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Abstract. For every m ∈ N, we establish the equidistribution of the sequence of the
averaged pullbacks of a Dirac measure at any given value in C \ {0} under the mth order
derivatives of the iterates of a polynomials f ∈ C[z] of degree d > 1 towards the harmonic
measure of the filled-in Julia set of f with pole at ∞. We also establish non-archimedean
and arithmetic counterparts using the potential theory on the Berkovich projective line
and the adelic equidistribution theory over a number field k for a sequence of effective
divisors on P1(k) having small diagonals and small heights. We show a similar result on
the equidistribution of the analytic sets where the derivative of each iterate of a Hénon-type
polynomial automorphism of C2 has a given eigenvalue.
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1. Introduction
Let f ∈ C[z] be a polynomial of degree d > 1. The filled-in Julia set

K(f ) :=
{
z ∈ C : lim sup

n→∞
|f n(z)| < ∞

}

of f is a non-polar compact subset in C. Let gf be the Green function of K(f ) with pole
at ∞, regarding P1 as C ∪ {∞} (see, for example, [25, §4.4]). We extend gf equal to = 0
on K(f ). For every n ∈ N, the difference gf − (log max{1, |f n|})/dn on C is harmonic
and bounded near ∞ so it admits a harmonic extension across ∞, and we have the
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estimate

gf − log max{1, |f n|}
dn

= O(d−n) as n → ∞ (1.1)

on P1 uniformly.
Let us denote by δa the Dirac measure on P1 at each a ∈ P1. The harmonic measure of

K(f ) with pole at ∞ is the probability measure

μf := �gf + δ∞ on P1,

which has no atoms on P1 and is supported by ∂K(f ). The exceptional set of f is
defined as

E(f ) :=
{
a ∈ P1 : #

⋃
n∈N∪{0}

f−n(a) < ∞
}

,

which consists of ∞ (f−1(∞) = {∞}) and at most one point b ∈ C (f−1(b) = {b}). For
every h ∈ C(z) of deg h > 0 and every a ∈ P1, by the definition of the pullback operator
h∗, we have h∗δa = ∑

w∈h−1(a)(degw h)δw on P1, where degw h is the local degree of h
at w.

Brolin [8] studied the value distribution of the iteration sequence (f n : P1 → P1) of f
and established that for every a ∈ C \ E(f ),

lim
n→∞

(f n)∗δa
dn

= μf weakly on P1.

This equidistribution of pullbacks of points under iterations initiated the study of value
distribution of complex dynamics (see, for example, [25, §6.5], [7, §VIII], [10, 27]). In
[17, §2] and [23, Theorem 1], a similar equidistribution statement replacing f n with the
first order derivative (f n)′ of f n has been proved first for a ∈ C outside a polar set and
then for any a ∈ C∗ := C \ {0}, respectively.

Our aim is to contribute to the study of the parallelism between the value distribution of
the sequence of higher derivatives (or jets) of the iterations of f and the value distribution
of higher derivatives (or jets) of meromorphic mappings (cf. [29]), extending the results
mentioned above to several different settings: higher derivatives of polynomials over
various valued fields and Hénon-type polynomial automorphisms of C2.

1.1. Over the field C of complex numbers. Let f ∈ C[z] be a polynomial of degree
d > 1. For every h ∈ C[z] and every m ∈ N, we write the mth order derivative
(dm/dzm)h(z) of h as h(m).

Our first principal result is the following theorem.

THEOREM 1. Let f ∈ C[z] be a polynomial of degree d > 1, and m ∈ N. Then, for every
a ∈ C∗,

lim
n→∞

((f n)(m))∗δa
dn −m

= μf weakly on P1. (1.2)
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In Theorem 1, in general, the values a = 0, ∞ need to be excluded as, for every n ∈ N,
((f n)(m))∗δ∞/(dn −m) = δ∞ �= μf and, if there is b ∈ E(f ) ∩ C, then for every n ∈ N,
((f n)(m))∗δ0/(d

n −m) = δb �= μf (see also Remark 2.4 below). An affine coordinate
on C is fixed in Theorem 1, but note that A∗(((f n)(m))∗δa − (dn −m) · μf ) = (((A ◦
f ◦ A−1)n)(m))∗δ(A′)m−1(a) − (dn −m) · μA◦f ◦A−1 on P1 for any affine transformation
A on C.

The equidistribution (1.2) for m > 1 was expected in [17, §2.4], at least when f has no
Siegel disks. As seen in the proof below, (1.2) follows only by an analysis of (f n)(m) on
P1 \K(f ) in this case. This analysis is not difficult for m = 1 by the chain rule, but for
m > 1 it requires care with the higher order derivatives of the Böttcher coordinates of f
near ∞. An extra and more involved effort is required to treat the situation on K(f ) under
the presence of Siegel disks of f in general.

1.2. Over a non-archimedean complete valued fieldK . LetK be an algebraically closed
field. We say that an absolute value | · | on K is non-trivial if |K| �⊂ {0, 1} and that it is
non-archimedean if the strong triangle inequality |z+ w| ≤ max{|z|, |w|} holds for any
z, w ∈ K . For the details on the Berkovich projective line P1 = P1(K), the canonical
action of f on P1, and the equilibrium (or canonical) measure μf of f on P1, see
§3.1 below. By convention, we say f has no potentially good reductions if μf ({S}) =
0 for any S ∈ P1 \ P1; this definition coincides with the usual algebraic one (cf. [3,
Corollary 10.33]).

Our second principal result is a non-archimedean counterpart of Theorem 1.

THEOREM 2. Let K be an algebraically closed field of characteristic 0 that is complete
with respect to a non-trivial and non-archimedean absolute value. Let m ∈ N and f ∈
K[z] be a polynomial of degree d > 1 having no potentially good reductions. Then, for
every a ∈ K ,

lim
n→∞

((f n)(m))∗δa
dn −m

= μf weakly on P1. (1.3)

The assumption of no potentially good reductions allows us to deal with the Berkovich
filled-in Julia set K(f ) of f . The analysis on P1 \ K(f ) in the proof is similar to that
in the archimedean case, using the (non-archimedean) Böttcher coordinate near ∞ and a
non-archimedean potential theory instead (see [24]).

1.3. Over a product formula field k. Let k be a field. We denote by k an algebraic closure
of k. An effective k-divisor Z on P1(k) is the scheme-theoretic vanishing of some P ∈⋃
d∈N k[z0, z1]d . Then, Z is supported by k (regarding P1(k) as k ∪ {∞}) if and only

if P(z0, z1) = z
deg p
0 p(z1/z0) for some p(z) ∈ k[z] of degree greater than 0 (identifying

[z0 : z1] with z1/z0 when z0 �= 0, that is, ∞ = [0 : 1] as the convention in [16]), which is
unique up to multiplication in k∗ = k \ {0} and is called a representative of Z .

A field k is a product formula field if k is equipped with a (possibly uncountable) family
Mk of (not necessarily all) places of k, a family (| · |v)v∈Mk

of non-trivial absolute values

https://doi.org/10.1017/etds.2020.125 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.125


Value distribution of derivatives in polynomial dynamics 3783

| · |v representing v, and a family (Nv)v∈Mk
in N satisfying the product formula property

in that, for every z ∈ k∗,

|z|v = 1 for all but finitely many v ∈ Mk , and
∏
v∈Mk

|z|Nνv = 1.

A place v ∈ Mk is said to be finite (respectively, infinite) if | · |v is non-archimedean
(respectively, archimedean). If Mk contains an infinite place of v, then k is (isomorphic
to) a number field (so there are at most finitely many infinite places of a product formula
field). For each v ∈ Mk , let kv be the completion of k with respect to | · |v . Then | · |v
extends to kv . Let Cv be the completion of kv with respect to | · |v (so | · |v extends to Cv)
and fix an embedding of k to Cv extending that of k to kv . By convention, the dependence
of a local quantity induced by | · |v on each v ∈ Mk is emphasized by adding the suffix
to it, like kv and Cv .

Let ĥf (Z) be the Call–Silverman canonical height of an effective k-divisor Z on P1(k)

(see §3.2 below for the definition). The following theorem is our third principal result.

THEOREM 3. Let k be a product formula field of characteristic 0, and let f ∈ k[z] be a
polynomial of degree d > 1 and m ∈ N. Then, for every a ∈ k, denoting by [(f n)(m) = a]
the effective k-divisor on P1(k) whose representative is (f n)(m) − a ∈ k[z], we have the
(gf ,v)v∈Mk

-small heights property

lim
n→∞ ĥf ([(f n)(m) = a]) = 0 (1.4)

of the sequence ([(f n)(m) = a])n of effective k-divisors on P1(k).
Assume, in addition, that k is a number field and a ∈ k∗. Then the uniform asymptoti-

cally (gf ,v)v∈Mk
-Fekete configuration property

lim
n→∞ sup

v∈Mk

Nv

∫
P1(Cv)×P1(Cv)\diag

P1(Cv)

(log |S − S ′|v − gf ,v(S)− gf ,v(S ′))

((
((f n)(m))∗δa
dn −m

− μf ,v

)
×

(
((f n)(m))∗δa
dn −m

− μf ,v

))
(S, S ′) = 0

(1.5)

of ([(f n)(m) = a]) holds, so in particular, for every v ∈ Mk ,

lim
n→∞

((f n)(m))∗δa
dn −m

= μf ,v weakly on P1(Cv). (1.6)

The proof is based on an adelic equidistribution result for effective divisors on P1(k)

having small diagonals and small heights [21].

1.4. The derivatives of the iterates of a Hénon-type polynomial automorphism of C2. Let
[t : z : w] be the homogeneous coordinate on P2, endowed with the Fubini–Study form.
Identifying C2 with {t = 1}, we let

L∞ := {t = 0} = P2 \ C2

be the line at infinity in P2. We fix the orthonormal frame (∂z, ∂w) of the tangent space
TC2 of C2, so that for a polynomial endomorphism f of C2, the derivative df of f
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is identified with the M(2, C)-valued function (z, w) → (Df )(z,w). Here, a polynomial
automorphism of C2 is a polynomial endomorphism of C2 whose inverse exists and is a
polynomial endomorphism of C2.

Recall some basic facts on a Hénon-type polynomial automorphism f of C2 of degree
d > 1 [4, 11]. The Jacobian determinant Jf := det(Df ) ∈ C[z, w] of f is a non-zero
constant on C2, so for every n ∈ N, the Jacobian determinant Jf n = det(D(f n)) ∈
C[z, w] of f n on C2 is equal to the non-zero constant J nf . This f extends to a birational
self-map on P2, which is still denoted by f for simplicity, so that both the indeterminacy
loci I+, I− of f , f−1 are singletons in L∞, that I− �= I+ (so often normalized as
I+ = {[0 : 0 : 1]}, I− = {[0 : 1 : 0]}), and that I− = f (L∞ \ I+). Moreover, the unique
point in I− is a superattracting fixed point of f |(P2 \ I+), and the attractive basin B+
of f |(P2 \ I+) associated to I− satisfies B+ \ C2 = L∞ \ I+. Let ‖ · ‖ be the Euclidean
norm on C2. The filled-in Julia set of f is defined by

K+ :=
{
(z, w) ∈ C2 : lim sup

n→∞
‖f n(z, w)‖ < ∞

}
.

Then K+ = K+ ∪ I+ in P2 and P2 = K+ ∪ B+ (see, for example, [11, Proposition 5.5]).
The Green function g+ of f is the locally uniform limit

g+ := lim
n→∞

log max{1, ‖f n‖}
dn

on C2.

It is continuous and plurisubharmonic on C2, it is > 0 and pluriharmonic on B+, and it
is ≡ 0 on K+. The Green current T + of f is defined as the trivial extension of ddcg+
on C2 to P2. It is a positive closed (1, 1)-current on P2 and, moreover, of mass 1 [11,
Lemma 6.3].

For a non-constant polynomial P ∈ C[z, w], let [P ] be the current of integration along
the hypersurface in P2 defined by the zeros of (the homogenized) P in P2, taking into
account their multiplicities. The mass of [P ] equals deg P by Bézout’s theorem. Let I2 =(

1 0
0 1

)
be the identity matrix in M(2, C).

Our final principal result is the following theorem.

THEOREM 4. Let f be a Hénon-type polynomial automorphism of C2 of degree d > 1
and λ ∈ C∗. Then, for every n ∈ N, det(D(f n)− λI2) ∈ C[z, w] is of degree dn − 1, and

lim
n→∞

[det(D(f n)− λI2)]
dn − 1

= T + on P2 (1.7)

as currents.

In the proof, we show the L1
loc-convergence of a sequence of potentials of [det(D(f n)−

λI2)]/(dn − 1) towards g+ on B+ as n → ∞ using the first order partial derivatives of
g+. The pleasant uniqueness of T + among all positive closed (1, 1)-currents on P2 of
mass 1 which are supported by K+ ([15]; see also [11, Theorem 6.5]) allows us to deal
with K+.

Organization of the paper. In §2, we treat the field C of complex numbers. In §2.1,
we recall some notions and facts from complex dynamics. In §2.2, we give a proof of
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Theorem 1, and in §2.3, we give a simpler treatment for the cases m = 1, 2. In §3, we
treat a non-archimedean field K and a product formula field k. In §3.1 and §3.2, we recall
background material from non-archimedean and arithmetic dynamics, respectively, and in
§3.3, we show Theorems 2 and 3. In §4, we show Theorem 4 in a slightly more general
form.

2. Proof of Theorem 1
2.1. Background from complex dynamics. Let f ∈ C[z] be a polynomial of degree
d > 1. The superattractive basin

I∞(f ) :=
{
z ∈ P1 : lim

n→∞ f n(z) = ∞
}

of f associated to the superattracting fixed point ∞ of f (regarding P1 as C ∪ {∞}) is a
domain in P1 containing ∞, and coincides with P1 \K(f ). Let C(f ) be the critical set of
f (as a branched self-covering of P1), which consists of ∞ and all the zeros of f ′ on C.
The set

⋃
n∈N∪{0} f−n(C(f ) \ {∞}) is bounded in C.

The topology of P1 coincides with the induced one from the chordal metric on P1.
The Julia set J (f ) of f is defined as the set of all z ∈ P1 at which the family (f n :
P1 → P1)n∈N is not normal. The Fatou set F(f ) of f is defined by P1 \ J (f ) and a
component of F(f ) is called a Fatou component of f . Both J (f ) and F(f ) are totally
invariant under f and

J (f ) = ∂K(f ) = ∂I∞(f ).

Any Fatou component of f is either I∞(f ) or a component of the interior of K(f ) and is
mapped properly to a Fatou component of f . Any Fatou component of f other than I∞(f )
is simply connected. A Fatou component W of f is said to be cyclic under f if there is
p ∈ N such that f p(W) = W . If in addition the restriction f p : W → W is injective, W
is called a Siegel disk of f and then there exists a holomorphic injection h : W → C such
that for some α ∈ R \ Q, h ◦ f p = e2iπα · h onW . For more details on complex dynamics,
see, for example, [20].

2.2. Proof of Theorem 1. Let f ∈ C[z] be a polynomial of degree d > 1. Fix m ∈ N.

LEMMA 2.1. We have

(f n)(m) = ((eO(1) · dn)m +O(d(m−1)n)) · f n as n → ∞ (2.1)

on I∞(f ) \ ⋃
n∈N∪{0} f−n(C(f )) locally uniformly. Moreover, for every a ∈ C, the family

((log |(f n)(m) − a|)/(dn −m))n of subharmonic functions on C is locally uniformly
bounded from above on C and

lim
n→∞

log |(f n)(m) − a|
dn −m

= gf (2.2)

locally uniformly on I∞(f ) \ ⋃
n∈N∪{0} f−n(C(f )).
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Proof. Fixing r � 1, there exists a biholomorphism w = ψ(z) from P1 \ {gf ≤ r} to
P1 \ {|w| ≤ er }, which is called a Böttcher coordinate near ∞ associated to f , such
that ψ(f (z)) = ψ(z)d on P1 \ {gf ≤ r}. Then ψ(∞) = ∞, ψ ′ �= 0 on C \ {gf ≤ r}, and
letting ι : P1 → P1 be the involution z → 1/z (regarding 1/0 as ∞), (ι ◦ ψ ◦ ι)′(0) =
1/(ι ◦ ψ−1 ◦ ι)′(0) �= 0.

We first claim that

(f n)′

f n
(z) = dn · (1 +O(ψ(z)−dn)) · ψ

′

ψ
(z) as n → ∞ (2.3)

on C \ {gf ≤ r} uniformly; indeed, for every n ∈ N, since ψ(f n(z)) = ψ(z)d
n

on C \
{gf ≤ r}, we have f n(z) = ψ−1(ψ(z)d

n
) and ψ ′(f n(z)) · (f n)′(z) = dn · ψ(z)dn−1 ·

ψ ′(z) on C \ {gf ≤ r}, so that

(f n)′(z)
f n(z)

= dn · ψ(z)dn−1 · ψ ′(z)
ψ−1(ψ(z)d

n
) · ψ ′(f n(z))

= dn · ψ(z)
dn/ψ−1(ψ(z)d

n
)

ψ ′(f n(z))
· ψ

′(z)
ψ(z)

on C \ {gf ≤ r}. Moreover, we have

ψ(z)d
n

ψ−1(ψ(z)d
n
)

= (ι ◦ ψ−1 ◦ ι)(1/ψ(z)dn)− (ι ◦ ψ−1 ◦ ι)(0)
1/ψ(z)dn − 0

= (ι ◦ ψ−1 ◦ ι)′(0)+O(1/ψ(z)d
n

)

= 1
(ι ◦ ψ ◦ ι)′(0) +O(ψ(z)−dn) as n → ∞

on C \ {gf ≤ r} uniformly and, since (ι ◦ ψ ◦ ι)′(1/f n(z))=−(ψ ′(f n(z)) · {−(f n(z)2)})/
ψ(f n(z))2 on C \ {gf ≤ r} by the chain rule, we also have

ψ ′(f n(z)) = (ι ◦ ψ ◦ ι)′(1/f n(z))
((ι ◦ ψ ◦ ι)(1/f n(z))/(1/f n(z)))2

= (ι ◦ ψ ◦ ι)′(0)+ ((ι ◦ ψ ◦ ι)′(1/f n(z))− (ι ◦ ψ ◦ ι)′(0))
(((ι ◦ ψ ◦ ι)(1/f n(z))− (ι ◦ ψ ◦ ι)(0))/(1/f n(z)− 0))2

= (ι ◦ ψ ◦ ι)′(0)+O(1/f n(z))
((ι ◦ ψ ◦ ι)′(0)+O(1/f n(z)))2

= 1
(ι ◦ ψ ◦ ι)′(0) +O(1/f n(z)) = 1

(ι ◦ ψ ◦ ι)′(0) +O(ψ(z)−dn) as n → ∞

on C \ {gf ≤ r} uniformly. Hence the claim holds.
For any domain D � I∞(f ) ∩ C and any M ∈ N ∪ {0} so large that fM(D) ⊂ P1 \

{gf ≤ r}, by (2.3), we have

(f n)′

f n
= ((f n−M)′ ◦ fM) · (fM)′

f n−M ◦ fM = dn−M ·
(
ψ ′

ψ
◦ fM · (fM)′

)
+ o(1) as n → ∞

on some open neighborhood ofD uniformly. Let us show by induction that for anym ∈ N,

(f n)(m)

f n
=

(
dn−M · ψ

′

ψ
◦ fM · (fM)′

)m
+O(d(m−1)n) as n → ∞ (2.4)
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on some open neighborhood of D uniformly. We have just seen (2.4) for m = 1 on some
open neighborhood of D uniformly, so assume that m > 1 and that (2.4) for m− 1 holds
on some open neighborhood of D uniformly. Then, using Cauchy’s estimate, we have

(f n)(m)

f n
− (f n)(m−1) · (f n)′

f n · f n =
(
(f n)(m−1)

f n

)′
= O(dn(m−1)) as n → ∞

on some open neighborhood of D uniformly, which with (2.4) for both 1 and m− 1 on
some open neighborhood of D uniformly yields

(f n)(m)

f n
= (f n)(m−1) · (f n)′

f n · f n +O(d(m−1)n)

=
((
dn−M · ψ

′

ψ
◦ fM · (fM)′

)m−1

+O(d(m−2)n)

)

·
(
dn−M · ψ

′

ψ
◦ fM · (fM)′ +O(1)

)
+O(d(m−1)n) as n → ∞

on some open neighborhood of D uniformly. This yields (2.4) for m on some open
neighborhood of D uniformly and concludes the induction. Now, if in addition D �
I∞(f ) \ ⋃

n∈N∪{0} f−n(C(f )), so infD |(ψ ′/ψ) ◦ fM · (fM)′| > 0, then estimate (2.4)
yields the asymptotic estimate (2.1).

Fix a ∈ C. The final locally uniform convergence (2.2) follows from (2.1) and (1.1).
Then, for everyR > 0 so large that

⋃
n∈N∪{0} f−n(C(f )\{∞}) ⊂ {|z| < R}, we also have

log |(f n)(m) − a|
dn −m

≤ log(2 max{|(f n)(m)|, |a|})
dn −m

≤ gf +O(1) as n → ∞
on {|z| = R} uniformly. Hence, by the maximum principle for subharmonic functions,
we deduce that the family ((log |(f n)(m) − a|)/(dn −m))n is locally uniformly bounded
from above on C.

Remark 2.2. (The Schwarzian and pre-Schwarzian derivatives Sf n , Tf n of f n) The
expression for (f n)(m) given by (2.4) in the proof of Lemma 2.1 also quantifies Ye’s results
[30, Theorems 1.1 and 3.3] as

Sf n := (f n)′′′

(f n)′
− 3

2

(
(f n)′′

(f n)′

)2

= −2d2n · (∂zgf )2 +O(dn) and

Tf n := (f n)′′

(f n)′
= 2dn · ∂zgf +O(1) as n → ∞

on I∞(f ) \ ⋃
n∈N∪{0} f−n(C(f )) locally uniformly. Indeed, recall that gf = log |ψ | so

∂zgf = ψ ′/(2ψ) on C \ {gf ≤ r}, and gf ◦ f = d · gf so (∂zgf ) ◦ fM · (fM)′ = dM ·
∂zgf on I∞(f ). Hence (2.4) is rewritten as

(f n)(m) = ((dn−M · (2∂zgf ) ◦ fM · (fM)′)m +O(d(m−1)n)) · f n
= ((2dn · ∂zgf )m +O(d(m−1)n)) · f n as n → ∞

on D uniformly. For m ∈ {1, 2, 3}, this yields the above asymptotics of Sf n and Tf n .
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Fix a ∈ C, and let us continue the proof of Theorem 1. By the final two assertions
in Lemma 2.1, applying to ((log |(f n)(m) − a|)/(dn −m))n a compactness principle (see
[18, Theorem 4.1.9(a)]) for a family of subharmonic functions on a domain in RN , there
are a sequence (nj ) in N tending to +∞ as j → ∞ and a subharmonic function φa on C

such that

φa := lim
j→∞

log |(f nj )(m) − a|
dnj −m

in L1
loc(C, m2) (2.5)

(m2 denotes the (real two-dimensional) Lebesgue measure on C). By (2.2), we have
φa ≡ gf m2-almost everywhere on I∞(f ) \ ⋃

n∈N∪{0} f−n(C(f )), and in turn on I∞(f )
by the subharmonicity of φa − gf on I∞(f ) ∩ C. Then also by I∞(f ) = {gf > 0}, the
subharmonicity of φa on C, and the maximum principle for subharmonic functions,
we have φa ≤ max{gf=ε} φa = max{gf=ε} gf = ε on K(f ) = {gf = 0} ⊂ {gf < ε} for
every ε > 0, and in turn φa ≤ 0 on K(f ). By the upper semicontinuity of φa − gf on C,
the subset {φa < gf } is open in C.

LEMMA 2.3. If a �= 0, then φa = gf on C.

Proof. Suppose that {φa < gf } �= ∅, and let us show a = 0 (see also Remark 2.4 below).
By φa ≡ gf on I∞(f ), there is a Fatou component U ⊂ K(f ) of f containing a

component W of {φa < gf }. Since φa ≤ gf = 0 on U , we in fact have U = W by the
maximum principle for subharmonic functions.

(I) Taking a subsequence of (nj ) if necessary, there is a locally uniform limit

g := lim
j→∞ f nj on U .

We claim that

g(m) ≡ a

on U , so in particular we can say g ∈ C[z] (of degree at most m); indeed, for any domain
D � U = W , by Hartogs’s lemma for a sequence of subharmonic functions on a domain
in RN (see [18, Theorem 4.1.9(b)]), we have

lim sup
j→∞

sup
D

log |(f nj )(m) − a|
dnj −m

≤ sup
D

φa < 0. (2.6)

Then g(m) = (limj→∞(f nj ))(m) = limj→∞((f nj )(m)) ≡ a on D, so the claim holds.
Hence in the case where g is constant, we have g(m) ≡ 0 = a, so we are done.
(II) Let us show that the g in (I) is constant, by contradiction. Suppose to the contrary

that g is non-constant. Then, by Hurwitz’s theorem and Fatou’s classification of cyclic
Fatou components of f (see, for example, [20, §16]), there is N ∈ N such that V :=
f nN (U) = g(U)(⊃ g(D)) is a Siegel disk of f .

Setting p := min{n ∈ N : f n(V ) = V }, for any j ≥ N , we have p|(nj − nN) and there
is a holomorphic injection h : V → C such that for some α ∈ R \ Q, setting λ := e2iπα ∈
∂D, we have h ◦ f p = λ · h on V . Hence, for every j ≥ N ,

h ◦ f nj = λ(nj−nN )/p · (h ◦ f nN ) on U . (2.7)
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Taking a subsequence of (nj ) if necessary, the limit

λ0 := lim
j→∞ λ(nj−nN )/p ∈ ∂D

also exists and then

h ◦ g = λ0 · (h ◦ f nN ) on U . (2.7′)

Set v0 := h−1(0) and fix z0 ∈ U ∩ f−nN (v0), so that f p(v0) = v0 = g(z0) and
(f p)′(v0) = λ. For every 0 < r � 1, {|w| < 2r} � h(V ), and letting Dr be a component
of (h ◦ f nN )−1({|w| < r}) containing z0, the restriction h ◦ f nN : Dr \ {z0} → {0 <
|w| < r} is an unramified covering of degree degz0

(f nN ) = degz0
g. Hence, the restriction

h ◦ g : Dr \ {z0} → {0 < |w| < r} is also an unramified covering of the same degree as
that of h ◦ f nN |Dr by Hurwitz’s theorem. Let us denote by h−1 the holomorphic inverse
of the biholomorphism h : V → h(V ) ⊂ C.

Let us see by induction the following key observation that, for any  ∈ N,

((h−1)()(λ0 · h ◦ f nN (z)) · (h ◦ f nN (z)))(m) ≡ 0 on Dr ; (2.8)

indeed, for every j ≥ N , applying Cauchy’s integration formula to f nj − g on Dr , by
g(m) ≡ a, (2.7), and (2.7′), we have

(f nj )(m)(z)− a

m!

=
∫
∂Dr

f nj (ζ )− g(ζ )

(ζ − z)m+1
dζ

2iπ

=
∫
∂Dr

h−1(λ(nj−nN )/p · h ◦ f nN (ζ ))− h−1(λ0 · h ◦ f nN (ζ ))
(ζ − z)m+1

dζ
2iπ

(2.9)

= (λ(nj−nN )/p − λ0) ·
∫
∂Dr

h−1(λ
(nj−nN )/p ·h◦f nN (ζ ))−h−1(λ0·h◦f nN (ζ ))
λ
(nj−nN )/p ·h◦f nN (ζ )−λ0·h◦f nN (ζ ) · (h ◦ f nN (ζ ))

(ζ − z)m+1
dζ

2iπ

= (λ(nj−nN )/p − λ0)

×
∫
∂Dr

((h−1)′(λ0 · h ◦ f nN (ζ ))+O(λ(nj−nN )/p − λ0)) · (h ◦ f nN (ζ ))
(ζ − z)m+1

dζ
2iπ

as j → ∞

on Dr , where, recalling h ◦ f nN (∂Dr) = {|w| = r} and {|w| < 2r} � h(V ) and applying
Cauchy’s estimate to the holomorphic function h−1|{w′ ∈ C : |w′ − w| ≤ r} for each
|w| = r , the O(λ(nj−nN )/p − λ0) term is estimated as

|O(λ(nj−nN )/p − λ0)|

≤
∞∑
k=2

|(h−1)(k)(λ0 · h ◦ f nN (ζ ))|
k!

|λ(nj−nN )/p · h ◦ f nN (ζ )− λ0 · h ◦ f nN (ζ )|k−1

≤
∞∑
k=2

max|w|=r |(h−1)(k)(w)|
k!

(|λ(nj−nN )/p − λ0| · r)k−1

≤
∞∑
k=2

max|w|=2r |h−1(w)|
rk

(|λ(nj−nN )/p − λ0| · r)k−1
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= max|w|=2r |h−1(w)|
r

· |λ(nj−nN )/p − λ0|
1 − |λ(nj−nN )/p − λ0|

on ∂Dr

so the implicit constant of it is independent of z ∈ Dr and ζ ∈ ∂Dr . On the other hand, for
every z ∈ Dr , by (2.6) and [23, (3.8)], we also have

lim sup
j→∞

log |(f nj )(m)(z)− a|
dnj −m

< −δz < 0 and lim
j→∞

log |λ(nj−nN )/p − λ0|
dnj −m

= 0

(2.10)

for some δz > 0. Hence also by Cauchy’s integration formula, we have∣∣∣∣ 1
m!
((h−1)′(λ0 · h ◦ f nN (z)) · h ◦ f nN (z))(m)

∣∣∣∣
=

∣∣∣∣
∫
∂Dr

(h−1)′(λ0 · h ◦ f nN (ζ )) · (h ◦ f nN (ζ ))
(ζ − z)m+1

dζ
2iπ

∣∣∣∣
≤ e−δz(d

nj−m)

m! ·e−(δz/2)(dnj−m)

+ |O(λ(nj−nN )/p − λ0)| · max∂Dr |h ◦ f nN |
(min∂Dr | · −z|)m+1 → 0 as j → ∞

for this z ∈ Dr , that is, (2.8) holds for  = 1.
Next, suppose that (2.8) holds for 1, . . . , − 1. Then applying Cauchy’s integration for-

mula to ((h−1)(k)(λ0 · h ◦ f nN (z)) · (h ◦ f nN (z))k)(m) ≡ 0 on Dr for k ∈ {1, . . . , − 1},
also by (2.9), we have

(f nj )(m)(z)− a

m!

= (f nj )(m)(z)− a

m!
−
−1∑
k=1

(λ(nj−nN )/p − λ0)
k · ((h

−1)(k)(λ0 · h ◦ f nN (z)) · (h ◦ f nN (z))k)(m)
m! k!

=
∫
∂Dr

h−1(λ(nj−nN )/p · h ◦ f nN (ζ ))− h−1(λ0 · h ◦ f nN (ζ ))
(ζ − z)m+1

dζ
2iπ

−
−1∑
k=1

(λ(nj−nN )/p − λ0)
k ·

∫
∂Dr

(1/k! )(h−1)(k)(λ0 · h ◦ f nN (ζ )) · (h ◦ f nN (ζ ))k
(ζ − z)m+1

dζ
2iπ

=
∫
∂Dr

∑∞
k=(1/k! )(h−1)(k)(λ0 · h ◦ f nN (ζ )) · (λ(nj−nN )/p · h ◦ f nN (ζ )− λ0 · h ◦ f nN (ζ ))k

(ζ − z)m+1
dζ

2iπ

= (λ(nj−nN )/p − λ0)


×
∫
∂Dr

∑∞
k=(1/k!)(h−1)(k)(λ0·h◦f nN (ζ ))·(λ(nj−nN )/p ·h◦f nN (ζ )−λ0·h◦f nN (ζ ))k

(λ
(nj−nN )/p ·h◦f nN (ζ )−λ0·h◦f nN (ζ )) · (h ◦ f nN (ζ ))

(ζ − z)m+1
dζ

2iπ

= (λ(nj−nN )/p − λ0)


×
∫
∂Dr

(1/! )((h−1)()(λ0 · h ◦ f nN (ζ ))+O(λ(nj−nN )/p − λ0)) · (h ◦ f nN (ζ ))
(ζ − z)m+1

dζ
2iπ

as j → ∞
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on Dr , where, recalling h ◦ f nN (∂Dr) = {|w| = r} and {|w| < 2r} � h(V ) and applying
Cauchy’s estimate to the holomorphic function h−1|{w′ ∈ C : |w′ − w| ≤ r} for each
|w| = r , the O(λ(nj−nN )/p − λ0) term is estimated as

|O(λ(nj−nN )/p − λ0)|

≤
∞∑

k=+1

|(h−1)(k)(λ0 · h ◦ f nN (ζ ))|
k!

|λ(nj−nN )/p · h ◦ f nN (ζ )− λ0 · h ◦ f nN (ζ )|k−

≤
∞∑

k=+1

max|w|=r |(h−1)(k)(w)|
k!

(|λ(nj−nN )/p − λ0| · r)k−

≤
∞∑

k=+1

max|w|=2r |h−1(w)|
rk

(|λ(nj−nN )/p − λ0| · r)k−

= max|w|=2r |h−1(w)|
r

· |λ(nj−nN )/p − λ0|
1 − |λ(nj−nN )/p − λ0|

on ∂Dr

so the implicit constant of it is independent of z ∈ Dr and ζ ∈ ∂Dr . Hence, by (2.10) again,
also using Cauchy’s integration formula, we have

((h−1)()(λ0 · h ◦ f nN (z)) · (h ◦ f nN (z)))(m)

= m!
∫
∂Dr

(h−1)()(λ0 · h ◦ f nN (ζ )) · (h ◦ f nN (ζ ))
(ζ − z)m+1

dζ
2iπ

≡ 0 on Dr ,

that is, (2.8) holds for  and concludes the induction.
Once this claim (2.8) is at our disposal, for every  ∈ N, there is P ∈ C[z] of degree

strictly less than m such that

(h−1)()(λ0 · h ◦ f nN (z)) · (h ◦ f nN (z)) ≡ P(z) on Dr .

Then, recalling (h ◦ f nN )(z0) = 0, for every  ≥ m, we have P ≡ P(z0) = 0; for,
otherwise, we must have m > deg P ≥ degz0

P ≥  ≥ m, which is a contradiction.
Consequently, also by (2.7′) and (h ◦ f nN )(Dr \ {z0}) = {0 < |w| < r}, for every  ≥ m,

(h−1)()((h ◦ g)(z)) = (h−1)()(λ0 · h ◦ f nN (z)) ≡ 0 on Dr ,

which implies that there isQ ∈ C[z] (of degree strictly less thanm) such that h−1 ≡ Q on
{0 < |w| < r} since h ◦ g : Dr \ {z0} → {0 < |w| < r} is an unramified covering. Then
deg Q > 0 since h−1 is non-constant on {0 < |w| < r}.

On the other hand, we also have

f p(Q(w)) = f p(h−1(w)) = h−1(λw) = Q(λw) on {0 < |w| < r},
and in turn f p(Q(w)) = Q(λw) in C[w] by the identity theorem for holomorphic
functions. Then Q ∈ C[w] must be constant since deg(f p) = dp > 1. This contradicts
deg Q > 0.

(III) Hence g is constant, and the proof of Lemma 2.3 is complete.
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Using Lemma 2.3, the L1
loc(C, m2)-convergence (2.5), a continuity of the Laplacian �,

and the equalities

�
log |(f nj )(m) − a|

dnj −m
= ((f nj )(m))∗δa

dnj −m
on C

for each j ∈ N and �gf = μf on C, whenever a ∈ C∗, we conclude the desired weak
convergence (1.2) on C, and in turn on P1 since supp μf ⊂ C. Now the proof of Theorem 1
is complete.

Remark 2.4. From the proof of Lemma 2.3, no matter whether a �= 0, if all the bounded
Fatou components of f are eventually mapped to a Siegel disk of f under the dynamics of
f , then φa = gf on C, and the weak convergence (1.2) on P1 still holds.

2.3. On the proof of Theorem 1 for the first and second order derivatives. In step (II)
of the proof of Lemma 2.3 in §2.1, it might be interesting to show that a = 0 by direct
computations in the case where g is non-constant, instead of showing that g is constant
by contradiction. We include herewith such proofs in (II)′ and (II)′′ below for the first and
second order derivative cases m = 1, 2, respectively.

(II)′ Here, assume thatm = 1 and that g is non-constant. For any j ≥ N , differentiating
both sides in (2.7), by the chain rule, we have

(h′ ◦ f nj ) · (f nj )′ = λ(nj−nN )/p · (h′ ◦ f nN ) · (f nN )′ on U ,

so that evaluating them at z = z0, also by h′(v0) �= 0, we have

(f nj )′(z0) = λ(nj−nN )/p · (f nN )′(z0)

and, letting j → ∞,

g′(z0) = a = λ0 · (f nN )′(z0)

(here m = 1). Hence for any j ≥ N , we have

(λ(nj−nN )/p − λ0)(f
nN )′(z0) = (f nj )′(z0)− a.

On the other hand, by (2.6) (here m = 1) and [23, (3.8)], we have

lim sup
j→∞

log |(f nj )′(z0)− a|
dnj − 1

< 0 and lim
j→∞

log |λ(nj−nN )/p − λ0|
dnj − 1

= 0.

Hence, we have

(f nN )′(z0) = 0, (2.11)

which with a = λ0 · (f nN )′(z0) yields a = 0.
(II)′′ Now assume thatm = 2 and that g is non-constant. For any j ≥ N , differentiating

both sides in (2.7) twice, by the chain rule, we have

(h′ ◦ f nj ) · (f nj )′ = λ(nj−nN )/p · (h′ ◦ f nN ) · (f nN )′
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and then

(h′′ ◦ f nj ) · ((f nj )′)2 + (h′ ◦ f nj ) · (f nj )′′
= λ(nj−nN )/p · ((h′′ ◦ f nN ) · ((f nN )′)2 + (h′ ◦ f nN ) · (f nN )′′)

on U , so that evaluating them at z = z0, also by h′(v0) �= 0, we have

(f nj )′(z0) = λ(nj−nN )/p · (f nN )′(z0) (2.12)

and

h′′(v0)((f
nj )′(z0))

2 + h′(v0)(f
nj )′′(z0)

= λ(nj−nN )/p · (h′′(v0) · ((f nN )′(z0))
2 + h′(v0)(f

nN )′′(z0)), (2.13)

and in turn letting j → ∞,

g′(z0) = λ0 · (f nN )′(z0) (2.14)

and

h′′(v0)(g
′(z0))

2 + h′(v0)a = λ0 · (h′′(v0)((f
nN )′(z0))

2 + h′(v0)(f
nN )′′(z0)) (2.15)

(herem = 2 so a = g′′(z0)). Hence, for any j ≥ N , subtracting (2.15) from (2.13) and then
eliminating (f nj )′(z0) and g′(z0) by (2.12) and (2.14), the above four equalities yield

h′′(v0) · ((λ(nj−nN )/p)2 − λ2
0)((f

nN )′(z0))
2 − h′(v0)((f

nj )′′(z0)− a)

= (λ(nj−nN )/p − λ0) · (h′′(v0) · ((f nN )′(z0))
2 + h′(v0) · (f nN )′′(z0)),

which is rewritten as

(f nj )′′(z0)− a

λ(nj−nN )/p − λ0
= (λ(nj−nN )/p + λ0 − 1)h′′(v0)((f

nN )′(z0))
2 − h′(v0) · (f nN )′′(z0)

h′(v0)

= (λ(nj−nN )/p − λ0) · h
′′(v0)((f

nN )′(z0))
2

h′(v0)

+ (2λ0 − 1)h′′(v0)((f
nN )′(z0))

2 − h′(v0) · (f nN )′′(z0)

h′(v0)
. (2.16)

On the other hand, by (2.6) (here m = 2) and [23, (3.8)], we have

lim sup
j→∞

log |(f nj )′′(z0)− a|
dnj − 2

< 0 and lim
j→∞

log |λ(nj−nN )/p − λ0|
dnj − 2

= 0. (2.17)

Hence, letting j → ∞ in (2.16), we must have

(2λ0 − 1)h′′(v0)((f
nN )′(z0))

2 − h′(v0) · (f nN )′′(z0) = 0, (2.18)

which with (2.16) in turn yields

(f nj )′′(z0)− a

(λ(nj−nN )/p − λ0)2
= (f nN )′′(z0)

2λ0 − 1
(2.16′)

for any j ≥ N . Then by (2.17) again, from (2.16′), we have

(f nN )′′(z0) = 0, (2.19)
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which with (2.18) and (2.14) yields

h′′(v0)((f
nN )′(z0))

2 = 0 and 0 = λ2
0 · h′′(v0)((f

nN )′(z0))
2 = h′′(v0)(g

′(z0))
2.

(2.20)

Consequently, by (2.15), (2.19), (2.20), and h′(v0) �= 0, we have a = 0.

3. Proofs of Theorems 2 and 3
3.1. Non-archimedean dynamics of polynomials of degree at least 2. Let K be an alge-
braically closed field that is complete with respect to a non-trivial and non-archimedean
absolute value | · |. The Berkovich projective line P1 = P1(K) is a compact augmentation
of the classical projective line P1 = P1(K) and is also locally compact, Hausdorff, and
uniquely arcwise connected. Let us go into more detail. As a set, the Berkovich affine line
A1 = A1(K) is the set of all multiplicative seminorms K[z] which restricts to | · | on K .
We write an element of A1 like S and denote it by [·]S as a multiplicative seminorm on
K[z]. A K-closed disk is a subset in K written as B(a, r) := {z ∈ K : |z− a| ≤ r} for
some a ∈ K and r ≥ 0; by the strong triangle inequality, for any b ∈ B(a, r), we have
B(b, r) = B(a, r), and for any two K-closed disks B, B ′ having non-empty intersection,
we have either B ⊂ B ′ or B ⊃ B ′. By Berkovich’s representation [6], any element S ∈ A1

is induced by a non-increasing and nesting sequence (Bn) of K-closed disks in that

[φ]S = inf
n∈N sup

z∈Bn
|φ(z)| for any φ ∈ K[z]. (3.1)

In particular, each point a ∈ K is regarded as an element of A1 induced by the (constant
sequence of the) K-closed disk B(a, 0) = {a}, and more generally, each K-closed disk B
is regarded as an element of A1 induced by (the constant sequence of) B. In particular, K
is regarded as a subset of A1. The relative topology of A1 is the weakest topology such that
for any φ ∈ K[z], A1 � S → [φ]S ∈ R≥0 is continuous, and then A1 is a locally compact,
uniquely arcwise connected, Hausdorff topological space. The action onK of a polynomial
h ∈ K[z] continuously extends to A1 as

[φ]h(S) = [φ ◦ h]S for every S ∈ A1 and every φ ∈ K[z], (3.2)

preserving K and A1 \K if, in addition, deg h > 0.
As a set, P1 is nothing but A1 ∪ {∞}, regarding P1 as K ∪ {∞}, and as a topological

space, P1 is identified with the one-point compactification of A1. An ordering ≤∞ on A1 is
defined so that for any S, S ′ ∈ A1, S ≤∞ S ′ if and only if [·]S ≤∞ [·]S ′ on K[z], and this
≤∞ extends to the ordering on P1 so that S ≤∞ ∞ for every S ∈ P1. For any S, S ′ ∈ P1,
if S ≤∞ S ′, then set [S, S ′] = [S ′, S] := {S ′′ ∈ P1 : S ≤∞ S ′′ ≤∞ S ′}, and in general,
we have [S, ∞] ∩ [S ′, ∞] = [S ∧∞ S ′, ∞], for some (unique) point S ∧∞ S ′ ∈ P1, and
then set [S, S ′] := [S, S ∧∞ S ′] ∪ [S ∧∞ S ′, S ′]. These closed intervals [S, S ′] ⊂ P1

make P1 an ‘R’-tree in the sense of Jonsson [19, Definition 2.2]. For any S ∈ P1, the
equivalence class TSP1 := (P1 \ {S})/ ∼ is defined so that for any S ′, S ′′ ∈ P1 \ {S},
S ′ ∼ S ′′ if [S, S ′] ∩ [S, S ′′] = [S, S ′ ∧S S ′′] for some (unique) point S ′ ∧S S ′′ ∈ P1 \
{S}. An element v of TSP1 is called a direction of P1 at S, which is denoted by U(v) as
a subset in P1 \ {S} and, if S ′ ∈ U(v), also by

−→SS ′. A point S ∈ P1 \ P1 is said to be of

https://doi.org/10.1017/etds.2020.125 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.125


Value distribution of derivatives in polynomial dynamics 3795

type II, III, or IV, respectively if #TSP1 > 2, = 2, or = 1, and let us denote by H1
II, H1

III, or
H1

IV the set of all points in P1 of type II, III, or IV, respectively. A non-empty subset in P1

is called a simple domain (or a Berkovich connected open affinoid) if it is the intersection
of some finitely many elements of {U(v) : S ∈ H1

II ∪ H1
III, v ∈ TSP1}. The topology of P1

has an open basis consisting of all simple domains in P1; in particular, a simple domain is
nothing but a component of the complement in P1 of a finite subset in H1

II ∪ H1
III.

The point [·]OK
in P1, where OK := {z ∈ K : |z| ≤ 1} is the ring of K-integers, is

called the Gauss or canonical point in P1 and is denoted by Scan. Let us denote the
continuous extension of | · | to A1 by the same | · | for simplicity. More generally, let
|S − S ′| be the Hsia kernel on A1, which is the upper semicontinuous and separately
continuous extension to A1 × A1 of the function |z− w| on K ×K (although S − S ′
itself is undefined unless S, S ′ ∈ K), and then, writing |S| = |S − 0| for each S ∈ P1,
the function

[S, S ′]can := |S − S ′|
max{1, |S|} max{1, |S ′|}

on A1 × A1 extends to the generalized Hsia kernel on P1 with respect to Scan, which is the
upper semicontinuous and separately continuous extension to P1 × P1 of the (normalized)
chordal metric on P1 [3, §4.4].

A function g : P1 → R ∪ {±∞} is said to be δScan -subharmonic if there is a probability
Radon measure μg on P1 such that

g =
∫
P1

log[·, S ′]canμg(S ′)+ const. on P1; (3.3)

then g belongs to the class BDV(P1), is not only upper semicontinuous on P1 but also
continuous on any closed interval in P1, and satisfies

�g = μg − δScan (3.4)

on P1 (see [14, §2.4], and also [3, §5.8 and §6.3] for more details including specific
information on BDV(P1)). Here � = �P1 is the Laplacian on P1 (see [3, §5], [14,
§2.4]; in [3] the opposite sign convention on � is adopted). For example, the function
log max{1, | · |} on A1 extends to a δScan -subharmonic function on P1 so that

− log max{1, | · |} = log[·, ∞]can =
∫
P1

log[·, S ′]canδ∞(S ′) on P1

and �(− log max{1, | · |}) = δ∞ − δScan on P1.
The continuous action on P1 of a rational function h ∈ K(z) canonically extends to P1.

If in addition h is non-constant, then the action of h on P1 preserves both P1 and P1 \ P1

and is open and surjective. The local degree function w → degw h on P1 also canonically
extends to an upper semicontinuous function on P1, satisfying

∑
S ′∈h−1(S) degS ′ h =

deg h for each S ∈ P1. In particular, the action of h on P1 induces the pullback action
on the space of Radon measures on P1 so that, letting δS be the Dirac measure on P1 at
each S ∈ P1, h∗δS = ∑

S ′∈h−1(S)(degS ′ h)δS ′ on P1.
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Let f ∈ K[z] be a polynomial of degree d > 1. The Berkovich filled-in Julia set of f is

K(f ) :=
{
S ∈ A1 : lim sup

n→∞
|f n(S)| < ∞

}
,

which is a compact subset in A1, and the escape rate function of f on A1 is the limit

gf := lim
n→∞

log max{1, |f n|}
dn

on A1;

the function Tf := (log max{1, |f (·)|})/d − log max{1, | · |} on P1 is an R-valued con-
tinuous and δScan -subharmonic function on P1 and satisfies �Tf = (f ∗δScan)/d − δScan

on P1, the difference gf − log max{1, | · |} is the restriction to A1 of the uniform limit∑∞
j=0 d

−j (f j )∗Tf on P1, which is still an R-valued continuous and δScan -subharmonic
function on P1, and the function gf − (log max{1, |f n|})/dn for each n ∈ N ∪ {0} extends
continuously to P1 so that

gf − log max{1, |f n|}
dn

= O(d−n) as n → ∞ (3.5)

on P1 uniformly. The function gf is continuous, subharmonic, and non-negative on
A1, is harmonic and strictly positive on A1 \ K(f ), and is zero on K(f ) (for har-
monic/subharmonic functions on an open subset in P1, see [3, §7 and §8]). The equilibrium
(or canonical) measure of f is the probability Radon measure

μf := �(gf − log max{1, | · |})+ δScan = �gf − δ∞ on P1,

which is the weak limit limn→∞((f n)∗δScan)/d
n on P1 and supported exactly by ∂K(f ).

The Berkovich superattractive basin

I∞(f ) :=
{
z ∈ P1 : lim

n→∞ f n(z) = ∞
}

of f associated to the superattracting fixed point ∞ of f is a domain in P1 containing
∞, and coincides with P1 \ K(f ). Let C(f ) be the (classical) critical set of f ; if K is of
characteristic 0, then C(f ) consists of ∞ and all the (at most d − 1) zeros of f ′ onK , and⋃
n∈N∪{0} f−n(C(f ) \ {∞}) is bounded in K .
The Berkovich Julia set of f is defined as

J(f ) := supp μf = ∂K(f ).

The Berkovich Fatou set F(f ) of f is defined by P1 \ J(f ), and a component of F(f ) is
called a Berkovich Fatou component of f . Both J(f ) and F(f ) are totally invariant under
f and any Berkovich Fatou component of f is either I∞(f ) or a component of the interior
of K(f ).

Set cd := limK�z→∞ f (z)/zd ∈ K∗ = K \ {0}. By the definition of μf and (3.3), the
function S → ∫

P1 log |S − S ′|μf (S ′)− gf (S) is constant on P1. This with (3.5) and the
strong triangle inequality yields the identity∫

P1
log |S − S ′|μf (S ′) ≡ gf (S)− log |cd |

d − 1
(≡ log |S| if |S| � 1) on P1. (3.6)

For more details on the harmonic analysis and dynamics on P1, see [3, 5, 12, 14, 19].
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3.2. Arithmetic dynamics of polynomials of degree at least 2. Let k be a product formula
field as in §1.3. Let f ∈ k[z] be a polynomial of degree d > 1. For each v ∈ Mk , we
obtain gf ,v and μf ,v on P1(Cv) from the action of f on P1(Cv). Writing f (z) as∑d
j=0 cj z

j ∈ k[z], so cd ∈ k∗, there is a finite set Ef containing all the infinite places
of k such that for every v ∈ Mk \ Ef , |cd |v = 1, |c0|v , . . . , |cd−1|v ≤ 1 and, moreover,
gf ,v = log max{1, | · |v} and μf ,v = δScan,v on P1(Cv).

Recall that an embedding of k in Cv is fixed for each v ∈ Mk . The Call–Silverman
f -canonical height of an effective k-divisor Z on P1(k) supported by k is

0 ≤ ĥf (Z) :=
∑
v∈Mk

Nv

∑
z∈k:p(z)=0(degz p)gf ,v(z)

deg p
(3.7)

= hnv(Z)+
∑
v∈Ef

Nv

∑
z∈k:p(z)=0(degz p)(gf ,v(z)− log max{1, |z|v})

deg p
,

where p ∈ k[z] is a representative of Z (so deg p > 0) and the naive height

hnv(Z) :=
∑
v∈Mk

Nv

∑
z∈k:p(z)=0(degz p) log max{1, |z|v}

deg p

of Z is in fact a finite sum by a standard argument involving the ramification theory of
valuations (or [21, Lemma 2.3]). For every v ∈ Mk , setting ap := p(deg p)/(deg p)! ∈ k∗
(i.e., ap is the coefficient of the monomial of p having the maximal degree deg p), we
have log |p(·)|v = ∑

z∈k:p(z)=0(degz p) log | · −z|v + log |ap|v on A1(Cv), integrating
both sides of which against μf ,v over P1(Cv), also by (3.6), we have∫

P1(Cv)
log |p|vμf ,v =

∑
z∈k:p(z)=0

(degz p)
∫
P1(Cv)

log |z− S ′|vμf ,v(S ′)+ log |ap|v

=
∑

z∈k:p(z)=0

(degz p)gf ,v(z)− (deg p) · log |cd |v
d − 1

+ log |ap|v .

Consequently, also by the product formula property of k, the defining equality (3.7) of
ĥf (Z) is rewritten as the Mahler-type formula

ĥf (Z) =
∑
v∈Mk

Nv

∫
P1(Cv)

log |p|vμf ,v

deg p
(3.7′)

(cf. [21, (1.1)]). For more details on canonical heights on P1, see [1, 2, 9, 13]. For the
treatment of effective divisors rather than Galois conjugacy classes, which are effective
divisors represented by irreducible polynomials, see [21].

3.3. Proofs of Theorems 2 and 3. LetK be an algebraically closed field of characteristic
0 that is complete with respect to a non-trivial and non-archimedean absolute value | · |.
Let f ∈ K[z] be a polynomial of degree d > 1, and fix m ∈ N.

The following is a non-archimedean counterpart to Lemma 2.1.
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LEMMA 3.1. We have

(f n)(m) = ((eO(1) · dn)m +O(d(m−1)n)) · f n as n → ∞ (2.1′)

on I∞(f ) \ ⋃
n∈N∪{0} f−n(C(f )) locally uniformly. Moreover, for every a ∈ K , the family

((log |(f n)(m) − a|)/(dn −m)− log max{1, | · |})n of δScan-subharmonic functions on P1

is locally uniformly bounded from above on P1 and

lim
n→∞

(
log |(f n)(m) − a|

dn −m
− gf

)
= 0 (2.2′)

on I∞(f ) \ ⋃
n∈N∪{0} f−n(C(f )) locally uniformly.

Proof. Fixing r � 1, there is a (rigid) biholomorphism w = ψ(z) from P1 \ {gf ≤ r}
to P1 \ {|w| ≤ er }, which is called a (non-archimedean) Böttcher coordinate near ∞
associated to f , such that ψ(f (z)) = ψ(z)d on P1 \ {gf ≤ r} (see Rivera-Letelier [26,
the proof of Proposition 3.3(ii)]). Then ψ(∞) = ∞ and ψ ′ �= 0 on P1 \ {gf ≤ r}. By a
computation similar to that in the proof of Lemma 2.1, we have

(f n)′

f n
(z) = dn · (1 +O(ψ(z)−dn))ψ

′

ψ
(z) as n → ∞ (2.3′)

on K \ {gf ≤ r} uniformly.
For any simple domainD � I∞(f ) ∩ A1 and anyM ∈ N ∪ {0} so large that fM(D) ⊂

P1 \ {gf ≤ r}, from (2.3′), we also have

(f n)′

f n
= dn−M · ψ

′

ψ
◦ fM · (fM)′ + o(1) as n → ∞

on D ∩ P1 uniformly. Now fix m ∈ N. Then noting that, by the definition of a simple
domain, there is 0 < ε � 1 such that B(z, ε) ⊂ D ∩ P1 for any z ∈ D ∩ P1, an induction
which is similar to that in the proof of Lemma 2.1 and involves the (non-archimedean)
Cauchy estimate for (rigid) analytic functions on those disks B(z, ε) yields

(f n)(m)

f n
=

(
dn−M · ψ

′

ψ
◦ fM · (fM)′

)m
+O(d(m−1)n) as n → ∞ (2.4′)

onD ∩ P1 uniformly. If in additionD� I∞(f )\ ⋃
n∈N∪{0} f−n(C(f )), so infD |(ψ ′/ψ)◦

fM · (fM)′| > 0, then this (2.4′) yields the asymptotic estimate (2.1′) on D ∩ P1 uni-
formly, and in turn onD uniformly by the continuity of |(f n)(m)/f n| onD and the density
of P1 in P1.

Fix also a∈K . The locally uniform convergence (2.2′) on I∞(f )\ ⋃
n∈N∪{0} f−n(C(f ))

follows from the estimate (2.1′). In particular, for R � 1, letting SR ∈ [0, ∞] \ P1 be the
point in P1 \ P1 induced by the (constant sequence of the)K-closed disk B(0, R), we have
the convergence (2.2′) at S = SR , and in turn, by the maximum principle for subharmonic
functions (cf. [3, Proposition 8.14]), the family (log |(f n)(m) − a|/(dn −m))n is
uniformly bounded from above on P1 \ U(−−−→SR∞) (whose boundary is {SR}). Similarly,
for R � 1, noting that log |(f n)(m)/f n| is a subharmonic function on U(

−−−→SR∞) (whose
boundary is {SR}), by the maximum principle for subharmonic functions (and (3.5)),
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we have

log |(f n)(m)|
dn −m

− log max{1, | · |} ≤
(

log |f n|
dn −m

+O(nd−n)
)

− log max{1, | · |}
= gf − log max{1, | · |} +O(nd−n) = O(nd−n) as n → ∞

on U(
−−−→SR∞) uniformly. Hence the family

((log |(f n)(m) − a|)/(dn −m)− log max{1, | · |})n
is locally uniformly bounded from above on P1.

Fix also a ∈ K . By the second and the last assertions in Lemma 3.1, a compactness
principle for a family of δScan -subharmonic functions on P1 (cf. [3, Proposition 8.57], [14,
Proposition 2.18]) yields a sequence (nj ) in N tending to ∞ as j → ∞ and a function
φ = φa : P1 → R ∪ {−∞} such that φ + (gf − log max{1, | · |}) is a δScan -subharmonic
function on P1 (so, in particular, φ + gf is subharmonic on A1) and that

φ = lim
j→∞

(
log |(f nj )(m) − a|

dnj −m
− gf

)
(

= lim
j→∞

(
log |(f nj )(m) − a|

dnj −m
− log max{1, | · |}

)
−(gf − log max{1, | · |})

)
on P1 \P1.

Then, by (2.2′), we have φ ≡ 0 on I∞(f ) \ P1, and in turn

φ ≡ 0 on I∞(f ) ∪ J(f )

by J(f ) = ∂I∞(f ) and the continuity of φ on any closed interval in P1, and then
φ(= φ + gf ) ≤ 0 on K(f ) by the maximum principle for subharmonic functions.

Let us also show that

lim sup
n→∞

∫
P1 log |(f n)(m) − a|μf

dn −m
≤ 0, (3.8)

which will be used in the proof of Theorem 3 (but not in that of Theorem 2); indeed,

lim sup
j→∞

∫
P1 log |(f nj )(m) − a|μf

dnj −m
≤ lim sup

j→∞
sup
J(f )

log |(f nj )(m) − a|
dnj −m

= lim sup
j→∞

sup
J(f )

(
log |(f nj )(m) − a|

dnj −m
− log max{1, | · |} + log max{1, | · |})

)

≤ sup
J(f )

((φ + gf − log max{1, | · |})+ log max{1, | · |}) = sup
J(f )

(φ + gf ) = 0,

where the first inequality is by supp μf =: J(f ), and the second one is by the conti-
nuity of log max{1, | · |} on J(f ) and a version of Hartogs’s lemma for a sequence of
δScan -subharmonic functions on P1 ([3, Proposition 8.57], [14, Proposition 2.18]).

Proof of Theorem 2. We continue the above argument. Suppose that the open subset
{φ < 0} is non-empty. Then since φ ≡ 0 on I∞(f ), there is a Berkovich Fatou component
U of f other than I∞(f ) (so U � A1) such that U ∩ {φ < 0} �= ∅, and then ∂U is a
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singleton, say {S0}, in P1 \ P1 (see [24, Lemma 2.1]). Moreover,

φ ≡ 0 on ∂U ⊂ J(f ).

Now set

ψ :=
{
φ on U

0 on P1 \ U : P1 → R≤0 ∪ {−∞},

so in particular that φ ≤ ψ on P1, and we claim that the function ψ + gf is domination
subharmonic on A1, that is, ψ + gf is upper semicontinuous and �≡ −∞ on A1 and, for
every harmonic function h on a simple domain W � A1, if ψ + gf ≤ h on ∂W , then
ψ + gf ≤ h on W (for the domination subharmonicity, which is in fact equivalent to
the subharmonicity, of a function on an open subset in P1, see [3, §8.2]); indeed, the
function ψ + gf is not only upper semicontinuous on A1 (since so is φ + gf on A1

and φ ≡ 0 on ∂U ) but also subharmonic on A1 \ ∂U (since so are φ + gf and gf on
U and A1 \ U , respectively). Pick a harmonic function h on a simple domain W � A1

and suppose that ψ + gf ≤ h on ∂W , or equivalently, that ψ + gf − h ≤ 0 on ∂W .
Then, noting that h extends continuously on W , ψ + gf − h is upper semicontinuous
on W so attains the maximum, say M , at some point S ∈ W . If S ∈ W \ ∂U , then
for any simple domain W ′ � W \ ∂U containing S, the (domination) subharmonicity
of ψ + gf − h on W \ ∂U yields (ψ + gf − h)(S) ≤ ∫

∂(W ′)(ψ + gf − h)μS ,W ′ , where
μ ·,W ′ is the Poisson–Jensen (or harmonic) measure associated to W ′ (for details on
Poisson’s integrals and Poisson–Jensen (or harmonic) measures, see [2, §7.3], [28, §3]).
Then ψ + gf − h attains the maximumM at any point in ∂(W ′), and in turn at some point
in (∂W) ∪ (∂U) (increasing W ′ to the component of W \ ∂U containing S and recalling
the upper semicontinuity of ψ + gf − h on A1). If S ∈ W ∩ ∂U , then we still have (ψ +
gf − h)(S) = (φ + gf − h)(S) ≤ ∫

∂W
(φ + gf − h)μS ,W ≤ ∫

∂W
(ψ + gf − h)μS ,W by

ψ = φ(= 0) on ∂U , the (domination) subharmonicity of φ + gf − h on A1, and φ ≤ ψ

on P1 (so on ∂W ). Then ψ + gf − h attains the maximum M at some (in fact any) point
in ∂W . Hence M ≤ 0, that is, ψ + gf ≤ h on W , and the claim holds. Once the claim is
at our disposal, also noting that ψ + gf ≡ gf near ∞, we obtain the probability Radon
measure

�ψ + μf = �(ψ + gf )+ δ∞ on P1.

Suppose now that f has no potentially good reductions. Then μf (∂U)(= μf ({S0})) = 0.
We claim that �ψ = 0 on P1; for, by the definition of ψ , we have �ψ = 0 on
P1 \ U (or equivalently �ψ + μf = μf on P1 \ U ). This with U ⊂ P1 \ supp μf
also yields (�ψ + μf )(U) = 1 − (�ψ + μf )(P1\ U) = 1 − μf (P1\ U) = μf (U) =
μf (U)+ μf (∂U) = 0 + 0 = 0. Hence, recalling that �ψ + μf is a probability Radon
measure on P1, we conclude that�ψ + μf = μf on P1, that is, the claim holds. Once the
claim is at our disposal, we must have ψ ≡ 0 on P1 \ P1, which contradicts U ∩ {φ < 0}
being non-empty and open in P1.
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We have seen that φ ≡ 0 on P1 under the no potentially good reductions condition on f .
Then the convergence (1.3) follows from the equality

�

(
log |(f n)(m) − a|

dn −m
− gf

)
= ((f n)(m))∗δa

dn −m
− μf on P1

and continuity of the Laplacian �.

Proof of Theorem 3. Let k be a product formula field of characteristic 0 and let f ∈ k[z] be
a polynomial of degree d > 1. Recall that, writing f (z) as

∑d
j=0 cj z

j ∈ k[z], so cd ∈ k∗,
there is a finite subset Ef in Mk containing all the infinite places of k such that for every
v ∈ Mk \ Ef ,

|cd |v = 1, |c0|v , |c1|v , . . . , |cd−1|v ≤ 1

and, moreover, gf ,v= log max{1, | · |v} and μf ,v=δScan,v on P1(Cv), regarding f ∈Cv[z].
Fix m ∈ N and a ∈ k. For every n ∈ N, (f n)(m) ∈ (Z[c0, . . . , cd ])[z] by induction. By

the product formula property of k, there is an at most finite (and possibly empty) subset
Ea inMk such that, for every v ∈ Mk \ Ea , |a|v ∈ {0, 1}. Then, for every n ∈ N and every
v ∈ Mk \ (Ef ∪ Ea), we have∫

P1(Cv)
log |(f n)(m) − a|vμf ,v ≤

∫
P1(Cv)

log max{|(f n)(m)|v , |a|v}δScan,v

= log max
{

sup
z∈OCv

|(f n)(m)(z)|v , |a|v
}

≤ log max{|c0|v , . . . , |cd |v , |a|v} = log 1 = 0

(see (3.1) and (3.2) for the first equality), which with the second assertions in Lemmas 3.1
and 2.1 (for finite and infinite v ∈ Mk , respectively) implies that

sup
v∈Mk

sup
n∈N

Nv

∫
P1(Cv)

log |(f n)(m) − a|vμf ,v

dn −m
< ∞.

Now by the Mahler-type formula (3.7′), Fatou’s lemma, and (3.8), we have

lim sup
n→∞

ĥf ([(f n)(m) = a]) ≤
∑
v∈Mk

lim sup
n→∞

Nv

∫
P1(Cv)

log |(f n)(m) − a|vμf ,v

dn −m
≤ 0,

which with the non-negativity (3.7) of ĥf yields the small (gf ,v)v∈Mk
-heights property

(1.4) of the sequence ([(f n)(m) = a])n of effective k-divisors on P1(k).
We note that deg[(f n)(m) = a] = dn −m → ∞ as n → ∞ and that, whenever v ∈Mk

is infinite, we have Cv ∼= C. Suppose now that k is a number field and that a ∈ k∗,
and choose an infinite place v ∈ Mk of k. Then from the equidistribution (1.2) of
(((f n)(m))∗δa/(dn −m))n towards μf ,v , which has no atoms, on P1(Cv) ∼= P1(C), we
have supw∈P1(k):(f n)(m)(w)=a degw((f

n)(m)) = o((deg[(f n)(m) = a])) as n → ∞, so in
particular the small diagonal property∑

w∈P1(k):(f n)(m)(w)=a
(degw((f

n)(m)))2 = o((deg[(f n)(m) = a])2) as n → ∞

https://doi.org/10.1017/etds.2020.125 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2020.125


3802 Y. Okuyama and G. Vigny

of ([(f n)(m) = a])n. Now the uniform asymptotically (gf ,v)v∈Mk
-Fekete configuration

property (1.5) of ([(f n)(m) = a])n holds (see [22, Theorem 1]), so in particular the adelic
equidistribution (1.6) holds.

4. Proof of Theorem 4
Let us first show a slightly more general equidistribution statement (1.7′) under the
normalization (4.1) below. Let f be a Hénon-type polynomial automorphism of C2 of
degree d > 1 normalized as

I+ = {[0 : 0 : 1]} and I− = {[0 : 1 : 0]}. (4.1)

Then the function

(z, w) → g+(z, w)− log max{1, |z|} on C2

extends pluriharmonically to an open neighborhood of L∞ \ I+ in P2 [11, Theorem 6.1].
Moreover, for every n ∈ N, writing f n as

f n = (Pn, Qn) ∈ (C[z, w])2,

we have deg Pn = degz Pn = dn > deg Qn [11, Proposition 5.11], and then

0 < g+ = d−n log |Pn| +O(d−n) and Qn = o(Pn) as n → ∞ (4.2)

on B+ ∩ C2 locally uniformly, recalling also that limn→∞ f n = [0 : 1 : 0] on B+ locally
uniformly.

Fix a 2 × 2 matrix A = (
a1 a2
a3 a4

) ∈ M(2, C) satisfying the condition

a4 �= 0, (4.3)

so that, for every n ∈ N,

det(D(f n)− A) = Jf n − a1∂wQn − a4∂zPn + a3∂wPn + a2∂zQn + det A

= −a1∂wQn − a4∂zPn + a3∂wPn + a2∂zQn + J nf + det A ∈ C[z, w]
(4.4)

is indeed of degree dn − 1.

LEMMA 4.1. For each j ∈ {z, w},
∂jPn = 2dnPn∂jg+ +O(1) and ∂jQn = o(dnPn) as n → ∞ (4.5)

on B+ ∩ C2 locally uniformly.

Proof. Pick any open concentric bidisks D � D′ � B+ ∩ C2, and fix j ∈ {z, w}. Let us
write D, D′ as D1 ×D2, D′

1 ×D′
2, respectively.

By the first half of (4.2), we have infD′ |Pn| > 0 if n � 1. We claim that

∂jg
+ = d−n∂j log |Pn| +O(d−n) = 1

dn

∂jPn

2Pn
+O(d−n) as n → ∞ (4.6)

on D uniformly; indeed, for every z ∈ D1, using Poisson’s integral of the function
w → g+(z, w)− d−n log |Pn(z, w)| on ∂D′

2, the first half of (4.2) yields the asymptotic
estimate (4.6) on {z} ×D2 uniformly, and moreover, the implicit constant in O depends
only on D. Hence the claim holds. In particular, the first half of (4.5) holds.
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Similarly, using the second half of (4.2) twice and Cauchy’s integral of the function
Qn/Pn on ∂D′

1 × ∂D′
2, we also have

∂jQn

Pn
= Qn∂jPn

P 2
n

+ ∂j

(
Qn

Pn

)
= o(1) · ∂jPn

Pn
+ o(1) as n → ∞

on D uniformly, which together with (4.6) and supD |∂jg+| < ∞ yields

∂jQn

Pn
= o(dn)+ o(1) = o(dn) as n → ∞

on D uniformly. Hence the second half of (4.5) also holds.

By the pluriharmonicity of g+ on B+, the function a4∂zg
+ − a3∂wg

+ is holomorphic
on B+ ∩ C2. Set

Y := {(z, w) ∈ B+ ∩ C2 : (a4∂zg
+ − a3∂wg

+)(z, w) = 0}.
Recall the assumption that a4 �= 0.

LEMMA 4.2. Y is an analytic hypersurface in B+ ∩ C2, no irreducible component of
which is horizontal, that is, {w = w0} for some w0 ∈ C.

Proof. Let us first show that Y is not equal to B+ ∩ C2. Suppose to the contrary
that a4∂zg

+ − a3∂wg
+ ≡ 0 on B+ ∩ C2. Then, letting L be the complex affine line

w = −(a3/a4)z in C2, there is c ∈ R such that g+ ≡ c on L ∩ B+. On the other
hand, since the projective line L in P2 intersects L∞ at [0 : 1 : −a3/a4] ∈ L∞ \ I+,
near which g+(z, w)− log max{1, |z|} extends pluriharmonically, we must have c =
g+(z, w) = log max{1, |z|} +O(1) → ∞ as L ∩ B+ � (z, w) → [0 : 1 : −a3/a4]. This
is a contradiction. Hence the former assertion holds.

The latter assertion is shown similarly, noting that the closure of any horizontal line
intersects L∞ at [0 : 1 : 0] ∈ L∞ \ I+.

Recall the computation (4.4) of the polynomial det(D(f n)− A) ∈ C[z, w] of degree
dn − 1. For every n ∈ N, set

φn = φn[A] := log |det(D(f n)− A)|
dn − 1

,

which is a plurisubharmonic function on C2 and satisfies ddcφn = [det(D(f n)− A)]/
(dn − 1) as currents on C2 by the Poincaré–Lelong formula.

LEMMA 4.3. We have φn = g+ +O(nd−n) as n → ∞ on B+ ∩ (C2 \ Y ) locally uni-
formly. Moreover, the family (φn)n is locally uniformly bounded from above on C2.

Proof. First, pick any open bidisk D � B+ ∩ (C2 \ Y ). Then by (4.5) and the first half of
(4.2), we have

a1∂wQn + a4∂zPn − a3∂wPn − a2∂zQn

= 2dnPn · (a4∂zg
+ − a3∂wg

+ + o(1)) as n → ∞
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on D uniformly, and then using the first half of (4.2) again and D � B+ ∩ (C2 \ Y ),
we have

φn = 1
dn − 1

(
log |Pn| + log

∣∣∣∣2dn(a4∂zg
+ − a3∂wg

+ + o(1))− J nf + det A

Pn

∣∣∣∣
)

= 1
dn − 1

log |Pn| +O(nd−n) = g+ +O(nd−n) as n → ∞

on D uniformly. Hence the former assertion holds.
Fix (z0, w0) ∈ C2. By L∞ \ I+ ⊂ B+ and the second half of Lemma 4.2, we have

{|z− z0| = r} × {|w − w0| = ε} ⊂ B+ ∩ (C2 \ Y ) for r � 1 and 0 < ε � 1, so that by
the former assertion and the maximum principle for the plurisubharmonic function φn on
C2, we have

sup
{|z−z0|≤r}×{|w−w0|≤ε}

φn ≤
(

sup
{|z−z0|=r}×{|w−w0|=ε}

g+)
+O(nd−n) as n → ∞.

Hence the latter assertion also holds.

Let us see

lim
n→∞

[det(D(f n)− A)]
dn − 1

= T + on P2 (1.7′)

as currents. First, let S̃ = limj→∞[det(D(f nj )− A)]/(dnj − 1) be any limit point, which
is also a positive closed (1, 1)-current on P2 of mass 1, of the sequence ([det(D(f n)−
A)]/(dn − 1))n of positive closed (1, 1)-currents on P2 of mass 1. On the other hand, by
Lemma 4.3 and the compactness principle for plurisubharmonic functions on a domain
in CN , taking a subsequence of (nj ) if necessary, there is a plurisubharmonic function φ
on C2 such that φ = limj→∞ φnj in L1

loc(C
2, m4), where m4 is the Lebesgue measure

on C2. Then we have S̃|C2 = ddcφ on C2 and, by the first half of Lemma 4.3, the
plurisubharmonicity of φ on C2, and the pluriharmonicity of g+ on B+, we also have
φ ≡ g+ onB+ ∩ C2. Hence supp(S̃|C2) ⊂ K+. Next, let S be the trivial extension of ddcφ
to P2 across L∞. It is a positive closed (1, 1)-current on P2 (cf. [11, Theorem 2.7]) and
supported by K+ = K+ ∪ I+. Then, by the uniqueness of T + mentioned above among
such currents, there is c ≥ 0 such that S = c · T + on P2. Moreover, for the current of
integration [L] along any projective line L ⊂ P2 \ I+ other than L∞ and passing through
I−, if R � 1, then we have φ ≡ g+ on {(z, w) ∈ C2 : ‖(z, w)‖ > R − 1} ∩ L ⊂ B+, and
in turn, recalling the definition of S, T + and using Stokes’s formula, we have

c − 1 =
∫
P2
(S − T +) ∧ [L] =

∫
{‖(z,w)‖≤R}

ddc(φ − g+) ∧ [L]

=
∫

{‖(z,w)‖≤R}∩L
ddc(φ − g+) = 0

(cf. [11, Proof of Lemma 6.3]). Hence S = T + on P2. Consequently, S|C2 = T +|C2 =
ddcφ = S̃|C2 on C2, and then S̃ ≥ S on P2 by their construction. Since both S̃, S are of
mass 1, we conclude that S̃ = S = T + on P2. Hence (1.7′) holds.
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Proof of Theorem 4. Let f be a Hénon-type polynomial automorphism of C2 of degree
d > 1. Fix λ ∈ C∗, and set A = λI2 ∈ M(2, C). Then using the chain rule and the equi-
variance of T + under affine coordinate changes on C2, we can assume that f satisfies the
normalization (4.1), without loss of generality. Noting also thatA = λI2 satisfies condition
(4.3), the desired (1.7) as currents on P2 is nothing but (1.7′) as currents on P2 for this
A = λI2.
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