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We have performed a particle-resolved direct numerical simulation of a turbulent
channel flow past a moving dilute array of spherical particles. The flow shares
important features with dilute vertical gas solid flow at high Stokes number, such
as significant attenuation of the turbulence kinetic energy (TKE) at low particle
volume fraction. The flow has been simulated by means of an overset grid method,
using spherical grids around each particle overset on a background non-uniform
Cartesian grid. The main focus of the present paper is on the TKE budget, which
is analysed both in the fixed channel frame of reference and in the moving particle
frame of reference. The overall (domain-integrated) TKE and turbulence production
due to mean shear are reduced compared to unladen flow. In the fixed frame, the
interfacial term, which represents production due to relative (slip) velocity, accounts
for approximately 40 % of the total turbulence production in the channel. As a
consequence, the total turbulence production and the overall turbulence dissipation
rate remain approximately the same as in the unladen flow. However, a comparison
with laminar flow past the same particle configuration reveals that significant parts of
various fixed-frame statistics are due to non-turbulent structures, spatial variations that
are steady in the moving particle frame. In order to obtain a clearer picture of the
modification of the true turbulence and in order to reveal the rich three-dimensional
(3-D) statistical structure of turbulence interacting with particles, time averaging in
the moving frame of reference of the particle is used to extract the fluctuations
entirely due to true turbulence. In the moving frame, the turbulence production is
positive near the sides and in the wake, but negative in a region near the front of
the particle. The turbulence dissipation rate and even more the dissipation rate of
the 3-D mean flow attain very large values on a large part of the particle surface,
up to approximately 400 and 4000 times the local turbulence dissipation rate of
the unladen flow, respectively. Very close to the particle, viscous diffusion is the
dominant transport term, but somewhat further away, in particular near the front
and sides of the particle, pressure diffusion and also convection provide large and
positive transport contributions to the moving-frame budget. A radial analysis shows
that the regions around the particles draw energy from the regions further away
via the surprising dominance of the pressure diffusion flux over a large range of
radii. Spectra show that (very) far away from the particles all scales of the (true)
turbulence are reduced. Near the particles enhancement of small scale turbulence is

† Email address for correspondence: bert@vremanresearch.nl

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

http://orcid.org/0000-0002-5902-3878
mailto:bert@vremanresearch.nl
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2018.715&domain=pdf
https://doi.org/10.1017/jfm.2018.715


Turbulent channel flow past a moving array of spheres 581

observed, for the streamwise component of the velocity fluctuation more than for the
other components. The most important reason for turbulence reduction and anisotropy
increase appears to be particle-induced non-uniformity of the mean driving force of
the flow.

Key words: multiphase and particle-laden flows, turbulence simulation, turbulent flows

1. Introduction
The turbulence kinetic energy (TKE) of a turbulent air flow can be substantially

reduced by a low volume fraction of small solid spherical particles. This phenomenon,
also called turbulence attenuation, has been observed in many experiments of
gas–solid turbulent flows, for example experiments of pipe flow (Tsuji, Morikawa &
Shiomi 1984), channel flow (Kulick, Fessler & Eaton 1994; Kussin & Sommerfeld
2002) and turbulence generated by woofers (Hwang & Eaton 2006; Tanaka & Eaton
2010). In the latter work the local turbulence dissipation rate was directly measured
and detected to be significantly enhanced near particles. Numerous point-particle
simulations, simulations which do not resolve the boundary layers and wakes around
the particles, confirmed the phenomenon of turbulence attenuation; see for example
the simulations of isotropic turbulence by Squires & Eaton (1990), Elghobashi &
Truesdell (1993) and Ferrante & Elghobashi (2003), and the simulations of turbulent
channel flow by Li et al. (2001), Yamamoto et al. (2001), Vreman (2015) and
Kuerten & Vreman (2016). The last reference shows results for a dilute turbulent
channel flow at friction Reynolds number 950 with 51 000 000 (colliding) particles.
However, point-particle simulations seem to underpredict the amount of turbulence
attenuation observed in experiments (Hwang & Eaton 2006). This discrepancy has
been attributed to oversimplicity of point-particle models (Burton & Eaton 2005;
Hwang & Eaton 2006), while part of the discrepancy for channel flows can be
explained by wall roughness (Vreman 2015). The classical point-particle method was
reviewed by Deen et al. (2007), Balachandar & Eaton (2010) and Kuerten (2016), for
example. An alternative method, the exact regularized point-particle method (Gualtieri
et al. 2015), was employed by Gualtieri, Battista & Casciola (2017) and Battista
et al. (2018) to simulate turbulence modulation in particle-laden homogeneous shear
flow.

In contrast to point-particle simulations, particle-resolved direct numerical simulations
(PR-DNS) do capture the boundary layers and wakes around the particles. In
a PR-DNS no empirical correlation for the particle force is used, and the grid
size near the particle is required to be much smaller than the particle diameter.
PR-DNS is a very promising approach to investigating particle-laden turbulent flows
in full detail, as reviewed by Tenneti & Subramaniam (2014). Examples of flows
for which PR-DNS has been used are one fixed particle in isotropic turbulence
(Bagchi & Balachandar 2003; Burton & Eaton 2005) or in channel flow (Zeng
et al. 2008), multiple fixed particles in various turbulent flows (Botto & Prosperetti
2012; Vreman 2016) and freely moving particles or bubbles in decaying isotropic
turbulence (ten Cate et al. 2004; Lucci, Ferrante & Elghobashi 2010; Mehrabadi
et al. 2015; Schneiders, Meinke & Schröder 2017), in homogeneous turbulent shear
flow (Tanaka 2017), and in turbulent channel flow (Uhlmann 2008; García-Villalba,
Kidanemariam & Uhlmann 2012; Lu & Tryggvason 2013; Picano, Breugem & Brandt
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582 A. W. Vreman and J. G. M. Kuerten

2015; Santarelli & Fröhlich 2015; Santarelli, Roussel & Fröhlich 2016; Costa et al.
2016). The last reference contains results of simulation of a dense turbulent channel
flow with 640 000 neutrally buoyant particles.

The present work is in various respects a continuation of the work reported in
Vreman (2016), in which a body-fitted overset grid method was developed to perform
the first PR-DNS of homogeneous isotropic turbulence globally attenuated by a low
fraction of small particles. The particles were fixed, while the particle diameter dp
was twice the Kolmogorov length scale η, and the mean relative particle velocity (the
mean velocity difference between particles and fluid) was zero. Analysis of the radial
turbulence kinetic energy budget showed that on the particle surfaces, the turbulence
dissipation rate was enhanced by a factor of 100. The turbulence kinetic energy was
reduced in the entire flow, due to turbulent, pressure and viscous diffusion towards the
particles. Surprisingly, point-particle simulations using the Schiller–Naumann drag law
were shown to capture the turbulence attenuation found in the PR-DNS reasonably
well, provided the fluid volume over which each particle force was distributed was
sufficiently large.

In the present work, we use PR-DNS to investigate turbulence attenuation
in turbulent channel flow modified by an array of reasonably small particles
(2η < dp < 3η), moving in the core region of the flow. Compared to the isotropic
case, the analysis of the present case is substantially more complicated, because the
turbulence is generated by mean shear and the mean relative particle velocity is
non-zero. The streamwise velocity of the particle array is set to 90 % of the unladen
bulk velocity, so that the particles move more slowly than the surrounding fluid. This
particle velocity is an appropriate choice in the light of experiments of air turbulence
in downward vertical gas–solid flow in which the particles also considerably lagged
behind the fluid in the core region of the channel (Kulick et al. 1994). In fact, the
present system can be regarded as a simplification of a system in which small particles
with a very large Stokes response time are regularly inserted into a vertical turbulent
channel flow. The simplification is useful, because it allows particle–turbulence
interaction to be studied without the complications caused by particle–particle and
particle–wall collisions. Experiments of turbulent flow modified by a single fixed
particle have been performed by Hoque et al. (2016), while experiments of fluid flow
through an array of fixed particles have been performed by Amoura et al. (2017). In
the latter case the turbulence was only generated by the (relatively large) particles,
while following Risso et al. (2008), the velocity fluctuation was decomposed into a
purely spatial and a temporal component, the spatial component accounting for the
strong inhomogeneity of the flow around each sphere.

Before we further discuss the aim of the present study, we briefly review several
other PR-DNS studies of spherical particles embedded in an otherwise standard
turbulent channel flow. Zeng et al. (2008) analysed the force on a single fixed
particle at various distances from the wall for d+p > 3.5 and Reτ ,0 = 178, where d+p
is the particle diameter expressed in wall units of the unladen flow and Reτ ,0 is
the Reynolds number of the unladen flow, based on friction velocity and half the
channel height. The grid size h+ in the spectral element method was non-uniform
and equal to 0.06 wall units at the particle surface. A vertical turbulent channel flow
laden with a large number of free particles was simulated by Uhlmann (2008). The
turbulence intensity was strongly enhanced by the particles for αp = 0.004, d+p = 8.5
and Reτ = 172, while the mean particle velocity was close to zero. An immersed
boundary method was used with a uniform h+ = d+p /13. For almost the same flow,
particle acceleration statistics and the probability distribution of the hydrodynamic
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forces acting on the particles were computed by García-Villalba et al. (2012). The
dynamics of nearly spherical bubbles in a turbulent channel flow was studied by Lu
& Tryggvason (2013), for d+p = 40, αp = 0.03 and Reτ ,0 = 250, using a front tracking
method with uniform h+ = d+p /26. For turbulent channel flow at Reτ ,0 = 180, laden
with neutrally buoyant spheres, Picano et al. (2015) reported on the turbulence in the
dense limit (αp = 0.2 and d+p = 20), while scaling laws for such suspensions were
derived by Costa et al. (2016) for d+p > 10, αp > 0.05, using an immersed boundary
method with uniform h+ = d+p /16. An enhancement of turbulence by spherical
bubbles was reported by Santarelli & Fröhlich (2015), who simulated a turbulent
bubbly channel flow for d+p = 17, αp > 0.003 and Reτ ,0 = 168, using an immersed
boundary method with uniform h+ = d+p /12. An analysis of the turbulence kinetic
energy budget as a function of the distance to the wall revealed that the turbulence
enhancement was generated by the so-called interfacial term (Santarelli et al. 2016).

As mentioned above, in the present paper PR-DNS of a turbulent channel flow
modified by an array of spherical particles with a fixed streamwise velocity is
considered. The particle diameter is set to d+p = 8, the overall particle volume fraction
is αp = 0.00075, and Reτ ,0 = 180. At the particle locations, the unladen Kolmogorov
scale η+ is approximately 3. This flow configuration lends itself to be simulated by
the recently developed and well-validated overset grid method, applicable to cases
with many (non-colliding) spherical particles (Vreman 2016, 2017). Due to radial
stretching of the spherical body-fitted grid attached to each particle, the grid size at
the particle surfaces is d+p /31, which is sufficiently small to accurately capture the
locally very high dissipation rate at the particle surfaces.

The aim of this study is to investigate the modification of the turbulence due to
particles, in terms of quantities that are relevant for the production, transport and
dissipation of turbulence. Another important topic, usage of the PR-DNS results
to test and improve the point-particle simulation technique, will be presented in
another paper. In the present paper, we will focus on TKE budgets: the standard
(fixed-frame) TKE budget, which is a function of the wall distance only, and the
budget in the frame of reference of the particles, which is called the moving-frame
budget and is a function of the three spatial coordinates. The former is based on
statistical averaging in the fixed frame, the channel frame of reference, and the latter
on statistical averaging in the moving frame, the particle frame of reference. Statistics
conditioned on the location in the particle frame of reference have been presented
before: radial profiles of the turbulence dissipation at multiple sides of the particles
in decaying isotropic turbulence (Lucci et al. 2010), radial profiles of the TKE, its
budget and all components of the velocity gradient around particles in forced isotropic
turbulence (Vreman 2016) and three-dimensional (3-D) statistics of Reynolds stresses
in particle-laden homogeneous turbulent shear flow (Tanaka 2017).

We will use moving-frame averaging not only to obtain insight into the statistical
structure of the turbulence around the particles, but also to distinguish between
apparently laminar parts of the turbulence fluctuations near the particles and true
turbulence. Each fixed-frame fluctuation can be decomposed into a moving-frame
mean part, which is steady in the moving frame, and a moving-frame fluctuating part,
which is unsteady in the moving frame. This implies a corresponding decomposition
of the turbulence kinetic energy (Risso et al. 2008; Amoura et al. 2017), and, as will
be shown, also a corresponding decomposition of the turbulence dissipation rate and
other terms in the TKE budget equation.

It is common in the literature to call the kinetic energy in the fixed-frame fluctuation
turbulence kinetic energy, so we use this name too. However, we stress that only
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part of the fixed-frame TKE refers to ordinary turbulence energy, the energy in
fluctuatuations resulting from complex instabilities in the fluid motion, in this case
the energy in the moving-frame fluctuations. Another part of the fixed-frame TKE
refers to the moving-frame mean part, which results from the displacement of fluid by
the relative motion of the particles. One of the purposes of this paper is to show how
the moving-frame mean part can affect the fixed-frame turbulence statistics. Although
in this case the fluctuations that are steady and unsteady in the particle frame could
be called pseudo-turbulence and true turbulence, respectively, pseudo-turbulence in
general is a somewhat wider concept that could encompass fluctuations that are
unsteady in the particle frame. Furthermore, pseudo-turbulence in the literature is
usually quantified by the excess TKE of a bubbly flow over the TKE of the flow
without the bubbles (Lance & Bataille 1991), but in our case the excess TKE of the
flow with particles over the flow without particles turns out to be negative. For these
reasons, we will avoid the term pseudo-turbulence in the rest of this paper.

The structure of this paper is as follows. The mathematical description and the
validation of the PR-DNS are described in § 2. The 1-D fixed-frame Reynolds stresses
and TKE budget are presented in § 3. The 3-D moving-frame Reynolds stresses and
TKE budget are presented in § 4. In § 5, we apply the fixed-frame statistical averaging
operator to the moving-frame budget, to condense the 3-D statistics to 1-D profiles
that can be directly compared to the fixed-frame statistics from § 3. In § 6, we analyse
the observed turbulence attenuation and the observed increase in anisotropy of the
turbulence in further depth. We conclude the paper in § 7.

2. Mathematical description
In this section, we define the flow configuration, formulate the TKE equations in

the fixed and moving frame, describe the numerical method, define simulation cases
and show validation results.

New elements in this section and the related appendices are: (i) a derivation of the
fluid-weighted TKE equation for general averaging operators, (ii) a derivation of the
3-D TKE equation in spherical coordinates and (iii) a body-fitted particle-resolved
direct numerical simulation of a turbulent flow past more than 1000 particles.

2.1. Flow configurations
We consider an incompressible turbulent channel flow with bulk velocity ub and wall
velocity zero, in which an array of Npar solid non-rotating spherical particles is moving
with a constant streamwise velocity, 0.9ub. The dimensions of the channel, ub, and
the viscosity ν are the same as in the reference flow without particles. The unladen
reference simulation is case S2 from Vreman & Kuerten (2014), a high-resolution
long-time simulation of an incompressible turbulent channel flow in a standard domain
and at standard Reynolds number. For explanatory reasons, we also consider a laminar
channel flow, which has lower bulk velocity and is modified by an array of particles
with velocity zero.

Streamwise, normal and spanwise directions are denoted by x1, x2 and x3
respectively, while time is denoted by t. The channel half-width H is equal to 1,
the friction velocity of the unladen turbulent flow, uτ ,0, is equal to 1, ν = 1/180, so
that Reτ ,0 = uτ ,0H/ν = 180. All results in this paper are non-dimensionalized using H
and uτ ,0, which implies that ν = 1/180 in each case. The distance to the nearest wall
is indicated by y. The superscript + applied to a length indicates a division by 1/180,
the thickness of the viscous sublayer in the unladen flow. Thus y+ = 180(1− |x2|) in
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FIGURE 1. (Colour online) The structure of the particle array in three cross-sections of
one-third of the flow domain in the streamwise direction (0 6 x1 6 L1/3): x3 = π/36 ≈
0.087, x3=3π/36≈0.262 and x2=−1/2. The demarcation lines indicate the much smaller
flow domain of the laminar case.

each case. The spatial domain is given by Ω0=[0,L1]× [−1, 1]× [0,L3]. The flow is
periodic in the x1 and x3 directions. In the turbulent flow cases, L1 = 4π, L3 = 4π/3
and ub = 15.66, while in the laminar flow case L1 = 4π/18, L3 = 4π/36 and ub = 3.
The translative velocity of the particles is indicated by up. In this paper, all particles
have the same fixed up and zero angular velocity.

The array in the turbulent flow contains 1728 spherical particles of diameter dp =

2/45 (d+p = 8) and is sketched in figure 1 (only the first two rows (8 particles) of this
array are used in the laminar flow). The particle radius is denoted by r0 = dp/2, and
the overall particle volume fraction is 0.00075. The particle configuration originates
from a nearly cubical pattern of 36 × 4 × 12 particles with pitch size π/9 in the
streamwise and spanwise directions and pitch size 1/3 in the normal direction. This
nearly cubical pattern is modified by shifting the odd rows in the spanwise direction
by −π/36 and the even rows by π/36, in order to reduce the effect of neighbouring
particles on the streamwise oriented wake behind each particle. The x2 coordinates of
the particles are ±1/6 and ±1/2. From a statistical point of view there are only two
types of particles: the particles at y+ = 90 and those at y+ = 150, also indicated by
p=1 and p=2, respectively. Thus for each type there are many statistically equivalent
particle positions (1728/2), which is an advantage for the computation of accurate
statistics in the particle frame of reference. More numerical and physical reasons for
this specific configuration will be given in § 2.4.

Several unladen flow quantities and particle Reynolds numbers of the particles
based on unladen flow velocities are specified in table 1 for the two distinct particle
positions. The mean velocity, turbulence kinetic energy, turbulence dissipation rate
and Kolmogorov length scale of the mean flow are denoted by u1,0, K0, ε0 and
η0, respectively. The particle Reynolds numbers due to the mean and fluctuating
relative velocities are defined by Rep,mean = (u1,0 − up

1)dp/ν and Rep,tur = (2K0)
1/2dp/ν,

respectively, where u1,0 and K0 are the mean velocity and turbulence kinetic
energy of the unladen flow. The total particle Reynolds number is defined by
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y+ u1,0 − up
1

√
2K0 ε0 η+0 dp/η0 Rep,mean Rep,tur Rep,tot

90 2.74 1.77 2.96 2.79 2.87 21.9 14.2 26.1
150 4.01 1.28 1.17 3.52 2.27 32.0 10.2 33.7

TABLE 1. A characterization of the unladen flow turbulence at the particle positions and
a few particle Reynolds numbers based on unladen flow quantities.

Rtot = (Re2
p,mean + Re2

p,tur)
1/2. For the laminar case, the (mean and total) particle

Reynolds numbers are equal to 27 (p= 1) and 35 (p= 2). The corresponding relative
velocities are obtained by dividing these Reynolds numbers by eight (dp/ν = 8/uτ ,0).

2.2. Governing equations
The incompressible Navier–Stokes equations in Cartesian coordinates read

∂juj = 0, (2.1)

∂tui =−∂j(uiuj)− ∂jq+ ν∂2
j ui + ai. (2.2)

The symbols ∂t and ∂j denote ∂/∂t and ∂/∂xj, respectively. Throughout the paper, the
convention of summation over repeated indices in products is used, unless mentioned
otherwise. The streamwise, wall-normal and spanwise Cartesian velocity components
are denoted by u1, u2 and u3, respectively. The symbol q denotes the periodic part
of the pressure divided by the fluid density. The streamwise component of the
acceleration term a is equal to (a1, 0, 0), and −a1 represents the non-periodic part
of the streamwise component of the pressure gradient divided by the density. It only
depends on time and is adjusted to maintain a constant ub, which is defined as the
streamwise fluid velocity averaged over the fluid domain (Ω0 minus the volumes
occupied by the particles). The boundary conditions imposed on the fluid velocity at
solid surfaces are u= 0 at the channel walls (x2 =±1) and u= up at the surfaces of
the particles.

For use in later sections, we define the fluid stress tensor σ and strain rate S:

σij =−qδij + 2νSij, Sij =
1
2(∂jui + ∂iuj). (2.3a,b)

The force exerted by the fluid stress σij on a particle is defined by

Fp
i =

∫
Sp

σijnj dS, (2.4)

where Sp is the surface of the particle, and n is the normal vector pointing into the
fluid. Note that Fp

i does not include the contribution of the non-periodic part of the
streamwise pressure gradient. The actual force exerted by the fluid on the particle is
equal to ρFp

i + ρaiπd3
p/6.

For each particle, a spherical coordinate system is attached to the particle centre
(xp) such that

x− xp
=

r sin θ cos φ
r sin θ sin φ
r cos θ

 , (2.5)

where r is the radial coordinate, θ the polar angle and φ the azimuthal angle. Thus the
polar axis is aligned to the spanwise direction of the channel. The spherical velocity
components in the frame of the reference moving with the particle are denoted by ur,
uθ and uφ .
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2.3. Numerical method
We employ the solver NSpheres (Vreman 2017), an MPI-parallel body-fitted
incompressible Navier–Stokes solver for flows with multiple moving spheres. Around
each spherical particle, the Navier–Stokes equations in spherical coordinates are solved
on a staggered spherical grid attached to the particle. The spherical grids are overset
on a staggered Cartesian grid. The Navier–Stokes equations are discretized using
second-order accurate central differencing in space with third-order interpolations
from Cartesian to spherical grids and vice versa. In principle, the interpolation data
structure and interpolation coefficients are updated each time step. However, in the
present case we avoid this by using a Cartesian grid that formally moves with the
same constant velocity as the particle array. Thus we use the Galilean invariant
property of the Navier–Stokes equations, and solve u1 − up

1 instead of u1, while we
impose u1 − up

1 = −up
1 at the channel walls. In the post-processing, we obtain u1 by

adding up
1 to the solution for u1− up

1. The temporal discretization is explicit, except for
the φ direction on the spherical grids. Since, due to the viscous time step restriction,
the time step is proportional to the square of the grid size, the formally first-order
temporal discretization error reduces with the same rate as the spatial discretization
error if the grid is refined. The pressure Poisson equation is iteratively solved using
the BICGstab method (van der Vorst 1992) and a tolerance 10−5 for the maximum
norm of the residual. The augmented matrix method (Henshaw 1994; Vreman 2016)
is used to overcome the singularity due to the formally unspecified absolute level of
the pressure.

We call this numerical method, which is fully described in Vreman (2017),
numerical method A. For validation purposes, we additionally consider a slightly
modified method, numerical method B, which differs in three aspects from method A.
First, for the convective terms, the forward Euler temporal discretization is replaced
by the second-order Adams–Bashforth method. The latter scheme was also used in
Vreman (2016), and its implementation is straightforward for cases in which the
spherical grids do not move with respect to the Cartesian grid. Second, the tolerance
for the maximum residual error in the Poisson equation is reduced to 10−6. Third,
another variant of the augmented matrix method is used, in which the augmented
variable is added to the system before the matrix is normalized by dividing each row
by its diagonal element. Thus in the system after normalization, the coefficient of the
augmented variable in each row is no longer equal to 1, but equal to the reciprocal of
the diagonal element before normalization. The coefficients of the augmented variable
influence how (inevitable) errors in the velocity divergence are distributed in space.
In method A, the velocity divergence error in the cells touching the poles does not
converge formally to zero in the limit of zero grid size and zero tolerance, while it
does in method B. However, in practice the divergence error at the poles occurring
if method A is used can be so small that the maximum error of the divergence
seems to converge to zero upon grid refinement: see Vreman (2017). Furthermore,
finite errors restricted to the poles are not expected to deteriorate the convergence of
quantities integrated over a finite surface or a volume, since the surface or volume of
the region where the divergence has a small finite value converges to zero upon grid
refinement.

An overview of five particle-resolved simulations is shown in table 2. T stands
for simulations of the turbulent flow and L for the simulation of the laminar flow.
Case T1 is the main simulation, cases T2, T3 and T4 are introduced for validation
purposes. The comparison in the next subsection will show that, for the present
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Case ub up
1 Npar Ntot/106 dp/h1 Method t2 t2 − t1

T1 15.66 14.09 1728 343 31 A 25.0 20.0
T2 15.66 14.09 1728 43 15 A 42.3 37.3
T3 15.66 14.09 1728 343 31 A 13.8 8.8
T4 15.66 14.09 1728 343 31 B 13.8 8.8
L1 3 0 8 1.6 31 A 42.0 —

TABLE 2. Overview of the particle-resolved simulations.

purposes, method A is sufficiently accurate (compared to method B), and that the
discretization errors and statistical errors in the results of T1 are sufficiently small.

We proceed to specify the main simulation, T1, which was performed using
numerical method A. The number of grid cells of the Cartesian grid is 1152× 216×
384. The uniform grid sizes in the streamwise and spanwise directions, 1x+1 and
1x+3 , are both equal to 1.96. The grid is stretched in the x2 direction, such that 1x+2
linearly increases from approximately 0.5 to 2 for 0 6 y+ 6 60 over 48 points and
is equal to 2 for 60 6 y+ 6 180. Each spherical grid cell has 30 × 48 × 96 cells
and extends from r+0 = 4 to r+b ≈ 7r+0 = 28. The radius of the spherical holes in the
Cartesian domain is set to ra = (r0 + rb)/2. The radial stretching function specified
in Vreman (2016) is used, such that the radial grid size 1r+ is equal to 0.26 at r0
and 2 at rb. The smallest radial grid size is called h1. The total number of grid cells
(Ntot) is approximately 343 million; 72 % of them belong to the spherical domains.

The total number of grid points in case T1 is not small, but if it had been simulated
with one of the more common Cartesian methods for particle-resolved simulations,
which typically use uniform cubical grids, 35 billion points would have been required
to reach the same small mesh size near the particles. Thus, the overset grid method
allows the number of grid points to be reduced by a factor of 100 for this volume
fraction. However, the method needs an iterative method to solve the Poisson equation,
and this consumes more than 90 % of the CPU time.

Simulation T1 was run on 432 processors. Each processor computed the flow on
one block of the Cartesian grid and on the spherical grids of four particles. Thus the
Cartesian domain was decomposed into 432 blocks, 36 blocks in the x1 direction and
12 in the x3 direction. The time step was equal to 3.5 × 10−5, slightly lower than
the viscous stability restriction. The velocity field was initialized using the parabolic
profile and the perturbation specified in Vreman (2014). This initial condition leads
to a fast transition, such that the flow becomes turbulent well before t = t1 = 5. The
end time of the simulation was t= t2 = 25. Complete spatial fields were stored each
0.07 time unit. The statistical averaging was performed by a post-processing program,
which used all stored fields between t= t1 and t= t2. The total simulation time of case
T1 was approximately 0.7 million CPU hours, corresponding to approximately 10
weeks in wall clock time. In this case, the number of time steps was approximately
0.7 million, and on average the number of iterations of the Poisson solver was
approximately 170 per time step.

The other cases do not require much additional explanation. All settings are the
same as in case 1, except those mentioned in this paragraph. In case T2, each
spherical and Cartesian grid is coarser by a factor of 2 in each direction, while
the time step is four times larger. The end time could be taken larger in this case,
because the simulation required much less CPU time than T1, due to the coarser grid
and larger time step. Case T3 is based on the same run as case T1, but t2 is smaller,
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such that the length of the time interval for statistical averaging (t2− t1) is more than
twice as small as in case 1. Case T4 is the same as case T3, except that method
B has been used instead of method A. Furthermore, simulation T4 was started from
the field at t1 = 5 of case T3. Finally, L1 is the laminar case. The resolution and
method in L1 are the same as in T1, but the initial condition of L1 is a parabolic
profile without perturbations, and the domain is much smaller, such that precisely the
first two rows (eight particles) of the particle array fit into the domain. The averaged
quantities were computed from the last field. We verified that near the end of the
simulation the solution was steady in the entire domain. Thus the last field of L1
does indeed correspond to a steady fully laminar flow.

2.4. Relevance of flow case
To limit the computing time without compromising on the near-wall resolution of the
DNS, we did not place particles in the near-wall region, where the Cartesian grid
is non-uniform. In the outer layer of the spherical grid around the particle 1r+ ≈ 2,
(r1θ)+ ≈ 2 and the maximum ((r sin θ)1φ)+ ≈ 2, thus if we placed a particle at for
example y+=30 there would be locations close to the wall where the wall-normal grid
size would effectively be two wall units, while in the present case the wall-normal grid
size at the wall is four times smaller (0.5 wall unit). Sufficient near-wall resolution
would be obtained if the number of radial grid cells were increased by a factor of 4 in
each direction or, alternatively, if the radial extent of the spherical grids were reduced
in combination with a uniform Cartesian grid of grid size half a wall unit. The better
option would probably be the latter one, but it would still imply a huge increase of
the required CPU time (by approximately a factor of 15). Another option would be
to use an immersed boundary method in combination with a fast Poisson solver on a
uniform cubical grid of 5 billion cells (16 grid cells per particle diameter). However,
this would probably reduce the accuracy of the numerical solution near the particles,
for two reasons. First, the grid size near the particle surfaces would be twice as large
as in the present T1. Second, for at least one common type of immersed boundary
method, Stein, Guy & Thomases (2017) have shown that the pressure and viscous
stresses close to the surface of the particle do not converge pointwise to the correct
values, although the particle force (which is not a pointwise quantity) does converge
to the correct value.

Despite the restrictions imposed on location and velocity of the particles, the
present flow case is interesting and new. The local 3-D inhomogeneity of the flow
makes it a rich problem. It is a well-controlled configuration that facilitates an
accurate computation of local statistics, even at locations very close to the particles.
The particles are exposed to turbulence produced by real physical mechanisms
in near-wall turbulence. As such this is a step forward compared with studies of
particles in decaying isotropic turbulence (since the turbulence then depends on the
initial condition) or forced isotropic turbulence (since the turbulence then depends on
the forcing term). Our aim is to investigate how turbulent flow responds to particles,
how energy exchange mechanisms are modified, in particular in the vicinity the
particles. Even without particles in the near-wall region, the turbulence appears to be
significantly modified in the entire flow (including the near-wall region). We wish
to understand how a small volume fraction of particles can significantly influence
the amount and character of the turbulence everywhere in the flow. We will find
that the present PR-DNS confirms important findings and explanations hitherto only
based on interpretations from experiments and point-particle simulations of vertical
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channel flows with freely moving particles (see §§ 3.1 and 6). Thus we expect that
our conclusions regarding the 3-D statistical structure of the turbulence around the
particles in the present configuration are somehow also valid for solid particles falling
through turbulence, for example air turbulence generated by vertical channel walls
(Kulick et al. 1994) or acoustic woofers at the edges of the set-up (Hwang & Eaton
2006; Tanaka & Eaton 2010).

As mentioned in the Introduction, the present case of particles with a fixed velocity
is a relevant limit for particles at high Stokes numbers caused by high inertia. In
the copper particle experiments performed by Kulick et al. (1994), the particle–fluid
mass density ratio was approximately 7000, while the modified Stokes response time
was roughly 8000 times larger than the wall unit time scale (δν/uτ ). We could have
allowed free rotation of the particles in our case, but this would have been inconsistent
with the previous argument that our case is relevant for cases with very high particle
inertia. Furthermore, Zeng, Balachandar & Fischer (2005) found that the effect of
sphere rotation on drag and lift forces is small, and it is the mean particle drag force
that will be shown to cause most of the turbulence attenuation and anisotropy increase
observed in the present case (§ 6).

For finite inertia and free motion of particles in the normal direction, the particles
would be subjected to a larger range of the particle Reynolds number than in the
present case. A larger range of the particle Reynolds number is interesting from a
physical point of view, but higher particle Reynolds numbers lead to thinner no-slip
particle boundary layers and the need for a smaller grid size near the particles. It is
remarked that also in the present case the instantaneous particle Reynolds number is
not constant. Based on the unladen flow velocity the (95 % probability) range of the
instantaneous Reynolds number is from 0 to 50.

2.5. Definition of fixed-frame averaged quantities
The basic averaging operator in the fixed frame is denoted by an overbar and defined
as the average over time and the two periodic directions (x1 and x3). Thus the fixed-
frame statistics are functions of the wall-normal direction only (06 y+6 180; for each
y+, the statistics are based on the two planes x2=±(1− y+/180)). The corresponding
fluid phase-weighted averaging operator applied to an arbitrary function f on Ω0 is
defined by

〈f 〉 = χ f /χ, (2.6)

where χ is the commonly known indicator function of the fluid, equal to 1 in the
fluid and 0 inside the solid phase. In addition, we define α= χ , which is the volume
fraction of the fluid after averaging, and we define the Reynolds stress tensor by

Rij = 〈uiuj〉 − 〈ui〉〈uj〉. (2.7)

Often, the basic averaging operator is a Reynolds (or statistical) averaging operator,
which can be the present overbar, averaging over time only (Ishii 1975) or averaging
over an ensemble of realizations (Zhang & Prosperetti 1997; Drew & Passman 1999).
These operators satisfy the Reynolds conditions, which are (i) linearity, (ii) invariance
of constant fields, (iii) commutation with derivatives and (iv) f1f2 = f1 f2 for arbitrary
functions f1 and f2 on Ω0. It is stressed that the fluid phase-weighted averaging
operator does not inherit condition (iii), the commutation condition. Furthermore,
if a local volume averaging operator is used, for example the operator defined by

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.715


Turbulent channel flow past a moving array of spheres 591

Anderson & Jackson (1967) and Jackson (1997), an operator very similar to the
Gaussian spatial convolution filter later used in large-eddy simulation, then the fourth
Reynolds condition is not satisfied. However, for the fluid phase-weighted average,
condition (iv) is satisfied, and this implies Rij = 〈u′iu

′

j〉, where u′i = ui − 〈ui〉 is the
velocity fluctuation.

The fixed-frame turbulence kinetic energy (TKE) is defined by K = (Rii)/2. For
Reynolds averaging, the TKE equation for incompressible two-phase flow has been
derived by Kataoka & Serizawa (1989). Using PR-DNS of turbulent bubbly channel
flow, Santarelli et al. (2016) evaluated all the distinct terms in this equation, which
are together called the TKE budget. In fact, the TKE equation can also be derived in
an alternative way, without assuming incompressibility and Reynolds condition (iv);
see appendix A. The resulting form is not only more general (also applicable in the
context of local spatial averaging), but it also resembles how the actual evaluation of
terms is performed in this paper, namely without explicit usage of any fluctuation field.
We drop the phase subscript used in appendix A, and write the equations for the fluid
phase in an incompressible particle-laden flow as

0=−∂j(α〈uj〉), (2.8)

∂t(α〈ui〉) = −∂j(α〈ui〉〈uj〉)− ∂j(αRij)

− ∂i(α〈q〉)+ ∂j(2αν〈Sij〉)− σij∂jχ + α〈ai〉, (2.9)

∂tK =C + P + T +Π +D − ε + I + B. (2.10)

The last equation is the TKE equation, in which C is convective transport, P
turbulence production, T turbulent transport, Π pressure diffusion, D viscous diffusion,
ε turbulence dissipation, I= I1+ I2 the interfacial term and B body-force production:

C =−
1
α
∂j(α〈uj〉K), (2.11)

P =−Rij∂j〈ui〉, (2.12)

T =−
1
α
∂j

(
1
2
α〈uiuiuj〉 −

1
2
α〈ui〉〈ui〉〈uj〉 − α〈ui〉Rij − α〈uj〉K

)
, (2.13)

Π =−
1
α
∂j(α〈quj〉 − α〈q〉〈uj〉), (2.14)

D =
2ν
α
∂j(α〈uiSij〉 − α〈ui〉〈Sij〉), (2.15)

ε = 2ν(〈SijSij〉 − 〈Sij〉〈Sij〉), (2.16)

I1 =
1
α
(〈ui〉σij∂jχ − uiσij∂jχ), (2.17)

I2 =−〈σij〉(〈∂jui〉 − ∂j〈ui〉), (2.18)
B = 〈uiai〉 − 〈ui〉〈ai〉. (2.19)

This form is the basis for the numerical implementation of the fixed-frame TKE
equation in the present paper. The gradient of the indicator function is a generalized
function (Drew & Passman 1999),

∂jχ = njδfs, (2.20)
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where n is the normal vector perpendicular to the interface, pointing from the solid
to the fluid region, and δfs a delta function on Ω0, infinitely large on the fluid–solid
interface and zero otherwise. The non-commutation term I2 can be rewritten as

I2 =−
1
α
〈σij〉(〈ui〉∂jα − ui∂jχ). (2.21)

Further discussion of the formulation of the fixed-frame TKE equation and the
description of its numerical implementation can be found in appendix B.

2.6. Definition of moving-frame averaged quantities
An analysis based on averaging in the (non-rotating) frame of reference of the particle
(the moving frame) provides useful insight into the mechanisms of a turbulent particle-
laden flow. If the particles do not move relative to each other, the averaging operator
required for such an analysis is relatively simple. Thus in the frame of reference
moving with up

i , we define 〈·〉M as the operator that averages over time and over
all particle frames that are statistically equivalent. In the present configuration, there
are only two statistically different particle frames (p = 1 and p = 2). The statistical
quantities due to this averaging are 3-D functions, constant in time, but dependent on
all three spatial coordinates. For any fluid variable f , the fluctuation f ′′ is defined by
f ′′ = f − 〈 f 〉M. The fluid velocity in the frame of reference of the particle is denoted
by wi = ui − up

i .
The averaged equations for the fluid phase in the translative frame of reference of

particle p are given by

∂j〈wj〉M = 0, (2.22)

∂t〈wi〉M = −∂j(〈wi〉M〈wj〉M)− ∂jRMij

− ∂i〈q〉M + 2ν∂j〈Sij〉M + 〈ai〉M + ∂t〈u
p
i 〉M, (2.23)

∂tKM =CM + PM + TM +ΠM +DM − εM + JM + BM. (2.24)

In these equations,

RMij = 〈wiwj〉M − 〈wi〉M〈wj〉M = 〈w′′i w′′j 〉M, (2.25)

while the turbulence kinetic energy KM is RMii/2, and the terms in the TKE equation
(2.24) are defined by

CM =−∂j(〈wj〉MKM), (2.26)
PM =−RMij∂j〈wi〉M, (2.27)

TM = −∂j (
1
2 〈wiwiwj〉M −

1
2 〈wi〉M〈wi〉M〈wj〉M

−〈wi〉MRMij − 〈wj〉MKM)=−
1
2∂j〈w′′i w′′i w′′j 〉M, (2.28)

ΠM =−∂j(〈qwj〉M − 〈q〉M〈wj〉M)=−∂j〈q′′w′′j 〉M, (2.29)

DM = ν∂2
j KM − ν(〈(∂iwj)(∂jwi)〉M − 〈∂iwj〉M〈∂jwi〉M)

= 2ν∂j(〈wiSij〉M − 〈wi〉M〈Sij〉M)= 2ν∂j〈w′′i S′′ij〉M, (2.30)
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εM = 2ν(〈SijSij〉M − 〈Sij〉M〈Sij〉M)= 2ν〈S′′ijS
′′

ij〉M, (2.31)

JM =−〈wi∂tu
p
i 〉M + 〈wi〉M〈∂tu

p
i 〉M =−〈w

′′

i ∂tu
p
i
′′
〉M, (2.32)

BM = 〈wiai〉M − 〈wi〉M〈ai〉M = 〈w′′i a′′i 〉M. (2.33)

In each of the equations (2.25) and (2.28)–(2.33), the form in which the terms are
numerically evaluated is given first, followed by an expression in terms of fluctuations.
The former expressions would also provide a valid TKE equation if 〈·〉M did not
satisfy the fourth Reynolds condition. The term CM is the convection term, and PM
is turbulence production, TM turbulent transport, ΠM pressure diffusion, DM viscous
diffusion, εM turbulence dissipation, JM a term due to particle acceleration and BM
body-force production. In the present case, the left-hand sides of (2.23)–(2.24) are
zero, and ∂tu

p
i = 0 so that JM= 0. Apart from the occurrence of JM, this TKE equation

has the same form as the single-phase TKE equation for cases with a 3-D mean flow.
Since there are only two statistically different types of particles, the 3-D domain can

be decomposed in 1728/2 statistically equivalent rectangular blocks. The size of each
block is L1/18 × H × L3/24. The output of the post-processing program is a series
of statistical quantities defined on a 3-D domain of the size of one block, which we
call the reference block. Each moving-frame statistical quantity is determined at the
cell centres of the active Cartesian cells and at the cell centres of the spherical cells.
In addition to the evaluations of each term at the cell centres, the terms DM and εM
are also explicitly computed at the centres of the cell faces on the particle surfaces.
The numerical implementation of the moving-frame TKE equation is further described
in appendix C. The numerical implementation employs the TKE equation in spherical
coordinates, which is also derived in this appendix since we could not find that form
in the literature.

2.7. Validation
Representative results of simulations T1, T2, T3 and T4 of the turbulent case are
shown in figures 2 and 3 and table 3. Case T0 denotes the unladen turbulent channel
flow, while E and EM denote the fixed-frame and moving-frame budget errors, the
sums of all terms on the right-hand sides of the discretized forms of (2.10) and (2.24),
respectively. The reasonably small discrepancies between fine-grid simulation T1 and
coarse-grid simulation T2 are primarily caused by discretization errors in T2 and to a
lesser extent caused by statistical errors in T1. Furthermore, profiles shown in the next
sections will confirm that also for the individual Reynolds stresses and the individual
budget terms the differences between T1 and T2 are quite small for the fixed-frame
terms (figures 5 and 6) and reasonably small for the moving-frame terms (figures 13
and 14). It is concluded that the simulation on the finest grid, T1, is sufficiently
accurate for our purposes. A more extensive discussion of the validation results can
be found in appendix D.

3. Fixed-frame TKE budget and related statistics
All results in this section are based on fixed-frame averaging, more precisely fluid-

weighted averaging in the channel frame of reference, as defined in § 2.5. This is the
standard way of defining continuous-phase statistics in the multiphase literature. The
kinetic energy in the fluctuations resulting from this type of averaging is the TKE
(K). In multiphase literature, K is conventionally called the turbulence kinetic energy
(of the phase under consideration). It is therefore logical that the first of our results
sections is devoted to the fixed-frame TKE budget. However, we stress that, despite
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FIGURE 2. (Colour online) Fixed-frame statistics from cases T1 (blue solid), T2 (red
dashed), T3 (black solid), T4 (green solid) and the unladen case T0 (thin black
dash-dotted). (a,b) Turbulence kinetic energy K before (a) and after (b) normalization
with its unladen counterpart (K0). (c,d) Turbulence dissipation rate before (c) and after
(d) normalization with its unladen counterpart (ε0).

y+ = 90 y+ = 150

Case Mean Fp
1 r.m.s. Fp

1 r.m.s. Fp
2 r.m.s. Fp

3 Mean Fp
1 r.m.s. Fp

1 r.m.s. Fp
2 r.m.s. Fp

3

T1 1.616 0.776 0.337 0.443 2.523 0.545 0.322 0.319
T2 −0.1 % +1.1 % +0.5 % +0.4 % +0.1 % +3.0 % +3.0 % +1.7 %
T3 −0.9 % +0.4 % +0.3 % +1.6 % +1.0 % −0.5 % +0.0 % −0.2 %
T4 −0.4 % −0.3 % +1.1 % +1.0 % +0.3 % −0.1 % +0.9 % +0.3 %
L1 1.688 0 0 0 1.661 0 0 0

TABLE 3. Statistics of the forces on the particles. The numbers for cases T1 and L1 have
been multiplied by 100. For T2, T3 and T4, the relative differences with respect to T1
are shown. Root-mean-square denoted by r.m.s.

its name, K does not correspond to ordinary turbulence (chaotic motion caused by
complex flow instabilities) only. This is confirmed by § 3.2, in which we show that a
laminar flow can have a non-zero K. How large the apparently non-turbulent parts in
quantities commonly regarded and used as turbulence statistics in dispersed multiphase
flows are, will be clarified in § 5. Although we are aware that in the present section
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FIGURE 3. (Colour online) (a) Relative fixed-frame budget error E/ε. (b) Relative moving-
frame budget error EM/εM in a symmetry plane cutting through the particles for case T1.
(c) Planar average of |EM/εM|. (d) Spherical surface average of |EM/εM| as a function
of the radius, which is the distance to the particle centre, for particles at y+ = 90 (left
subplot) and for particles at y+= 150 (right subplot). (a,c,d) Fine-grid case T1 (blue solid)
and coarse-grid case T2 (red dashed).

the label turbulence in the names of quantities may be a bit misleading, we think that,
after the explanation above and in the Introduction, we can stick to the conventional
terminology.

The new findings in this section are: (i) the observation of significant attenuation of
the TKE in a particle-resolved DNS of a particle-laden channel flow at small particle
volume fraction, (ii) visual grid independence of each individual term of the full fixed-
frame TKE budget in an inhomogeneous turbulent flow past particles and (iii) the
observation that conventional fluid-weighted averaging can lead to a large interfacial
budget term and a large turbulence dissipation rate in both turbulent and laminar flow.

3.1. Fixed-frame results of the turbulent case
Before we show the results for the TKE budget of the turbulent case, we show and
discuss the results of a number of basic statistical quantities. The mean velocity and
fluid volume fraction profiles are shown in figure 4. The mean velocity seems to
be largely unaffected by the particles, a finding that is consistent with experimental
results (Kulick et al. 1994). The wall-friction velocity uτ , derived from the mean
velocity profile, and the corresponding Reτ are 0.979 and 176, respectively (for both
T1 and T2), 2 % smaller than the unladen values, uτ ,0 and Reτ ,0. Since in this case
the particles are concentrated at two y+ locations, we do see a somewhat lower mean
fluid velocity around these particle locations. The overall particle volume fraction
is 0.00075, but due to the structure of the array, the mean particle volume fraction,
which is a function of y+, peaks at 0.0128 (at y+ = 90 and y+ = 150). According
to figure 4(c), all three turbulence intensities are attenuated, while the wall-normal
and spanwise intensities decrease relatively more than the streamwise one. These
observations are also consistent with experimental findings (Kulick et al. 1994;
Kussin & Sommerfeld 2002). Furthermore, the Reynolds shear stress is weakened by
the particles (figure 4d).
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FIGURE 4. (Colour online) Fixed-frame statistics. Mean fluid velocity and particle velocity
(a), mean particle volume fraction (b), streamwise (circles), wall-normal (squares) and
spanwise (triangles) turbulence intensities (c) and Reynolds shear stress (d). Fine-grid
case T1 (blue solid), coarse-grid case T2 (red dashed) and unladen case T0 (thin black
dash-dotted). The velocity and positions of the particles are indicated by two black circles
of diameter d+p .

Despite the small changes in the mean velocity profile, the turbulence kinetic
energy K is significantly attenuated for all y+; see figure 2 in the previous section.
The strongest attenuation is observed at the centre line, where K has reduced to
approximately 60 % of its unladen value. Surprisingly, a clear local maximum of K
is observed at y+= 150, while a bump in the profile is observed y+= 90. Figure 4(c)
reveals that the local maximum in K at the second particle location is mainly caused
by R11, the streamwise component of the Reynolds stress. Later on in this paper, we
will explain the local maxima of K and R11 at y+= 150 (§§ 3.2 and 5). Figure 2 also
shows a decrease of the turbulence dissipation rate ε, but not at all locations; around
the y+ locations of the particles, ε is strongly enhanced.

The profiles of all terms in the fixed-frame TKE budget are shown in figure 5.
Compared to the unladen flow, all terms are reduced in the near-wall region, except
the interfacial term I of course, which is zero in the unladen flow and in the
near-wall region of the particle-laden flow. The term B, which is negligible (< 0.002),
and the convection term C, which is zero because (2.8) implies 〈u2〉 = 0, are not
shown. Furthermore, we observe that a large part of the strongly enhanced turbulence
dissipation rate near the particles is compensated by the large and positive I, which
apparently represents production of turbulence kinetic energy by the presence of
particles. This is consistent with the findings of Santarelli et al. (2016), who found
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FIGURE 5. (Colour online) Fixed-frame turbulence kinetic energy budget: (a) standard
production (the inset zooms in on the channel core), (b) turbulent transport, (c) pressure
diffusion, (d) viscous diffusion, (e) turbulence dissipation and ( f ) interface term I.
Fine-grid case T1 (blue solid), coarse-grid case T2 (red dashed) and unladen case T0
(thin black dash-dotted). The blue dotted lines in (e, f ) represent the small cross-term
contribution to the turbulence dissipation rate (ν〈(∂iuj)

′(∂jui)
′
〉) and the small commutator

contribution to the interfacial term (I2), respectively.

I ≈ ε in the core of the channel, for turbulent channel flow with (freely moving)
bubbles at larger particle volume fraction (>0.003) and at much larger particle
Reynolds number. A positive I means that the particles produce turbulence kinetic
energy. One could imagine that fluctuating bubbles inject energy into the TKE
equation. However, in the present case the particle velocity fluctuation is zero. Thus
the large interfacial term must have another cause in this case.

At this point, it is useful to consider the composition of the interfacial term in more
detail. On particle surfaces, the instantaneous velocity u is equal to the velocity of
the particles up

i . Since the latter is constant and the same for all particles, the two
contributions to the interfacial term, I1 and I2 (2.17)–(2.18), can be simplified to

I1 =
1
α
(〈ui〉 − up

i )σij∂jχ, (3.1)

I2 =−
1
α
(〈ui〉 − up

i )〈σij〉∂jα. (3.2)

Apparently, I1 and I2 are inner products of vectors with 〈u〉 − up, the mean relative
velocity between the phases, so that they both vanish if the mean relative velocity
is zero. Thus, for particles with constant velocity, the turbulence kinetic energy
produced by the interfacial term is a direct consequence of a non-zero mean relative
velocity. According to equation (B 5) in appendix B, I1 and I2 are both zero if
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FIGURE 6. (Colour online) Fixed-frame statistics for the laminar case L1: (a) mean
streamwise velocity (blue solid), (b) turbulence kinetic energy, (c) Reynolds stresses R22
(solid), R33 (dash-dotted) and R12 (dotted), (d) standard production (solid) and turbulent
transport (dash-dotted), (e) pressure diffusion (solid) and viscous diffusion (dash-dotted)
and ( f ) turbulence dissipation (solid) and interfacial term (dash-dotted). Panel (a) also
includes the unladen laminar velocity profile (thin dash-dotted) and the particle velocity
(black circles).

∂jχ = 0, i.e. for all y+ for which the plane parallel to the wall is not intersected by
an interfacial surface. Thus, in this case, I is precisely non-zero in the two intervals
with width dp centred around the two particle locations. The form of (3.2) suggests
that I2 is small if the variation of α is small. Indeed, figure 5( f ) shows that I2 is
negligible compared to I.

The placement of all particles at two specific x2 positions leads to sudden changes
in the different particle terms. The particle volume fraction 1− α is not continuously
differentiable at the edges of the particles (the particle locations plus or minus dp/2).
This gives rise to strong discontinuities in I at these locations, discontinuities which
are balanced by the discontinuities in the viscous diffusion term D. Another effect is
that the non-zero transport terms, T , Π and D, change sign around the particles, and
that even the production changes sign, at least near y+ = 150 (see inset of figure 5a).
Thus the particles have a strong locally disturbing effect on all conventional terms in
the turbulence kinetic energy equation. We will discuss the local effects of particles
on the surrounding turbulence in more detail in §§ 4 and 6.

The quantity σij∂jχ , which appears in (3.1) and (2.17), is proportional to the force
exerted by the fluid on the particles as a function of x2. In fact −σij∂jχ is the
interfacial term in the mean momentum (2.9), and therefore we call this term the
mean drag loading (the mean density of the drag force exerted by the particles on
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the fluid). We derive an estimate for the level of σij∂jχ around xp
2. For this purpose,

we define a thin volumetric slice Vs = [0, L1] × [−xp
2 − r0, xp

2 + r0] × [0, L3] around xp
2.

The particle volume fraction in this slice is denoted by αs and is equal to
432Vp/(dpL1L3), where Vp =πd3

p/6. For x2 ≈ xp
2,

σij∂jχ ≈
1
dp

∫ xp
2+r0

xp
2−r0

σij∂jχ dx2

=
1

dpL1L3(t2 − t1)

∫ t2

t1

∫ L1

0

∫ xp
2+r0

xp
2−r0

∫ L3

0
(σij∂jχ) dx3 dx2 dx1 dt

=
432

dpL1L3
mean(Fp

i )=
αs

Vp
mean(Fp

i ). (3.3)

Since the mean of Fp
1 is expected to have the same sign as 〈u1〉 − up

1, and the wall-
normal and spanwise components of the mean relative velocity are zero, the interfacial
term I ≈ I1 in the budget is expected to be positive. In particular, equation (3.1) is
approximated by

I1 ≈
αs

Vp
(〈u1〉 − up

1)mean(Fp
1)≈ 185(〈u1〉 − up

1)mean(Fp
1), (3.4)

for x2 ≈ xp
2. This equation would in fact reduce to the model for the interfacial term

in bubbly flows proposed by Throsko & Hassan (2001) and tested by Santarelli et al.
(2016) if we replaced Fp

1 by the standard model expression for the particle drag force.
To evaluate this approximation for I1, we use the PR-DNS values for Fp

1 listed in
table 3. Furthermore, we use the PR-DNS values for 〈u1〉−up

1 at y+=90 and y+=150,
which are 2.53 and 3.60 respectively. Thus we obtain I ≈ I1 ≈ 7.6 and I ≈ 16.8, and
the comparison with figure 5( f ) shows that these are indeed good approximations of
the average heights of the two peaks in the interfacial term.

3.2. Fixed-frame results of the laminar case
In the previous section, we observed a surprising peak in K around y+ = 150, a very
strong enhancement of ε around y+ = 90 and y+ = 150, and in the same regions a
large production of turbulence kinetic energy by the interfacial term even though the
particle velocity fluctuation is zero. Are these remarkable observations caused by true
turbulence or do laminar effects play a role? How much of K and ε is truly turbulent?
While definitive answers to these questions will be given in § 5, we address a related
question in this subsection, namely whether the remarkable features also persist in a
laminar channel flow past a particle array. We therefore consider the results of case L1,
in which, in order to keep the flow laminar and the relative particle velocity roughly
the same, the fluid bulk velocity was reduced to 3, and the velocity of the particle
array was set to 0. The fluid-weighted averaging operator 〈·〉 was applied to the steady
state reached by this flow.

The results of simulation L1 are shown in figure 6. It appears that the turbulence
kinetic energy is non-zero around the particles, although the flow is laminar and steady.
This is in line with the work of Mehrabadi et al. (2015), who observed a non-zero
TKE in PR-DNS of laminar flow past an array of fixed particles. Due to the laminar
flow disturbance around the particle, each velocity component is subject to spatial
variation in planes parallel to the wall, which implies a non-zero spatial fluctuation
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with respect to the planar average. According to figure 6(b,c), K is much larger than
R22 and R33, which implies R11≈ 2K. This very strong anisotropy must be due to the
wakes behind the particles, which reduce the streamwise velocity considerably below
〈u1〉 in a rather large region. Because R22 is very small, the Reynolds shear stress
R12 is also small (although it is non-zero: see figure 6c). This also explains the peak
near the second particle position and the bump around the first particle position in
figure 2(a). The latter is a bump because the level of the increase in K due to laminar
effects is rather small compared to the background turbulence at the first particle
position.

It appears that the interfacial term and the turbulence dissipation rate are larger
than Π and D and much larger than P and T . Thus in this case we have I ≈ ε (the
interfacial production of K is balanced by the dissipation of K), although the profile of
I is thinner and has a slightly larger peak than that of ε. In view of the modest value
of K (only 0.12), it is surprising how large I and ε are near the particle locations, of
the same order as in the turbulent flow around y+ = 90 (figure 5e, f ).

With respect to the local distortions by the particles, there is a strong similarity
between cases L1 and T1, not only for I and ε, but also for the shape distortions
of P and the transport terms around the particle positions. Thus laminar effects can
significantly contribute to K and ε, and several similarities between L1 and T1 suggest
that laminar effects have an important effect on turbulence statistics in the turbulent
case too.

4. Moving-frame TKE budget and related statistics
In this section we characterize the 3-D structure of the moving-frame TKE budget

and related statistics. We recall that the moving-frame statistics are based on averaging
over time and statistically equivalent blocks so that we only have to consider the
reference 3-D block defined in § 2.6. Moreover, we only look at the turbulent case
since in the laminar case the moving-frame TKE is zero everywhere (this was
verified).

The new elements in this section are: (i) a detailed picture of all terms in the
moving-frame TKE budget, taking the full 3-D inhomogeneity of the turbulence in
the particle frame of reference into account, (ii) the finding that the production term
is strongly negative in a region in front of the particle and a corresponding physical
explanation in terms of the local turbulence anisotropy, (iii) the observation that
despite the overall attenuation of the turbulence there are regions near the particles
where turbulence production is significantly enhanced, (iv) a comparison between the
turbulence and mean dissipation rates near the particles (both are increased by orders
of magnitude on the particle surfaces) and (v) the definition and computation of a
particle surface viscous length scale (by analogy to the channel wall viscous length
scale).

4.1. Mean flow and Reynolds stresses
Figure 7 shows the contours of the streamwise and wall-normal mean velocity
components and the turbulence kinetic energy KM on the symmetry plane X3 = 0 of
the reference 3-D block (Xi = xi − xp

i ). This symmetry plane includes the centres of
the two statistically different particles. In this plane, 〈u3〉M= 0, and ∂3〈u1〉M= 0. In the
planes X2= 0 through the particles, the structure of 〈u3〉M is similar to the structure of
〈u2〉M in figure 7(b). In figure 7(c), we observe a region of relatively low turbulence
kinetic energy around each particle. These regions are elongated in the streamwise
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FIGURE 7. (Colour online) Contours of moving-frame statistics in the plane X3 = 0
(case T1). (a) Mean streamwise velocity 〈u1〉M− up

1. (b) Mean wall-normal velocity 〈u2〉M.
(c) Turbulence kinetic energy KM. (d) Reynolds shear stress RM12.

direction and include the rather long wakes behind the particles. The Reynolds shear
stress RM12 in this plane (figure 7d) has, on top of the negative background Reynolds
shear stress, a quadrant type of structure around each particle: negative near the left
front and right rear and positive near the right front and left rear. The structures at
the rear occur in the free shear layers at both sides of the wake behind each particle
and their sign tends to be opposite to the sign of the local shear component 〈S12〉M.

The four non-zero components of the Cartesian Reynolds stress tensor in the plane
X3=0 are shown in figure 8. The distortion of the turbulence by the particles is clearly
not entirely symmetric about the y+ = 90 and y+ = 150 axes through the particles.
All three diagonal components are substantially suppressed around the particles, while
the wake structures created by the particles persist further downstream for RM11 than
for RM22 and RM33 (the latter two quantities recover more quickly than RM11 and the
mean streamwise velocity). However, somewhat downstream of the particles (around
X+1 ≈ 10) and on the right side (y+≈ 100 for p= 1 and y+≈ 160 for p= 2) we observe
local maxima of RM11 (see figure 8a, less easy to discern for p= 2 than for p= 1).
These local maxima appear inside a region of enhanced anisotropy of the turbulence
(see figure 8d), where the streamwise component of the anisotropy tensor, bM11=−1+
3RM11/(RM11 + RM22 + RM33), is shown. We observe that the anisotropy is strongly
modified near the particles, but while bM11 is increased in some regions, it is reduced
in other regions. Near the fronts and the rears of the particles, bM11 approaches −1
since there u′′1 is the particle wall-normal component and therefore vanishes faster than
u′′2 and u′′3 if the particle surface is approached. At the sides of the particle in this
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FIGURE 8. (Colour online) Contours of moving-frame Reynolds stresses in the plane
X3 = 0 (case T1). (a) RM11. (b) RM22. (c) RM33. (d) Anisotropy coefficient bM11.

plane, u′′2 is the particle wall-normal component. Thus at those locations values of bM22
approach −1 and, as a consequence, bM11 (and bM33) increase. We observe that the
low bM11 at the rears and the high bM11 at the sides are transported downstream. Thus
the wake has a long core of relatively low bM11, embraced by a hull of relatively
high bM11.

4.2. TKE budget
An overview of the moving-frame TKE budget in the same plane is shown in
figure 9. The dissipation is enhanced around the particles, but the production is too,
while negative production occurs as well. Arrows are used to visualize the total
transport flux vector, the vector inside the divergence in CM + TM + ΠM + DM (CM
is also a transport term, because it can be written in divergence form). We observe
a background flow of turbulence kinetic energy in the positive x1 and positive x2
directions. This background flow is dominated by 〈w1〉KM in the x1 direction and by
〈u′′i u′′i u′′2〉M/2 in the x2 direction.

Contour plots of the six individual terms of the moving-frame turbulence kinetic
energy budget are shown in figure 10. Note that for clarity of the figure, the values
have been clipped to a rather narrow range, the dark red (dark blue) coloured regions
typically include values much larger than 10 (lower than −10). The term due to the
forcing by the streamwise pressure gradient, BM, is negligible and therefore not shown.
For each term and particle, the extrema over the entire spherical grid around the
particle are listed in table 4 (the very large maxima of DM and εM, which should
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FIGURE 9. (Colour online) Moving-frame TKE budget in the plane X3 = 0 (case T1).
Positive values of production PM (red dash-dotted, contour levels 2, 5, 20 and 100).
Negative production PM (blue dashed) and minus the dissipation rate −εM (blue solid),
both for contour levels −2,−5,−20 and −100. The arrows represent the total transport
flux vector (for each coordinate direction, the odd numbered points are skipped).

p CM PM TM ΠM DM εM ζM

min max min max min max min max min max max max

1 −25 55 −66 44 −9.8 8.0 −34 182 −100 762 820 2134
2 −15 36 −53 35 −4.7 4.0 −14 112 −57 430 469 4999

TABLE 4. Extrema of the terms in the moving average budget and ζM = 2ν〈Sij〉M〈Sij〉M
on the spherical grids for particle types p= 1 and p= 2. From case T1.

formally be the same, numerical differ by approximately 7 % for p= 1 and 8 % for
p= 2.)

Regions where the first transport term (CM) injects turbulence kinetic energy are
observed near the front and the sides, while regions where it consumes turbulence
kinetic energy are observed near the sides and the rear. Comparison of figure 10(a–c)
shows that, in the neighbourhood of the particle, the role of convection is more
important than the role of the turbulent transport term TM. The pressure diffusion
term, ΠM, another transport term, also strongly injects turbulence kinetic energy in
regions at the front and at the sides (it is the second largest locally productive effect
in the TKE budget: see table 4), although the strongly positive region near the front
is very thin. Also near the front, but slightly further away from the particle surface,
there is a pronounced region of negative pressure diffusion. The fourth transport term
is the viscous diffusion term, DM, which becomes very large in a thin layer attached
to the particle surface. The terms of the TKE budget that attain the largest values are
DM and εM, whose absolute extrema are attained at the particle surfaces. These are
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FIGURE 10. (Colour online) Contours of moving-frame TKE budget in the plane X3 =

0 (case T1), all clipped to the range [−10, 10]; most dark red (dark blue) regions
contain peaks much higher than 10 (much lower than −10). (a) Convection term CM.
(b) Production term PM. (c) Turbulent transport term TM. (d) Pressure diffusion term ΠM.
(e) Viscous diffusion term DM. ( f ) Minus turbulence dissipation rate −εM.

also the only two terms of the TKE budget that are non-zero on the particles. That
all the other terms are zero on the particles is not discernible in figure 10 (because
the range in this plot is restricted to [−10, 10], which is only a few per cent of εM
on the particle surface), but it can be seen in (the inset of) figure 13(d) (forthcoming).
While DM and εM are very large on and close to the particles, they rapidly decay
away from the particles, DM even more rapidly than εM, as the dark (red) layers at
the front and sides of the particle are thinner in figure 10(e) than the corresponding
dark blue layers in figure 10( f ).

4.3. Turbulence production
The turbulence production term, PM, is positive everywhere in simple turbulent flows,
but in this flow we see a region of strongly negative production near the front and the
sides of each particle, and also a region of weakly negative production in the wake
further away from the first particle. The region of negative production at the front
has a thin neck, and before the flow reaches this neck it goes through a region with
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FIGURE 11. (Colour online) Decomposition of PM in the plane X3=0 (case T1). Contours
of the non-zero contributions, all clipped to the range [−10, 10]; most dark red (dark blue)
regions contain peaks much higher than 10 (much lower than −10). (a) −RM11〈S11〉M.
(b) −RM22〈S22〉M. (c) −RM33〈S33〉M. (d) −RM12∂2〈u1〉M. (e) −RM12∂1〈u2〉M.

enhanced positive turbulence production. The decomposition of the production term
is shown in figure 11. In this symmetry plane, there are five non-zero contributions
to the production term: −RM11〈S11〉M, −RM22〈S22〉M, −RM33〈S33〉M, −RM12∂2〈u1〉M and
−RM12∂1〈u2〉M.

Near the front of the particle, perpendicular to the particle surface, there is a
nearly streamwise oriented axis where ∂2〈u1〉M + ∂1〈u2〉M = 0. Combining this with
the approximation RM22 ≈ RM33 implying bM22 ≈ bM33 ≈ −bM11/2, the production on
this axis is approximated by

PM ≈ −RM11〈S11〉M − RM22〈S22〉M − RM33〈S33〉M

= −bM11〈S11〉M − bM22〈S22〉M − bM33〈S33〉M

≈ −bM11(〈S11〉M + 〈S22〉M/2+ 〈S33〉M/2)
= −bM11〈S11〉M/2. (4.1)

On this axis, the mean flow must decelerate (〈S11〉M < 0), which implies that PM has
the same sign as the streamwise anisotropy bM11. Because of the anisotropy of the
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background turbulence bM11 > 0 when the turbulence starts to approach the particle,
and therefore the production is first enhanced in the deceleration zone. However,
closer to the particle bM11 becomes negative because the streamwise component is the
normal component in the turbulent structure impinging on the front of the particle
(see figure 8d). As a consequence PM becomes strongly negative.

The regions of negative production at the sides of each particle are attributed to
strongly positive RM12∂2〈u1〉M. To explain the positive correlation between RM12 and
∂2〈u1〉M, we consider the region of negative RM12 at the front-right side of the second
particle: see figure 7(d). There is no perfect symmetry, but near the front there is
an approximate symmetry about the axis y+ = 150. Near the particle surface and
somewhat to the right of the symmetry line, there is a region where RM12 > 0 (see
figure 8d), 〈u1〉M increases with increasing x2 (figure 8a). Thus RM12∂2〈u1〉M > 0 and
this provides a negative contribution to PM.

However, how can RM12 become positive at this point? This cannot be due to
the convection of the background RM12, because the background RM12 is negative.
To explain this, we choose a point near to the previous point, also on the X3 = 0
plane, but closer to the approximate-symmetry axis, where RM12 is rising or has just
become positive. At this point we consider the turbulent structures with positive u′′1,
which tend to bend to the right, since 〈u2〉M is slightly positive. The structures with
positive u′′1 have relatively large inertia and therefore they will approach the particle
very closely before they bend, so that q′′ tends to be positive. After they have bent,
their u′′1 and u′′2 are still relatively large, so that the fluctuating shear rate S′′12 also
tends to be positive. This implies a positive correlation of q′′ and S′′12 at this point,
in other words a positive pressure term 〈q′′S′′12〉M, which appears in the transport
equation of R12. If the correlation is sufficiently strong to overrule other mechanisms
in that equation, for example negative production of RM12, then RM12 becomes positive
indeed.

In the wakes of both particles we see two wings of positive production, although
the left wing in the wake of the first particle is relatively short. Each pair of wings (or
in three dimensions each asymmetrically annular region of enhanced PM in the wake)
corresponds to regions in an annular free shear layer where, as mentioned above, RM12
and ∂2〈u1〉 have opposite signs, so that −RM12∂2〈u1〉 is positive and can enhance PM.
In fact, −RM12∂2〈u1〉 appears in the production term of the RM11 equation and not in
those of the RM22 and RM33 equations. Furthermore, the wings of positive production
at the right sides of the particles are stronger than those on the left. It seems that the
right wings are responsible for the occurrence of maxima of RM11 and large values of
b11 at y+≈ 100 and y+≈ 160 (see figure 8). If the particle Reynolds number based on
the mean relative velocity were larger than a few hundred, then positive production in
the wake would be expected since the particle wake would be unstable, for laminar
free-stream flow and probably also for turbulent free-stream flow. However, in this
case the particle Reynolds number remains moderate (maximum 50). Therefore, we
do not attribute the positive PM in the wake to classical particle wake instability but
to the interaction between the channel flow turbulence and the mean velocity gradients
created by the particle.

4.4. Dissipation rates
The dissipation structure of kinetic energy near the particle is quantified by two
quantities: the turbulence dissipation rate εM and the dissipation rate of mean flow
kinetic energy, defined by ζM = 2ν〈Sij〉M〈Sij〉M. The latter is not a term in the
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FIGURE 12. (Colour online) Contours of moving-frame dissipation terms on the particle
surface, viewed from a point on the polar axis (case T1). Turbulence dissipation rate εM
on particles at y+ = 90 (a) and y+ = 150 (b). Mean flow dissipation rate ζM on particles
at y+ = 90 (c) and y+ = 150 (d).

moving-frame TKE equation, but it is part of the fixed-frame turbulence dissipation
rate, as we will see in § 5. The contours of εM and ζM on the two particle surfaces,
the entire hemispheres at one side of the symmetry plane X3 = 0, are shown in
figure 12. The hemispheres appear as circles as we view the hemispheres along the
polar axes, which are perpendicular to X3 = 0. Thus the centre of each circle shown
corresponds to the point on the polar line θ = 0 at radius r = r0. Since the unladen
εM is only 2.96 at y+ = 90 and 1.17 at y+ = 150 (see table 1), there are locations
on the particle surface, in particular at the front and at the sides, where εM exceeds
the unladen value by a factor of more than 100. However, the maximum of ζM is
even larger than εM, more than twice as large for p= 1, and more than eight times
as large for p= 2 (see table 4). Compared to the first particle, the turbulence around
the second particle is weaker, so that the maximum of εM is lower, but the particle
Reynolds number Rep,tot is larger (table 1), which leads to a larger maximum of ζM.

At the channel walls, ζM = ν(∂2〈u1〉M)
2. This is far away from particles, so that at

y+ = 0, ζM is virtually identical to the dissipation rate of the fixed-frame mean flow
kinetic energy, defined by

ζ = 2ν〈Sij〉〈Sij〉, (4.2)

and likewise the difference between εM and ε is negligible at the wall. Thus at the
wall, we find ζM ≈ 176, approximately six times larger than εM at the wall. Thus
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FIGURE 13. (Colour online) Profiles of moving-frame statistics for particle p = 1 from
fine-grid simulation T1 (blue solid) and coarse-grid simulation T2 (red dashed). The
turbulence dissipation rate εM (circles) and the mean flow dissipation rate ζM (triangles)
on three axes through the particle centre: the x2 axis (a), the x3 axis (b) and the x1 axis
(c). TKE budget terms divided by εM on the x1 axis are shown in (d): CM/εM (circles),
PM/εM (squares), TM/εM (upward triangles), ΠM/εM (diamonds) and DM/εM (downward
triangles); the inset zooms in on the region near the front of the particle.

also at that solid surface, the mean flow dissipation rate is much larger than the
turbulence dissipation rate. It is possible to express the wall viscous length scale δν
as a function of ν and the value of ζ at the wall (ζw): δν = (ν3/ζw)

1/4. This expression
is fully analogous to the expression for the Kolmogorov length scale, since the latter
is obtained if ζw is replaced by ε. It seems a logical step to also define a particle
surface viscous length scale by δν,p= (ν3/ζMs)

1/4, where ζMs denotes ζM on the particle
surface. This length scale depends on the position on the particle surface, and it is
minimum at the location where ζMs is maximum (a location on the surface of the
second particle: see figure 12d). This maximum is approximately 5000, so that the
minimum δν,p equals 0.44δν,0, which is larger than 0.26δν,0, the grid spacing at the
particle surface in case T1. Thus, although ζM attains very large values at the particle
surface, the small length scale associated with ζM is resolved in case T1.

Profiles of both dissipation rates on the three Cartesian axes through the centre
of the first particle are shown in figure 13. These profiles consist of overlapping
segments from the spherical and Cartesian grids. Figure 13(a–c) shows that ζM decays
faster than εM with increasing distance from the particle. Furthermore, figure 13(c)
indicates that εM and ζM are much lower in the wake than the maxima at the sides
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FIGURE 14. (Colour online) Profiles of spherical surface averages of moving-frame
statistics for particle p = 1 from fine-grid simulation T1 (blue solid) and coarse-grid
simulation T2 (red dashed). (a) The turbulence dissipation rate 〈εM〉S (circles) and the
mean flow dissipation rate 〈ζM〉S (triangles) as a function of r+ (the distance to the
particle). (b) TKE budget terms divided by 〈εM〉S: 〈CM〉S/〈εM〉S (circles), 〈PM〉S/〈εM〉S
(squares), 〈TM〉S/〈εM〉S (upward triangles), 〈ΠM〉S/〈εM〉S (diamonds) and 〈DM〉S/〈εM〉S
(downward triangles).

(figure 13a,b), but also that in the wake the radii of the regions where εM and ζM
are elevated extend to relatively far away from the particle. Figure 13(d) illustrates
that, locally, the absolute values of convection, turbulence production and pressure
diffusion terms can be much larger than the turbulence dissipation rate.

To further quantify the effects of the moving-frame statistics, it is useful to reduce
them to one-dimensional profiles. This can be done in several ways: one way to do
this is illustrated in figure 14, another way is introduced in the next section. The
spherical surface average 〈·〉S reduces the 3-D statistics to profiles that are only a
function of the distance to the particle centre. The operator denotes averaging over
the surface of the sphere with radius r and with the same centre as the particle. The
spherical surface average of the TKE budget in the moving frame of the first particle
is shown in figure 14(b), after division by 〈εM〉S, which is shown in figure 14(a).
Figure 14(b) looks somewhat similar to the radial budget shown in Vreman (2016). In
that paper, isotropic turbulence with zero mean flow over the particle was simulated,
and apart from small effects of the cubical structure of the dilute array, the statistical
variation in polar and azimuthal directions did not play a role there. This implied
that there was no convection term. Furthermore, there was also no energy produced
by shear, but the production was due to a stochastic forcing of the large scales.
However, that production term did look similar to 〈PM〉S shown in figure 14(b), while
also the radial profiles of pressure diffusion and viscous transport were qualitatively
similar to those shown in figure 14(b). In contrast, transport had a different shape: it
was positive near the particle, in fact similar to 〈CM〉S in the present case, while the
present 〈TM〉S is negative close to the particle. In figure 14(b), the dominant transport
term is turbulent transport for r+ > 13.5, convection for 9.5 < r+ < 13.5, pressure
diffusion for 5< r+ < 9.5, and viscous diffusion for r+0 = 4< r+ < 5.

5. Fixed-frame averages of moving-frame statistics
It is important to realize that the fixed-frame average of a moving-frame statistical

quantity, for example 〈KM〉, is in general different from the corresponding fixed-frame
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statistical quantity (K in this example). In this section we apply the fixed-frame
averaging operator to the 3-D moving-frame statistics from § 4, in order to compare
these statistics, which characterize the true turbulence in this flow, to the unladen
turbulence statistics.

The new findings in this section are: (i) large differences between the fixed-frame
and moving-frame TKE budgets, (ii) the obscuring of the entire fixed-frame TKE
budget and, to lesser extent, also the Reynolds stresses (mainly R11) by fluctuations
that are steady in the moving frame, (iii) a net increase of production and dissipation
of true turbulence in wall-parallel planes near the particles, although the particle
Reynolds number is less than fifty, and (iv) a net increase of the dissipation of true
turbulence in wall-parallel planes near the particles, albeit much smaller than the
increase of the fixed-frame (fluid-weighted) turbulence dissipation rate.

In this section we denote an arbitrary fixed-frame statistical quantity by Q and
its moving-frame counterpart by QM. The fixed-frame average of the moving-frame
statistical quantity is equal to 〈QM〉. The corresponding remainder is defined by

QR =Q− 〈QM〉. (5.1)

It represents the contribution of the fluctuations that are steady in the moving
frame to Q. We thus obtain the decomposition Q= 〈QM〉 +QR. As mentioned in the
Introduction, Risso et al. (2008) and Amoura et al. (2017) decomposed the turbulence
kinetic energy into two components via a decomposition of the velocity fluctuation.
We apply the same decomposition to f ′ = f − 〈 f 〉, where f represents a general fluid
variable f in the present flow configuration, and we define

f ′ = f ′′ + f ′′′, f ′′ = f − 〈f 〉M, f ′′′ = 〈f 〉M − 〈f 〉. (5.2a−c)

Mathematical properties of combinations of fixed-frame and moving-frame averaging
operators imply 〈〈u〉M〉 = 〈u〉 and

Rij − 〈RMij〉 = 〈u′′′i u′′′j 〉. (5.3)

This implies

KR =K − 〈KM〉 = 〈u′′′i u′′′i 〉/2 > 0. (5.4)

The decomposition K=〈KM〉+KR is precisely the decomposition used by Risso et al.
(2008) and Amoura et al. (2017). It is remarked that (5.3) can also be derived by
application of the identity of Germano (1992).

Similarly, we can derive for the remainder of the turbulence dissipation rate:

εR = ε − 〈εM〉 = 2ν〈S′′′ij S′′′ij 〉 = 2ν〈(〈Sij〉M − 〈Sij〉)
2
〉 = 〈ζM〉 − ζ > 0. (5.5)

Thus KR and εR are the kinetic energy and the dissipation rate based on u′′′. In fact, we
can decompose the entire fixed-frame TKE budget (C+P+T+Π +D− ε+ I+B=0)
into two TKE budgets. This is shown in appendix E, where it is also mathematically
proved that the interfacial term in the fixed-frame budget is entirely due to fluctuations
that are steady in the moving frame (if up

i does not depend on time).
Results of the TKE and the Reynolds stresses are shown in figure 15. Near the

particle locations, 〈KM〉 appears to be substantially lower than the result shown in § 3,
included as a thin blue line in figure 15(a). We can now conclude that the surprising
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FIGURE 15. (Colour online) Fixed-frame averages of moving-frame budget terms 〈QM〉

(thick black solid) from T1 compared with the unladen counterparts from T0 (thin black
dash-dotted) and with the fixed-frame counterparts Q (thin blue solid) from T1. (a) Q=K,
(b) Q= R11, (c) Q= R22 (squares) and Q= R33 (triangles) and (d) Q= R12.

bump at y+= 150 in the fixed-frame TKE is entirely due to structures that are steady
in the moving frame, structures due to the displacement of liquid by particles which
have non-zero mean relative velocity. The kinetic energy of the true turbulence, 〈KM〉,
displays a valley at y+ = 150. This means that the attenuation of true turbulence is
relatively strong at the particle locations, in contrast to the impression raised by the
profile of the complete K (see figure 2). Furthermore, figure 15(b–d) shows that the
fluctuations that are steady in the moving frame are concentrated in the streamwise
velocity component (〈RM22〉 ≈R22 and 〈RM33〉 ≈R33), which is in line with the results
of the experiments by Amoura et al. (2017).

The fixed-frame averages of the terms in the moving-frame budget are shown in
figure 16 (like B, 〈BM〉 is negligible and not shown). There are two peaks in 〈PM〉

somewhat to the right of each particle location (figure 16a). These peaks are due to
the relatively large production at several locations around the particle, in particular in
the wake (see figure 10b). The shift to the right can be due to the asymmetry in the
two wings in the wake. The asymmetry is due to inhomogeneity in the wall-normal
direction. In addition, the background production is decaying with increasing distance
of the wall. Thus even a symmetric addition to the production results in a production
peak that is somewhat shifted to the right. The convection term 〈CM〉 is not shown in a
separate plot, but in the plot of the transport term, because after the planar averaging,
the term has become relatively small, while the fixed-frame counterpart C is equal to
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FIGURE 16. (Colour online) Fixed-frame averages of moving-frame statistics 〈QM〉 (thick
black solid) from T1 compared with the unladen counterparts from T0 (thin black dash-
dotted) and with the fixed-frame counterparts Q (thin blue solid). (a) Q= P, (b) Q= T ,
(c) Q=Π (squares), (d) Q=D (circles), (e) Q=−ε. Also in (b) 〈CM〉 from T1 (dotted).
Also in (e) the remainder −εR =−(ε − 〈εM〉) (thin red solid) and 〈ζM〉 (thin red dashed).
( f ) Zoom of two curves of (e), −〈εM〉 from T1 (thick black solid) and −ε from T0 (thin
black dash-dotted). Also in ( f ) the budget error, 〈EM〉 (black dotted), from T1.

zero. The profiles of the averages of the moving-frame pressure diffusion and viscous
diffusion are much smoother and smaller than their fixed-frame counterparts Π and D.

The most striking observation in figure 16 is that 〈εM〉 is much smaller than ε, near
the particle locations. In these regions, the contribution due to fluctuations that are
steady in the moving frame, εR= ε−〈εM〉, turns out to be larger than the contribution
due to fluctuations that are unsteady in the moving frame, in particular for the second
particle. Equation (5.5) and the fact that ζ is only large near the wall imply that εR≈

〈ζM〉 in the core of the channel, which is confirmed by figure 16(e). More details of
the profile of 〈εM〉 are shown in figure 16( f ). Although 〈εM〉 is much smaller than ε,
the sole contribution of the fluctuations that are unsteady in the moving frame appears
to be significantly larger than the unladen turbulence dissipation rate in small regions
(slightly wider than dp) around the positions of the particle centres. Further away from
the particles, the turbulence dissipation rate is significantly suppressed.

Whereas the results of the laminar case in § 3.2 (figure 6) only suggested that the
remarkable local maximum of the fixed-frame K at y+= 150 (figure 2) and the strong
enhancement of the fixed-frame ε are not entirely due to true turbulence, figure 15
proves that this maximum is caused by (streamwise velocity) fluctuations that are
steady in the moving frame, while figure 16(e) and equation (5.5) prove that the very
strong enhancement of the fixed-frame dissipation rate around the particles is mostly
due to the dissipation of the kinetic energy of the mean flow.
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0 6 y+ 6 60 60 6 y+ 6 120 120 6 y+ 6 180 0 6 y+ 6 180
T0 T1 T1M T0 T1 T1M T0 T1 T1M T0 T1 T1M

K 2.89 2.59 2.59 1.59 1.19 1.17 0.85 0.54 0.51 1.78 1.44 1.43
P 15.75 13.57 13.57 2.61 1.97 2.10 0.42 0.27 0.46 6.26 5.27 5.37
ε 14.35 12.30 12.27 3.18 3.67 2.78 1.25 3.18 1.10 6.26 6.38 5.38
TT −1.39 −1.30 −1.31 0.57 0.67 0.68 0.83 0.63 0.65 0.00 −0.00 0.01
I 0 0 0 0 1.02 0 0 2.26 0 0 1.10 0
ζ 28.13 27.29 27.29 0.16 0.19 1.08 0.03 0.10 2.19 9.44 9.20 10.19
−R12 0.57 0.48 0.48 0.47 0.35 0.31 0.16 0.10 0.10 0.40 0.31 0.31
R11 4.36 4.11 4.11 1.75 1.38 1.36 0.83 0.58 0.53 2.31 2.02 2.00
R22 0.45 0.33 0.33 0.60 0.41 0.41 0.42 0.24 0.24 0.49 0.33 0.33
R33 0.98 0.74 0.74 0.84 0.58 0.58 0.45 0.25 0.25 0.76 0.52 0.52
b11 1.26 1.38 1.38 0.65 0.75 0.74 0.47 0.62 0.57 0.95 1.11 1.11

TABLE 5. Zonal averages of statistics of case T0 and fixed-frame (T1) and moving-frame
(T1M) statistics from case T1 (TT =C+ T +Π +D is the total transport, and b11 is the
streamwise anisotropy coefficient based on zonal averages of Reynolds stresses).

We finish this section with the presentation of table 5, in which the overall effects
of the particles on the statistics are quantified. The entire channel half has been
split into three subregions with a width of 60 unladen wall units each 0 6 y+ 6 60
(zone 1), 606 y+6 120 (zone 2), 1206 y+6 180 (zone 3). The entire channel half is
called zone 4. For each zone, the zonal average of a statistical quantity f is defined
by the integral of αf over the volume of the zone divided by the integral of α
over the volume of the zone. The statistics of the true turbulence (Reynolds stresses,
TKE, turbulence production and turbulence dissipation rate in the moving frame)
are all significantly attenuated, in all zones. The overall attenuation of the TKE
increases with increasing distance from the wall. The global attenuation (zone 4) of
the turbulence kinetic energy (20 %) is higher than that of the turbulence dissipation
rate (14 %), which suggests that large scales are attenuated more than small scales.
However, the fixed-frame turbulence dissipation rate is globally enhanced by (2 %),
but this enhancement is not due to true turbulence but to fluctuations that are steady
in the moving frame, the fluctuations produced by the interfacial term I, which is
solely due to mechanisms at the interfacial surface and accounts for 17 % of the total
production in the fixed frame.

For flows in which the turbulence is attenuated, an increase of the overall ε by the
particles is unexpected; point-particle simulations of particle-laden turbulent channel
flow resulted in a reduction of the overall turbulence dissipation rate (Vreman 2015).
In the TKE equation of the point-particle approach, there are two dissipative terms:
the resolved turbulence dissipation rate and the particle-induced dissipation. The sum
of these two terms acts as a model for the present ε− I in the fixed frame. The global
ε − I (zone 4) is equal to P, which is reduced. With respect to comparison between
fixed-frame and moving-frame statistics, we observe that the overall differences are
small for the Reynolds stresses, but large for the production and turbulence dissipation
rate (in zones 2, 3 and 4). The last line in table 5 shows that the anisotropy of the
turbulence is significantly enhanced in all zones.
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6. Turbulence attenuation and increased anisotropy
In the previous sections we observed that the TKE is attenuated and the anisotropy

of the turbulence is increased by the particles. It is tempting to attribute at least the
turbulence attenuation to the very strong increase of the turbulence dissipation rate
near the particles. However, we need to be cautious. The previous section showed
that not only is the (moving-frame) turbulence dissipation rate increased near particles
(figure 16f ) but that the production is also increased, at least in some wall-parallel
planes (see figure 16a). It is therefore not clear why, compared to the unladen flow,
the TKE is reduced everywhere. Furthermore, is it possible to explain from changes
in the terms in the TKE budget, which is a TKE balance, the attenuation of the TKE?
And which feature of the flow is causing the increase of turbulence anisotropy? In this
section, we address these questions in further detail. For this purpose, we evaluate (1)
spectra of the individual velocity components, (2) turbulence kinetic energy transfer
towards the particles, (3) the effect of non-uniform streamwise forcing of the flow.

The new findings in this section are: (i) the attenuation of all spatial scales far away
from the particles, (ii) an enhancement of small spatial scales closer to the particles,
predominantly in the streamwise velocity, (iii) local occurrences of counter-gradient
diffusion, which are caused by the particles, (iv) the observation of radial transport of
turbulence kinetic energy towards particles embedded in a turbulent channel flow and
(v) that non-uniform mean flow forcing can explain most of the turbulence attenuation
and anisotropy increase observed in a PR-DNS of a turbulent channel flow laden with
a small volume fraction of particles with large Stokes response time.

A Fourier spectral analysis of the fluid motion in particle-laden flows is not
straightforward. If the velocity inside the particles is used in the Fourier transform,
then the discontinuity of the velocity derivatives on the particle surfaces affects the
spectra; the discontinuity is expected to produce k−4 fall-off for k →∞ (k is the
wavenumber). In this flow, we are fortunately able to define periodic lines which
do not cut through any solid boundary. Spanwise spectra on two of such lines are
shown in figure 17. The first line lies on the plane y+ = 150 and cuts through the
wake of particle p= 2, the second lies on the centre plane. The spectra are based on
the velocity fluctuations in the moving frame. The unladen flow spectra shown were
produced by the high-resolution spectral simulation S4-B3 (Vreman & Kuerten 2016),
which had even higher resolution than simulation S2 (Vreman & Kuerten 2014).

Figure 17(a,b) shows an attenuation of large scales and an enhancement of small
scales. In the streamwise velocity fluctuation, the enhancement of small scales is
much larger than in the other two velocity fluctuations. On the first periodic line, the
contribution of the small scales (k > 23, on the right of the circle in figure 17b) to
the streamwise velocity fluctuation is approximately 10 %, while these scales only
contribute 1 % to the other two components. Since the large scales in the wall-normal
velocity component appear to be attenuated less than those in the streamwise velocity,
the streamwise anisotropy on this line is not enhanced despite the relatively large
increase of small scales in the streamwise velocity fluctuations. Furthermore, the
enhancement of small scales is restricted to locations near the particles: on the
periodic line in the centre plane all scales are attenuated (figure 17c,d). In fact, an
attenuation of all scales in each velocity components has been found in most planes
parallel to the wall and reasonably far away from the particles, for example also in
the plane y+ = 120 and in the planes in the near-wall region (y+ 6 60). Thus the
spectral analysis shows the attenuation of the distinct scales, but it does not reveal
the main cause of the observed global attenuation of turbulence and increase of
turbulence anisotropy.
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FIGURE 17. (Colour online) Spanwise one-dimensional velocity spectra on the line
defined by y+ = 150 and X+1 = 16 (a,b) and the line defined by y+ = 180 and X+1 = 16
(c,d), based on the moving-frame fluctuations of u1 (blue, circle), u2 (red) and u3 (black).
The solid and dashed lines in (a,c) represent T1 and T0, respectively. Spectra divided by
the unladen counterparts are shown in (b,d).

In flows with zero (or low) particle velocity fluctuation, the no-slip condition on
the particle surface suppresses u′′ and thereby KM on the particle surface. Since
the velocity is continuous, a region of low KM is created in the neighbourhood
of the particle. Since the volume fraction of all low-KM regions surrounding the
particles may be significant, this argument can be used to explain part of the overall
turbulence attenuation, but only if there are no mechanisms by which the particles
can generate new KM. However, the particles do generate new KM, at least in some
regions. The generation of new KM is part of the moving-frame TKE budget, which
can be written as

〈uj〉M∂jKM =−∂jξj + PM − εM, (6.1)

where ξ is the diffusive flux vector such that TM +ΠM +DM =−∂jξj. We call PM −

εM the net source term. Positive and negative values of this term correspond to net
injection and net destruction of turbulence kinetic energy, respectively. Figure 18(a)
illustrates that each particle creates two regions of net injection of KM, two regions
where the production exceeds the dissipation: an asymmetric annular region in the
wake and a ball-shaped region upstream of the particle. If the diffusive term were
negligible, equation (6.1) would imply an increase or decrease of KM in the direction
of the mean velocity vector if PM − εM is positive or negative, respectively.
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FIGURE 18. (Colour online) The quantities PM− εM (a) and −ξj∂jKM (b) in the plane X3=

0 (case T1). Contours have been clipped to the range [−10, 10]. The dashed demarcation
lines illustrate a subdivision of zones 1, 2 and 3 into zones 1a, 1b, 2a, 2b, 3a and 3b.
The regions enclosed by the solid black contours in (b) correspond to −ξj∂jKM 6−0.1.

More formally, equation (6.1) supplied with periodic or homogenenous Dirichlet
boundary conditions for KM implies∫

Ω

(PM − εM)KM dΩ =−
∫
Ω

ξj∂jKM dΩ. (6.2)

If this integral is positive then KM and PM − εM are positively correlated: KM tends
to be low if PM − εM < 0 and high if PM − εM > 0 (note that the domain integral of
PM − εM must be zero). Figure 18(b) shows that −ξj∂jKM is predominantly positive,
although regions with counter-gradient diffusion (negative −ξj∂jKM) occur. If we
assume a standard model expression for the diffusive flux, ξj = −νt∂jKM with a
positive turbulence diffusivity νt, then the correlation expressed by (6.2) is ensured to
be positive. Furthermore, a positive νt implies that each local minimum (maximum)
of KM occurs in a region of negative (positive) PM − εM (if KM attains a local
minimum, then ∂jKM = 0 and ∂2

j KM > 0 so that (6.1) implies that PM − εM < 0).
Indeed, the particle surface, which corresponds to minimum KM, is enclosed by a
region of strongly negative PM − εM, which can only be maintained if it is balanced
by transport of KM into this region from further away.

Furthermore, the profiles of the energy fluxes averaged over certain directions also
indicate that the particles draw TKE from their surroundings (figure 19). Figure 19(a)
shows averaged wall-normal components of the statistics inside the divergences of
the four transport terms: the convection flux 〈〈u2〉MKM〉, the turbulent transport flux
〈〈u′′i u′′i u′′2〉M〉/2, the pressure diffusion flux 〈〈q′′u′′2〉M〉 and the viscous diffusion flux
−2ν〈〈u′′j S′′2j〉M〉. The total wall-normal transport flux, which is directed towards the
channel centre, drops faster near the particle locations since part of the wall-normal
flow of energy is drawn towards the particles. However, somewhat later the wall-
normal flux recovers, because the particles also generate new KM through positive
PM− εM. Analogously defined radial fluxes averaged over spherical surfaces around the
particle centre are shown in figure 19(b,c) (after multiplication with 4πr2

· 436/(4π ·
4π/3) to obtain the energy transfer to all particles of type p per unit surface area
of the channel wall; the corresponding total radial energy fluxes of the unladen flow,
which are entirely due to wall-normal inhomogeneity, are shown too). Negative values
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FIGURE 19. (Colour online) Fixed-frame averages of moving-frame wall-normal energy
fluxes per unit channel wall surface area (a) and spherical surface averages for p= 1 (b)
and p = 2 (c) of moving-frame radial energy fluxes per unit channel wall surface area:
convective transport (circles), turbulent transport (upward triangles), pressure diffusion
(diamonds), viscous diffusion (downward triangles) and total flux (black solid) of case T1
and total flux of case T0 (dash-dotted). (d) Spherical surface average of KM (no symbols)
and the anisotropy coefficient b11,S = −1 + 3〈RM11〉S/2〈KM〉S (symbols) for p = 1 (solid
lines) and p= 2 (dashed lines).

denote a radial flux of energy towards the particles. The pressure diffusion flux plays
a very important role in the radial transport of TKE: it is the dominant energy flux
for 5< r+ < 25 if p= 1 and 5< r+ < 20 if p= 2. Convection is also important over
a large range of radii if p= 1.

Although the turbulence shows a clear dependence on the radius close to the
particles (figure 19d), with increasing radius the TKE and the anisotropy coefficients
display a rather rapid approach to the corresponding zonal averaged values tabulated
in § 5 (zones 2 and 3 correspond to p= 1 and p= 2, respectively), more rapid than
we had expected in view of the strong overall turbulence attenuation and increase
of anisotropy. The question arises whether the overall turbulence attenuation and
significant change of anisotropy in the entire channel (also in the particle-free regions
near the channel walls) are entirely caused by the observed fluxes of TKE towards
the particles.

In fact, the same question arises from the following comparison between regions
with and regions without particles. We partition each main zone (1, 2 and 3) into two
smaller zones with equal volumes (zones 1a, 1b, 2a, 2b, 3a and 3b), as illustrated by
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Zone 1a Zone 1b Zone 2a Zone 2b Zone 3a Zone 3b

K 2.59 (0.90) 2.59 (0.90) 1.17 (0.74) 1.18 (0.74) 0.51 (0.60) 0.51 (0.60)
P 13.57 (0.86) 13.56 (0.86) 2.25 (0.86) 1.94 (0.74) 0.64 (1.51) 0.28 (0.65)
ε 12.27 (0.86) 12.27 (0.86) 3.18 (1.00) 2.38 (0.75) 1.35 (1.08) 0.85 (0.68)
TT −1.31 (0.94) −1.30 (0.93) 0.94 (1.65) 0.42 (0.74) 0.72 (0.88) 0.57 (0.69)
−R12 0.48 (0.84) 0.48 (0.84) 0.34 (0.73) 0.35 (0.75) 0.10 (0.65) 0.10 (0.67)
b11 1.38 (1.09) 1.38 (1.09) 0.73 (1.13) 0.73 (1.13) 0.58 (1.23) 0.55 (1.18)

TABLE 6. Zonal averages of moving-frame statistics from case T1. The ratios to the
unladen counterparts are shown in brackets. TT=C+T+Π +D denotes the total transport,
and b11 denotes the streamwise anisotropy coefficient based on zonal averages of Reynolds
stresses.

the demarcation lines in figure 18(b). Zones 2a and 3a contain particles, while the
other zones contain no particles. Zones of type a correspond to the region −15.7<
X+1 6 47.1 of the reference block, while zones of type b correspond to −31.4 <
X+1 6 −15.7 or 47.1 < X+1 6 94.2. Although the partitioning is defined such that the
elongated regions of visually reduced TKE (figure 8a) reside almost entirely inside
zones 2a and 3a, both the TKE and the anisotropy coefficient in zones 2a and 3a are
hardly different from those in zones 2b and 3b, as shown in table 6. We do see that
the production and dissipation in zone 2a (3a) are both significantly larger than in
zone 2b (3b). Since for the dissipation this effect is stronger than for the production,
the net total transport of energy into zone 2a (3a) is larger than into zone 2b (3b).
This indicates that there is a net flow of energy from zone 2b (3b) into zone 2a (3a).
From direct computation of the total transport flux across zonal boundaries, we found
that the net flow of energy per unit volume from zone 2b (3b) to zone 2a (3a) is 0.26
(0.074), which appears to be approximately equal to half the difference between the
averaged transport terms of zones 2a and 2b (3a and 3b). Thus the loss of energy of
zone 2b to zone 2a is approximately 11 % of the dissipation of zone 2b (which is
equal to the total energy input in the zone 2b), while the loss of energy of zone 3b
to zone 3a is approximately 8 % of the dissipation of zone 3b. However, compared
to the unladen flow the dissipation is reduced much more, by 25 % in zone 2b and
32 % in zone 3b, while the corresponding relative reductions of the production and
TKE are even larger.

Finally, in order to find a more complete explanation of the observed attenuation
and increase of anisotropy, we move on to explore the effect of non-uniform
streamwise forcing caused by the presence of the particles. Research based on
point-particle simulations with freely moving heavy particles has shown that
turbulence attenuation in particle-laden channel flows can be caused by two different
effects (Vreman 2015): the direct effect of the particles on the turbulence kinetic
energy and the non-uniformity of the mean particle force, which is a direct effect of
the particles on the mean momentum. The question arises whether similar conclusions
on turbulence attenuation can be drawn from the particle-resolved simulation of this
idealized flow. Let us therefore define a piecewise constant average force density
vector f = ( f1, 0, 0), where f1 is equal to zero in zone 1 (0 6 y+ 6 60), −0.401 in
zone 2 (60 6 y+ 6 120) and −0.627 in zone 3 (120 6 y+180). The values in zones 2
and 3 are the mean particle forces in table 3 multiplied by the number of particles
and divided by the volume of each zone. In addition to T0, we perform another
simulation of turbulent channel flow without particles, simulation T5, in which the
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FIGURE 20. (Colour online) Statistics of T5 (blue dashed, the unladen simulation with
non-uniform mean driving force) compared with fixed-frame averages of moving-frame
statistics of T1 (thick solid) and statistics of T0 (thin black dash-dotted, the reference
unladen simulation). (a) Mean velocity, (b) Reynolds shear stress, (c) streamwise diagonal
Reynolds stress, (d) wall-normal diagonal Reynolds stress, (e) spanwise diagonal Reynolds
stress, ( f ) streamwise and wall-normal anisotropy coefficients, b11 =−1+ 3〈RM11〉/〈2KM〉

(positive) and b22 =−1+ 3〈RM22〉/〈2KM〉 (negative), respectively.

uniform driving force a is replaced by the non-uniform driving force a + f , while
a= (a1, 0, 0) is a spatially constant acceleration vector, adjusted in time to keep the
bulk velocity constant and the same as in the unladen case. The non-uniform driving
force is non-uniform in the wall-normal direction only. Compared to the unladen case,
this driving force has an accelerating effect in the near-wall region (zone 1) and a
decelerating effect in the other zones (in zone 3 more than in zone 2).

Figure 20 shows that this simple modification of the mean driving force in an
otherwise unladen channel flow is able to reproduce a large part of the attenuation
of the turbulence and the increase of anisotropy in the particle-resolved simulation. It
is stressed that there is no temporal fluctuation in f , so that no term with f occurs
in the turbulence kinetic energy equation. It is the overall structure of the turbulence
that changes; physical instability mechanisms leading to turbulence are modified by
non-uniformity of the driving force, as can be inferred from a linear stability analysis
(Vreman 2015). The mean velocity profile remains approximately the same so that
the non-uniformity of the mean forcing is compensated by a change of the Reynolds
shear stress in the mean momentum equation, a change that implies a reduction of
the Reynolds shear stress (and the TKE): see Vreman (2015). For completeness we
mention that the friction velocity uτ in case T5 was equal to 0.98, the same as in
case T1, and nearly equal to one (uτ ,0).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

71
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.715


620 A. W. Vreman and J. G. M. Kuerten

Most, but not all, turbulence attenuation in case T1 is reproduced by T5 (figure 20).
Since T5 reproduces the turbulence attenuation better in the zones without particles
(zone 1) than in the zones with particles (zones 2 and 3), we attribute the rest of
the turbulence attenuation to local effects: particles create strong sinks of turbulence
kinetic energy near their surfaces and draw turbulence kinetic energy from their
surroundings via the transport terms, for which the pressure diffusion term is
surprisingly relevant.

7. Conclusions

We considered turbulent channel flow past a moving array of spherical particles,
for a particle size of d+p = 8 and an overall particle volume fraction of 0.00075.
In order to achieve a sharp representation of the particle interfaces, the flow was
simulated by means of an overset grid method, using spherical grids around each
particle overset on a background Cartesian grid. In order to achieve an acceptable
computation time without compromising the accuracy of the Navier–Stokes solution
near the surfaces of the rather small particles, no particles were located near the
channel walls. We observed that the turbulence kinetic energy (TKE) was significantly
attenuated by the particles, also in the particle-free regions. Furthermore, the relative
attenuation of the wall-normal and spanwise velocity fluctuations was larger than
for the streamwise velocity fluctuations so that the anisotropy of the turbulence
increased. These findings are consistent with previous observations from experiments
and point-particle simulations of dilute vertical gas–solid flow at high Stokes number
and low particle volume fraction in the literature.

An important aim of this paper was to investigate the budget of the attenuated
TKE in detail, the 1-D budget in the fixed frame of the channel (§ 3) and the 3-D
budget in the moving frame of the particles (§ 4). The moving-frame analysis allowed
us to extract the fluctuations solely due to true turbulence and to reveal and explore
the rich structure of the 3-D turbulence inhomogeneity produced by the particles. By
applying the fixed-frame averaging operator to the 3-D moving-frame results, both
types of statistics could be compared to each other and the cause of the discrepancies
could be explained (§ 5). Physical explanations for the turbulence attenuation and
increase of anisotropy were addressed in § 6, in which a brief spectral analysis of the
individual velocity components was included. The main new findings of §§ 2–6 have
been summarized in the second paragraph of each section and are not repeated here.

Whereas the investigated turbulent channel flow past an array of spheres moving
with constant velocity is a neat and well-defined flow case, it is also a specialized
case whose results depend on the parameter settings. For example, if the particle
volume fraction is reduced while particle diameter and array velocity remain the
same, then the turbulence will be attenuated less and somewhat higher peak values of
the 3-D budget terms near the particles will occur. If the particle diameter is reduced
while particle volume fraction and array velocity remain the same, the turbulence will
be attenuated more. Provided the turbulence remains sufficiently strong, the smaller
particle diameter will cause an increase of the maximum of the 3-D turbulence
dissipation rate attained on the particle surface. For other particle shapes under
otherwise comparable flow conditions, main features of the turbulence statistics, such
as global attenuation of the turbulence kinetic energy, strong enhancement of the
dissipation rates near the particle surface and negative turbulence production in front
of the particle, are expected to be similar as for spherical particles.
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Appendix A. The generalized fixed-frame TKE equation

Let us consider a general multiphase fluid of N phases in domain Ω0. We follow
the standard approach and define for each phase k the so-called indicator function χk,
which depends on location x and time t and equals 1 if phase k is present at (x, t)
and 0 otherwise. At each (x, t) precisely one component is present, which implies that
for all (x, t) the sum of all χk equals 1. Furthermore, for all (x, t) the density ρ, each
velocity component ui, each stress component ρσij and each body-force component
ρai are equal to those for component phase k if χk = 1. The flow variables may be
discontinuous at interfaces, in particular the density. Also the density within a given
phase may be variable; this generality does not complicate the derivation below. We do
not include interfacial mass transfer. The derivatives of discontinuous quantities should
be regarded as distributions (generalized functions); see for example Drew & Passman
(1999). In typical cases, ui and ρσij are continuous at interfaces, but non-differentiable.
However, if interfacial tension is represented as a delta function and incorporated into
the body-force term, the pressure part of ρσij is discontinuous.

The (compressible) continuity and momentum equations and N kinematic equations
for the indicator functions are given by

∂tρ =−∂j(ρuj), (A 1)
∂t(ρui)=−∂j(ρuiuj)+ ∂j(ρσij)+ ρai, (A 2)
∂tχk =−uj∂jχk, k= 1, . . . ,N. (A 3)

Throughout this appendix, the convention of summation over repeated indices in
products is used, but not for index k. After multiplying the first two equations with
χk, integrating by parts and substituting the kinematic equation for χk, we derive

∂t(ρχk)=−∂j(ρχkuj), (A 4)
∂t(ρχkui)=−∂j(ρχkuiuj)+ ∂j(ρχkσij)− ρσij∂jχk + ρχkai. (A 5)

Multiplication of the last equation with ui leads to a kinetic energy equation,

∂t(
1
2ρχkuiui) = −∂j(

1
2ρχkuiuiuj)+ ∂j(ρχkuiσij)− ρχkσij∂jui

− uiρσij∂jχk + ρχkuiai. (A 6)

We denote the general basic averaging operator by an overbar: g is the average of an
arbitrary function g on Ω0. In general, g can be a function of t and x. The basic
averaging operator does not have to be a Reynolds averaging operator, but we do
assume that it satisfies the first three Reynolds conditions, listed in § 2. For each phase
k, we define the volume fraction αk, the average density ρk, and their product βk by

αk = ρχk/ρk, ρk = ρχk/χk, βk = ρkαk = ρχk (A 7a−c)
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(no summation over index k). The phase-weighted averaging operator 〈·〉k is defined
by

〈w〉k = ρχkw/ρχk. (A 8)

It is important to realize that, unlike the basic averaging operator, the phase-weighted
averaging operator does not in general commute with partial derivatives.

Next, we apply the overbar to (A 4)–(A 5), use the commutation properties of the
overbar average and obtain

∂tβk =−∂j(βk〈uj〉k), (A 9)
∂t(βk〈ui〉k) = −∂j(βk〈ui〉k〈uj〉k)− ∂j(βkRk,ij)

+ ∂j(βk〈σij〉k)− ρσij∂jχk + βk〈ai〉k, (A 10)

where

Rk,ij = 〈uiuj〉k − 〈ui〉k〈uj〉k. (A 11)

Half of the trace of this tensor is the (generalized) turbulence kinetic energy in phase
k:

Kk =
1
2(〈uiui〉k − 〈ui〉k〈ui〉k). (A 12)

In order to derive the equation for Kk, we need the equation of the energy in the
averaged flow and the equation of the averaged energy in the flow. The first equation,
the kinetic energy in the averaged flow for phase k, is obtained by multiplication of
(A 10) by 〈u〉k, partial integration and substitution of (A 10),

∂t(
1
2βk〈ui〉k〈ui〉k) = −∂j(

1
2βk〈ui〉k〈ui〉k〈uj〉k)

− ∂j(βk〈ui〉kRk,ij)+ βkRk,ij∂j〈ui〉k

+ ∂j(βk〈ui〉k〈σij〉k)− βk〈σij〉k∂j〈ui〉k

−〈ui〉kρσij∂jχk + βk〈ui〉k〈ai〉k. (A 13)

The second equation, the average kinetic energy in phase k, is obtained by multiplication
of (A 6) by χk, application of the average, the commutation properties and partial
integration,

∂t(
1
2βk〈uiui〉k) = −∂j(

1
2βk〈uiuiuj〉k)+ ∂j(βk〈uiσij〉k)− βk〈σij∂jui〉k

− uiρσij∂jχk + βk〈uiai〉k. (A 14)

Subtraction of (A 13) from equation (A 14) gives us the turbulence kinetic energy
equation for phase k:

∂t(βkKk) = −∂j(βk〈uj〉kKk)

− ∂j(
1
2βk〈uiuiuj〉k −

1
2βk〈ui〉k〈ui〉k〈uj〉k − βk〈ui〉kRk,ij − βk〈uj〉kKk)

−βkRk,ij∂j〈ui〉k

+ ∂j(βk〈uiσij〉k − βk〈ui〉k〈σij〉k)

−βk(〈σij∂jui〉k − 〈σij〉k〈∂jui〉k)

+〈ui〉kρσij∂jχk − uiρσij∂jχk

−βk〈σij〉k(〈∂jui〉k − ∂j〈ui〉k)

+βk(〈uiai〉k − 〈ui〉k〈ai〉k). (A 15)

If phase k is incompressible, ρ is constant and equal to ρk if χk = 1, which implies
βk = αk.
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Appendix B. The fixed-frame TKE equation: discussion and implementation
It is useful to retrieve, from our formulation in § 2.5, the formulation derived

by Kataoka & Serizawa (1989). Santarelli et al. (2016) rederived and applied
the formulation of Kataoka & Serizawa (1989), but in so doing they introduced,
perhaps unintentionally, a subtle modification of the formulation, as will be explained
below. For cases in which the fourth Reynolds condition is satisfied, we derive from
(2.13)–(2.19) and (2.21):

T =−
1
α
∂j

(
1
2
α〈u′iu

′

iu
′

j〉

)
, (B 1)

Π =−
1
α
∂j(α〈q′u′j〉), (B 2)

D =−
1
α
∂j(α〈u′iτ

′

ij〉), (B 3)

ε = 2ν〈S′ijS
′

ij〉 = ν〈τ
′

ij(∂jui)
′
〉 = ν〈τ ′ij∂ju′i〉, (B 4)

I = I1 + I2 =−
1
α

u′iσij∂jχ +
1
α
〈σij〉u′i∂jχ =−

1
α

u′iσ ′ij∂jχ, (B 5)

B = 〈u′ia
′

i〉, (B 6)

where

τ ′ij = 2νS′ij = ν((∂jui)
′
+ (∂iuj)

′). (B 7)

The first equality in (B 4) shows that the turbulence dissipation rate ε is always
positive, while the last equality in (B 4) relies on the fact that the commutator of the
spatial derivative and fluctuation operator, γij, is not a fluctuation but a quotient of
two averaged quantities,

γij = ∂ju′i − (∂jui)
′
= 〈∂jui〉 − ∂j〈ui〉 =−u′i∂jχ/α, (B 8)

which implies 〈τ ′ijγij〉 = γij〈τ
′

ij〉 = 0. The combination of (2.10)–(2.12), (B 1)–(B 6) and
(B 7) reproduces the turbulence kinetic energy equation formulated by Kataoka &
Serizawa (1989). These authors did not explicitly specify τ ′ij, which means that τ ′ij
is just τij − 〈τij〉, which implies (B 7) if τij = 2νSij. However, when Santarelli et al.
(2016) applied the equation of Kataoka & Serizawa (1989), they explicitly defined
τ ′ij = ν(∂ju′i + ∂iu′j), which is (B 7) plus ν(γij + γji). The implication is that in the
formulation of Santarelli et al. (2016), both ε and I are increased by νγijγij, which
in general is non-zero, so that the resulting TKE equation is formally different from
that of Kataoka & Serizawa (1989). However, since −ε + I and D are not altered,
the formulation of Santarelli et al. (2016) is also correct.

Next we describe the discretization of the fixed-frame fluid-weighted averaging
operator and the terms in the resulting TKE budget. The non-trivial part is the planar
averaging, i.e. the integrations over the x1 and x3 directions. These are required for a
series of quantities all expressed in 14 variables: q, ui (three components), ∂iuj (nine
components) and the quantity Z = (∂iuj)(∂iuj).

First, the staggered Cartesian velocity components are used for linear interpolation
of ui to cell centres and for computation of ∂iuj at cell centres via second-order
central differencing. The same is done for the spherical velocity components ũi and
the components of Gij, to make these available at the cell centres of the spherical
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grid, and then the velocity transformation to spherical coordinates and (C 3) are used
to obtain the Cartesian ui and ∂iuj at the cells centres of the spherical grids. On the
Cartesian grids, the interpolation to the cell centres is applied to each (∂iuj)

2 (∂iuj is
computed at the midpoints of each edge connecting two neighbouring staggered uj

points) to obtain a relatively accurate approximation of Z (Vreman & Kuerten 2014),
while on the spherical grids, the quantity Z is simply evaluated as GijGij, in which
each Gij is evaluated at cell centres.

Second, an auxiliary grid composed of tiny uniform Cartesian grid cells is used.
Locally, the grid size of these cells is much smaller than the original Cartesian grid
size, in fact 8× 8× 8 tiny cells correspond to one original Cartesian grid cell. The 14
variables mentioned above are interpolated to all the centres of all these tiny Cartesian
subcells using third-order interpolation (if the cell centre is not inside a particle) and
subsequently the quantities to be averaged are computed at all these centres. Thus,
planar averaging of any quantity composed of the 14 variables and multiplied with
the indicator function χ can be performed.

Third, the computation of the interfacial term I1 requires planar averaging of
quantities multiplied by σij∂jχ , which involves integration over thin slices of the
particle surface. The components of ∂jχ are precisely the components of the particle
surface normal vector. Due to the spherical coordinate system it is straightforward
to obtain σij∂jχ at all centres of the faces of the spherical grid cells on the particle
surface. It is computed in the same way as the integrand in the expression of Fp

i : see
Vreman (2017). However, for the computation of I1, we need the intersections of a
given spherical grid face of the particle surface and the planar slices (which are in
fact thin slabs with a finite thickness equal to the size of the tiny Cartesian grid cells
mentioned in the previous paragraph). Therefore, we partition each spherical grid cell
face on the particle surface into 20× 20 subfaces. Via a loop over the 400 subfaces,
σij∂jχ of the mother face is, for each subface, assigned to the slice with the same x2
position as the subface.

It is remarked that, for this flow, it is sufficient to use the auxiliary Cartesian
grid in two-thirds of the domain, the core region defined by y+ > 60, in which
the auxiliary grid contains 9216 × 960 × 3072 cells. Fortunately, there is no need
to reserve arrays of this size to store quantities to be averaged over slices of this
huge grid. There is a loop over all original Cartesian cells in the region y+ > 60,
1152× 120× 384 in total (this includes cells inside the particles and cells where the
flow variables need to be retrieved from spherical grids), and inside this loop there
is a loop over the 83 tiny subcells within the original Cartesian cell. Inside the inner
loop the above-mentioned 14 variables are interpolated to the centre of the subcell
under consideration, then the quantities to be averaged are computed and added to
the corresponding running averages (which are just one-dimensional quantities), so
that the storage for the variables that have been interpolated to the local subcell can
be reused for the next tiny subcell.

Appendix C. The moving-frame TKE equation: formulation in spherical
coordinates and implementation

We derive the moving-frame TKE equation in spherical coordinates by transforming
each individual term in the Cartesian moving-frame equation to spherical coordinates
in three steps.

First, we provide some basic definitions and relations for the transformation from
Cartesian to spherical coordinates and vice versa. For any vector g with Cartesian
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components (g1, g2, g3), the spherical components (gr, gθ , gφ) are also indicated by
g̃1, g̃2, g̃3, to make the use of index notation possible. We define the orthogonal matrix

A=

sin θ cos φ sin θ sin φ cos θ
cos θ cos φ cos θ sin φ −sin θ
−sin φ cos φ 0

 (C 1)

and have the following relations, g̃i = Aijgj and gi = Ajig̃j. We define ũ1 = ur, ũ2 = uθ
and ũ3 = uφ , so that the velocity transformation is given by ũi = Aij(uj − up

j ) and ui =

up
i + Ajiũj. Furthermore, we define ∂r = ∂/∂r, ∂θ = ∂/∂θ and ∂φ = ∂/∂φ. The gradient

of the velocity in spherical coordinates is given by

G=


∂rur ∂ruθ ∂ruφ

∂θur

r
−

uθ
r

∂θuθ
r
+

ur

r
∂θuφ

r
∂φur

r sin θ
−

uφ
r

∂φuθ
r sin θ

−
uφ cot θ

r
∂φuφ

r sin θ
+

ur

r
+

uθ cot θ
r

 , (C 2)

while

∂iuj = AkiAljGkl (C 3)

provides the gradient of the velocity in Cartesian coordinates in terms of the
components of G: see Vreman (2016).

Second, we define the Reynolds stress tensor in spherical coordinates,

R̃Mij = 〈ũiũj〉M − 〈ũi〉M〈ũj〉M, (C 4)

and K̃M = (R̃Mii)/2. Finally, we define S̃ij = (Gij + Gji)/2. Using the definitions and
relations given in the last paragraph of § 2.1, we are able to derive

RMij = AkiAljR̃Mkl, Sij = AkiAljS̃kl. (C 5a,b)

The orthogonality of A then implies KM = K̃M, RMij∂jui = R̃MijGji, SijSij = S̃ijS̃ij and
(∂iuj)(∂jui)=GijGji.

Third, let ∂̃jg̃j represent the symbolic notation for the divergence in spherical
coordinates applied to a vector with spherical components g̃j and Cartesian components
gj, and let ∂̃2

j f be the notation for the Laplacian in spherical coordinates applied to
a function f . The divergence and the Laplacian in Cartesian coordinates are equal to
those in spherical coordinates: ∂jgj= ∂̃jg̃j and ∂2

j f = ∂̃2
j f . Furthermore, each divergence

term in the KM equation in Cartesian coordinates, say ∂jgj, becomes ∂̃jAjkgk in
spherical coordinates. Thus for each divergence term we obtain the corresponding
Ajkgk: Ajkwk= ũj, Ajkwiwiwk= ũiũiũj, AjkwiRMik= ũiR̃Mij and AjkwiSik= ũiS̃ij. Substitution
of these relations into (2.26)–(2.33) leads to

CM =−∂̃j(〈ũj〉MK̃M), (C 6)

PM =−R̃Mij〈Gij〉M, (C 7)
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TM = −∂̃j (
1
2 〈ũiũiũj〉M −

1
2 〈ũi〉M〈ũi〉M〈ũj〉M

−〈ũi〉MR̃Mij − 〈ũj〉MK̃M)=−
1
2 ∂̃j〈ũ′′i ũ′′i ũ′′j 〉M, (C 8)

ΠM =−∂̃j(〈qũj〉M − 〈q〉M〈ũj〉M)=−∂̃j〈q′′ũ′′j 〉M, (C 9)

DM = ν∂̃2
j K̃M − ν(〈GijGji〉M − 〈Gij〉M〈Gji〉M)

= 2ν∂̃j(〈ũiS̃ij〉M − 〈ũi〉M〈S̃ij〉M)= 2ν∂̃j〈ũ′′i S̃
′′

ij〉M, (C 10)

εM = 2ν(〈S̃ijS̃ij〉M − 〈S̃ij〉M〈S̃ij〉M)= 2ν〈S̃
′′

ijS̃
′′

ij〉M, (C 11)

JM =−〈ũiAij∂tu
p
j 〉M + 〈ũi〉M〈Aij∂tu

p
j 〉M =−〈ũ

′′

i Aij∂tu
p
j
′′
〉M, (C 12)

BM = 〈ũiAijaj〉M − 〈ũi〉M〈Aijaj〉M = 〈ũ′′i Aija′′j 〉M. (C 13)

This completes the derivation of the moving-frame TKE equation in spherical
coordinates.

The actual computation of the moving-frame statistics is performed as follows.
First, linear interpolation is used to interpolate the Cartesian ui to the active cell
centres of the Cartesian grid and the spherical ũi to the cell centres of all spherical
grids. Second, the Cartesian velocity at staggered locations is used to compute ∂iuj
at the Cartesian cell centres, and the spherical velocity at staggered locations is used
to compute Gij at the spherical grid centres. In addition, to allow a more accurate
evaluation of the dissipation rate on the Cartesian grid, the quantity Z is computed on
the Cartesian grid, in the same way as in the routine that computes the fixed-frame
averages (see appendix B). Third, all the products composed of velocity, pressure and
velocity derivatives needed for the averages appearing in the equations in the previous
subsection are computed and added to the running averages in the reference block.
Fourth, each term of the moving-frame budget is computed at the active cell centres
of the Cartesian grids and the spherical grids of the reference block. The divergence
operator applied to statistical quantities is discretized by the second-order central
finite difference scheme. On spherical grids, the spherical form of the divergence
operator is used.

Since unlike in the original PR-DNS method, each divergence operation in the post-
processing is applied to a vector that is defined at cell centres, the discretization errors
in (some) terms of the budget are likely to be larger than the discretization errors
present in the results before averaging, i.e. in the instantaneous numerical solution
obtained by the PR-DNS.

Appendix D. Discussion of validation results
In this appendix the results shown in § 2.7 are discussed from a validation

perspective. It is remarked that the differences between the results of a coarse-grid
and a fine-grid simulation are not necessarily entirely due to discretization errors
since both simulations also have statistical errors. For a given statistical quantity, the
statistical errors in the results of cases T1 and T2 become statistically independent
after sufficiently long averaging times, since turbulence is a chaotic phenomenon.
Due to the longer averaging time in case T2, the statistical errors in T2 are expected
to be smaller than in T1 (and T3 and T4). Note that if T2 had been averaged over
the same time interval as T1, the expectation of the statistical error in the difference
between a statistical quantity from T1 and the corresponding quantity from T2 would
just have been larger. Due to the coarser grid, twice as coarse in each direction,
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the discretization errors in T2 are expected to be larger than in T1 (and T3 and
T4), four times smaller for variables that are second-order accurate (fluid velocity)
and twice as small for variables that are first-order accurate (pressure and first-order
spatial velocity derivatives at some locations in the flow: see Vreman (2017)). Thus
the differences between T1 and T2 are mainly caused by the discretization error in
T2 and the statistical error in T1. If the discretization error dominates the differences
between T1 and T2, then the discretization error in a given quantity from T1 can
be estimated by one-third of the difference between T1 and T2 for a second-order
accurate quantity and by the difference itself for a first-order accurate quantity.

Two representative fixed-frame statistical quantities are shown in figure 2: the
turbulence kinetic energy K and turbulence dissipation rate ε. According to
figure 2(a,c), the profiles of T1, T3 and T4 coincide, while the differences between T1
and T2 seem to be very small as well. In figure 2(b,d), the profiles were shown after
scaling by their unladen counterparts. In this more stringent comparison, variations
among the results of the different particle-resolved simulations are discernible. The
differences between T1 and T2 are larger than the differences among T1, T3 and T4.
From the data in Vreman & Kuerten (2014), we deduce that the relative statistical
errors in K0 and ε0 are approximately 0.6 % and 0.4 %, respectively. In that case
t2 − t1 = 200. Statistical errors are expected to scale with (t2 − t1)

−1/2. Thus if we
reasonably assume that relative statistical errors are not increased by the particles, the
statistical errors in K (and ε) are probably less than 2 % in case T1, 1.5 % in case
T2 and 3 % in cases T3 and T4.

For all particle-resolved simulations, the mean of the streamwise and the root mean
squares (r.m.s.) of all components of the particle force Fp are shown in table 3. The
normal and spanwise components of the mean particle force have not been included,
because these are very small (less than 1 % of the mean streamwise component). The
largest deviation from T1 is observed for the r.m.s. of the streamwise and spanwise
components of the force on the particles at y+= 150 in the coarse-grid simulation T2,
which differ by 3 % from those of simulation T1.

Since in table 3 the maximum deviation from T1 (3 %) is observed for T2, and
since in figure 2 T1 differs more from T2 than from T3 or T4, it seems that
deviations between T1 and T2 are primarily caused by discretization errors, more
than by statistical errors. This is also indicated by the errors in the energy budget,
which are larger for T2 than T1, as will be discussed below. Furthermore, method
B (case T4) produces very similar results to method A (cases T1 and T3) according
to table 3 and figure 2, but the computational effort per time step is increased by a
factor of 1.5 if method B is used. Thus, we conclude that method A is a suitable
method, and that the statistical accuracy of simulations T1 and T2 are sufficient for
the present purposes.

Moving on to the budget errors, the profile of the relative error E/ε of the
fixed-frame budget is shown in figure 3(a). For infinitely large averaging time and
infinitely high spatial and temporal resolution, this profile should be zero. The
maximum relative error attains a peak value of approximately 7 % and 15 % for the
fine-grid and coarse-grid simulations, respectively. These peaks occur near the particle
locations.

The budget error E is due to statistical errors and two types of discretization errors.
Because the error is larger for T2 than T1, while T2 has been averaged over longer
time than T1, E seems to be mainly due to the discretization errors. The two types
of discretization errors are discretization errors in the PR-DNS itself and discretization
errors due to the discretization of the averaging operator and the TKE equation in the
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post-processing. It can well be that the latter type of errors plays an important role
in E. The apparent first-order reduction of the budget error in figure 3(a) is perhaps
surprising, because the reduction of the pressure and first-order velocity derivatives
to first-order accuracy is formally expected only at the poles and at the interpolation
points of the Cartesian and spherical grids, which represent lines and surfaces. Since
the total volume of the corresponding grid cells where the reduced accuracy occurs
converges to zero for infinitely high resolution, we still expect second-order accuracy
of the averaged quantities. However, the discretization error in an averaged quantity
has an irregular structure. Therefore, the differentiation of averaged quantities with
respect to x2, required for most budget terms, can also reduce the accuracy of these
terms to first order.

A contour plot of the relative error of the moving-frame budget, EM/εM, is shown
in figure 3(b). To achieve a pointwise low relative error in this budget appears to
be a challenging task, in particular at locations far from the wall and not very close
to a particle, since the moving-frame turbulence dissipation rate (εM) is small there,
much smaller than the fixed-frame ε (see figure 16e). In figure 3, the relative error
peaks at approximately 0.3 at a few locations in case T1. The largest relative error
was observed in some grid cells touching the pole axes (which are perpendicular to
this plane), maximum around 1 in T1, oscillating around zero in the φ direction.
The budget error in these cells was found to be approximately twice as small as
in T2 (thus reduced upon grid refinement), and it rapidly decreased with increasing
distance to the poles. Similar behaviour was observed in case T4, although in that
simulation, through method B, a lower error in the divergence constraint was enforced
near the poles. It is remarked that as in the fixed-frame budget, the discretization
errors contributing to the moving-frame error are not only caused by discretization
errors in the PR-DNS itself, but also by discretization errors due to the approximation
of the budget terms in the post-processing.

Although a low relative moving-frame budget error is hard to achieve in all grid
cells, the averages of the absolute value of EM/εM (in fact L1-norms) are acceptable
in case T1. |EM/εM| averaged over planes parallel to the walls is shown in figure 3(c),
and |EM/εM| averaged over spherical surfaces is shown in figure 3(d). The largest
relative error occurs at the particle surface of the second particle (approximately 10 %).
The comparison with case T2 indicates that the L1-norms of the relative moving-frame
error converge to zero with second-order accuracy at many locations. However, at the
particle surface, where also the largest L1-norm of the relative error is found, the
convergence of the budget appears to be first-order accurate. The overall conclusion
of the validation study is that the results of simulation T1 are sufficiently accurate.

Appendix E. Decomposition of the fixed-frame budget
This appendix is a supplement to § 5. Starting from definition (5.1), we can

decompose the fixed-frame TKE budget (C + P + T +Π + D − ε + I + B = 0) into
two TKE budgets. The first one is the budget of 〈KM〉, the kinetic energy of the
fluctuations that are unsteady in the moving frame:

〈CM〉 + 〈PM〉 + 〈TM〉 + 〈ΠM〉 + 〈DM〉 − 〈εM〉 + 〈BM〉 = 0. (E 1)

This budget is subtracted from the fixed-frame TKE budget to obtain the budget of
Ks, the kinetic energy of the fluctuations that are steady in the moving frame:

CR + PR + TR +ΠR +DR − εR + BR + I = 0. (E 2)
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In the following we derive equivalent mathematical expressions for the remainders,
to provide more insight into their physical meaning. We use that up

i is constant and
the same for all particles and zero in the wall-normal direction. The constant up

i also
implies that w in (2.25)–(2.33) can be replaced by u.

Let f and g be general variables in the present flow configuration. The following
properties hold:

〈〈f 〉M〉 = 〈f 〉, 〈f 〉M = f . (E 3a,b)

Thus we obtain for the mean velocity, 〈〈u〉M〉 = 〈u〉, which implies that the remainder
of the mean velocity profile is zero. The combination of equation (5.2) in § 5 and
equation (E 3) implies

f ′′′ = 〈f ′′′〉M, 〈f ′′′〉 = 0, 〈f ′′′g〉M = f ′′′〈g〉M. (E 4a−c)

Equation (5.3) follows from substitution of u′i = u′′i + u′′′i into Rij = 〈u′iu
′

j〉 = 〈〈u
′

iu
′

j〉M〉.
The interpretation of KR and εR is given in § 5. Regarding the interfacial term, since
∂jχ is steady in the moving frame, we find 〈σ ′′ij ∂jχ〉M = 0, and therefore σ ′′ij ∂jχ = 0
(equation (E 3)), so that (3.1)–(3.2) imply

I =
1
α
(〈ui〉 − up

i )(〈σij〉M − 〈σij〉)∂jχ =
1
α
(〈ui〉 − up

i )σ
′′′
ij ∂jχ. (E 5)

Fluctuations that are unsteady in the moving frame do not appear in this expression,
i.e. the interfacial term in the fixed-frame budget is entirely due to fluctuations that
are steady in the moving frame (if up

i does not depend on time).
We proceed to present equivalent expressions for the remainders CR, PR, TR, ΠR

and DR. The definitions and rules given in § 5 and in this appendix (in particular u′=
u′′+u′′′) and the property u′′=0 if ∂jχ 6=0 (since u=〈u〉M=up is constant on particle
surfaces) have been used to derive

CR =C− 〈CM〉 =−
1
α
∂j(α〈uj〉Ks − α〈u′′′j KM〉), (E 6)

PR = P− 〈PM〉 =−Rij∂j〈ui〉 + 〈RMij∂j〈ui〉M〉, (E 7)

TR = T − 〈TM〉 =−
1
α
∂j

(
1
2
α〈u′′′i u′′′i u′′′j 〉 + α〈u

′′′

i RMij + u′′′j KM〉

)
, (E 8)

ΠR =Π − 〈ΠM〉 =−
1
α
∂j(α〈q′′′u′′′j 〉), (E 9)

DR =D− 〈DM〉 =
2ν
α
∂j(α〈u′′′i S′′′ij 〉), (E 10)

BR = B− 〈BM〉 = 〈u′′′i a′′′i 〉. (E 11)

We specify two steps in the derivation of the expression for TR:

〈u′′′i u′′i u′′j 〉 = 〈〈u
′′′

i (u
′′

i u′′j )〉M〉 = 〈u
′′′

i 〈u
′′

i u′′j 〉M〉 = 〈u
′′′

i RMij〉, (E 12)

〈u′′′i u′′′i u′′j 〉 = 〈〈u
′′′

i u′′′i u′′j 〉M〉 = 〈u
′′′

i 〈u
′′′

i u′′j 〉M〉 = 〈u
′′′

i u′′′i 〈u
′′

j 〉M〉 = 0. (E 13)

We observe that CR, TR, ΠR and DR are transport terms, since after multiplication by
α they are in divergence form. The first one, CR, represents convection of KR minus
a term dependent on u′′′. In this case, CR = −〈CM〉 since C = 0. Furthermore, the
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equation for PR can be interpreted as follows: P is the production flow of energy from
〈u〉 to u′′′ and u′′, 〈P〉M is the production flow of energy from 〈u〉 and u′′′ to u′′, so that
P−〈P〉M becomes the production flow of energy from 〈u〉 to u′′′ minus the production
flow from u′′′ to u′′, and Ps is indeed the net effect of production on the energy in u′′′.
Finally, it is remarked that ΠR, DR, εR and BR have the same form as the fixed-frame
Π , D, ε and B, except that all total fluctuations are replaced by the fluctuations that
are steady in the moving frame.
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