range profiles of a rotating
object to build projections. The resolution of a tomographic
image depends on the resolution of the input projections, as
well as on radar system parameters: finite sampling rate or
pulse repetition frequency (PRF) of the radar system, the
coherent processing interval (CPI) used for the calculation
of a projection, the rotation speed v, and the cross-range
dimension of the object corresponding to Doppler frequency
extension. During rotation the location of scatterers is
changed inducing different Doppler shifts. All scattering
points lying on the same cross-range position have the same
Doppler shifts. Because the time passes and the new configur-
ation of scatterers is made, so Doppler spectrum is time-
varying. By measuring the receiver output at any particular
frequency, the sum (in a discrete case) or the line integral of
the scattered radiation at the cross-range, corresponding to
that frequency, is made. It means that the radar performs
the Radon transformation through the lines of equal frequen-
cies creating projections [4, 5]. Joint time-frequency Doppler
processing is an alternative method to traditional polar-
reformatting methods in tomographic imaging task. Polar-
reformatting methods are used as tools for reducing time
variation of a Doppler spectrum to obtain a clear image.
Time-frequency methods just use time variation of the spec-
trum in order to retrieve information from the time-varying
spectrum and hence polar-reformatting is not necessary
[6, 7]. In this paper the reassigned spectrogram, due to its pos-
sibility of squeezing of frequency spread in the time-frequency
domain is proposed for obtaining high resolution of an image
in Doppler radar tomography [8].
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I I . R E C E I V E D S I G N A L M O D E L O F A
R O T A T I N G O B J E C T

A typical man-made object consists of a small number of
dominant scatterers. For the narrow-band radar, echoes of
the k-th scatterer in the slow time domain can be expressed as

s(tk) = sk exp j2pf0 t − 2R(tk)
c

( )( )
, (1)

where t is the full time, tk is the slow time, sk indicates the
backscattering coefficient, f0 is the carrier frequency (l ¼
c/f0) and c expresses the speed of light. R(tk) denotes the
instantaneous distance between the scatterer and the radar.
In the imaging plane (x, y), y corresponds to the range coord-
inate and x to the cross-range coordinate. The radar is laid far
from the object in negative direction of the y-axis and the dis-
tance R(t) is approximately expressed as R(t) ≈ R0 + lsinu0

cosvt + lcosu0sinvt ≈ R0 + x0sinvt + y0cosvt¼ R0 + d, where
l is the distance from the scatterer to the center of the
imaging plane (x, y), v is a rotation rate, u0 is the initial
angle, and x0, y0 are initial coordinates at the time tk ¼ 0.
The distance d is the new instantaneous y coordinate,
because time passes. The angle is a function of time uk ¼ vtk.

After demodulation, down-conversion to the baseband and
removing the constant phase term, the returned signal
becomes

s(tk) = s exp −j4p
d(tk)
l

( )
. (2)

In the presented paper some scaling is assumed for an easier
derivation of the image algorithm from the mathematical
point of view. It is assumed that the backscattering coefficient
sk ¼ 1 and 4p/l ¼ 1 for the sake of mathematical clarity. The
parameter sampling rate PRF ≈ 1 Hz, rotation at the rate
RPM ≈ 0.0028 are next examples of such simplifications. It
is a non-realistic situation but s and l are only constant
scaling numbers in the equation. This simplification does
not restrict the generality of the considerations. Taking simpli-
fication into account, the proposed imaging algorithm can be
put in an advanced signal processing area. Practical applica-
tion requires knowledge about real radar system parameters:
finite PRF, the CPI used for calculation of a projection, as
well as the rotation speed v, the cross-range dimension of
the object, and so on. Finally after simplifications the base-
band signal takes the form

s(tk) = exp(−jd(tk)) = exp(−j(x0 sin uk + y0 cos uk)). (3)

For totally K scatterers on the object the baseband echoes can
be regarded as a summation of sub-echoes from independent
scatterers.

s(tk) =
∑

l

sl exp − j4p
l

(x0l sin uk + y0l cos uk)
( )

=
∑

l

exp −j(x0l sin uk + y0l cos uk)
( )

under conditions : l [ [1,K],sl = 1, 4p/l = 1.

(4)

I I I . D O P P L E R P R O F I L E S A S
T I M E - F R E Q U E N C Y P R O J E C T I O N S

The synthetic signal derived in equations (3) and (4) is used
to generate projections. The rotating motion forms the sine
shape of time-frequency spectrum. As a rigid object rotates
about an origin such as that depicted in Fig. 1, all points
with the same cross-range distance (in the x dimension)
from the origin will have the same Doppler shift. According
to the above discussion the Doppler projection (the cross-
range projection) can be represented as the magnitude of
the time-varying spectrum. The Short Time Fourier Trans-
form (STFT) S(tk, f ) is a good time-frequency representation
for non-stationary spectrum of a rotating object but has
undesired property related with trade-off between the time
and frequency resolution [4, 8].

S(tk, f ; h) =
∫tk+TCPI

tk

h(t − tk)s(t, tk)e−j2pftdt, f = 2v cos uk

l
r

fx = fr cos u fy = fr sin u fr = 2f /c.

(5)

The signal s(t, tk) is obtained during one CPI with the corre-
sponding angle uk. The period time tk , t , tk + TCPI is the
time for one CPI, which is also the time duration of the ana-
lysis window h(t). Frequencies fx, fy are spatial frequencies in
directions x and y, respectively, and fr is the spatial frequency
along the line r at the angle u. As the angle u changes, the slope
of the line r is also changed. The magnitude of the STFT of a
sufficiently long segment of the signal s(t, tk) can be inter-
preted as a Doppler projection signed puk (r) and shown in
equation (6).

puk
(r) = S(tk, f ; h)

∣∣ ∣∣. (6)

A good frequency resolution requires a long analysis window
h(t). On the other hand the length of a window h(t) is limited
by the rotational motion with the rotation rate v of a scatterer.
The window length should be sufficiently short in order to
keep the scatterer in the same cross-range bin during one
CPI, otherwise the scatterer will move to a different bin
causing a smeared image. The spectrogram SP(tk, f, h) ¼
|S(tk, f, h)|2 is the squared magnitude of the STFT. We can
interpret the spectrogram as a measure of the energy of the
signal contained in the time-frequency domain centerd on
the point (tk, f ). The spectrogram being the squared magni-
tude of the STFT is limited exactly as it is for the STFT. The
resolution of the final image strongly depends on the reso-
lution of the projection, so the new time-frequency

Fig. 1. The geometry of the rotating point target.
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representation with better resolution is strongly required. The
reassigned spectrogram signed SPR(t ′, f ′, h) is proposed for
building tomographic projections. Each value of the spec-
trogram SP(tk, f, h) of the signal s(t, tk) computed at any
point (t, f) is moved to another point (t̂, f̂ ), which is the
center of gravity (or the centroid) of the signal energy distri-
bution around (t, f). This is precisely the essence of the
reassignment technique [8].

SPR(t′, f ′, h)

=
∫+1

−1

∫+1

−1

SP(t, f ; h)d(t′ − t̂(s; t, f ))d( f ′ − f̂ (s; t, f ))dtdf .

(7)

The proposed new formula of projections puk (r) is expressed
by the following equation

puk
(r) = SPR(t′, f ′, h). (8)

The better resolution of projections, the clearer image of the
object can be obtained and closely spaced scatterers can be
resolved. The image in the Cartesian plane (x, y) is attained
via the filtered backprojection algorithm, which is an inver-
sion formula for the inverse Radon transform. The filtered
backprojection algorithm in the polar formatting is described
by the equation

s(x, y) =
∫p
−p

∫+1

−1

Pu(fr)ej2p fr (x cos u+y sin u)frdfrdu

=
∫p
−p

∫+1

−1

Pu(fr)e
j2p fr (x cos u+y sin u)

fr

∣∣ ∣∣dfr

[ ]
du

=
∫p
−p

F−1{ fr

∣∣ ∣∣Pu(fr)}(x cos u+y sin u)du,

(9)

where s(x, y) is a recovered reflectivity function, | fr| is a ramp
filter, F21 is the inverse Fourier transform. The term Pu( fr)
stands for the spatial Fourier transform of the projection
puk (r) for the angle u along the radial direction r.

Pu(fr) =
∫+1

r=−1

pu(r)e−j 2p fr rdr. (10)

The inverse Fourier transform F21 is calculated exactly at r ¼
x cosu + y sinu [4].

I V . L I M I T A T I O N S O F I M A G E
R E S O L U T I O N I N T R O D U C E D B Y T H E
P O I N T S P R E A D F U N C T I O N ( P S F ) ,
T H E R E A S S I G N M E N T M E T H O D A N D
R A D A R S Y S T E M P A R A M E T E R S

The image resolution strongly depends on the accuracy of
computing the variable expressed by equation (8). Integration
limits and the frequency extent are finite in the reality.
Variables fr and u belong to a limited set D.

M(fr, u) =
1 fr, u [ D
0 fr, u � D

( )
. (11)

The 2D inverse Fourier transform of the set M( fr, u) forms the
PSF, which determines image resolution. The PSF should be
like a delta function because this would imply that the recov-
ered image would be identical to the reflectivity function
s(x, y). But this condition is never fulfilled because of limita-
tion of the set D. A derivation of an analytic form of the PSF is
not easy in general case, especially for an arbitrary-angle aper-
ture. Only for the small-angle approximation i.e. for cosu ≈ 1
and sinu ≈ 0 and for the whole-angle aperture the compact
relation for the PSF can be derived. The solution of the PSF
takes the form of the sinc function in the range and the cross-
range direction for a small aperture or the Bessel function of
the first kind for the whole-angle aperture. In these cases the
PSF is seen as the central symmetric function, where the
resolution as null-to-null main lobe width is easily determined
[2]. The reassigned spectrogram with squeezing operation
refocuses the time-frequency characteristics and is a strong
nonlinear operation performed on the received echo. In con-
sequence only simulations of one scatterer allow to examine
the PSF. Limitation of imaging also results from limitation
of the reassignment method. Due to the local action of the
reassignment, the perfect localization property that holds for
linear FM signals carries over to locally quasilinear situations.
Radar echo from a rotating point is a signal with the sinusoid-
al FM modulation, so the localization is slightly degraded at
those points where the instantaneous frequency trajectory
cannot be treated as quasilinear (max and min points of the
sinusoidal function). When the two components are suffi-
ciently close, the spectrogram and the reassigned spectrogram
are roughly equal to what we can obtain for a single compo-
nent and the reassignment process may be imprecise. The
readability of an image can be hampered by noise added to
the signal. The reassignment treats components of a pure
signal and noise equally and moves each value of the noisy
spectrogram computed at any point (t, f) to another point
(t1, f1), which is the center of gravity of the noisy signal
energy distribution around (t, f), so that denoising procedure
is required. Another limitation is related to radar system para-
meters, which should be properly established before applying
the imaging process. The PRF needs to be sufficient to cover
the entire Doppler frequency extent of the object expressed by
the relation Bd ¼ 4rv/l ≤ PRF in order to avoid aliasing. The
expression of the full Doppler bandwidth Bd results directly
from equation (5). For the established PRF, v and l, we
can determine the maximal radial distance r of a scatterer
without ambiguity (aliasing) of Doppler frequencies.
Because the Doppler bandwidth Bd is a function of r, points
with different radial distance r to the center of rotation will
have different resolution of both projections and the PSF.
The CPI should ensure no cross-range “walk-off” during the
CPI. Otherwise degradation of the performance of the pro-
posed methods is inevitable. In simulations the image is repre-
sented by the image matrix with dimension 360 × 360 and
the rectangular coordinate system with the origin in the
middle of the matrix (180, 180) is placed. Peaks (maximal
value) after imaging correspond to the location of scatterers.
Due to the PSF, peaks have non-zero vicinity characterized
by a main lobe of the PSF. The PSF for the proposed
imaging method possesses directional properties on the
image plane because of strong nonlinearities. The resolution
performance should be analyzed in two dimensions instead
of the traditional 1D measure represented by the main lobe
width.
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A) Simulations
A helicopter is an example of a radar object with different
rotating structures such as a rotor blade, a rotor hub or a
tail rotor. After separation of a rotating part from the object
body, only rotating structures on the target may induce add-
itional periodical time-varying frequency modulations in the
returned radar signal. An object of interest is rotor blades.
Because of the shape of the rotor blade tips, returns from
blade tips can be approximately treated as returns from rotat-
ing point scatterers. For two rotor blades only two rotating
points symmetrically located, representing blade tips are inter-
esting to build the image. In the well-focused image, the exist-
ence of two blade tips can be found, what enables to recognize
some properties of the analyzed helicopter. Using an analogy
to two rotor blades, an object simulated in experiments com-
prises two rotating points. In the first experiment two rotating
points have been located at coordinates (30, 30) and at (230,
230) in the imaging plane, symmetrically in respect to the
center of rotation. The returned signal has been modeled
according to equation (4) for two scatterers. In the proposed
method of the imaging the reassigned spectrogram is con-
verted to the binary matrix resulting in a gray-scale image.
In spite of small inaccuracies in the vicinity of crossing of
two frequency trajectories visible in Fig. 2, the proper loca-
tions have been obtained. The local maximum corresponds
to the recovered point position.

In other experiments (shown in Figs 3 and 4) closely and
far located two scatterers, not necessarily symmetrically with
respect to the center of rotating, have been analyzed.
Accurate positions of another two scattering points relatively
closely located each other at (10, 10) and at (30, 30) in the
image plain and at (190, 190) and at (210, 210) in the image
matrix, respectively, are easily recovered.

Similarly, for two scatterers located at coordinates (10, 10)
and (70, 70) with relatively long distance between points,
imaging results also turned out to be correct.

The experiment presented in Fig. 4 shows the large spatially
variant frequency resolution of the spectrogram of two scat-
terers located in different distance from the rotating center,
whereas the reassigned spectrogram mitigates effects of this
phenomenon. The full Doppler bandwidth Bd ¼ 4rv/l is
strongly dependent on the rotation radius r. This causes the spa-
tially variant frequency resolution of the STFT as well as the
spectrogram for two rotating points with the different rotation
radius. Despite squeezing properties of the reassigned spectro-
gram, an image of the scatterer with the larger rotation radius
can create slightly larger spread than the point with a small
radius (shown Fig. 4). The improvement given by the reassign-
ment method is obvious but we never get a sharp curve of the
ideal time-frequency distribution. Different resolution of an
image of two points at (10, 10) as well at (70, 70) has been eval-
uated by the PSF. These locations correspond to points (190,
190) and (250, 250) in the imaging matrix, respectively.

Both the mainlobe and sidelobes turned out to be asymmet-
ric, irregular with irregular tapering. This irregularity is a result
of squeezing of the frequency spread by the reassignment
method. As expected, the PSF is slightly dependent on the scat-
terer location and has the sharper peak for the closer located
scatterer. The slice of the PSF through the column with the
maximal peak shows the achievable resolution in this direction.
In the experiment shown in Fig. 5 the first peak of the sidelobe
has been below 222 dB relative to the maximal peak for the

scatterer at (70, 70) and below 230 dB for the scatterer at (10,
10). Similar properties are attained for the slice through the
row with the maximal peak. The reassignment method cannot
resolve two too closely located components and cannot be reli-
able when Doppler ambiguity appear, what is depicted in Fig. 6.

Fig. 2. (a) The spectrogram of scatterers located at (30, 30) and (230, 230),
(b) the reassigned spectrogram of scatterers located at (30, 30) and (230, 230),
and (c) the tomographic image (zoomed) based on the reassigned spectrogram
of scatterers located at (30, 30) and (230, 230).
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Fig. 3. (a) The spectrogram of scatterers at (10, 10) and (30, 30), (b) the
reassigned spectrogram of scatterers at (10, 10) and (30, 30), and (c) the
tomographic image (zoomed) from the reassigned spectrogram of scatterers
at (10, 10) and (30, 30) with enhanced directional properties of the PSF.

Fig. 4. (a) The spectrogram of scatterers located at (10, 10) and (70, 70),
(b) the reassigned spectrogram of scatterers located at (10, 10) and (70, 70),
and (c) the tomographic image (zoomed) from the reassigned spectrogram
of scatterers located at (10, 10) and (70, 70).
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Experiments with simulated data confirm the effectiveness
of the described idea of imaging of rotating points for assumed
parameter of simulations.

V . T O M O G R A P H I C I M A G I N G I N
P R E S E N C E O F N O I S E

The model of the noisy signal can be written as x(n) ¼ s(n) +
w(n), where w(n) is circular complex Gaussian noise (the real
and imaginary part of noise are independent and have the
same probability distribution) with the variance sw

2 . A deter-
ministic, non-stationary signal s(n) and noise w(n) are inde-
pendent. The reassignment procedure used for noisy signals
can create the false energy concentration about the center of
gravity, because it uses both desired signal samples and
undesired samples of noise. Sophisticated methods can be per-
formed for extracting a signal from noise. One of many
examples is using the time-frequency map to select the time-
frequency area that is believed to belong to the signal, and
thus to reject all other areas. In this paper a denoising proced-
ure is performed by the rejection of values of the STFT below a
selected level called a threshold and signed Th. Due to the lin-
earity of the STFT, the transformation of noise and the trans-
formation of signals can be considered separately. Random
noise tends to spread its energy over the entire time-frequency
domain, while a signal concentrates its energy within limited
time intervals and frequency bands. To reduce the redundancy
of the continuous STFT, we can sample it in the time-
frequency plane on the rectangular grid {nt0, mv0}.

Fx[n,m, h] = Fx(nt0,mv0, h)

=
∫+1

−1

s(u)h ∗ (u − nt0) exp(−2jpmv0u)du,
(12)

where s(u) is a signal, h(u) is an analysis window of the STFT
transformation. The coefficients Fx[n, m, h] are coefficients of
the STFT assigned to the signal s(u) (shortly signal coefficients).
For the noisy signal x(t) two kinds of coefficients are obtained
after the STFT: noise coefficients and signal coefficients. We
should distinguish those coefficients that belong to the signal
from the ones that belong to noise. It is natural to assume
that coefficients assigned to noise are smaller than signal coef-
ficients. By rejecting points smaller than an appropriate thresh-
old, noise coefficients can be attenuated and signal coefficients
can easily emerge. Thresholding process is very sensitive to the
choice of the threshold. If the threshold Th is too large, the
signal will be highly distorted, if the threshold Th is too
small, then the result will still be noisy. After a denoising pro-
cedure the signal can be extracted by taking the inverse of the
STFT using only extracted coefficients above the threshold.
Theoretically STFT noise-only coefficients are distributed as a
circular complex Gaussian variable, so the threshold above
the variance value sw

2 is a good choice [7].

A) Simulations in noisy environment
An iterative approach in the scheme STFT ^ thresholding
process ^ inverse STFT is proposed to improve denoising
results. The iterative denoising procedure results from the spe-
cific properties of 2D filtering in the time-frequency domain.
The Fourier transform has a one-to-one mapping between the

Fig. 5. Slice through the column with the maximal peak in the imaging matrix
(a) of the normalized PSF for the point at (10, 10), (b) of the normalized
magnitude of the PSF (in dB) for the point at (10, 10), and (c) of the
normalized magnitude of the PSF (in dB) for the point at (70, 70).

876 ewa swiercz

https://doi.org/10.1017/S1759078716000404 Published online by Cambridge University Press

https://doi.org/10.1017/S1759078716000404


frequency domain and the time domain, so any spectrum in
the frequency domain corresponds to a unique signal in the
time domain. For time-frequency transforms, there is no

guarantee that such a one-to-one mapping exists between
the time-frequency domain and time domain. Setting up the
threshold for STFT coefficients and taking ones above the

Fig. 7. (a) The modulus of the STFT for the signal with SNR ¼ 4.1536 dB,
(b) the reassigned spectrogram after 17 recursions, and (c) the denoising
result after 17 recursion.

Fig. 6. The reassigned spectrogram (a) of two points located too closely: at
(10, 10) and (15, 15), (b) of two points located too far: at (10, 10) and (150,
150), in experiments with ambiguity of Doppler frequencies, and (c) of two
points located properly for the effective imaging process.
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threshold we make nonlinear 2D filtering by the filter localized
in the region of occurrence of STFT signal coefficients, which
are higher than the threshold. We should find a time-domain
signal that has corresponding time-frequency characteristics

in the localized region. There are two approaches for solving
this problem. The first solution uses a minimization error
between the time-frequency transform of the signal and the
desired distribution after filtering. The second solution uses
iterations, which allows to get easier the desirable signal
without noise. The threshold is dependent on the variance
of noise. After analysis of noise the threshold is set up at
Th ¼ 1.7∗sw

2 [7]. The accuracy of the denoising procedure is
evaluated by the error between a pure signal and a synthesized
signal after the iteration procedure. Noisy simulations charac-
terized by a signal to noise ratio (SNR) are performed on the
example of two scattering points located at (10, 10) and (70,
70) in the imaging plane. The SNR is calculated as the ratio
of a sum of squared signal samples to a sum of squared
noise samples. For the SNR ¼ 4.1536 dB the best recovering
of the noiseless signal is attained for 17 iterations. Denoising
is the necessary preprocessing step in a tomographic
imaging based on the reassigned spectrogram (Fig. 7).

Final imaging results of the tomographic imaging for the
SNR ¼ 4.1536 dB, the SNR ¼ 1.6548 dB, and the SNR ¼
20.2834 dB are presented in Fig. 8.

In Fig. 8 two peaks from two scattering points are visible
separately. The tomographic image of the point located at a
longer distance from the rotating center is seen more
smeared and has the increasingly smaller value for the lower
SNR ratio. The second peak is located at the proper cross-
range bin for the SNR ¼ 4.1536 dB and the SNR ¼
1.6548 dB. For the SNR ¼ 20.2838 dB the image of the
second point is moved to the next cross-range bin. The deg-
radation quality of the image, especially of the second point,
is the result of both the slightly worse reassignment process
for the point with longer radius of rotation and of worse effi-
ciency of the denoising procedure.

V I . C O N C L U S I O N S

In this paper a new method of quality improving of the tomo-
graphic imaging in the Doppler radar tomography is pre-
sented. In this approach cross-range profiles used to build
projections in the tomographic processing are represented
by the reassigned spectrogram. The reassigned spectrogram
presents substantially sharper time-frequency spreading than
the STFT what has been shown in Fig. 3. The reassignment
process assures a perfect localization of linear FM signals.
Cross-range projections of a rotating object as a sinusoidal
FM signal can be treated as quasi linear between minimum
and maximum points, so the reassigning method is very
useful for a signal with such a FM modulation. The perform-
ance of this new imaging method has been demonstrated on
the example of a two-points object with selected locations
and in the presence of noise. The future improvement of the
reassignment and more efficient denoising algorithm would
give better effects of the proposed imaging concept. A lot of
problems are still open but the obtained results are very prom-
ising and need to carry out further examination and testing
with real radar parameters.
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Fig. 8. Imaging results of the tomographic imaging (a) for the SNR ¼ 4.1536
dB, (b) for the SNR ¼ 1.6548 dB, and (c) for the SNR ¼ 20.2834 dB.
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