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This paper investigates pre- and post-reconnection dynamics of an unperturbed trefoil
knotted vortex for circulation-based Reynolds numbers ReΓ = 2 × 103 and 6 × 103 by
means of direct numerical simulations based on an adaptive mesh refinement framework.
Companion coherent-vorticity preserving large-eddy simulations are also carried out on a
uniform Cartesian grid. The complete vortex structure and flow evolution are simulated,
including reconnection and subsequent separation into a smaller and a larger vortex ring,
and the resulting helicity dynamics. The self-advection velocity before reconnection is
found to scale with inviscid parameters. The reconnection process, however, occurs earlier
(and more rapidly) in the higher Reynolds number case due to higher induced velocities
associated with a thinner vortex core. The vortex propagation velocities after reconnection
and separation are also affected by viscous effects, more prominently for the smaller
vortex ring; the larger one is shown to carry the bulk of the helicity and enstrophy after
reconnection. The domain integrated, or total helicity, H(t), does not significantly change
up until reconnection, at which point it varies abruptly due to the rapid dissipation of
helicity caused by super-helicity hotspots localized at the reconnection sites. The total
helicity dissipation rate predicted by the large-eddy simulation agrees reasonably well
with the direct numerical simulation results, with a significant contribution from the
modelled subgrid-scale stresses. On the other hand, variations in the vortex centreline
helicity, HC(t), and the vortex-tube-integrated helicity HV(t) are less sensitive to the
reconnection process. Periodic vortex bursting events are also observed and are shown
to be due to converging axial flow velocities in the detached vortex rings at later stages of
evolution.

Key words: vortex dynamics, turbulence simulation, vortex interactions

1. Introduction

1.1. Vortex reconnection: relevance and previous work
Three-dimensional viscous vortex reconnection has been a topic of strong interest for the
fluid mechanics community over the past several decades due to its important role in a
wide variety of flows. In the wake of large aircrafts, for example, pairs of anti-parallel
lift-induced vortices spontaneously reconfigure into arrays of vortex rings via viscous
reconnection, through a process known as Crow instability (Crow 1970). Such aircraft
trailing vortices can pose a considerable hazard to other aircrafts (Olsen, Goldburg &
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910 A31-2 X. Zhao and others

Rogers 1970; Spalart 1998). Vortex reconnection (Hussain 1986) and pairing (Petersen,
Kaplan & Laufer 1974; Zaman & Hussain 1980) have also been investigated as possible
mechanisms for aerodynamic noise generation. Vortex reconnection also plays a key role in
fine-scale turbulent mixing (Hussain 1986) and in sustaining the turbulent energy cascade
(Hussain & Duraisamy 2011).

Pioneering works in vortex reconnection include the experimental studies by Fohl &
Turner (1975), Schatzle (1987) and Oshima & Izutsu (1988) on colliding vortex rings. Early
numerical studies mainly focused on three simple configurations: vortex rings (Ashurst
& Meiron 1987; Kida, Takaoka & Hussain 1989; Aref & Zawadzki 1991); perturbed
anti-parallel vortices (Pumir & Kerr 1987; Melander & Hussain 1988; Kerr & Hussain
1989); and orthogonal vortices (Zabusky & Melander 1989; Zabusky et al. 1991; Boratav,
Pelz & Zabusky 1992). However, the circulation-based Reynolds number considered in
these early studies was confined to the range ReΓ = 1000–3500 due to limitations in
computational resources required to capture the small vortical scales involved in the
vortex reconnection process. Another crucial parameter determining the cost of these
computations is the thickness of the initial vortex core relative to the box size (if Cartesian
computational domains are used) and to a characteristic length scale of the vortex (for
example, total vortex length or mean radius for a torus knot, and so on).

More recent contributions have investigated viscous reconnection at higher Reynolds
numbers. Moet et al. (2005) conducted large-eddy simulations (LES) at ReΓ = 107

focusing on the formation of axial flow, i.e. flow velocity oriented along the vortex
centreline or axis, in a study of Crow instability. Hussain & Duraisamy (2011) presented
results up to ReΓ = 9000 and observed the so-called cascaded reconnection, i.e.
successive reconnections of secondary structures. Van Rees, Hussain & Koumoutsakos
(2012) performed simulations up to ReΓ = 10 000 and revealed the dynamics of first
and second reconnection of anti-parallel vortices, with and without imposed axial flow.
In the latest work (Yao & Hussain 2020b), with a similar anti-parallel configuration,
the Reynolds number range has been extended up to 40 000. These simulations are all
focused on a simple vorticity set-up (i.e. anti-parallel vortices) with a relatively thick
core (radius of vortex core to shortest domain length ratio re/L ∼ 0.1). In contrast, the
study presented in this paper features a large box size and thin core (re/L ≈ 0.0045). The
computational challenge for vortex dynamics simulation is not only given by Reynolds
number, also its multi-scale nature is provided by the disparity in length scale between the
coherent structure, the domain box size and vortex-core size. This is a great addition to the
computational challenge to this paper.

1.2. Knotted vortices: viscous reconnection and helicity dynamics
The present study focuses on a thin core, topologically non-trivial vortex set-up – a trefoil
knot (figure 1), which, due to its geometrical complexity, features viscous reconnection
involving both anti-parallel vortex tubes, as well as the linkage and knottedness of vortices
during their topological evolution, which is also of special interest to the quantum fluid
dynamics community (see Barenghi 2007; Maucher, Gardiner & Hughes 2016). The first
simulations of knotted vortices in viscous flow were conducted by Kida & Takaoka (1987,
1988), who first identified a new reconnection mechanism termed bridging. Knotted vortex
dynamics in viscous flows did not raise more interest until the work of Kleckner & Irvine
(2013), which was the first experimental study of knotted vortices in viscous fluids. They
observed an initial stretching of the vortex line, as well as the topological alteration
of the vortex structure and generation of two separate vortex rings after reconnection.
Using a similar set-up, Scheeler et al. (2014) observed that the centreline helicity should
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FIGURE 1. Initial vortex shape defined via the parametric equation (2.1), where re is the initial
effective vortex-core radius; Rmin and Rmax the minimum and maximum knot radius. The knot
half-thickness (in the z direction) is taken as equal to Rmin . The trefoil vortex propagates in the
+z direction due to the self-induced velocity field.

be conserved during the topological change from a single trefoil vortex to two separate
vortex rings under thin-core assumption. Yet Kimura & Moffatt (2014) predicted that
vortex-tube-integrated helicity should decay, using a low-order model based on Burgers
vortices. The most recent numerical work by Kerr (2018a) studies a strongly perturbed
thick-core trefoil knot featuring only one reconnection (instead of three, that would occur
in absence of perturbations), and focuses on the scaling of the time to first reconnection,
enstrophy and circulation for ReΓ = 250–16 000 with the ratio between core radius and
mean radius R̄/re of 5 and 10. In contrast, the present article presents an unperturbed trefoil
knot set-up with thin vortex core (R̄/re = 16.875), demonstrating that reconnection yields
a significant rise in global helicity, that is, domain-integrated helicity, due to small-scale
turbulent production events, which intensify as ReΓ increases. In the present work a
canonical trefoil knot set-up with thin vortex core is considered, and, compared with
previous studies, the emphasis is placed on the study of the generation of small scales
during the reconnection process and their role in the increase of global helicity levels, the
intensity of which is driven by ReΓ .

1.3. Computational cost, adaptive mesh and subgrid-scale modelling
Knotted vortex simulations present two main computational challenges. The first comes
from the requirement to resolve the topologically complex vortex knot with enough points
in its viscous core. This constraint is independent of the circulation-based Reynolds
number, which alone is not a sufficient metric for assessing the cost. The necessity of
(1) accurately resolving the vortex cores and (2) using a sufficiently large domain to
limit the influence of the computational boundaries poses serious resolution problems
for approaches based on Cartesian grids. In the latter case, the ratio between the
(initial) effective vortex-core radius, re, and the computational domain size L, becomes a
significant measure of the difficulty to resolve the initial scales. This issue has led previous
work on reconnection at high Reynolds numbers – summarized above – to focus on thicker
cores (with respect to the computational domain size) and/or only on a portion of the
vortex tube or ring under consideration, i.e. on periodic unit problems.

The second challenge lies in capturing the reconnection process, during which the
generated smaller scales and complex topology change need to be resolved, or adequately
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910 A31-4 X. Zhao and others

modelled via subgrid-scale (SGS) closures if turbulence is indeed present. The key metric
here is Reynolds number which determines the extent of the range of scales created during
the reconnection. The cost of a direct numerical simulation (DNS) executed on a uniform
Cartesian grid is prohibitively expensive, requiring, for example, 8 billion mesh grid points
to simulate a knotted vortex at ReΓ = 4000 (Kerr 2018a).

These two computational challenges justify the use of an adaptive mesh refinement
(AMR) technique, which constitutes a powerful tool that allows to concentrate the
grid resolution only where needed, and pick a sufficiently large box size to minimize
spurious interactions from the boundaries. Adaptive mesh refinement has been a popular
approach in computational fluid dynamics for its capability of capturing multi-scale
features with considerable computational savings – at the expense of a considerably
more complex code architecture and post-processing strategy. The AMR technique has
been extensively employed in many applications: magnetohydrodynamics (Anderson
et al. 2006; Dumbser et al. 2013), incompressible multiphase flows as for the droplet
motions in a microchannel (Chen & Yang 2014) and the atomization of liquid impinging
jets (Popinet & Rickard 2007), compressible multiphase flows as for the leakage of
gas from a liquefied-petroleum-gas storage cavern (Pau et al. 2012) or for bubble
dynamics (Tiwari, Freund & Pantano 2013), etc. For vortex dynamics problems, the time
evolution, reconnections and decays involve highly transient and localized physics, which
is particularly suitable to be solved by AMR. Early work of the application of AMR for
vortex dynamics simulation found in the literature can be dated to Almgren, Buttke &
Colella (1994), in which AMR is used to solve an incompressible vortex dynamics problem
with fast method of local correction. Popinet (2003) developed an incompressible AMR
solver to simulate a vortex merging problem in complex geometries. Benkenida, Bohbot &
Jouhaud (2002) compares two refinement strategies: patched grid and AMR in simulating
the transport of vortices. Harris, Sheta & Habchi (2010), Wissink et al. (2010), Chaderjian
(2012), Chaderjian & Ahmad (2012) developed different numerical methods combined
with Cartesian AMR to simulate the vortical flows in the wake region past helicopter rotor
blades.

An alternative approach is to use LES, which enables the investigation of the
high-Reynolds-number dynamics of such flows, as only the larger energy-carrying
structures are resolved while the SGS are modelled. Moreover, if the adopted LES
procedure is capable of adequately simulating the dynamics of the integral length scale
of the flow regardless of the specific spectral location of the grid cut-off, resolving the
initial vortex core would ideally constitute the only computational constraint and accurate
results could be obtained even with a very simple approach based on a Cartesian grid.
It is in fact of interest to the authors to evaluate how an LES method used on a fixed
mesh compares with a fully resolved DNS calculation (necessarily executed) on an AMR
framework.

One shortcoming of traditional LES modelling approaches is their tendency to introduce
excessive SGS dissipation in transitional regions or to impact the evolution of the large
coherent laminar vortices, which may be on the verge of break-up. Smagorinsky’s (1963)
model, for example, attenuates velocity gradients at all scales of the flow, resulting in an
undesired damping of the kinetic energy carried by the large scales. Thus, the recently
developed coherent-vorticity preserving (CvP) eddy viscosity correction by Chapelier,
Wasistho & Scalo (2018), which is able to capture accurately the dynamics of transitional
vortical flows with marginal resolution (Chapelier, Wasistho & Scalo 2019), is adopted in
the present study.
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DNS and LES of knotted vortices 910 A31-5

Further considerations regarding costs and limits on the Reynolds number achievable
can be made by looking at previous work focused on anti-parallel vortex reconnection.
Moet et al. (2005) performed LES with 4.6 million grid points and L/re = 40; Misaka
et al. (2012) conducted LES with 78.6 million grid points with L/re = 147.7 at ReΓ ∼ 107

to simulate anti-parallel vortex pairs with six points inside the vortex core. The DNS by
Hussain & Duraisamy (2011) adopted 0.26 to 1073 million grid points (yielding from 13 to
200 points inside the core, respectively), with L/re = 9.4, spanning the circulation-based
Reynolds numbers in the range 250–9000, and Van Rees et al. (2012) adopted 785 million
points, with 130 points inside the core and L/re = 16.31, on ReΓ = 104 to capture the
detailed evolution process. However, none of these studies provided a grid converge
analysis.

In the present study, for the highest Reynolds number considered (ReΓ = 6 × 103), up
to 83.78 points per vortex core are used with L/re = 220 for DNS with AMR, and up to
7.68 points per vortex core are used with L/re ≈ 110 for LES, alongside a careful grid
convergence study spanning three levels of grid resolution for each Reynolds number.

1.4. Manuscript outline
The present study introduces the first DNS and a companion LES of the dynamics of
thin-core knotted vortices, for Reynolds numbers up to ReΓ = 6000, while adopting a box
size large enough to not vitiate the flow dynamics (see appendix A). A detailed description
of the first reconnection is presented and flow visualizations are presented at a later time of
evolution capturing the vortex bursting process, featured by converging axial flow, which
is in turn excited by the reconnection. Vortex bursting is observed for the first time in the
context of this flow; such phenomenon is challenging to observe in experiments since the
tracer can fail to track the vortex after bursting, as discussed by Misaka et al. (2012).

The outline of the paper is as follows. Section 2 introduces the governing equations, the
CvP-LES methodology, the adopted AMR framework and the flow configuration, followed
by a grid convergence and sensitivity study in § 3. Section 4 focuses on the study of flow
kinematics and § 5 is devoted to the characterization of flow structures before, during and
after reconnection. Section 6 studies how the time evolution of helicity is impacted by the
reconnection process.

2. Problem formulation

2.1. Initial condition
The vortex filament of a trefoil knot is described via the parametric curve:

X (θ) =

⎛⎜⎝Rmin (sin(θ) + 2 sin(2θ))

Rmin (cos(θ) − 2 cos(2θ))

−Rmin sin(3θ)

⎞⎟⎠ (2.1)

with the local knot radius given by

R(θ) =
√

R2
min sin2(3θ) + R2

min(5 − 4 cos(3θ)). (2.2)
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910 A31-6 X. Zhao and others

Rmin Rmax R̄ re re/R̄

15 mm 45 mm 33.75 mm 2 mm 0.059

TABLE 1. Geometrical parameters defining the knotted vortex filament and initial effective
viscous core radius, re.

Here Rmin is the minimum radius, and also the knot half-thickness in the propagation
direction (figure 1). The mean radius, defined as

R̄ = 1
2π

∫ 2π

0
R(θ) dθ, (2.3)

will be used as a characteristic length scale in the present study, where we also choose the
knot half-thickness to be Rmin , resulting in Rmax = 3Rmin , R̄ = 2.243Rmin or R̄ = 0.748Rmax .
All of the geometrical parameters used in the present study are illustrated and summarized
in figure 1 and table 1.

The velocity field induced by the vortex filament is initialized by numerically integrating
the Biot–Savart law:

u(x) = − Γ

4π

∫
Kv

(x − X (θ)) × t(θ)

|x − X (θ)|3 dθ, (2.4)

where t(θ) is the unit vector tangent to the filament, Γ is the circulation and Kv is a
regularization function taken from Vatistas’ vortex-core model (Vatistas, Kozel & Mih
1991). The expression for Kv is proposed by Van Hoydonck, Bakker & Van Tooren (2010)
for the vortex-core tangential velocity as a function of the radial distance from the core
centre:

Kv = |x − X (θ)|3(|x − X (θ)|4 + rc
4
)3/4 . (2.5)

Here rc is the nominal vortex tube radius, which we relate to the effective core radius re via
re = 2rc. With this choice, a vortex tube of diameter 2re accounts for 95 % of the vorticity
carried by the tube. With this kernel function choice, a Gaussian profile can be obtained
in the initialized vortex-core structure. Core thickness is a very crucial factor affecting the
overall dynamics as well as the small scales for this problem. The purpose of this paper
is to report the numerical simulation results of the evolution of a thin-core vortex knot,
whose thickness is inspired by Irvine’s experimental investigations of a knotted vortex
(Kleckner & Irvine 2013).

Simulations are performed in a triply periodic cubic domain with dimensions Ω =
[0, L]3, with the trefoil knot vortex initialized at the centre (0.5L, 0.5L, 0.5L) with L =
30Rmin for AMR simulation and L = 15Rmin for LES. Appendix A provides the analysis
on the sensitivity of the box size, showing that L = 15Rmin is a sufficient box size for the
current study. All simulations are run with circulation Γ = 0.02 m2 s−1 and re/R̄ = 0.059
(see table 1).

The circulation is set to Γ = 0.02 m2 s−1 for all cases and changes in Reynolds number
ReΓ = Γ/ν are achieved by solely changing the viscosity. The ratio of specific heats γ =
1.4, reference density ρref = 1.0 and reference temperature Tref = 1.0 are used to compute
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DNS and LES of knotted vortices 910 A31-7

the reference pressure pref = ρc2/γ . In the following text, a non-dimensional time t∗ =
tΓ/R̄2 is used to display transient data.

2.2. Governing equations
The flow motion considered is assumed to be governed by the set of compressible
Navier–Stokes equations,

NS(w) = ∂w
∂t

+ ∇· [Fc(w) − Fv(w,∇w)] = 0, (2.6)

where w = (ρ, ρU, ρE)T is the vector of conserved variables ρ, U and E, density,
velocity and total energy, respectively, and (∇w)ij = ∂wi/∂xj its gradient. The viscous
and convective flux tensors Fc, Fv ∈ R

5×3 read as

Fc =

⎛⎜⎝ ρUT

ρU ⊗ U + pI

(ρE + p)UT

⎞⎟⎠ and Fv =

⎛⎜⎝ 0
τ

τ · U − λ∇TT

⎞⎟⎠ , (2.7a,b)

where T is the temperature, p is the pressure, λ is the thermal conductivity of the fluid and
I ∈ R

3×3 is the identity matrix. For a Newtonian fluid, we have

τ = 2μS, (2.8)

where μ is the dynamic viscosity and

S = 1
2

[∇U + ∇UT − 2
3 (∇·U) I

]
. (2.9)

The ideal gas law is considered for the closure of the system of equations, namely,

p = (γ − 1)
(
ρE − 1

2ρU · U
)
, (2.10)

where γ is the heat capacity ratio.

2.3. Adaptive mesh refinement computational framework: the VAMPIRE code
The DNS of the knotted vortex reconnection presented in this work are performed with
the AMR high-order compact finite difference code VAMPIRE (Zhao & Scalo 2020). The
AMR framework of the VAMPIRE code is based on Paramesh (MacNeice et al. 2000). For
each simulation, before time advancement, a sensor estimating the discretization error of
the sampled initial condition is ran on all the blocks to determine whether the mesh should
be locally refined; such a process is repeated until convergence of the AMR tree structure.
A sample of the resulting adaptively refined mesh at time t∗ = 0, as well as subsequent
times, is shown in figure 2 for ReΓ = 6000.

In this work our goal is to apply the AMR code to fully resolve the vortex
reconnection dynamics. Therefore, we choose to use a vorticity-based sensor, defined in
the non-dimensional form as

fω = |∇(ω)|Δ
max (‖ω‖∞, ωref)

, (2.11)

where Δ is the local grid spacing, and ω is the magnitude of vorticity, i.e. ω := |ω|.
This expression is the normalized gradient of vorticity by a local indicator of the
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t∗ = 0 t∗ = 2.64 t∗ = 4.22

z

y

x

x

(a) (b) (c)

(d) (e) ( f )

FIGURE 2. Grid following the vortex transport in the DNS simulation with AMR. The upper
row and lower row show different views of the simulation results for ReΓ = 6000.

vorticity magnitude. From a numerics perspective to avoid division by zero, an extra term
ωref is added to the denominator of the expression.

This reference vorticity value is expected to be a measure for the global level of vorticity
magnitude. The sensor is expected to refine the grid in the region where the vortical
features are significant, while coarsening the grid at the regions far away from the vortex
ring, where the vorticity vanishes. More details of the numerics can be found in Zhao &
Scalo (2020). The AMR structure is updated every time step. All of the AMR simulation
results presented in this paper are run at CFL = 0.25.

2.4. Large-eddy simulation framework on Cartesian grid
In the present study, the compressible LES formalism introduced by Lesieur & Metais
(1996) and coworkers (Lesieur & Comte 2001; Lesieur, Métais & Comte 2005) is adopted
yielding the following set of filtered compressible Navier–Stokes equations:

NS(w̄) = ∇·FSGS(w̄,∇w̄). (2.12)

Here w̄ = (ρ̄, ρ̄Ũ, ρ̄Ẽ)T is the vector of filtered conservative variables. The LES equations
are obtained by applying a low-pass filter to the Navier–Stokes equations (Leonard 1974).
The spatial filtering operator applied to a generic quantity φ reads as

φ̄(x, t) = g(x) � φ(x), (2.13)

where � is the convolution product and g(x) is a filter kernel related to a cutoff length
scale Δ̄ in physical space (Sagaut 2006). The compressible case requires density-weighted
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DNS and LES of knotted vortices 910 A31-9

(or Favre) filtering operators, defined as

φ̃ = ρ̄φ

ρ̄
. (2.14)

The SGS tensor FSGS is the result of the filtering operation, it encapsulates the dynamics
of the unresolved SGS, and is modelled here using the eddy-viscosity assumption:

FSGS(w̄,∇w̄) =

⎛⎜⎜⎜⎝
0

2μtS̄

−μtCp

Prt
∇T̃T

⎞⎟⎟⎟⎠ . (2.15)

Here S̄ is the shear stress tensor computed from (2.9) based on the Favre-filtered velocity
Ũ , Prt is the turbulent Prandtl number, which is set to 0.5 (Erlebacher et al. 1992), Cp
is the heat capacity at constant pressure of the fluid and μt is the eddy viscosity, which
depends on the chosen subgrid model.

In the present work, the CvP-Smagorinsky closure is adopted, which yields accurate
results for transitional and high-Reynolds-number flows. The LES methodology employs
the CvP approach introduced by Chapelier et al. (2018), which has been validated in the
context of transitional helical vortices simulations (Chapelier et al. 2019). The expression
for eddy viscosity for this closure reads as

μt = ρf (σ )(CSΔ̄)2
√

2SijSij, (2.16)

where CS = 0.172 is the Smagorinsky constant, Δ̄ is the local (linear) grid size and f (σ ) is
the CvP turbulence sensor built from the ratio of the test-filtered to grid-filtered enstrophy,

σ =
̂̄ξ
ξ̄

, (2.17)

where ξ̄ = ω̄ · ω̄/2. Near-unitary values of such ratio, σ 	 1, imply a low degree of local
spectral broadening of the flow (for example, in regions of transitional turbulence or
coherent laminar vortices) and, hence, result in the local attenuation of SGS dissipation.

The compressible, Favre-filtered Navier–Stokes equations are solved on a simple
uniform Cartesian grid using a sixth-order compact-finite-difference scheme solver
originally written by Nagarajan, Lele & Ferziger (2003), under continued development at
Purdue University. The solver is based on a staggered grid arrangement, providing superior
accuracy and robustness compared with a fully collocated approach (Lele 1992). The time
integration is performed using a third-order Runge–Kutta scheme.

For the presently considered computations, the speed of sound is arbitrarily selected as
cref = 5Vmax , where Vmax is the maximum velocity magnitude at the initial condition. The
maximum Mach number is achieved during reconnection and it does not exceed 0.25 in
all cases simulated. This choice yields near-incompressible flow dynamics. Simulations
are initialized with unitary density and temperature fields, equal to the reference values
ρref = 1.0 and Tref = 1.0. The gas constant is then defined by setting the reference
pressure to pref = ρref c2

ref /γ , where γ = 1.4 is the ratio of specific heats. Levels of
density, temperature and pressure are dimensionless and physically irrelevant, as the
compressibility effects on the simulated hydrodynamics are negligible.
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FIGURE 3. Grid convergence analysis for AMR simulations: ReΓ = 2000 (green), ReΓ = 6000
(blue), showing the evolution of the resolved volume-integrated enstrophy Ξ (or, equivalently,
normalized total viscous dissipation, ε). The results in the plot include the six AMR simulations
at ReΓ = 6000 and the three AMR simulations for ReΓ = 2000 (see table 2) with increasing
levels of grid refinement as shown by the arrow.

3. Grid sensitivity study

3.1. Grid convergence analysis of AMR calculations
A grid sensitivity analysis has been carried out for all Reynolds numbers considered
(figure 3, table 2) based on the globally integrated enstrophy

Ξ =
∫∫∫

Ω

ξ dV. (3.1)

This quantity is highly sensitive to small-scale dynamics and a grid-converged enstrophy
evolution is therefore indicating that the resolution is sufficient to capture the small scales
generated during the reconnection process. We hereafter describe that state of the AMR
tree by reporting the block tree depth, d, and number of grid points per block Nb. Grid
configurations used for the two circulation-based Reynolds numbers considered in this
paper include 8 and 9 levels with 123, 183, 243, 303, 363 grid points per block. As observed
from the simulation results, with the refinement sensor specified in § 2.3, all the regions
containing the vortex core are initially refined to the finest level; therefore, the resolution
provided by the grid configuration can be represented by the number of points inside the
initial vortex-core diameter (2re/Δ). The enstrophy curves from the two finest simulations
in figure 3 overlap each other. An AMR grid with 9 refinement levels, 123-points and
303-points per block provide grid-converged global enstrophy for the ReΓ = 2000 and
6000 cases, respectively. Figure 3 shows that, for both Reynolds numbers, starting from the
same initial condition, the global enstrophy decreases first due to viscous dissipation. The
dissipation rate is relatively stronger for ReΓ = 2000. During reconnection, both enstrophy
curves increase and reach their peak, followed by a gradual decay. The peak value of
global enstrophy for ReΓ = 6000 is significantly higher than the ReΓ = 2000 case, and
even higher than its initial value, in this case due to the production of very small vortical
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ReΓ 2re/Δ = 3.41 3.49 5.12 7.68 13.96 20.94 27.93 41.89 55.85 69.82 83.78

2000 d 1 1 1 — 8 8 9 — — — —
N3 1203 1923 2883 — 123 183 123 — — — —
Ntot 2.1M 7.1M 23.9M — 16.9M 51.9M 62.2M — — — —

6000 d — 1 1 1 8 — 9 9 9 9 9
N3 — 1923 2883 4323 123 — 123 183 243 303 363

Ntot — 7.1M 23.9M 80.6M 15.1M — 55.3M 0.16B 0.35B 0.69B 1.16B

LES Cartesian DNS AMR

TABLE 2. Summary of flow and grid parameters for the (single-mesh-level, i.e. d = 1) Cartesian
CvP-LES and the AMR runs, executed on d = 8 and d = 9 mesh levels. Here N3 indicates the
total number of points per AMR block, or in the whole computational domain for the Cartesian
LES, 2re/Δ is an estimate of the number of grid points per initial effective vortex diameter,
and Ntot is the total degrees of freedom for each simulation in the unit of millions. For AMR
simulations, Ntot is taken at t∗ = 3.0 right after the reconnection.

scales during the reconnection. Whether the latter constitutes the occurrence of turbulence
in a state of quasi-equilibrium or not, a proper dynamic LES model tasked with simulating
such a highly unsteady and inhomogeneous flow should not vitiate the underlying coherent
vortex dynamics by adding unnecessary amounts of eddy viscosity.

3.2. Grid sensitivity study for LES with Cartesian grid
A grid sensitivity analysis of the LES computations has been carried out for all Reynolds
numbers considered (figure 4, table 2). Computational grids with N3 = 1203, 1923, 2883

and 4323 points are considered, corresponding to, respectively, 3.4, 3.5, 5.1 and 7.6 points
inside the initial vortex-core diameter (2re). The adequacy of the adopted grid resolution
is also assessed by monitoring the level of SGS, or modelled, dissipation (figure 4).
Such quantities are not intended to provide a rigorous statistical representation of the
state of turbulence (when and if present at all), since the flow is highly inhomogeneous
and unsteady. Such quantities will be merely used to infer the sensitivity of the resolved
flow to the grid and the robustness of the adopted CvP-LES closure. As discussed in the
following, the flow evolution is in fact laminar (albeit highly unsteady) before and after
reconnection, with near-equilibrium turbulence occurring only during reconnection and at
higher Reynolds numbers (figure 5), posing an important numerical modelling challenge
for the CvP-Smagorinsky closure. As indicated in table 2, the CvP LES conducted in
this study are computationally inexpensive compared with DNS with AMR; however, as
shown in the rest of the paper, the CvP-LES correctly predicts key features of the flow,
such as the jump in global helicity discussed in § 6.1, demonstrating its suitability as a
predictive tool for high-Reynolds-number vortical flow evolution. Figure 5 also shows
the comparison between one-dimensional spectra extracted in the z direction from the
CvP-LES and AMR simulations. The overlap in the low wavenumber range indicates that
the CvP-LES correctly captures the effects of the unresolved small scales onto the resolved
large scale despite the highly inhomogeneous and non-equilibrium nature of turbulence in
this flow.

The volume-integrated resolved enstrophy (figure 4a) increases monotonically with
Reynolds numbers and grid resolution, as expected. The peak in total dissipation
(figure 4b), which comprises the modelled εSGS and the resolved, occurring upon
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FIGURE 4. Grid sensitivity analysis for LES: ReΓ = 2000 (green), ReΓ = 6000 (blue) showing
the evolution of the resolved volume-integrated enstrophy, Ξ (a), normalized total dissipation,
εtotal (b), and SGS to total dissipation ratio (c). Grid resolutions considered are the finest three
datasets from each simulation: coarse (· · · ); intermediate (- - -); fine (——) (see data in table 2).
Reference data shown in circles (◦) are taken from the finest DNS data.

reconnection, varies modestly for all grids considered at any given Reynolds number,
indicating a healthy response of the CvP-LES closure. Velocity-fluctuation intensity
production only occurs upon vortex reconnection, responsible for the generation of
small-scale vortical structures (see § 5), where a non-vanishing SGS energy content is
detectable even for the lowest ReΓ at the highest grid resolution available (figure 4c). An
acceptable level of grid convergence on the total dissipation before and after reconnection
is achieved for both Reynolds numbers, which can be seen from figure 4(c) in the
comparison with the grid-converged AMR results. The high levels of subgrid dissipation
at the beginning of the computation (∼70 % of the total dissipation for the coarser grid)
can be explained as the CvP model detects marginally resolved initial vortex cores and
proceeds to make them smoother by the action of subgrid dissipation. This process does
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FIGURE 5. Grid sensitivity analysis for Cartesian CvP-LES (black) and AMR (green/blue)
simulations: ReΓ = 2000 (a), ReΓ = 6000 (b) showing the one-dimensional energy spectra in
the z direction at the time of first reconnection (t1) defined as the time when the maximum
dissipation is achieved (see figure 2). Grid resolutions considered are the finest three datasets
from each simulation: coarse (· · · ); intermediate (- - -); fine (——) (see data in table 2). Red
dotted line shows a reference −5/3 slope. Here Lz is the domain size in z direction.

not impact the subsequent total dissipation evolution (t∗ > 1) which is remarkably close
to the DNS results for both Reynolds numbers considered.

4. Vortex propagation kinematics

In this section the kinematics of vortical motion are first described from visual
inspections of the instantaneous flow fields taken from the DNS-AMR data. These
instantaneous flow fields are also discussed in the animation by Yu, Chapelier & Scalo
(2017) showing preliminary CvP-LES data on this problem. The initial knotted vortex
propagates along, and rotates about the z-axis (as seen from figure 6), then gradual
distortion and elongation of the vortex filament are observed, due to the self-induced
convection velocity of the smaller radius portion of the knot (R(θ) < R̄) being higher
than that of the outer portion (R(θ) > R̄). This leads to the stretching of the vortex line
(t∗ ≈ 1.97) and three simultaneous reconnections of vortex filaments (t∗ = 2.59). After
this reconnection event, two distinct vortical structures initially triangular in shape are
generated, which then evolve following independent dynamics (t∗ = 3.94), analysed later.
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FIGURE 6. Visualizations of Q-isosurfaces with QR̄4/Γ 2 = 97 extracted from ReΓ = 6000
simulation. Here v∗

a denotes the dimensionless propagation velocity of the knot before
reconnection (t∗ < 2.5); v∗

b1 and v∗
b2 denote the small and large rings velocity, respectively, after

reconnection.

Figure 7 shows the magnitude of vorticity averaged in the x–y plane as a function of z
and t, defined as

〈ω∗〉xy = 1
L2

∫ L

0

∫ L

0
|ω∗|(x, y, z, t) dx dy, (4.1)

where ω∗ = ωR̄2/Γ . Figure 7 provides the locations of the two vortices generated after
reconnection, which propagate in the z direction with different speeds; the peak of
enstrophy (shown in figure 4) happens between t∗ = 2.5 and t∗ = 3.0, which occurs at
the beginning of the separation of the knot into two vortex rings. After the separation, the
leading smaller vortex ring shows higher propagation velocity than the following larger
ring, because of its smaller mean ring radius.

While the vortex kinematics before the reconnection are similar among the different
Reynolds numbers investigated, the flow dynamics during the reconnection are strongly
affected by viscous forces. The latter are responsible for intense enstrophy production
events, which intensify with ReΓ .

The propagation velocity of the initial knotted structure, va, and of the smaller, vb1,
and larger, vb2, vortex rings forming after reconnection can be evaluated via the slope in
the z–t plane of the local maxima of vorticity magnitude (figure 7). The corresponding
non-dimensional expression can be obtained based on the initial circulation Γ0 and the
mean knot radius, R̄:

v∗
a = vaR̄/Γ0, (4.2a)

v∗
b1 = vb1R̄/Γ0, (4.2b)

v∗
b2 = vb2R̄/Γ0. (4.2c)

As shown in table 3, the values of v∗
a extracted from present calculations are similar

between two Reynolds numbers, justifying the use of the inviscid scaling t∗ = tΓ/R̄2
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FIGURE 7. Plane-averaged vorticity as a function of z (vortex propagation direction) and t. The
velocities va, vb1 and vb2 (see figure 6) are calculated via a linear fit of the local maxima of
vorticity in the z–t plane. The dashed lines show the results from DNS, and dots are from LES.

ReΓ 2000 6000

AMR Cart-LES (2883) AMR Cart-LES (2883)

v∗
a 0.346 0.343 0.336 0.345

v∗
b1 0.975 0.881 1.10 0.969

v∗
b2 0.308 0.302 0.329 0.320

TABLE 3. Non-dimensional propagation velocity (4.2c) of the vortex structures before and after
reconnection from the AMR/DNS and Cartesian LES data.

before the first reconnection. This can be explained from the fact that the core size
difference caused by the Reynolds number is negligible compared with the length scale of
the coherent vortex structure before reconnection, therefore, the thin-core assumption still
holds well and its influence is very little on the overall kinematics.

Dimensionless vortex propagation velocities after reconnection v∗
b1, v∗

b2 depend more
significantly on viscous scaling parameters, such as viscosity and core size. After
reconnection, v∗

b1 and v∗
b2 increase with ReΓ . The smaller vortex ring propagates

approximately three times faster than the larger one. This is consistent with the initial
maximum radius Rmax of the knotted vortex being three times larger than Rmin . The increase
in the self-propagation velocity for the higher Reynolds number in the z direction is more
significant for the small ring, because the smaller ring has a smaller radius of curvature
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FIGURE 8. (a) Evolution of effective core radius re and (b) instantaneous vortex length �(t)
normalized by the initial vortex length �0 for ReΓ = 2000 (green) and ReΓ = 6000 (blue).
Regions shaded via vertical bars represent the time intervals when reconnection is happening,
which are partly overlapping for the two different Reynolds numbers. Solid lines are used
before reconnection; �, large ring after reconnection; , small ring after reconnection; (◦),
sum of small and large ring vortex length after reconnection. (c) Overlapping of Q-isosurfaces
QR̄4/Γ 2 = 323 from ReΓ = 2000 and ReΓ = 6000 at four different non-dimensional times:
t∗ = 0.53 and t∗ = 1.58 are two instances before reconnection; t∗ = 2.95 and t∗ = 2.53 are the
reconnection times for ReΓ = 2000 and ReΓ = 6000 cases, respectively.

while retaining a core of a similar diameter. The self-advection velocity of a ring of radius
R0 can in fact be approximated as Γ/4πR0 ln(R0/re) and when the ratio R0/re gets close
to unity, the propagation speed is more sensitive to re.

Although the propagation speed va in the z direction is almost Reynolds-number
independent before reconnection, the higher Reynolds number case does exhibit an earlier
reconnection time. In this paper, the time when the maximum volume-averaged enstrophy
is reached, t1, is used to identify the reconnection process. From figure 3, t1 = 2.90 for
ReΓ = 2000 while t1 = 2.75 for ReΓ = 6000. This can be explained by analysing the
comparison of the evolution of Q-isosurfaces for the two Reynolds numbers shown in
figure 8(c): starting from the same initially prescribed velocity field, the vortex knot
evolves almost identically for the two Reynolds numbers, until the stretched vortex
segments reach an anti-parallel configuration, where the effect of the finite core size
becomes important. The higher Reynolds number case presents thinner vortex cores
which communicate relatively higher induced velocity to the nearby anti-parallel vortex
segments, resulting in earlier reconnection. Figure 8(c) shows that the difference in
induced velocity of the nearly anti-parallel vortex segments is primarily in the xy plane,
instead of in the z direction.

The effect of Reynolds number (i.e. viscous effect) on the core size evolution is
presented in figure 8(a) and on the stretching of the vortex length in figure 8(b). In this
study, the vortex centreline is extracted based on eigenmodes of the velocity gradient
tensor following an approach similar to Sujudi & Haimes (1995), and the boundary of
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the vortex tube is identified by applying a regression fit of the vorticity distribution to a
Lamb–Oseen model on a cut plane perpendicular to the vortex line,

ω(r̃) = Γ

πr2
c

exp
(

− r̃2

r2
c

)
(4.3)

with r̃ being the distance normal to the centreline in the local cross-sectional plane. The
effective core radius re in this work is taken as twice rc in order to effectively cover
around 95 % of the vorticity in a vortex tube of diameter 2re. As shown in figure 8(a),
before the reconnection happens, the core radius for the ReΓ = 2000 case is about 1.7
times compared with the ReΓ = 6000 case, which satisfies the scaling law re ∼ √

νt. The
finite core size effect on the induced velocity shows up at about t∗ = 2.2 where the two
vortex length curves peel off from each other, signifying that two vortex segments are
getting close to each other more rapidly for the higher Reynolds number case. The vortex
stretching occurs much faster in the ReΓ = 6000 case, resulting in earlier reconnection.

The reconnection process lasts longer at a lower Reynolds number, which can also be
linked to the thicker core size at ReΓ = 2000.

It can be seen from figure 8(b) that, despite the difference in reconnection time and
the duration of the reconnection, the length of the resulting vortex loop right after
reconnection for the small leading ring and large trailing ring is almost identical for both
Reynolds numbers. The length of the vortex knot right before the reconnection is larger
than the sum of the small and large rings after reconnection: the difference is accounted for
by the length of the vortex lines that constitute the thread structure, which will be analysed
in § 5.3.

5. Vortex reconnection dynamics

The trefoil vortex knot considered in the present study unknots via three simultaneous
reconnection events. For the high-Reynolds-number case, a cascaded reconnection occurs,
i.e. a series of successive reconnections of the secondary structures (identified as
thread-like vortices analysed in the next section), first discovered by Hussain & Duraisamy
(2011), who also found that this phenomenon was promoted by higher Reynolds numbers.
Because of the rotational symmetry of the knot about the z-axis, the three simultaneous
reconnections are identical in absence of initial perturbation patterns breaking such
symmetry. The configuration of the vorticity field at the onset of reconnection is
determined by the kinematics of the vortex propagation leading up to reconnection itself,
as discussed in § 4. Because of the difference in the propagation kinematics between
the two Reynolds number cases, the configuration of the vorticity field at the onset of
reconnection is also different. Figure 9 shows the centreline of vortex tube at the onset
of the reconnection at two different Reynolds numbers. The onset of reconnection in this
work is defined as the moment when the distance between anti-parallel vortex lines falls
below re(t), where re(t) as a function of time, t, can be found in figure 8(a). This distance
is illustrated by a short dashed line connecting two dots in figure 9; moreover, for the
two Reynolds numbers considered, the reconnection occurs at different times as well as at
different locations along the knot. The high-Reynolds-number case features reconnections
occurring at earlier time and at a lower value of z. The vortex centreline configuration at
such a tipping point is nearly symmetric: as seen from figure 9 and table 4, the angles
between the vectors normal to the vortex line and the line connecting two tipping points
(θ1 and θ2, defined as inclination angles) being almost equal for both Reynolds number
cases. Curvature at the tipping point, as studied by Moffatt & Kimura (2019), has been
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FIGURE 9. (a,c,d) Reconstructed vortex centreline upon reconnection for ReΓ = 2000 (green)
and ReΓ = 6000 (blue). The radii of curvature are marked with black arrows, with the local
normal vectors as their directions. Red arrows represent the direction of vectors tangential to the
vortex lines. The angle between the normal vectors and the line connecting the two tipping points
is marked as θ . Panels (c,d) are for ReΓ = 2000 at tΓ/R̄2 = 2.528 and ReΓ = 6000 at tΓ/R̄2 =
2.370, respectively. (b) Change in radius of curvature at the tipping points before reconnection.

considered to influence the dynamics of reconnection. The result from this work shows
that the high-Reynolds-number case results in smaller radii of curvature at both tipping
points (namely, R1 = 7.3 and R2 = 6.5 mm) compared with the low-Reynolds-number
case (R1 = 7.8 and R2 = 9.8 mm), as illustrated in figure 9 and reported in table 4.
This is as expected, as in the high-Reynolds-number case the tipping points experience
more intense stretching, resulting in a higher local curvature, following the mechanism
explained by Moffatt & Kimura (2019). A slight increase in curvature at tipping points
is observed when the pair of tipping points approaches from far field; however, unlike
what is seen in Moffatt & Kimura (2019), when tipping points are getting close enough
and the bridging starts, the curvatures are flattened instead of increasing rapidly, and the
vortex lines on both sides of the dividing plane tend to be more anti-parallel. This process
is depicted in figure 9(b), where the radii of curvature reach a minimum value and then
increase as the two vortex tubes approach each other. This is due to the jet flow induced by
two newly formed bridges pushing two threads away from each other. Similar phenomenon
of the flattening of the curvature at tipping points is also observable in the numerical study
of two colliding rings in Yao & Hussain (2020a).

Asymmetric vorticity patterns are observed at the onset location of reconnection, despite
nearly symmetric geometrical arrangement of the vortex lines. This scenario is analysed
using a local coordinate system (figure 10) where the coordinate origin is located at the
centre of the reconnecting threads, the Y ′–Z′ plane approximately defines the dividing
plane, and X′ and Y ′ axes align with the orientations of bridges and threads, respectively.
The coordinate system moves as the reconnection progresses, i.e. as the whole knot rotates
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ReΓ Dt R1 R2 θ1 θ2

2000 5.49 mm 7.8 mm 9.8 mm 111.7◦ 107.1◦
6000 4.18 mm 7.3 mm 6.5 mm 114.3◦ 114.3◦

TABLE 4. Curvatures and tipping point angles right before reconnection (see figure 9) at two
different Reynolds numbers.

(a) (b)

(c) (d) (e)

0

hR–3/�2
V

o
rticity

A
xial flow

76

–76t∗ = 2.42

t∗ = 2.95t∗ = 2.84t∗ = 2.63

x′y′

z′

FIGURE 10. (a) Local coordinate system at the reconnection location. Panels (b–e) show the
different times during reconnection for ReΓ = 6000. Panel (b) shows the onset position and
(c,d,e) show the vortex structure evolution as reconnection progresses. Isosurfaces are extracted
with a vorticity magnitude of ω = 0.5Γ/πr2

e,0 coloured by normalized helicity density.

and spins during the reconnection. As seen from figure 10, the pattern of the vortex tubes
on both sides of the Y ′–Z′ plane shows rotational symmetry around the Z′-axis, instead
of being symmetric with respect to the X′–Z′ plane. The upper left (X′ < 0, Y ′ > 0) and
lower right (X′ > 0, Y ′ < 0) parts of the vortex stay horizontal in the X′–Y ′ plane, while
the lower left (X′ < 0, Y ′ < 0) and upper right (X′ > 0, Y ′ > 0) parts deflect downwards.
On the other hand, the axial flow pulses are concentrated at the lower end (Y ′ < 0) of the
anti-parallel structure, while the upper end (Y ′ > 0) features a less intense axial flow, as
identified in figure 10 by the shading of helicity density, defined as

h = u · ω. (5.1)
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The helicity density is a quantity of interest to detect the presence of axial flow,
corresponding to locations with the same vorticity direction but opposite velocity
direction.

During the evolution of a knotted vortex, the generation of four characteristic vortical
structures can be identified: 〈I〉 anti-parallel structures; 〈II〉 hairpin vortices; 〈III〉 thread
structures; 〈IV〉 helical modes (also named Kelvin waves). Events leading to the formation
of such structures are observed for both Reynolds numbers considered. Figure 11 shows
a side-by-side comparison between DNS and LES at each stage of vortical flow evolution
mentioned above. In comparison, LES results preserve the evolution of large-scale
structure without resolving the fine-scale turbulent structure generated via reconnection.
As shown in figure 12, the CvP sensor function f (σ ) is capable of detecting the
under-resolved small scales generated during the reconnection process, and applying SGS
dissipation only to those regions. As shown in figure 4(c), the total dissipation (resolved
plus modelled via CvP) recovers the peak dissipation calculated from the DNS. Before
and after reconnection, the CvP-sensor prevents the SGS from spuriously dissipating
the coherent vortex structure, by preventing the SGS stress from being applied to the
large-scale vortex parts. In this way, the large-scale kinematics of the vortex evolution
are well preserved, as seen from the right column of figure 11. Also, the SGS stresses
contribute significantly to the dissipation of the helicity occurring during reconnection,
allowing us to recover the peak value of helicity decay rate −dH(t)/dt predicted by
the DNS calculations, shown later in figure 19 and discussed in § 6. In this section the
discussion of the physics of the reconnection dynamics will be relying on the DNS results.

Structures 〈I〉 and 〈II〉 form simultaneously and participate in the bridging process. The
thread structures 〈III〉 connect the large and small vortex rings during the last stages of
reconnection, which culminates with the complete separation of the two rings and the
corresponding initialization of helical, or Kelvin waves 〈IV〉. The latter, via nonlinear
collisions, lead to repeated (in time and space) momentary ruptures (or burstings) of the
vortex topological structure.

5.1. Anti-parallel vortex pair 〈I〉
Vortex regions undergoing the highest rate of axial stretching align right before
reconnection in an anti-parallel fashion (figure 11, t∗ = 2.42) and viscously interact. The
vorticity in the outer layers of the vortex tube undergoes cancellation through viscous
diffusion, forming hairpin vortices acting as bridges (figure 11, t∗ = 2.62); the small-scale
structures left over from the reconnection process, named threads, form weak topological
connections with the two newly formed vortex rings (figure 11, t∗ = 2.81), and eventually
dissipate.

These dynamics are similar to those observed in Crow instability (Crow 1970), which is
the most studied scenario for anti-parallel vortex reconnection, investigated in the context
of contrail vortices behind an aircraft. The difference with respect to the knotted vortex
lies in the source of perturbations. The Crow instability is a mutual induction sinusoidal
instability through which the two anti-parallel vortices interact. However, in the present
study, the reconnection process is triggered by the vortex self-advection and distortion.

5.2. Hairpin vortex formation via bridging 〈II〉
Figure 13 illustrates the detail of the reconnection process for ReΓ = 2000 and ReΓ =
6000. While the interaction during the anti-parallel reconnection results in a cancellation
of the outer layer vorticity, enhancement of the inner layer one (in the points of contact),
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〈I 〉 t∗ = 2.42 anti-parallel structure

〈II〉t∗ = 2.69 hairpin vortex & bridge

〈III〉 t∗ = 2.81 thread structure

〈IV〉 t∗ = 3.80 helical structure & Kelvin waves

x

y
z

x
y

z

x

x

y

y

z
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Hairpin
vortex

Threads

hR–3/�2

–76 760

(a) (b)

(c) (d)

(e) ( f )
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FIGURE 11. Finest DNS/AMR (a,c,e,g) and LES (b,d, f,h) at ReΓ = 6000 showing
Q-isosurfaces at QR̄4/Γ 2 = 323 for 〈I〉, 〈II〉, 〈III〉 and 96 for 〈IV〉, coloured by helicity density;
〈I〉: a pair of anti-parallel vortex lines undergoing viscous cancellation; 〈II〉: hairpin vortices
are generated along non-reconnected parts of threads and forming bridges; 〈III〉: newly formed
threads; 〈IV〉: helical structures are generated.
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f (σ)

LES Re� = 6000 t�/R2 = 2.686 LES Re� = 6000 t�/R2 = 2.862

y y

0.2

0.5

0.8

z z
x x

(a) (b)

FIGURE 12. Sensor function f (σ ) used in the CvP-LES closure in (2.16) at two different time
instances from a LES at ReΓ = 6000.

and thinning of the vortex tubes (structure 1), the remaining vorticity unaffected by
the cancellation is responsible for initiating the bridging process (structure 2 at t∗ =
3.16), yielding intermediate hairpin vortex structures on the two extremities of the
thinning anti-parallel structures – the leading and following extremity, based on the
self-propagation direction of the knot (i.e. along +z). Parts of newly formed hairpin
vortices merge into structure 3, spanning both the anti-parallel structure and early hairpin
vortex (structure 2). With structures 1 and 2 gradually dissipating, structure 3 becomes
dominant with a vortex-core thickness comparable to the original structure and ultimately
responsible for completing the reconnection process. This type of reconnection was named
bridging by Kida & Takaoka (1994), to be distinguished from the vortex cancellation
process described in Fohl & Turner (1975) and Oshima & Asaka (1977). The various
steps involved in this process are clearly visible at ReΓ = 2000, while at ReΓ = 6000, the
reconnection results in the generation of smaller scale structures. The same process occurs
on both ends of the anti-parallel structure, resulting in the initialization of axial flow and
the travelling of helical structures, or Kelvin waves, on the small and large vortex rings
after separation. The curvature of the bridges causes the repulsion from the reconnection
zone due to the induced velocity field, which further stretches the threads.

5.3. Thread structures 〈III〉
Threads are generated at the beginning of the reconnection process as shown in figures 14
and 15 and figure 16 at around t∗ = 2.90 for ReΓ = 2000 and t∗ = 2.63 for ReΓ = 6000.
The thread structure is the byproduct of the circulation transfer process from one vortex
segment to its anti-parallel neighbour, thus, its generation coincides with the formation of
the bridge comprising the hairpin vortex. Similarly to the observation reported by Hussain
& Duraisamy (2011), the two anti-bridges curl back and retract from one another shortly
after they are formed. As the threads in between are stretched, the induced velocity by
the bridges tend to change the curvature of the threads, further distancing them from one
another, which can be noticed especially at the thread-bridge junctions at ReΓ = 2000. For
the higher Reynolds number case ReΓ = 6000, the stretching is more intense so that the
anti-parallel structure is squeezed into a thinner film and subsequently breaks down into
finer scales due to Kelvin–Helmholtz instability. In contrast to the case ReΓ = 2000 where
threads are side by side, two major thread structures in ReΓ = 6000 can be identified,
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FIGURE 13. Visualization of the generation of hairpin vortices from Q-isosurfaces at
QR̄4/Γ 2 = 96 for ReΓ = 2000 and ReΓ = 6000 from DNS/AMR data, coloured by normalized
helicity density; threads created during the bridging process, intermediate hairpin vortex
structure the final dominant hairpin structure are illustrated.

one on the top and the other at the bottom, with the thin-film vorticity remaining in
between, as shown in figure 15. The majority of the high vorticity is concentrated at the
thread on the top only, and at a high Reynolds number features significant subsequent
local reconnections (i.e. cascaded reconnection), which results in small-scale vorticity
surrounding the thread on the top. The structure of the small-scale vortices generated
by this reconnection is similar to the cascaded bridgelet structure discussed by Yao &
Hussain (2020b) (C-structure in figure 7(e) of the cited paper), in which the mechanism of
the cascade reconnection has been outlined for the ReΓ = 9000 case. The difference with
the current work is that the strain field in the current paper is asymmetric, resulting in a
more asymmetric evolution of the bridgelets (as shown on the lower right of figure 13). The
reversal of curvature near the thread-bridge junctions at ReΓ = 6000 can also be observed,
but it manifests itself in the form of bifurcations of the threads together with the generation
of numerous smaller scale structures (as seen in the lower right parts of figure 13).

Along with the separation into leading small and trailing large vortex rings, the threads
become stretched in the self-propagation direction z. At the same time, the threads begin
to diverge along the large vortex ring due to the convection of the flow around and along
vortex tubes (t∗ = 3.80).

The main vortex ring structure keeps rotating around the z-axis and the longitudinally
stretched threads separate into two parts: one part is convected by the triangular-shaped
vortex rings, then wraps around the bridges. This part will stay connected to the
reconnection points and rotates together with the two separate rings around the z direction.
The other part loses the original connection to the main vortex ring structures and stays
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t∗ = 2.69 t∗ = 2.90 t∗ = 3.11

t∗ = 3.21 t∗ = 3.32 t∗ = 3.42

(a) (b) (c)

(d)

(e) ( f )

FIGURE 14. Isosurfaces of vorticity magnitude at various times during reconnection: ω =
0.3Γ/πr2

e,0 coloured in transparent grey and ω = 1.0Γ/πr2
e,0 coloured by red at ReΓ =

2000.

t∗ = 2.37 t∗ = 2.48 t∗ = 2.63

t∗ = 2.74 t∗ = 2.84 t∗ = 2.95

z

y

x

(a) (b) (c)
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FIGURE 15. Isosurfaces of vorticity magnitude at specific time steps during reconnection:
ω = 0.5Γ/πr2

e,0 coloured in transparent grey and ω = 3.0Γ/πr2
e,0 coloured by red at ReΓ =

6000.

at its old position in the x–y plane, as seen in the dashed boxes at t∗ = 4.52 and 5.22.
The large vortex ring will rotate across such stagnating threads, which serves as a source
of perturbation that excites more helical structures at the outer layers of vortex rings, as
discussed in the next section.

Furthermore, additional asymmetric features of the reconnection in this problem include
the relative rotation between two bridges, as can be seen in figure 10(c–e). At ReΓ = 6000,
the lower bridge, which is part of the larger trailing ring after separation, undergoes a
torsional displacement with respect to the threads (i.e. with respect to the Y’-axis defined
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FIGURE 16. Visualization of the threads (marked by dashed rectangles) evolution using
Q-isosurfaces with QR̄4/Γ 2 = 323 for ReΓ = 6000 DNS coloured by normalized pressure
fluctuations (structure 〈III〉) in figure 11.

in the moving local coordinate in figure 10), while the upper bridge on the small ring
remains nearly orthogonal to the threads through the entire reconnection process, and
the vertical film formed by the threads remains straight. In contrast, at ReΓ = 2000 the
two side-by-side threads are further distorted by the relative motions between bridges
(see figure 10b). This is due to the asymmetric configuration of the vortex tube and
the asymmetric and non-uniform distribution of the axial flow packets at the onset of
reconnection.

5.4. Helical structures and Kelvin waves 〈IV〉
The hairpin vortex structures generated after reconnection are responsible for exciting
helix-shaped structures (figure 17), corresponding to two Kelvin-wave packets propagating
away from the reconnection region, in opposite directions and with opposite handedness.
These structures, coloured in the figure by the helicity density (5.1), are advected by the
axial flow, which occurs when the flow velocity vector inside a vortex core is aligned with
the vortex line, thus, the positive values denote a propagation along the direction of the
vorticity vector (vice versa, if negative).

The helical structures travelling along each single side of the triangular-shaped vortex
ring periodically collide with each other, then continue to travel past one another. Each
collision event exhibits features of vortex bursting as defined by Spalart (1998), who
investigated this phenomenon in the context of contrail vortices in airplane wakes.
Vortex bursting is also observed in the reconnection of anti-parallel vortex tubes (Crow
instability), after which the axial flow is driven away from the reconnection region as
observed in Misaka et al. (2012) and Van Rees et al. (2012).

When the helical structures collide for the first time, the axial velocities cancel each
other and form an annular structure (visualized in figure 17(h) by a local cut plane across
the vortex ring). Similar structures and associated dynamics were observed and discussed
by Melander & Hussain (1994). When such an annular structure propagates along the
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FIGURE 17. Q-isosurfaces with QR̄4/Γ 2 = 323 from DNS results at ReΓ = 6000. Panels (a,b)
show the axial flow direction before reconnection; (c,d,b) depicts the Kelvin-wave packet
generated and colliding on the leading small ring, and ( f –i) show the Kelvin-wave packets
travelling and colliding on the large vortex ring after reconnection; (h) shows when the
Kelvin-wave packets collide on the large vortex ring, an annular structure is formed; (j) shows the
centreline axial flow energy spectrum before, during and after the Kelvin-wave collision event
happened on the large vortex ring as shown in (g–i), respectively.
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vortex tube, it develops additional twists, which represent higher helical modes. Spalart
(1998) argues that vortex bursting does not compromise the coherent structure if the
circulation-preservation principle is respected, and that experimental smoke visualizations
cannot properly track the vortical structure during bursting.

In the present study such collisions occur as the helical, or Kelvin, waves are travelling
along the vortex loop with nonlinear interactions. From a spectral energy content
standpoint, the collision process transfers the energy from low wavenumbers to higher
ones. One way to check this effect is to perform a Fourier analysis of the axial flow energy
spectrum on one vortex loop, defined as

Ew̃(k, t) = 1
�(t)

∫
�

ρw̃2|r=0 exp(−j2πk/�z̃) dz̃, (5.2)

where z̃ is the position along the axial direction of the vortex line, and the axial flow
velocity w̃(z̃, r, t) is defined as

w̃(z̃, r, t) = u · z̃, (5.3)

where z̃ is the unit tangential vector of the vortex line, which is normal to the local
cut plane, and the boundary of the vortex tube cross-sectional area. Figure 17(j) shows
the axial flow energy spectrum before, during and after the first three simultaneous
Kelvin-wave collisions on the large trailing ring (figure 17g–i), depicting that the energy
is suppressed during the collision, and redistributed to a higher wavenumber after the
collision. Also the Kelvin waves are dispersing as they propagate and collide, resulting in
a homogeneous distribution of wave energy along the vortex loops. On the leading small
ring, similar but more intense events occur, because of the smaller size of the ring. The
evolution of helical structures on the small ring can also be observed and the positive and
negative helicity parts alternate rapidly due to the shorter length allowing propagation. The
small scales generated on the two separated vortex rings, and especially on the leading
smaller ring (figure 17d–i), are the result of Kelvin-wave collisions (which result in an
energy cascade into smaller scales), and the interaction between the main vortex tube and
the threads wrapping around it (as explained in § 5.3). A similar phenomenon can be found
in Van Rees et al. (2012), where energy cascade from nonlinear Kelvin-wave interaction,
as well as deformation of the vortex lines on the resulting vortex rings after reconnection
is observed. The energy cascade from Kelvin waves is conjectured to be different from
Kolmogorov cascade and has been widely discussed by Kozik & Svistunov (2004), Vinen,
Tsubota & Mitani (2003) and Yepez et al. (2009) for quantum turbulence and superfluid
turbulence. In Van Rees et al. (2012) the thread structure stays in the colliding plane
because of symmetry and does not wrap around the vortex rings, whereas in the current
work, the wrapping of the threads around the vortex tube and the resulting interaction
(pairing and merging) further deforms the vortex tubes and adds to the complexity of the
small scales generated.

Overall, there are similarities between the reconnection dynamics of topologically
complex thin-core vortex knots and of a symmetric parallel reconnection as discussed
by previous works, such as Hussain & Duraisamy (2011), Van Rees et al. (2012) and Yao
& Hussain (2020b), etc. An asymmetric knot configuration, however, results in much more
complex fine-scale vortex structures and non-trivial global helicity dynamics. Moreover,
the asymmetry increases with increased Reynolds number, which can be reflected by the
curvature change shown in figure 9.
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6. Helicity evolution dynamics

Helicity is related to the topological features of the flow, like the degree of knottedness,
and linkage, as discussed by Scheeler et al. (2014). Knotted vortices are of interest for
the study of helicity dynamics due to their non-zero initial global (or total) helicity, H,
which is determined by the initial filament topology; for a single vortex ring, the initial
global helicity is, in fact, zero. Kida & Takaoka (1988) and Kerr (2018b) investigated
the evolution of total helicity for knotted vortices, observing that it is conserved before
reconnection. Kida & Takaoka (1988) focused on low Reynolds numbers at ReΓ =
320, 800 and 1600 with effective core size re/R̄ ≈ 0.1, where a decay of total helicity
starting from the reconnection process, and a mitigation of this decay as the Reynolds
number increased, were observed.

In this paper we assess here the sensitivity of the total helicity evolution to the Reynolds
number with thin initial vortex-core radius re/R̄ ≈ 0.06. We focus our analysis on three
quantities derived from the helicity density field (5.1): total helicity, H(t) (6.1); centreline
helicity, HC(t) (6.2); and vortex-tube-integrated helicity, HV(t) (6.3).

Total helicity H(t) is integrated across the entire computational domain,

H(t) =
∫∫∫ +∞

−∞
u · ω dΩ ≈

∫ L

0

∫ L

0

∫ L

0
u · ω dΩ (6.1)

and it contains information from all the scales in the flow. In the present study vortex
reconnection results in topological changes in the flow, which cause changes in the total
helicity investigated below.

Centreline helicity HC(t) is defined as

HC(t) = Γ

∮
w̃|r̃=0 d�, (6.2)

which is useful in theoretical analyses assuming infinitesimally thin vortex tubes with
confined helicity. This practically accessible form is adopted by Scheeler et al. (2014),
where d� is the infinitesimal length of a line element along the loop, and w̃ as a function
of r̃ is the local axial velocity, defined in (5.3)

Scheeler et al. (2014) reports that centreline helicity, HC(t), is approximately conserved
during reconnection in a viscous flow, which is confirmed by the results in the present
study discussed later. In the present study, the fluid velocity u used in (6.2) is evaluated at
the centreline of the vortex core using a method similar to Sujudi & Haimes (1995).

Finally, the vortex-tube-integrated helicity is defined as

HV(t) =
∫∫∫

V
u · ω dΩ, (6.3)

where the volume of the vortex ring V is defined as the region with distance smaller
or equal to re from the vortex core. In the limit of re → 0, (6.3) yields (6.2). The
vortex-tube-integrated helicity can be seen as an improvement upon (6.2), as it allows
us to take into account the inner structure of a finite-thickness vortex core.

6.1. Total helicity
For the two different Reynolds numbers considered in this study, before reconnection, the
total helicity is approximately constant with a value H/Γ 2 ≈ −3.3, in good agreement
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FIGURE 18. Direct numerical simulation and companion LES data for the evolution of
volume-integrated, or total, helicity for ReΓ = 2000 (green) and ReΓ = 6000 (blue) for the
vortex knot configuration considered in the present study. Direct numerical simulation results
are shown by solid lines and the finest LES by circles (◦).

with the results of Kida & Takaoka (1988) and Scheeler et al. (2014) who report values
of H/Γ 2 ≈ 3.28 and H/Γ 2 ≈ 3.26, respectively. The difference in sign is merely due to a
trivial difference in the handedness of the trefoil knot, specifically, a change in the sign of
the z component in (2.1).

As shown in figure 18, for ReΓ = 2000 (laminar reconnection), a maximum in helicity
is reached and a steady decay observed after that. For higher Reynolds numbers, where
turbulent production occurs, a significant and more abrupt increase in helicity is observed,
followed by a steady increase in helicity. Figure 18 also shows the total helicity results
from the finest LES. The results indicate that the LES is capable of capturing the trend
of changing of total helicity correctly, including the abrupt helicity production during
reconnection and the gradual decay or increase after reconnection, even though no specific
helicity-preserving SGS model is employed in this work.

To further study this peculiar behaviour, the following helicity budgets are
considered:

d
dt

H =
∫∫∫

−2νω · (∇ × ω) dΩ. (6.4)

Here ω · (∇ × ω) is the super-helicity density. Just like kinetic energy, the global helicity is
a conserved quantity in an inviscid flow. However, viscous effects may entail an increase
or decrease of the helicity depending on the right-hand side of (6.4). Figures 19(a) and
19(b) show the total helicity budget at both Reynolds numbers considered in the DNS.
The excellent agreement between the independently evaluated left- and right-hand sides
of (6.4) indicates that the evolution of global helicity is well resolved in both cases. The
closure of the global helicity budgets, in fact, requires all scales of the flow to be properly
resolved, especially due to the three nested spatial derivative operations present in the
super-helicity term on the right-hand-side of (6.4). In the LES with CvP-Smagorinsky
closure, the eddy viscosity μt contributes to the viscous helicity dynamics, as shown in
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the budget equation

d
dt

H =
∫∫∫

−2νω · (∇ × ω) dΩ︸ ︷︷ ︸
resolved helicity dissipation

+
∫∫∫

−2μt

ρ
ω · (∇ × ω) dΩ︸ ︷︷ ︸

modelled SGS helicity dissipation

, (6.5)

where the helicity H is here intended as based on the resolved velocity and vorticity, and
ω is the resolved vorticity vector. Figures 19(c) and 19(d) show the total helicity budget
for both Reynolds numbers considered in the LES. The SGS contribution to the helicity
dissipation adds on to the resolved contribution, allowing the LES to predict a peak in
total rate of helicity change dH(t)/dt matching reasonably well with the DNS results
(figure 18). As opposed to the DNS/AMR results, the helicity budgets from the LES are
not exactly numerically closed, due to the very nature of the adopted LES approach, which
exhibits a high wavenumber energy build up. Moreover, the staggered grid arrangement
entails various interpolation operations which further propagate numerical error, resulting
in a loss of accuracy in the direct evaluation of the super-helicity on the right-hand side
of (6.5). These numerical errors, however, vanish when refining the grid, and become
negligible only once and if DNS levels of grid resolution are achieved. An explicitly
filtered LES approach is expected to yield an exact numerical closure of the budgets, and
will be considered in future work. The reader is also directed to previous research (Li et al.
2006) on the suitability of SGS closure in vortex dominated turbulent flows.

The finest LES resolution for the ReΓ = 2000 and ReΓ = 6000 cases is 2883 and 4323,
respectively. When the grid resolution of the LES is increased, the relative importance of
the resolved viscous contribution to the total helicity dissipation rate increases with respect
to the SGS contribution.

Furthermore, it is interesting to investigate the spatial distribution of helicity and helicity
production (super-helicity), and their evolution with time. This is depicted in figures 20
and 21 showing the z direction distribution of helicity and production of helicity density
averaged in the xy plane, where z is the propagation direction of the self-induced motion
of vortex knot. The helicity and production of helicity density average in the xy plane are
defined as

〈h∗〉xy = 1
L2

∫ L

0

∫ L

0
h(x, y, z, t)R̄3/Γ 2 dx dy (6.6)

and

〈dh∗/dt∗〉xy = 1
L2

∫ L

0

∫ L

0
−2νω · (∇ × ω) R̄5/Γ 3 dx dy, (6.7)

respectively. Figure 20 shows that when the trefoil knot reaches reconnection, the trailing
part, which becomes the larger trailing ring, carries the majority of the helicity; on the
other hand, the leading part, that becomes the leading smaller ring later, carries almost
zero helicity. From figure 17(b), it can be seen that the leading part presents a nearly
triangular shape with a distribution of helicity with a nearly zero average. Figure 21
shows that the location of the abrupt helicity increase during the reconnection (reflected
in figure 18) at the reconnection regions between the leading and trailing rings. After
reconnection, for both the ReΓ = 2000 and ReΓ = 6000 case, the helicity decay is found
to be occurring mainly on the large trailing ring (see figure 21). This decay is likely due to
the competing effects of Kelvin-wave collision and viscous dissipation.

At higher Reynolds numbers, reconnection and Kelvin-wave collisions tend to
produce higher mode helical structures that are responsible for more intense local

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

94
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.943


DNS and LES of knotted vortices 910 A31-31

3.0
DNS Re� = 2000 DNS Re� = 6000

LES Re� = 2000 LES Re� = 6000

2.5
2.0
1.5
1.0
0.5

–0.5
–1.0
–1.5

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

t� /R–2

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

t� /R–2

R– 2 �
3

d
H d
t

–

3.0

2.5

2.0

1.5

1.0

0.5

–0.5

–1.0
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

0

3.0
2.5
2.0
1.5
1.0
0.5

–0.5
–1.0
–1.5

0

3.0

2.5

2.0

1.5

1.0

0.5

–0.5

–1.0

0

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

R– 2 �
3

d
H d
t

–
(a) (b)

(c) (d )

FIGURE 19. Global helicity budget at different Reynolds numbers from the DNS and finest
LES available: (a) ReΓ = 2000 DNS, in green; (b) ReΓ = 6000 DNS, in blue; (c) ReΓ = 2000
LES, in green; (d) ReΓ = 6000 LES, in blue. The symbols correspond to: (◦) resolved helicity
production term (first term on the right-hand side of (6.4) and (6.5)); () SGS helicity production
term (second term in (6.5)); (——) time derivative of resolved global helicity H(t) (left-hand
side of (6.4) or (6.5)) obtained by differentiating the time series of H(t) collected at every
Navier–Stokes time step.

helicity dissipation. Kida & Takaoka (1988) analysed two reconnection processes,
bridging and vortex cancellation from the view point of helicity evolution, claiming that
bridging slows down the rate of total helicity change. On the contrary, in the case of a
knotted vortex, the bridge structures (see § 5.2) accelerate the rate of change of helicity.

Any helicity variation is indeed a result of reconnection of vortex lines in the presence
of viscous effects. During a strong reconnection event, as in the case of a knotted vortex,
the vortex tubes are abruptly flattened by the strain field, forcing the vortex lines to
reconnect rapidly, which results in rapid changes in the total helicity. An example of
weak reconnection is viscous dissipation of twist helicity, as discussed by McGavin &
Pontin (2019), which is due to slippage of the vortex lines within the tubes. Arguing
why total helicity should change is more straightforward from a topological standpoint.
The reconnection event experienced by the trefoil knot transforms the topology from a
stable one to an unstable one; as can be seen from figure 18, helicity is conserved up until
reconnection. As discussed by Scheeler et al. (2014), before reconnection the helicity is
stored in the form of writhe helicity, which is a stable form of helicity storage. Whereas
after reconnection, a large part of helicity is converted into twist helicity, which is more
sensitive to viscous dissipation. The net negative change in total helicity, as observed in
this flow, is due to the local positive helicity density near the reconnection spot being
viscously dissipated more intensely than the negative helicity in other parts of the domain.
This is shown by the disappearance of negative helicity patches for ReΓ = 2000 and
ReΓ = 6000 DNS in figure 20. This ‘annihilation’ mechanism, observed in the current
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FIGURE 20. Plane-averaged helicity as a function of z (vortex propagation direction) and t. The
white dashed lines show the positions of vortex rings estimated by the planed-averaged vorticity
magnitude, with velocities va, vb1 and vb2 defined in figure 6 and calculated the same way as in
figure 7. The DNS and LES results are compared for each Reynolds number.

simulations, has also been suggested by Kimura & Moffatt (2014) in their analysis of a
pair of skewed Burgers vortex tubes. In the case of the present LES, the viscous dissipation
modelled by the adopted SGS closure makes up for the unresolved dissipation, and, as a
result, the LES solution predicts the helicity jump in both Re-case reasonably well. The
study of the helicity dynamics associated with strong reconnection events such as this one
would also require a careful analysis of the effects of the vortex-core size, as thicker cores
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FIGURE 21. Plane-averaged helicity production dh∗/dt∗ as a function of z (vortex propagation
direction) and t from the DNS results. The white dashed lines show the positions of vortex rings
estimated by the planed-averaged vorticity magnitude, with velocities va, vb1 and vb2 defined in
figure 6 and calculated the same way as in figure 7.

prolong the reconnection time, distributing the enstrophy production events, as well as the
total helicity change, more gradually in time.

6.2. Centreline and vortex-core-integrated helicity
Scheeler et al. (2014) reported that the centreline helicity, defined as in this manuscript
by (6.2), was conserved for the knotted vortex problem, even in the presence of viscous
effects. On the other hand, Kimura & Moffatt (2014), when modelling the same flow as a
crossed vortex pair problem, have shown that the helicity integrated within core volumes as
in (6.3) decays right after reconnection. In the present study both quantities are examined
in figures 22(a) and 22(c) for both Reynolds numbers. Both methods indicate that after
the reconnection, the large trailing ring carries the majority of the helicity. However,
the tube-integrated helicity agrees well with the global helicity, by showing the helicity
production during the reconnection. The centreline helicity, on the other hand, shows
discrepancies compared with the reference total helicity results after the reconnection,
and appears to not change significantly before and after reconnection.

The helicity obtained by integration along the vortex line via both methods exhibits
oscillations after reconnection, which can be explained by colliding Kelvin waves and the
simultaneous formation of annular structures.

It is noteworthy that the centreline helicity in the present study does not vary
significantly during reconnection. One possible reason for this is that this helicity model
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FIGURE 22. Evolution of centreline helicity, tube-integrated helicity and circulation, for the
entire vortex structure (black), and small leading ring (yellow) and large trailing ring (red)
after reconnection. (a,c) Time series of vortex-tube-integrated helicity density HV(t) (�), and
centreline helicity HC(t) (——) normalized by initial circulation from DNS results at ReΓ =
2000 and ReΓ = 6000, respectively. Green and blue triangles (�) show the normalized total
helicity H(t) for ReΓ = 2000 and ReΓ = 6000, respectively. (b,d) Evolution of instantaneous
circulation Γn(t) (see (6.8)) from DNS results at ReΓ = 2000 and ReΓ = 6000, respectively,
shown by circles (◦). The grey box is masking the reconnection time when the vortex centreline
is not clearly defined.

takes the axial velocity value from the centreline, and does not take into account the
distribution of the axial flow w̃, defined in (5.3), within the vortex core. Figure 23 shows
that, caused by the vortex bursting during the reconnection and collisions of Kelvin
waves, the axial flow distribution on different cross-sections normal to the vortex tube
can be irregular and far from being uniform, which is implicitly assumed by the centreline
helicity method (6.2). This explains why in figure 22 the discrepancy between the total
helicity H and the centreline helicity Hc is noticeably larger in the ReΓ = 6000 case,
where the axial flow distribution on the cross-sections is more inhomogeneous. Since the
radial distribution of the axial flow can contribute significantly to the local helicity, the
vortex-tube-integrated helicity HV should be considered as a more accurate representation
of the helicity associated with a vortex tube than the mere centreline helicity HC. This
explains what is observed in figure 22, that is before reconnection, when the vortex tube
is practically unperturbed, centreline helicity shows a good agreement with global helicity
and tube-integrated helicity, whereas after reconnection, there is a visible discrepancy
among the three quantities.

The instantaneous measured circulation Γn(t) is shown in figures 22(b) and 22(d). The
measured circulation Γn is averaged along the vortex length after obtaining a local value
on every normal slice according to

Γn(t) = 1
Ncut

(
Ncut∑

i

∫∫
An(z̃i)

ω · n dAn

)
, (6.8)
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FIGURE 23. Axial flow distribution (ŵ) on three different cut planes on the large vortex ring
after reconnection, based on the Q-isosurface of QR̄4/Γ 2 = 323 at t∗ = 3.97 and ReΓ = 6000
from DNS results.

where An(z̃i) is the area of a circle lying in a cut plane perpendicular to the vortex tube at
a given axial position z̃i. It is centred at the vortex centreline, and its normal vector aligns
with the tangential vector of the local centreline. The radius of the thus obtained sampling
circle varies in time and it is heuristically set to rs = 1.333re(t) to collect all the vortex
lines within and around the vortex tube. Changing rs in the range 1.1re(t) to 1.5re(t) only
introduces a variation of about 5 % in Γn . For all of the vortex loops considered, Ncut = 100
evenly spaced cut planes are used. Note the measured circulation Γn is different from the
initial nominal circulation Γ , because this method does not ensure that the circulation is
strictly calculated along a closed material line, as required by Kelvin’s theorem.

Nonetheless, the large trailing ring (red symbols and lines) formed after reconnection
does preserve the circulation of the initial trefoil reasonably well. A slow decay of the
circulation is observed after reconnection, and it is more pronounced at the lower Reynolds
numbers. This can be explained by the fact that at lower Reynolds numbers, the thread
structures tend to interact and merge with the larger trailing ring, while for higher Reynolds
numbers, a larger portion of thread structures are left suspended in between the small and
large rings, and are eventually left to dissipate, as seen in the strip of high vorticity region
between the small and large ring between tΓ/R̄2 = 3.5 and tΓ/R̄2 = 4.0 in figure 7(b).
When there is an interaction between the thread structures and a large coherent ring, the
vortex lines in the threads will pass through the normal cut plane dAn irregularly; also,
such interaction will distort the vortex lines in the large vortex tube. All of these will add
to the disturbance in the measured circulation Γn .

The smaller ring (yellow symbols and lines) after reconnection has a lower measured
circulation Γn(t) than the trefoil and the larger trailing ring, and is also characterized by
more unsteady behaviour at both Reynolds numbers. This is because the small ring is
surrounded by intense secondary vortical activity, as made evident in figure 23.

7. Conclusion

In this work a study of evolution and reconnection of a trefoil-shaped vortex knot has
been carried out at circulation-based Reynolds numbers ReΓ = 2000 and ReΓ = 6000,
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with high-fidelity DNS/AMR calculations and companion LES. Grid independency has
been proven for the AMR simulations by checking both the global enstrophy and the
budget of total helicity.

The numerical simulation of the trefoil knotted vortex shows a vortex filament
entanglement process in three locations of the main structure leading to the separation of
this structure in two distinct vortex rings. In a comparison between two simulated Reynolds
numbers, the high-Reynolds-number case features an earlier and faster reconnection
process, which is due to the finite core size effect.

Multiple small-scale structures, the extent of which depends on the Reynolds number,
are generated at the location of vortex reconnection. In particular, bridges, threads and
Kelvin waves travelling along the main vortex loops have been observed during and after
the reconnection. The vortex bursting process is for the first time reported in the context
of the knotted vortex configuration.

A sharp increase in total helicity during reconnection has been observed for the first time
in this flow and confirmed by both DNS/AMR and LES approaches. The higher Reynolds
number case experiences a steeper increase of the total helicity during reconnection, and
sustained afterwards, whereas the lower Reynolds number case shows a smooth decay
of total helicity after reconnection. This increase is associated with the hairpin vortex
generated during the bridging process. The majority of the helicity after reconnection is
carried by the large trailing vortex loop.

The correct prediction of the total helicity jump during reconnection by the CvP-LES
calculations, without the need to explicitly take into account the SGS velocity-vorticity
alignment in the design of the SGS closure itself, is a remarkable result. This indicates that
the helicity jump is indeed driven by the resolved, larger scales, despite being governed
by the super-helicity. The last point is an interesting example of how the implications of a
novel physical finding can be intertwined with SGS modelling analysis.

Kelvin waves, characterized by helical wave packets travelling along the vortex loops,
have been observed. The collision of Kelvin waves are responsible for the generation of
higher mode axial velocity distribution, which is responsible for the discrepancy between
centreline helicity and the tube-integrated helicity.
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Appendix A. Box size sensitivity analysis

A sensitivity study of the flow to the size of the computational domain is conducted
from the case with ReΓ = 6000 on the coarse grid. Three box sizes with the same spatial
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Box size L3
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TABLE 5. Grid sizes and marker legend for the box size sensitivity study; the reference length
is taken as L0 = 10Rmin .
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FIGURE 24. Comparison of evolution of energy and enstrophy among different box sizes.
Refer to table 5 for markers used.

resolution are considered and described in table 5. The flow evolution is consistent across
the three box sizes in terms of global energy and enstrophy, especially before the vortex
reconnection (figure 24).

A rigorous assessment of the box size effect is conducted by evaluating the two-point
velocity correlations, computed as

Rij(ξ) =
〈
ui(x)uj(x + ξ)

〉〈
ui(x)2

〉 . (A 1)

Owing to the unsteady and non-homogeneous nature of the present simulations, only
instantaneous samples are considered. Each plot of figure 25 shows the radial correlations
at one time step and one z coordinate.

In figure 25(a–c) the z plane follows the knotted vortex structure; z(t) − z0 is equal
regardless of the box sizes considering the same time. In figure 25(d–f ) the z plane is
fixed at z(t) = z0, the centre of the boxes and also the initial location of the knotted vortex.
On each z plane, three y positions, symmetric respectively to y = y0 (centre of box) are
selected to compute the correlations along x , namely y = y0 − L0/3, y = y0 and y = y0 +
L0/3, where L0 is the reference box size with L0 = 10Rmin . These locations correspond to
the impact region of the knotted vortex, and are plotted with different colours. Markers
denote different box sizes detailed in table 5. Three times are considered, namely t = 0,
t = t1 and t = 2t1, where t1 is the reconnection time. A value of Ruu = 5 % at ξ = 1.5L0
for the largest box confirms that a computational domain with L = 1.5L0 is sufficient to
eliminate the influence of the periodic boundaries.

Figures 25(a–c) show the correlations representative of the flow dynamics around the
knotted vortex. As seen from figure 24, before reconnection, the results from the three box
sizes match well, especially for the medium and large boxes, for which the correlations
almost overlap. As seen from figure 25(c), there is a difference in the magnitude of the
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FIGURE 25. Two-point velocity correlation along different lines: (a–c) the z location follows
the knotted vortex; z(t) − z0 is equal among box sizes at the same time step; (d–f ) the z plane
is located at the initial position, cutting through the centre of the knotted vortex at t∗ = 0. Blue:
y = y0 − L0/3, black: y = y0, red: y = y0 + L0/3. Refer to table 5 for a description of the box
sizes.

three correlations but the tendency is similar, which means that the vortex topology is
preserved even for the small box, with the flow being slightly affected near the periodic
boundaries.

Figure 25(b–f ) shows the correlations past the knotted vortex, i.e. in its wake.
Differences between box sizes appear especially after reconnection, associated with a
chaotic behaviour with a large amount of small-scale structures. Figure 25( f ) shows
a value of the correlation Ruu = 0.05 at ξ/L0 = 1.5 for the largest box. Therefore, a
computation domain with L = 1.5L0 is deemed sufficient to avoid the impact from
periodic boundaries.

Appendix B. Helicity equation based on Navier–Stokes equations

The equivalent incompressible momentum equation is expressed as

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρ

∂p
∂xi

+ ν
∂2ui

∂x2
j
. (B 1)

Then the vorticity equation can be obtained by (∇ × (B 1)):

∂ωi

∂t
+ uj

∂ωi

∂xj
= ωj

∂ui

∂xj
+ ν

∂2ωi

∂x2
j

. (B 2)

Helicity equation can be obtained by ωi·(B 1)+ui·(B 2):

∂h
∂t

+ ∂hui

∂xi︸︷︷︸
a

= −ωi

ρ

∂p
∂xi︸ ︷︷ ︸

b

+ν

(
ωi

∂2ui

∂x2
j

+ ui
∂2ωi

∂x2
j

)
+ uiωj

∂ui

∂xj︸ ︷︷ ︸
c

. (B 3)

Term (a) will vanish when integrated over a periodic box, based on the Gauss theorem:∫∫∫
Ω

∂

∂xi
hui dΩ =

∫∫
S

huini dS = 0. (B 4)
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Term (b) can be taken apart as

− ωi

ρ

∂p
∂xi

= 1
ρ

(
∂( pwi)

∂xi
− p

∂wi

∂xi

)
. (B 5)

The second term in (B 5) is zero since ∂wi/∂xi can be written as the divergence of curl of
velocity, which is always zero. The first term disappears according to Gauss theorem as
(B 4). Then term (b) gets eliminated and term (c) disappears exactly the same way as (b).
Now we only have the viscous term left:

∂H
∂t

=
∫∫∫

Ω

ν

(
ωi

∂2ui

∂x2
j

+ ui
∂2ωi

∂x2
j

)
dΩ

=
∫∫∫

Ω

ν(ω · ∇2u + u · ∇2ω) dΩ

=
∫∫∫

Ω

ν(2ω · ∇2u) dΩ

=
∫∫∫

Ω

−2νω·∇ × ω dΩ. (B 6a–d)

Due to periodic boundary, identity
∫∫∫

Ω
A∇ × B dΩ = ∫∫∫

Ω
B∇ × A dΩ is applied at

(B 6b)–(B 6c) and ∇ × (∇ × u) = −∇2u is applied at (B 6c)–(B 6d) for divergence free
flow.

In the presence of an SGS closure for the momentum equation, the helicity evolution
equation reads as

dH
dt

=
∫∫∫

Ω

−2νω · (∇ × ω) dΩ +
∫∫∫

Ω

−2μt

ρ
ω · (∇ × ω) dΩ. (B 7)

As shown in figure 19, the SGS contribution to the helicity change is not negligible, even
for the finest LES.
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