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We are concerned with a Cauchy problem for the semilinear heat equation

ut = ∆u + up in R
N × (0, T ),

u(x, 0) = u0(x) � 0 in R
N .

⎫⎬
⎭ (P)

If u(x, t) = (T − t)−1/(p−1)ϕ((T − t)−1/2x) for x ∈ R
N and t ∈ [0, T ) with a solution

ϕ �≡ 0 of

∆ϕ − 1
2y∇ϕ − 1

p − 1
ϕ + ϕp = 0 in R

N ,

then u is called a backward self-similar solution blowing up at t = T . Let pS and pL
be the Sobolev and the Lepin exponents, respectively. It was shown by Mizoguchi (J.
Funct. Analysis 257 (2009), 2911–2937) that κ ≡ (p − 1)−1/(p−1) is a unique regular
radial solution of (P) if p > pL. We prove that it remains valid for p = pL. We also
show the uniqueness of singular radial solution of (P) for p > pS. These imply that
the structure of radial backward self-similar blow-up solutions is quite simple for
p � pL.

1. Introduction

We consider a Cauchy problem for a semilinear heat equation

ut = ∆u + up in R
N × (0, T ),

u(x, 0) = u0(x) � 0 in R
N

}
(1.1)

with p > pS, where pS is the Sobolev exponent. A solution u of (1.1) is said to blow
up at t = T if lim supt↗T |u(t)|∞ = ∞ with the norm | · |∞ of L∞(RN ). Set

w(y, s) = (T − t)1/(p−1)u(x, t) (1.2)

with y = (T − t)−1/2x and s = − log(T − t) for a solution u of (1.1) blowing up at
t = T . Then w satisfies

ws = ∆w − 1
2y · ∇w − 1

p − 1
w + wp in R

N × (sT,∞),

w(y, sT) = T 1/(p−1)u0(T 1/2y) in R
N ,

⎫⎪⎬
⎪⎭ (1.3)
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where sT = − log T . If a solution u of (1.1) defined in R
N × (−∞, 0) satisfies

λ2/(p−1)u(λx, λ2t) = u(x, t) in R
N ×(−∞, 0) for all λ > 0, then u is called backward

self-similar. It is equivalent to u(x, t) = (−t)−1/(p−1)ϕ((−t)−1/2x) for a positive
solution of

∆ϕ − 1
2y∇ϕ − 1

p − 1
ϕ + ϕp = 0 (1.4)

in R
N . Here we say that a function f is positive if f(x) > 0 for all x ∈ R

N . In the
radial case, (1.4) is represented as

ϕ′′ +
N − 1

r
ϕ′ − 1

2rϕ′ − 1
p − 1

ϕ + ϕp = 0 (1.5)

with r = |y|.
It was shown in [5] that κ ≡ (p − 1)−1/(p−1) is a unique regular solution of (1.4)

if 1 < p � pS. On the other hand, when pS < p < pL there exist regular solutions
of (1.5) which are spatially inhomogeneous by [2, 4, 6, 7, 15], where pL is the Lepin
exponent, i.e.

pL =

⎧⎪⎨
⎪⎩

∞ if N � 10,

1 +
6

N − 10
if N � 11.

In the case of p � pL, the existence of such a solution has remained undiscovered for
many years. Recently, a numerical experiment in [13] suggested the non-existence
of a regular solution of (1.5) except κ for p � pL with N � 11. In [11], a rigorous
proof was given of the non-existence in the case of p > 1+7/(N − 11) and N � 12.
The author improved the condition on p and N to the Lepin exponent in [12] as
follows: if p > pL and N � 11, then there exists no regular solution of (1.5) which
is spatially inhomogeneous. We first extend the non-existence result to p = pL in
the following theorem.

Theorem 1.1. If p = pL and N � 11, then κ is a unique regular solution of (1.5).

In the proof of [11], an identity of Pohoz̆aev type played an important role. The
method introduced in [12] was quite different from it. However, the strict inequality
p > pL was an essential assumption there, so we need to take a new approach in
order to solve for p = pL.

If there exists a constant C > 0 such that

|u(t)|∞ � C(T − t)−1/(p−1) for t ∈ [0, T )

for a solution u of (1.1) blowing up at t = T , then the blow-up of u is said to be
of type I, and of type II otherwise. According to [9, 10], any radially symmetric
solution w of (1.3) corresponding to a type-I blow-up solution converges to ϕ as
s → ∞ for some regular positive solution ϕ of (1.5). The study of (1.5) is also
important from the viewpoint of the dynamics of radial global solutions of (1.3),
that is, the asymptotic behaviour of radial type-I blow-up solutions of (1.1).

We next obtain the uniqueness of the singular solution of (1.5) for p > pS.

Theorem 1.2. Let ϕ∞ be a singular solution of (1.5) defined by

ϕ∞(r) = c∞r−2/(p−1) for r > 0, (1.6)
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with

c∞ =
{

2
p − 1

(
N − 2 − 2

p − 1

)}1/(p−1)

.

If p > pS and N � 3, then ϕ∞ is a unique singular solution of (1.5).

The uniqueness of the singular solution of (1.5) was given in [8] under the addi-
tional assumption

|ϕ(r)| � C(1 + r−2/(p−1)) for r > 0

with some constant C > 0, while we need no assumption. The following is immediate
from theorems 1.1 and 1.2.

Corollary 1.3. If p � pL and N � 11, then there exist exactly two backward self-
similar radial solutions (T − t)−1/(p−1)κ and ϕ∞ of (1.1) blowing up at t = T < ∞.

For a function f �≡ 0 on [a, b) with 0 � a < b � ∞, let z(f : [a, b)) be the
supremum over all j such that there exist a � r1 < r2 < · · · < rj+1 < b with
f(ri) ·f(ri+1) < 0 for i = 1, 2, . . . , j. Denote z(f : [0,∞)) by z(f) for simplicity. We
number zeros of a function on [a, b) with 0 � a < b � ∞ with sign change in order
enumerated from 0. We denote by 0 < c � 1 and d � 1 a sufficiently small c > 0
and a sufficiently large d, respectively.

The paper is organized as follows. In § 2 we prove theorem 1.1. When p > pS, let
ϕ(r; α; p) be a solution of (1.5) with ϕ′(0) = 0, and with ϕ(0) = α for α > 0. Set
(Figure 1)

r(α; p) = sup{r > 0 : ϕ(r̃; α; p) > 0 for all r̃ ∈ [0, r)}

and let
Sp = {α > 0 : r(α; p) = ∞}.

Then Sp is the set of α > 0 for which ϕ(r; α) is a regular solution of (1.5) in (0,∞).
It was given in [12] that, for p > pS,

(i) Sp ⊂ [κ, ∞),

(ii) r(α; p) < ∞ for α > κ with α − κ � 1,

(iii) z(ϕ(r; α; p) − ϕ∞(r) : [0, r(α; p))) = 2 for α > κ with α − κ � 1.

Define

α∗(p) = sup{α > κ : z(ϕ(r; α̃; p) − ϕ∞(r) : [0, r(α̃; p))) = 2 for all α̃ ∈ (κ, α)}.

It is immediate that α∗(p) ∈ Sp and z(ϕ(r; α∗(p); p) − ϕ∞(r)) = 2 for p > pS with
Sp \ {κ} �= ∅. We show that, for such p, the linearized operator Lα∗(p)(p) of (1.5)
at ϕ(r; α∗(p); p) does not have 0 as an eigenvalue in a suitable setting of function
space. On the contrary to the conclusion of theorem 1.1, assume that Sp \ {κ} is
non-empty for pS < p � pL. Then ϕ(r; α∗(p); p) can be extended to pL � p < pL +δ
with some δ > 0 by the implicit function theorem. This is a contradiction, since
Sp = {κ} for p > pL from [12], which completes the proof.
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Section 3 is devoted to the proof of theorem 1.2. We first assume that there exists
a singular solution ϕ with ϕ �≡ ϕ∞. Set h(η) = r2/(p−1)ϕ(r) and η = log r. Then h
satisfies

h′′ +
(

N − 2 − 4
p − 1

)
h′ − 1

2e2ηh′ − cp−1
∞ h + hp = 0 in R. (1.7)

Define
E[h(η)] = 1

2 (h′(η))2 + F (h(η)) for η ∈ R,

where

F (τ) = − 1
2cp−1

∞ τ2 +
1

p + 1
τp+1 for τ � 0.

Multiplying (1.7) by h′ yields

d
dη

E[h(η)] =
{

e2η

2
−

(
N − 2 − 4

p − 1

)}
h′(η)2 for η ∈ R. (1.8)

We divide into two cases:

(i) z(h − c∞ : (−∞, 0]) = ∞;

(ii) z(h − c∞ : (−∞, 0]) < ∞.

We obtain a contradiction in each case through estimates based on (1.8).

2. Proof of theorem 1.1

In this section we prove the uniqueness of the regular solution of (1.5), which is
spatially inhomogeneous for p = pL since it was solved in the case of p > pL in [12].
Let p > pS. For α > 0, let ϕ(r; α; p) be a solution of (1.5) with ϕ′(0) = 0 and
ϕ(0) = α. Set

r(α; p) = sup{r > 0 : ϕ(r̃; α; p) > 0 for all r̃ ∈ [0, r)}.

In order to avoid complicated notation, we denote ϕ(r; α; p) and r(α; p) by ϕ(r; α)
and r(α), respectively, if there is no fear of confusion. We also denote simply by κ
and ϕ∞ for all p > pS, though they depend on p. Let

Sp = {α > 0 : r(α; p) = ∞}.

For q � 1, let Lq
w be the class of Lebesgue measurable functions on [0,∞) such that∫ ∞

0
|f(r)|qrN−1ρ(r) dr < ∞,

where ρ(r) = exp(−r2/4) for r � 0. Let

H1
w = {f ∈ L2

w : f ′ ∈ L2
w}.

The following result was shown in [10].
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Proposition 2.1. Let p > pS. For α ∈ Sp, there exists c(α) > 0 such that

ϕ(r; α) = c(α)r−2/(p−1)(1 − d(α)r−2 + o(r−2)) as r → ∞,

where d(α) = c(α)p−1 − cp−1
∞ .

The following results were obtained in [12].

Lemma 2.2. Let p > pS. For α ∈ Sp, it holds that α � κ and ϕ(r; α) is non-
increasing with respect to r.

Lemma 2.3. Let p > pS. If α > κ is sufficiently close to κ, then r(α) < ∞ and

z(ϕ(r; α) − ϕ∞(r) : [0, r(α))) = 2.

For p > pS, define

α∗(p) = sup{α > κ : z(ϕ(r; α̃; p) − ϕ∞(r) : [0, r(α̃; p))) = 2 for all α̃ ∈ (κ, α)}.
(2.1)

As stated in § 1, if pS < p < pL, then Sp \ {κ} is non-empty and hence

κ < α∗(p) < ∞.

It is immediate that α∗(p) ∈ Sp. Since κ is a unique element of Sp to which the
corresponding solution intersects ϕ∞ exactly once by [1], we have

z(ϕ(r; α∗(p); p) − ϕ∞(r)) � 2 for p > pS

with Sp \ {κ} �= ∅. For α ∈ Sp, let Lα(p) be the linearized operator at ϕ(·; α; p),
i.e.

Lα(p)φ = φ′′ +
N − 1

r
φ′ − rφ′

2
− 1

p − 1
φ + pϕ(r; α; p)p−1φ.

For j = 0, 1, 2, . . . , denote by λα
j (p) and φα

j (p) the jth eigenvalue of

−Lα(p)φ = λφ in H1
w

and the jth eigenfunction with φ′(0) = 0 and φ(0) = 1, respectively. For simplicity,
we denote Lα(p), λα

j (p) and φα
j (p) by Lα, λα

j and φα
j , respectively, if there is no

fear of confusion.

Lemma 2.4. For p > pS with Sp \ {κ} �= ∅, let α∗(p) be defined in (2.1). Then 0 is
not an eigenvalue of Lα∗(p)(p).

Proof. Differentiating (1.5) in α yields

(ϕα)′′ +
N − 1

r
(ϕα)′ − 1

2r(ϕα)′ − 1
p − 1

ϕα + pϕ(r; α)p−1ϕα = 0, (2.2)

where ϕα(r; α) = ∂ϕ(r; α)/∂α. It is trivial that (ϕα)′(0; α) = 0 and also that
ϕα(0; α) = 1.

Write α∗ = α∗(p) for simplicity. Let α ∈ (κ, α∗). Since ϕ(r; α) > ϕ∞(r) for r in
some interval, it is immediate that

z(ϕα(r; α) : [0, r(α))) � 1. (2.3)

https://doi.org/10.1017/S0308210509000444 Published online by Cambridge University Press

https://doi.org/10.1017/S0308210509000444


826 N. Mizoguchi

0

α∗

κ

r

r (  )α

Figure 1. Rough sketch of r(α).

0

κ
α 0

ϕ∞(r)

ϕ (r ;   α0 )

r2 (α0)κ r

Figure 2. ϕ(r; α0) is not non-increasing.

Since ϕ(r(α); α) = 0, we have

r′(α) = −ϕα(r(α); α)
ϕr(r(α); α)

, (2.4)

where ϕr(r; α) = ∂/∂rϕ(r; α). We first consider the case where r(α) is decreasing
for α > κ with α − κ � 1 and increasing for α < α∗ with α∗ − α � 1. It follows
from (2.4) that ϕα(r(α); α) < 0 for α > κ with α − κ � 1 and ϕα(r(α); α) > 0 for
α < α∗ with α∗ − α � 1.

We show that ϕ(r; α) is non-increasing in r ∈ [0, r(α)] for any α ∈ (κ, α∗).
Assume that this is not valid for some α0 ∈ (κ, α∗). Then we have z(ϕ(r; α0) − κ :
[0, r(α0))) � 3. Let rκ

i (α) be the ith zero of ϕ(r; α) − κ for a positive integer i.
If some of the zeros of ϕ(r; α) − κ in [0, r(α)) vanish as α varies from α0 to

α∗, then there exist α1 ∈ (α0, α∗) and r̂ ∈ (0, r(α1)) such that ϕ(r̂; α1) = κ and
ϕ′(r̂; α1) = 0. This is a contradiction by the uniqueness of solutions for (1.5) with
the same initial condition at r = r̂. Consequently, z(ϕ(r; α) − κ : [0, r(α))) � 3 for
each α ∈ [α0, α∗].

Suppose that there exists {αn} with αn ↗ α∗ as n → ∞ such that rκ
2 (αn) → ∞

as n → ∞. By the definition of α∗ = α∗(p), ϕ(r; αn) does not intersect ϕ∞(r)
between the first zero of ϕ(r; αn) − ϕ∞(r) and rκ

2 (αn). Letting n → ∞ yields
z(ϕ(r; α∗) − ϕ∞(r)) = 1. This is a contradiction, since κ is a unique regular solution
which intersects ϕ∞ exactly once [1]. Hence, there exists C > 0 such that rκ

2 (α) � C
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0 r

ϕα (r ;   ) α

r (   )α r (   )α
r1(     ) α 

Figure 3. Rough sketch of ϕα(r(α); α).

for α with 0 < α∗ − α � 1. Then we have z(ϕ(r; α∗) − κ) � 2 and hence ϕ(r; α∗)
is not monotone. This contradicts lemma 2.2. Thus ϕ(r; α) is non-increasing in
r ∈ [0, r(α)] for any α ∈ (κ, α∗) (Figure 2).

If α > κ is sufficiently close to κ, then z(ϕα; [0, r(α))) = 1. In fact, assume that
this is not true. Then there exist ri(α) ∈ (0, r(α)) for i = 1, 2, 3, where ri(α) is
the ith zero of ϕα(r; α) for positive integer i, since ϕα(r(α); α) < 0 for α > κ with
α − κ � 1. It was shown in [3] that λκ

0 < 0 = λκ
1 < λκ

2 < · · · . Therefore, φκ
1 is an

eigenfunction associated with λκ
1 = 0, that is, φκ

1 satisfies

φ′′ +
N − 1

r
φ′ − 1

2rφ′ − 1
p − 1

φ + pκp−1φ = 0.

We take φκ
1 again so that φκ

1 (0) = 1, which is denoted by φκ
1 . Denote by R1 the first

zero of φκ
1 . For any 0 < ε � 1 there exists δ1 > 0 such that if κ < α < κ + δ1, then

ϕ(r; α) < κ for r ∈ [R1 + ε, r(α)]. For each 0 < ε � 1, R > 0, there exists δ2 > 0
such that if κ < α < κ + δ2, then

|ϕα(r) − φκ
1 (r)| + |ϕ′

α(r) − (φκ
1 )′(r)| < ε for r ∈ [0, R].

Therefore, we have r2(α), r3(α) � 1 for α > κ with α − κ � 1. Since ϕ(r; α) < κ
for r ∈ [R1 + ε, r(α)] for α > κ with α − κ � 1, this is a contradiction by the
standard comparison theorem on oscillation for elliptic equations [14].

We see that if α > κ is sufficiently close to κ, then r1(α) < r(α) < r(α), where
r(α) is the local minimizer of ϕα(r; α) closest to r(α).

In fact, suppose that r(α) � r(α) for some α > κ with α − κ � 1. If r(α̃) = r(α̃)
for some α̃ ∈ (κ, α∗), then substituting α = α̃ and r = r(α̃) = r(α̃) into (2.2)
yields a contradiction. This implies that r(α) < r(α) for all α ∈ (κ, α∗). On the
other hand, if α < α∗ is sufficiently close to α∗, then ϕα(r(α); α) > 0 and hence
z(ϕα(r; α) : [0, r(α))) = 0 (Figure 3). This contradicts (2.3), which implies that
r(α) < r(α) for α > κ with α − κ � 1.

We similarly obtain that r(α) cannot pass positive local maximizers of ϕα(r; α)
as α varies from κ to α∗.

Take

k > max
{

1
2N(p − 1)

,
1
4

}
and set ψ(r; α) = ϕα(r; α) exp(−kr2) for r ∈ [0, r(α)]. A straightforward calculation
yields

ψ′′+
{(

4k− 1
2

)
r+

N − 1
r

}
ψ′+

{
pϕp−1− 1

p − 1
+2kN +k(4k−1)r2

}
ψ = 0. (2.5)
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There exists ᾱ ∈ (κ, α∗) with r(ᾱ) = r2(ᾱ) such that r(α) > r2(α) for all α > ᾱ.
Then ψ(r; α) is non-decreasing for r ∈ (r2(α), r(α)) for any α ∈ (ᾱ, α∗). In fact,
it is immediate that ψ(r; α) is increasing for r ∈ (r2(α), r(α)) for any α ∈ (ᾱ, α∗)
with α − ᾱ � 1. Assume that ψ(r; α0) is not non-decreasing for r ∈ (r2(α0), r(α0))
with some α0 ∈ (ᾱ, α∗). Then there exist α1 ∈ (ᾱ, α0) and R̃ ∈ (r2(α1), r(α1)) such
that ψ′(R̃; α1) = ψ′′(R̃; α1) = 0. However, it is impossible from (2.5) and the choice
of k. This contradiction implies that ψ(r; α) is non-decreasing for r ∈ (r2(α), r(α))
for any α ∈ (ᾱ, α∗).

Consequently, ψ(r; α∗) is non-decreasing for r ∈ (r2(α∗),∞). Taking r∗ > r2(α∗),
we see that

ϕα(r; α∗) exp(−kr2) � ϕα(r∗; α∗) exp(−kr2
∗) for r � r∗

and hence

ϕα(r; α∗) � ϕα(r∗; α∗) exp(−kr2
∗) exp(kr2) for r � r∗.

This implies that ϕα(r; α∗) �∈ H1
w.

When r(α) oscillates for α > κ with α − κ � 1 or for α < α∗ with α∗ − α � 1
we can modify the above argument to obtain the same conclusion.

We are ready to prove theorem 1.1.

Proof of theorem 1.1. Arguing by contradiction, we assume that SpL \ {κ} is non-
empty.

We now introduce a standard formulation to apply the implicit function theorem.
Define an operator F from (pS,∞)×(H1

w ∩L∞) to H1
w by F (p, f) = f −g(f), where

g(f) is a solution of

g′′ +
N − 1

r
g′ − 1

2rg′ − 1
p − 1

g = −|f |p−1f

with g′(0) = 0 and g(0) = f(0). It is trivial that F (p, ϕ(·; α; p)) = 0 for α ∈ Sp

and pS < p � pL. Let Ff be the Fréchet derivative of F with respect to f . It is
immediate that Ff (p, ϕ(·; α; p))h = 0 with h �≡ 0 if and only if h �≡ 0 satisfies

h′′ +
N − 1

r
h′ − 1

2rh′ − 1
p − 1

h + pϕ(r; α; p)p−1h = 0,

that is, h is an eigenfunction of Lα(p) associated with 0. By lemma 2.4, 0 is not
an eigenvalue of Lα∗(p)(p) for pS < p � pL. This implies that Ff (p, ϕ(·; α∗(p); p))
is invertible for pS < p � pL. Therefore, there exists δ > 0 such that ϕ(r; α∗(p); p)
can be extended to pL < p < pL + δ by the implicit function theorem.

On the other hand, Sp = {κ} for p > pL from [12]. This contradiction completes
the proof.

Remark 2.5. The proof of theorem 1.1 implies that ϕ(0; α∗(p); p) = α∗(p) → ∞
as p ↗ pL.

3. Proof of theorem 1.2

This section is devoted to the proof of the uniqueness of the singular solution of
(1.5). The following result was proved by lemma 2.5 of [12].
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h

0η2n+1 η2n η2n−1 η2(n−1) η

c∞

Figure 4. h in case (i).

Proposition 3.1. Let p > pS. For 0 < ε � 1 and K, M � 1 there exist C0, α0 > 0
such that if α � α0, then

|ϕ(r; α) − ϕ∞| � C0εr
−2/(p−1) for r ∈ [α−(p−1)/2K, M ].

We now prove theorem 1.2.

Proof of theorem 1.2. Arguing by contradiction, we assume that there exists a sin-
gular solution ϕ of (1.5) which is different from ϕ∞. Set

h(η) = r2/(p−1)ϕ(r) and η = log r. (3.1)

Then h satisfies

h′′ +
(

N − 2 − 4
p − 1

)
h′ − 1

2e2ηh′ − cp−1
∞ h + hp = 0 in R. (3.2)

Define
E[h(η)] = 1

2 (h′(η))2 + F (h(η)) for η ∈ R, (3.3)

where
F (τ) = − 1

2cp−1
∞ τ2 +

1
p + 1

τp+1 for τ � 0.

Multiplying (3.2) by h′ yields

d
dη

E[h(η)] =
{

1
2e2η −

(
N − 2 − 4

p − 1

)}
h′(η)2 for η ∈ R. (3.4)

We divide into two cases:

(i) z(h − c∞ : (−∞, 0]) = ∞;

(ii) z(h − c∞ : (−∞, 0]) < ∞.

In case (i), there exists a sequence {ηn} with ηn → −∞ as n → ∞ such that {η2n}
and {η2n+1} are sequences of consecutive local maximizers and minimizers of h,
respectively, with η2n+1 < η2n for n = 1, 2, . . . (see Figure 4).

It follows from (3.4) that

E[h(η2(n−1))] � E[h(η2n−1] � E[h(η2n)] � E[h(η2n+1] � E[0] for all n,

which implies that {h(η2n)} is bounded and increasing. Therefore, h(η2n) → a0 as
n → ∞ for some a0 with a0 > c∞. Taking η̂n ∈ (ηn+1, ηn) with h(η̂n) = c∞, we
have

E[h(η̂2n)] � E[h(η2n)] for all n. (3.5)
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Since h(η2n) → a0 as n → ∞, for 0 < ε � 1 there exists nε � 1 such that h(η2n) �
a0 − ε � c∞ + ε for n � nε. Then there exists d0 > 0 such that h′(η̂2n) � 2d0
for n � nε from (3.5). Thus, there exists 0 < δ0 � 1 such that h′(η) � d0 for
η ∈ [η̂2n − δ0, η̂2n + δ0] and n � nε. It follows from (3.4) that

E[h(η2(n+1))] − E[h(η2n)] � 1
2

(
N − 2 − 4

p − 1

) ∫ η2(n+1)

η2n

h′(η)2 dη

� 1
2

(
N − 2 − 4

p − 1

) ∫ η̂2n+δ0

η̂2n−δ0

h′(η)2 dη

�
(

N − 2 − 4
p − 1

)
d2
0δ0

for n � nε. Since E[h(η2(n+1))] − E[h(η2n)] → 0 as n → ∞, this is a contradiction.
In case (ii), h(η) is monotone for η near −∞. Indeed, if not, there exist infinitely

many local maximizers and local minimizers of h(η). From (3.2), any local maximum
is larger than c∞ and any local minimum is smaller than c∞. Therefore, we have
z(h − c∞ : (−∞, 0]) = ∞, which is case (i).

Consequently, the following two cases are possible:

(a) h(η) → a1 > 0 as η → −∞ for some a1 > 0;

(b) h(η) → 0 as η → −∞.

In fact, suppose that lim supη→−∞ h(η) = ∞. Set h̃(η) = h(−η) for η ∈ R. Then h̃
satisfies

h̃′′ −
(

N − 2 − 4
p − 1

)
h̃′ + 1

2e−2ηh̃′ − cp−1
∞ h̃ + h̃p = 0 in R. (3.6)

Since h(η) is monotone for η near −∞, there exists η0 � 1 such that h̃(η) � 1 and
h̃′(η) > 0 for η � η0. We show that h̃′′(η) � 0 for η � η0. On the contrary, assume
that h̃′′(η1) < 0 for some η1 � η0. Let

η∗ = sup{η � η1 : h̃′′(η̃) < 0 for all η̃ ∈ [η1, η)}.

If η∗ < ∞, then h̃′′(η∗) = 0. Differentiating (3.6) in r yields

h̃′′′ −
(

N − 2 − 4
p − 1

)
h̃′′ + 1

2e−2ηh̃′′ − e−2ηh̃′ − cp−1
∞ h̃′ + ph̃p−1h̃′ = 0 in R.

Then we have h̃′′′(η) < 0 for η ∈ [η1, η
∗] and hence h̃′′(η∗) < h̃′′(η1) < 0. This

contradiction implies that η∗ = ∞, that is, h̃′′(η) < 0 for η � η1. Since h̃′(η)
is decreasing for η � η1, there exists b0 � 0 such that h̃′(η) → b0 as η → ∞.
Then h̃′′(η) → 0 as η → ∞. Letting η → ∞ in (3.6) yields a contradiction. Thus,
h̃′′(η) � 0 for η � η0. It then follows from (3.6) that(

N − 2 − 4
p − 1

)
h̃′ � 1

2 h̃p for η � 1,

which implies that h̃ blows up at some finite η. This is a contradiction. Consequently,
we obtain lim supη→−∞ h(η) < ∞.
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In the case of (a), we have

−cp−1
∞ a1 + ap

1 = 0,

letting η → −∞ in (3.2) since h′(η) → 0 and h′′(η) → 0 as η → −∞. This is
a contradiction since a1 �= c∞ by (3.4). In the case of (b), there exist α � 1,
R > 0, such that ϕ(R; α) = ϕ(R) and ϕ(r; α) < ϕ(r) < ϕ∞(r) for r ∈ (0, R) by
proposition 3.1. This is a contradiction by the standard comparison theorem on
oscillation for elliptic equations. This completes the proof.
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