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In this paper, we are concerned with the existence of unbounded orbits of the
mapping

θ1 = θ + 2π +
1
ρ

µ(θ) + o(ρ−1),

ρ1 = ρ + c − µ′(θ) + o(1), ρ → ∞,

where c is a constant and µ(θ) is 2π-periodic. Assume that c �= 0, that µ(θ) is
non-negative (or non-positive) and that µ(θ) has finitely many degenerate zeros in
[0, 2π]. We prove that every orbit of the given mapping tends to infinity in the future
or in the past for sufficiently large ρ. On the basis of this conclusion, we further prove
that the equation x′′ + f(x)x′ + V ′(x) + φ(x) = p(t) has unbounded solutions
provided that V is an isochronous potential at resonance and F (x)
(F (x) =

∫ x
0 f(s) ds) and φ(x) satisfy some limit conditions. Meanwhile, we also

obtain the existence of 2π-periodic solutions of this equation.

1. Introduction

This paper deals with a Liénard equation of the form

x′′ + f(x)x′ + V ′(x) + g(x) = p(t), (1.1)

where f, g ∈ C(R), V ∈ C2(R) and p ∈ C(R) is 2π-periodic. We also assume
that g is locally Lipschitz. The function V is a 2π/n-isochronous potential, i.e. all
the solutions of x′′ + V ′(x) = 0 are 2π/n-periodic, with n ∈ N; according to [3]
(see also [12]), V ∈ C2 is 2π/n-isochronous, provided its graph is obtained by
horizontally shearing the graph of V (x) = 1

2nx2. We also recall that (see [2]) the
origin in R

2 is not an isochronous centre for z′ = A(z) of period ω/k, k ∈ N, if and
only if a perturbed system of the form z′ = A(z) + µα(t, z, µ) has an ω-periodic
solution, for |µ| sufficiently small. For more examples, together with comments and
remarks, we refer the reader to [3].
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In the case when f ≡ 0, a result on the existence of 2π-periodic solutions for an
equation of the form (1.1) has been proved in [3].

In the present paper, in the general case when f is not identically zero, we tackle
a problem which has been widely studied in the last few years for some particular
cases of equation (1.1), i.e. the question of the coexistence of 2π-periodic solutions
and unbounded solutions. The situation we deal with is a generalization of the
well-known resonant situation where

V ′(x) = ax+ − bx−, (1.2)

with a, b ∈ R such that 1/
√

a + 1/
√

b = 2/n, n ∈ N.
Results on the existence of 2π-periodic solutions when V satisfies (1.2) and

f ≡ 0 can be found, among others, in [6, 7, 11, 13, 15]. More recently, Fabry and
Mawhin [9] generalized previous results and proved the coexistence of 2π-periodic
and unbounded solutions in the case when f ≡ 0. On the other hand, a result on the
existence of 2π-periodic solutions in the case when f is not identically zero is given
in [4]. The results in [4] are based on a detailed study of the Poincaré map associ-
ated with a first-order system in R

2 obtained from the given second-order equation
via some suitable change of variables. More precisely, an asymptotic expression for
the Poincaré map has the form

θ1 = θ0 + 2π + 2πaΣ1(θ0)ρ−1
0 + o(ρ−1

0 ),
ρ1 = ρ0 − 2πaΣ2(θ0) + o(1),

}
(1.3)

for sufficiently large ρ0.
In the above formula, setting F (x) :=

∫ x

0 f(s) ds, the functions Σ1 and Σ2 are
defined by

Σ1(θ) =
n

π

[
g(+∞)

a
− g(−∞)

b

]
− 1

2π

∫ 2π

0
p(t)ψ(t + θ) dt,

Σ2(θ) =
n

π
[F (+∞) − F (−∞)] + Σ′

1(θ),

where F (±∞) and g(±∞) are the limits of F and g at infinity, respectively, and ψ
is the 2π-periodic solution of x′′ + ax+ − bx− = 0 satisfying ψ(0) = 0, ψ′(0) = 1.
It was proved in [4] that x′′ + f(x)x′ + ax+ − bx− + g(x) = p(t) has at least
one 2π-periodic solution, provided that either Σ1 or Σ2 is of constant sign. In the
case when the zeros of the function Σ1 are non-degenerate and the zeros of the
functions Σ1, Σ2 are different and the signs of Σ2 at the zeros of Σ1 in [0, 2π/n)
do not change or change more than twice, the same conclusion was also obtained
in [4]. The proof is performed using the asymptotic expansion of the Poincaré
mapping; indeed, it is possible to guarantee the applicability of the Brouwer fixed-
point theorem and obtain the existence of at least one 2π-periodic solution. For
more recent developments on this subject, we refer the reader to [7, 10].

Note that the technique based on the study of the asymptotic expansion of the
Poincaré map has been successfully applied by Alonso and Ortega in [1], where
(with minor changes) a development of the form (1.3) is examined. Alonso and
Ortega, assuming that the zeros of Σ1 are non-degenerate, construct a periodic
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function p such that all solutions of the equation

x′′ + ax+ − bx− = p(t) (1.4)

with large initial conditions are unbounded, provided that 1/
√

a+1/
√

b is a rational
number. This result disproves a conjecture that the existence of periodic solutions
of (1.4) may imply the boundedness of all solutions.

In the more general situation when f and g are not identically zero and when (1.2)
holds, it was proved in [17] that all solutions with large initial values are unbounded
provided that the function Σ1 is of constant sign. When Σ1 has non-degenerate
zeros, we can prove (arguing as in [1]) the existence of unbounded solutions as well.
For related results, we refer the reader to [5, 8, 16,18] and the references therein.

In the present paper we present a two-fold generalization of the above quoted
results. On the one hand, we consider an isochronous potential V which gener-
alizes (1.2) (see assumptions (1)–(4) in § 3); on the other hand, we examine the
situation when Σ1 is non-negative (or non-positive) and all zeros of Σ1 are degen-
erate. More precisely, we study the dynamics of a class of mappings defined on the
plane, which have an asymptotic expression of the form

θ1 = θ + 2π +
2π

aρ
Σ1(θ) + o(ρ−1),

ρ1 = ρ + c − 2π

a
Σ′

1(θ) + o(1), c ∈ R,

⎫⎪⎪⎬
⎪⎪⎭ (1.5)

where ρ → +∞.
This class of maps includes the Poincaré maps of equations of the form (1.1)

(cf. (1.3)).
For the study of the dynamics of (1.5), we observe that if Σ1(θ) � 0 (or Σ1(θ) �

0), θ ∈ [0, 2π] and the zeros of Σ1 are degenerate, then the methods in [1,17] cannot
be applied. However, we can still prove the existence of orbits which tend to infinity
in the future or in the past according to the sign of c. On the basis of this conclusion,
we deal with the unboundedness of solutions of (1.1). Meanwhile, we can still prove
the existence of periodic solutions of (1.1).

In § 2 we study the behaviour of a one-to-one continuous mapping from R
2 to R

2

and give sufficient conditions (proposition 2.1) which guarantee the unboundedness
of its orbits.

In § 3 we show that, under conditions (1)–(4), proposition 2.1 is applicable to the
Poincaré map associated with (1.1). This enables us to prove our main result (the-
orem 3.5), where we obtain the coexistence of 2π-periodic solutions and unbounded
solutions to (1.1).

2. Unbounded orbits of planar mappings

In this section we will study the behaviour of the iterates of a one-to-one continuous
mapping P : R

2 → R
2; we assume that there exist c ∈ R, µ ∈ C2(S1), h1, h2 ∈

C((0, +∞) × S1) such that the lift of P can be expressed in the form

P :

⎧⎨
⎩

θ1 = θ + 2π +
1
ρ
µ(θ) + h1(ρ, θ),

ρ1 = ρ + c − µ′(θ) + h2(ρ, θ).
(2.1)
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Moreover, we suppose that

h1(ρ, θ) = o

(
1
ρ

)
, h2(ρ, θ) = o(1), ρ → +∞. (2.2)

Given a point (ρ0, θ0) we denote by {(ρj , θj)} the orbit of the mapping P through
the point (ρ0, θ0), i.e.

P (ρj , θj) = (ρj+1, θj+1).

Proposition 2.1. Assume that condition (2.2) is fulfilled. Then the following con-
clusions hold:

(a) if c > 0 and µ is non-negative (or non-positive) and has finitely many zeros
in [0, 2π], all of which are degenerate, then there exists R0 > 0 such that for
ρ0 � R0, the orbit {(ρj , θj)} exists in the future and satisfies

lim
j→+∞

ρj = +∞;

(b) if c < 0 and µ is non-negative (or non-positive) and has finitely many zeros
in [0, 2π], all of which are degenerate, then there exists R0 > 0 such that for
ρ0 � R0, the orbit {(ρj , θj)} exists in the past and satisfies

lim
j→−∞

ρj = +∞.

We observe that the assumption on the degeneracy of the zeros of µ implies that
the methods in [1, 17] cannot be applied; to overcome this difficulty we develop an
approximation method.

We deal only with the case µ(θ) � 0, θ ∈ [0, 2π]; the case µ(θ) � 0, θ ∈ [0, 2π]
can be handled similarly.

Let ε > 0 be a sufficiently small constant. Let

ν(θ) = µ(θ) + ε for all θ ∈ [0, 2π].

Obviously, ν(θ) > 0 and ν′(θ) = µ′(θ), for every θ ∈ [0, 2π]. Therefore, (2.1) can be
written as

P :

⎧⎨
⎩

θ1 = θ + 2π +
1
ρ
ν(θ) + h1(ρ, θ) − ε

ρ
,

ρ1 = ρ + c − ν′(θ) + h2(ρ, θ).
(2.3)

Let
1
ρ

= δr,

where δ > 0 is a parameter to be determined later. Under this transformation, the
mapping P becomes

P̄ :

{
θ1 = θ + 2π + δrν(θ) + h11(r, θ, δ) − εδr,

r1 = r + δr2(−c + ν′(θ)) + δr2h21(r, θ, δ),
(2.4)
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where

h11(r, θ, δ) = h1(δ−1r−1, θ),

h21(r, θ, δ) = −h2(δ−1r−1, θ) +
[c − ν′(θ) + h2(δ−1r−1, θ)]2

δ−1r−1 + c − ν′(θ) + h2(δ−1r−1, θ)
.

From condition (2.2) we deduce that

lim
δ→0+

δ−1r−1h11(r, θ, δ) = lim
δ→0+

δ−1r−1h1(δ−1r−1, θ) = 0, lim
δ→0+

h21(r, θ, δ) = 0,

(2.5)
uniformly for θ ∈ [0, 2π] and sufficiently small r.

We observe that in the asymptotic expression (2.4) for P̄ the term −c + ν′(θ) in
general does not have constant sign; the next change of variables transforms this
term to one with definite sign.

Towards this aim, consider the system

θ′ = rν(θ), r′ = r2ν′(θ), r > 0, (2.6)

whose first integral is

I(r, θ) =
ν(θ)

r
.

Therefore, the orbits of (2.6) can be expressed in the form

Γh : I(r, θ) =
ν(θ)

r
= h,

where h is an arbitrary constant. Let (r(t), θ(t)) be the solution of (2.6) lying on the
curve Γh. Obviously, (r(t), θ(t)) is a periodic solution. Denote by T (h) the minimal
period of (r(t), θ(t)); from the first equation in (2.6) we deduce that

T (h) = h

∫ 2π

0

dθ

ν2(θ)
= dh,

where

d =
∫ 2π

0

dθ

ν2(θ)
.

Now let us introduce the frequency function

ω(h) =
2π

T (h)
=

2π

dh

and the function [14]

K(r, θ) =
ν(θ)

r

∫ θ

0

ds

ν2(s)
.

Immediately we see that the quantity K(r, θ) denotes the time needed for a solution
(r(t), θ(t)) to go from the vertical axis θ = 0 to the point (r, θ).

Moreover, let us define

τ(θ) = ω(I(r, θ))K(r, θ) =
2π

d

∫ θ

0

ds

ν2(s)
;
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the function τ satisfies

τ(0) = 0, τ(θ + 2π) = τ(θ) + 2π.

Now, let Ψ : R
+ × S1 → R

+ × S1 be defined by

Ψ : (r, θ) → (I, τ) = (I(r, θ), τ(θ)).

It is easy to check that the mapping Ψ is a bijective mapping. The inverse, Ψ−1, of
Ψ satisfies the relations

Ψ−1(I, τ) = (r, θ),

r(I, τ) =
ν(θ(τ))

I
,

2π

d

∫ θ(τ)

0

ds

ν2(s)
= τ.

Obviously, we have

θ(0) = 0, θ(τ + 2π) = θ(τ) + 2π.

Finally, let us consider the map

P̂ = Ψ ◦ P̄ ◦ Ψ−1 : (I, τ) → (I1, τ1) = P̂ (I, τ).

We are able to prove the following lemma.

Lemma 2.2. For every ε > 0, the mapping P̂ can be expressed in the form

P̂ :

{
τ1 = τ + 2π + δω(I) + δh12(I, τ, δ, ε),
I1 = I + δcν(θ(τ)) − εδν′(θ(τ)) + δh22(I, τ, δ, ε),

(2.7)

where h12 and h22 satisfy

lim
δ→0+

h12(I, τ, δ, ε) = 0, lim
δ→0+

h22(I, τ, δ, ε) = 0,

uniformly in τ ∈ R, for sufficiently large I.

Proof. Let us consider the asymptotic expansion of P̄ given in (2.4); under the
transformation Ψ−1(I, τ) = (r(I, τ), θ(τ)), relations (2.4) become

θ1 = θ(τ) + 2π + δr(I, τ)ν(θ(τ)) + h11(r(I, τ), θ(τ), δ) − εδr(I, τ),

r1 = r(I, τ) + δr2(I, τ)(−c + ν′(θ(τ))) + δr2(I, τ)h21(r(I, τ), θ(τ), δ).

}
(2.8)

Recalling that r(I, τ) = ν(θ(τ))/I, we may infer that

θ1 = θ(τ) + 2π +
δν2(θ(τ))

I
+ h11

(
ν(θ(τ))

I
, θ(τ), δ

)
− εδν(θ(τ))

I

r1 =
ν(θ(τ))

I
+

δν2(θ(τ))(−c + ν′(θ(τ)))
I2 +

δν2(θ(τ))
I2 h21

(
ν(θ(τ))

I
, θ(τ), δ

)
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.9)
From (2.9) we can deduce the asymptotic expression for (I1, τ1). Indeed, let us recall
that

I1 =
ν(θ1)

r1
, τ1 =

2π

d

∫ θ1

0

ds

ν2(s)
.

https://doi.org/10.1017/S030821050600062X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050600062X


Solutions to perturbed damped isochronous oscillators at resonance 21

Expanding ν(θ1), we get

ν(θ1) = ν(θ(τ)) +
δν′(θ(τ))ν2(θ(τ))

I
− εδν′(θ(τ))ν(θ(τ))

I
+ h̄11,

where h̄11 = h̄11(I, θ, δ, ε) is defined by

h̄11 = ν′(θ(τ))h11

(
ν(θ(τ))

I
, θ(τ), δ

)

+
∫ 1

0
(1 − s)ν′′

[
θ(τ) + s

δν2(θ(τ))
I

+ sh11

(
ν(θ(τ))

I
, θ(τ), δ

)
− sεδν(θ(τ))

I

]

×
[
δν2(θ(τ))

I
+ h11

(
ν(θ(τ))

I
, θ(τ), δ

)
− εδν(θ(τ))

I

]2

ds.

On the other hand, we have

1
r1

=
I

ν(θ(τ))(1 + δν(θ(τ))(−c + ν′(θ(τ)))/I + (δν(θ(τ))/I)h21(ν(θ(τ))/I, θ(τ), δ))

=
I

ν(θ(τ))
+ δ(c − ν′(θ(τ))) + δh̄21,

with h̄21 = h̄21(I, τ, δ, ε) defined by

h̄21 = −h21(ν(θ(τ))/I, θ(τ), δ)

+
δν(θ(τ))

I

[−c + ν′(θ(τ)) + h21(ν(θ(τ))/I, θ(τ), δ)]2

1 + (δν(θ(τ))/I)[−c + ν′(θ(τ)) + h21(ν(θ(τ))/I, θ(τ), δ)]
.

Therefore, we obtain

I1 = I + δcν(θ(τ)) + δν(θ(τ))h̄21(I, τ, δ, ε)

+
δ2(c − ν′(θ(τ)))

I
ν′(θ(τ))ν2(θ(τ))

+
δ2ν′(θ(τ))ν2(θ(τ))

I
h̄21(I, τ, δ, ε) − εδν′(θ(τ))

− εδ2(c − ν′(θ(τ)))
I

ν′(θ(τ))ν(θ(τ))

− εδ2ν′(θ(τ))ν2(θ(τ))
I

h̄21(I, τ, δ, ε)

+
I

ν(θ(τ))
h̄11(I, τ, δ, ε)

+ δ(c − ν′(θ(τ)))h̄11(I, τ, δ, ε) + δh̄11(I, τ, δ, ε)h̄21(I, τ, δ, ε),

which can be written as

I1 = I + δcν(θ(τ)) − εδν′(θ(τ)) + δh22(I, τ, δ, ε),
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where

h22(I, τ, δ, ε) = ν(θ(τ))h̄21(I, τ, δ, ε) +
δ(c − ν′(θ(τ)))

I
ν′(θ(τ))ν2(θ(τ))

+
δν′(θ(τ))ν2(θ(τ))

I
h̄21(I, τ, δ, ε)

− εδ(c − ν′(θ(τ)))
I

ν′(θ(τ))ν(θ(τ))

− εδν′(θ(τ))ν2(θ(τ))
I

h̄21(I, τ, δ, ε) +
I

δν(θ(τ))
h̄11(I, τ, δ, ε)

+ (c − ν′(θ(τ)))h̄11(I, τ, δ, ε) + h̄11(I, τ, δ, ε)h̄21(I, τ, δ, ε).

In what follows, we shall prove that, for every ε > 0, we have

lim
δ→0+

h22(I, τ, δ, ε) = 0, (2.10)

uniformly in τ ∈ [0, 2π] and sufficiently large I.
Indeed, from (2.5) and the fact that ν(θ) > 0, for θ ∈ [0, 2π], it follows that

lim
δ→0+

δ−1Ih11

(
ν(θ(τ))

I
, θ(τ), δ

)
= 0, lim

δ→0+
h21

(
ν(θ(τ))

I
, θ(τ), δ

)
= 0, (2.11)

uniformly in τ ∈ [0, 2π] and sufficiently large I. Furthermore, we have

lim
δ→0+

δ−1Ih̄11(I, τ, δ, ε) = 0, lim
δ→0+

h̄21(I, τ, δ, ε) = 0 (2.12)

for τ ∈ [0, 2π] and sufficiently large I. Hence, we may infer that

lim
δ→0+

h̄11(I, τ, δ, ε) = 0, lim
δ→0+

ν(θ(τ))h̄21(I, τ, δ, ε) = 0, (2.13)

and

lim
δ→0+

I

δν(θ(τ))
h̄11(I, τ, δ, ε) = 0, lim

δ→0+

δν′(θ(τ))ν2(θ(τ))
I

h̄21(I, τ, δ, ε) = 0, (2.14)

uniformly in τ ∈ [0, 2π] and for sufficiently large I. On the other hand, it is easy to
see that

lim
δ→0+

δ(c − ν′(θ(τ)))
I

ν′(θ(τ))ν2(θ(τ)) = 0, lim
δ→0+

h̄11(I, τ, δ, ε)h̄21(I, τ, δ, ε) = 0.

(2.15)
From (2.13), (2.14) and (2.15) we deduce that (2.10) holds.

Now we are in a position to prove the estimate on τ1. From the definition of τ1
we have

τ1 =
2π

d

∫ θ1

0

ds

ν2(s)
=

2π

d

∫ α

0

ds

ν2(s)
,

where

α = 2π + θ(τ) +
δν2(θ(τ))

I
+ h11

(
ν(θ(τ))

I
, θ(τ), δ

)
− εδν(θ(τ))

I
.
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Hence,

τ1 =
2π

d

∫ 2π

0

ds

ν2(s)
+

2π

d

∫ 2π+θ(τ)

2π

ds

ν2(s)
+

2π

d

∫ 2π+θ(τ)+δν2(θ(τ))/I

2π+θ(τ)

ds

ν2(s)

+
2π

d

∫ 2π+θ(τ)+δν2(θ(τ))/I+h11(ν(θ(τ))/I,θ(τ),δ)−εδν(θ(τ))/I

2π+θ(τ)+δν2(θ(τ))/I

ds

ν2(s)
. (2.16)

From the definition of d and of θ(τ), we obtain

2π

d

∫ 2π

0

ds

ν2(s)
= 2π,

2π

d

∫ 2π+θ(τ)

2π

ds

ν2(s)
= τ. (2.17)

Moreover, we have

2π

d

∫ 2π+θ(τ)+δν2(θ(τ))/I

2π+θ(τ)

ds

ν2(s)

=
2π

d

∫ 2π+θ(τ)+δν2(θ(τ))/I

2π+θ(τ)

ds

ν2(θ(τ))

+
2π

d

∫ 2π+θ(τ)+δν2(θ(τ))/I

2π+θ(τ)

(ν(θ(τ)) + ν(s))(ν(θ(τ)) − ν(s))
ν2(s)ν2(θ(τ))

ds

=
2πδ

dI
+ δh̄12(I, τ, δ, ε), (2.18)

where

h̄12(I, τ, δ, ε) =
2π

dδ

∫ 2π+θ(τ)+δν2(θ(τ))/I

2π+θ(τ)

(ν(θ(τ)) + ν(s))(ν(θ(τ)) − ν(s))
ν2(s)ν2(θ(τ))

ds.

From the fact that ν(θ) �= 0, for every θ ∈ [0, 2π] and the Lagrange mean-value
theorem, we infer that there exists a constant γ > 0 such that

∣∣∣∣
∫ 2π+θ(τ)+δν2(θ(τ))/I

2π+θ(τ)

(ν(θ(τ)) + ν(s))(ν(θ(τ)) − ν(s))
ν2(s)ν2(θ(τ))

ds

∣∣∣∣ � γδ2

I2 . (2.19)

As a consequence, we obtain

lim
δ→0+

h̄12(I, τ, δ, ε) = 0, (2.20)

uniformly in τ ∈ [0, 2π] and for sufficiently large I. Similarly, there exists a constant
γ̄ > 0 such that

∣∣∣∣
∫ 2π+θ(τ)+δν2(θ(τ))/I+h11(ν(θ(τ))/I,θ(τ),δ)−εδν(θ(τ))/I

2π+θ(τ)+δν2(θ(τ))/I

ds

ν2(s)

∣∣∣∣
� γ̄

∣∣∣∣h11

(
ν(θ(τ))

I
, θ(τ), δ, ε

)∣∣∣∣. (2.21)
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From (2.11) and (2.21) we deduce that

lim
δ→0+

ĥ12(I, τ, δ, ε) = 0, (2.22)

where

ĥ12(I, τ, δ, ε) =
2π

dδ

∫ 2π+θ(τ)+δν2(θ(τ))/I+h11(ν(θ(τ))/I,θ(τ),δ)−εδν(θ(τ))/I

2π+θ(τ)+δν2(θ(τ))/I

ds

ν2(s)
.

From (2.16)–(2.18), (2.20) and (2.22) we deduce that the asymptotic expansion of
τ1 in (2.7) holds.

Proof of proposition 2.1. Assume that µ(θ) � 0 for θ ∈ [0, 2π]. Given a point
(I0, τ0), denote by {(Ij , τj)} the orbit of the mapping P̂ through the point (I0, τ0).
We will prove that Ij → +∞; this will imply that ρj → +∞, as j → +∞ (or −∞,
according to the sign of c).

Let 0 � ϑ1 < ϑ2 < · · · < ϑm < 2π be m degenerate zeros of µ(θ) in [0, 2π), i.e.

µ(ϑi) = µ′(ϑi) = 0, i = 1, 2, . . . , m.

Since θ(τ) is increasing and θ(0) = 0, there exist 0 � ς1 < ς2 < · · · < ςm < 2π such
that

θ(ςi) = ϑi, i = 1, 2, . . . , m.

From the continuity of µ(θ(τ)) we deduce that there exist constants η > 0, β > 0
such that if |τ − ςi| < η for some i = 1, 2, . . . , m, then

|µ′(θ(τ))| = |µ′(θ(τ)) − µ′(θ(ςi))| < 1
3 |c|, (2.23)

and, if |τ − ςi| � η, τ ∈ [0, 2π], then

µ(θ(τ)) � β. (2.24)

Let 0 < ε0 < β be a sufficiently small constant such that

ε0|µ′(θ(τ))| � 1
3 |c|β, τ ∈ [0, 2π]. (2.25)

From lemma 2.2 we know that there exist δ0 > 0 and l0 > 0 such that

|h22(I, τ, δ0, ε0)| < 1
3 |c|ε0, (2.26)

uniformly for I0 � l0 and τ ∈ [0, 2π].
In order to conclude the proof we distinguish two cases, according to the sign

of c.

Case 1 (c > 0). We shall prove that there exist positive constants α and l0 such
that

I1 � I0 + α, (2.27)

for τ ∈ R and I0 � l0. Obviously, it suffices to prove (2.27) for τ ∈ [0, 2π] and
I0 � l0.

If |τ − ςi| � η for some i = 1, 2, . . . , m, then it follows from (2.23) and (2.26) that

I1 � I0 + δ0cε0 − δ0ε0|µ′(θ(τ))| − δ0|h22(I, τ, δ0, ε0)| � I0 + 1
3cε0δ0
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for I0 � l0, τ ∈ [0, 2π]; on the other hand if |τ − ςi| � η for some i = 1, 2, . . . , m
and τ ∈ [0, 2π], then from (2.24)–(2.26) we may infer that

I1 � I0 + δ0cε0 + δ0cβ − ε0δ0|µ′(θ(τ))| − δ0|h22(I, τ, δ0, ε0)| � I0 + 1
3cε0δ0.

Taking α = 1
3cε0δ0, we prove that (2.27) holds.

From (2.27) we can plainly deduce that limj→+∞ Ij = +∞; as a consequence,
by observing that ν(θ) = µ(θ) + ε0 > 0, for every θ ∈ [0, 2π], and rj = r(Ij , θj) =
ν(θ(τj))/Ij , we can deduce that

lim
j→+∞

rj = 0.

Recalling that 1/ρ = δ0r, this implies that limj→+∞ ρj = +∞.

Case 2 (c < 0). Let us set S = {(I, τ) : I � l0, τ ∈ R}. From the expression for
the mapping P̂ we know that P̂ (S) contains a neighbourhood of infinity. Hence,
there exists a constant l′0 > 0 such that if I0 � l′0 and P̂−1(I0, τ0) = (I−1, τ−1),
then I−1 � l0. Since

τ0 = τ−1 + 2π + δ0ω(I−1) + δ0h12(I−1, τ−1, δ0, ε0),
I0 = I−1 + δ0cν(θ(τ−1)) − ε0δ0ν

′(θ(τ−1)) + δ0h22(I−1, τ−1, δ0, ε0),

we have

τ−1 = τ0 − 2π − δ0ω(I−1) − δ0h12(I−1, τ−1, δ0, ε0),
I−1 = I0 + δ0|c|ν(θ(τ−1)) + ε0δ0ν

′(θ(τ−1)) − δ0h22(I−1, τ−1, δ0, ε0).

}
(2.28)

From the second equality of (2.28) we infer that, if I0 � l′0 and |τ−1 − ςi| � η for
some i = 1, 2, . . . , m, then

I−1 � I0 + δ0|c|ε0 − ε0δ0|µ′(θ(τ−1))| − δ0|h22(I−1, τ−1, δ0, ε0)| � I0 + 1
3δ0|c|ε0.

If |τ−1 − ςi| � η and τ−1 ∈ [0, 2π] for some i = 1, 2, . . . , m, we can obtain the same
result. Inductively, we deduce that

Ij � Ij+1 + 1
3 |c|ε0δ0 � · · · � I0 + 1

3 |jc|ε0δ0,

for every j = −1,−2, . . . . As a consequence, we obtain

lim
j→−∞

Ij = +∞.

Arguing as in the previous case, we can conclude that limj→−∞ ρj = +∞.

3. Unbounded solutions and periodic solutions

In this section we will deal with the unboundedness of solutions and the existence
of 2π-periodic solutions to the equation

x′′ + f(x)x′ + V ′(x) + g(x) = p(t), (3.1)

where f, g ∈ C(R), V ∈ C2(R) and p ∈ C(R) is 2π-periodic. Moreover, we assume
that g is locally Lipschitz.

We will suppose that the following assumptions are satisfied.
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(1) V ′′(x) > 0, for every x ∈ R, V ′(0) = 0 and all the solutions of

x′′ + V ′(x) = 0 (3.2)

are 2π/n periodic, for some n ∈ N.

(2) There exist a, b > 0 such that

lim
x→+∞

V ′(x)
x

= a, lim
x→−∞

V ′(x)
x

= b.

Moreover,
1√
a

+
1√
b

=
2
n

.

(3) There exist g± ∈ R such that

lim
x→±∞

g(x) = g±.

(4) There exist F± ∈ R such that

lim
x→±∞

F (x) = F±,

where F (x) =
∫ x

0 f(u) du.

For every ρ > 0 let φ(·, ρ) be the solution of (3.2) such that φ(0, ρ) = 0, φt(0, ρ) = ρ;
moreover, let ψ be the solution of

x′′ + ax+ − bx− = 0,

x(0) = 0, x′(0) = 1.

We immediately see that ψ is 2π-periodic and satisfies

ψ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
a

sin
√

at if 0 � t � π√
a
,

− 1√
b

sin
√

b

(
t − π√

a

)
if

π√
a

< t � 2π

n
.

Moreover, for every θ0 ∈ R, let

I+
0 = {t ∈ [0, 2π] : ψ(θ0 + t) > 0}, I−

0 = {t ∈ [0, 2π] : ψ(θ0 + t) < 0}.

From an elementary computation we deduce the following lemma.

Lemma 3.1. For every θ0 ∈ R, we have∫
I+
0

ψ(θ0 + t) dt =
2n

a
,

∫
I−
0

ψ(θ0 + t) dt = −2n

b
,

∫
I+
0

ψ′(θ0 + t) dt =
∫

I−
0

ψ′(θ0 + t) dt = 0.

The following result has been proved in [3].
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Lemma 3.2. The function φ satisfies the following properties:

∂φ

∂t
(t, ρ)

∂2φ

∂t∂ρ
(t, ρ) + V ′(φ(t, ρ))

∂φ

∂ρ
(t, λ) = V ′(ρ) for all (t, ρ) ∈ R × (0, +∞);

lim
ρ→+∞

φ(t, ρ)
ρ

= ψ(t); lim
ρ→+∞

φρ(t, ρ) = ψ(t);

lim
ρ→+∞

φt(t, ρ)
ρ

= ψ′(t); lim
ρ→+∞

∂2φ

∂t∂ρ
(t, ρ) = ψ′(t).

All the previous limits are uniform in t ∈ R.

Equation (3.1) is equivalent to the system

x′ = y − F (x), y′ = −V ′(x) − g(x) + p(t). (3.3)

Now we introduce a transformation due to B. Liu (2005, personal communication).
Let

Φ : (θ, ρ) ∈ S1 × (0, +∞) → (x, y) ∈ R
2 \ {0}

be defined by

x = φ(θ, ρ), y =
∂φ

∂t
(θ, ρ).

This change of variables transforms (3.3) into the system

θ′ = 1 +
α(θ, ρ, t)

ρ
,

ρ′ = β(θ, ρ, t),

⎫⎬
⎭ (3.4)

where

α(θ, ρ, t) =
ρ

V ′(ρ)
(φρ(θ, ρ)g(φ(θ, ρ)) − φρ(θ, ρ)p(t) − φtρ(θ, ρ)F (φ(θ, ρ))),

β(θ, ρ, t) = − ρ

V ′(ρ)

(
φt(θ, ρ)

ρ
g(φ(θ, ρ)) − φt(θ, ρ)

ρ
p(t) +

V ′(φ(θ, ρ))
ρ

F (φ(θ, ρ))
)

.

We also denote by P the Poincaré map associated with (3.4), i.e.

P (θ0, ρ0) = (θ(2π), ρ(2π)),

where (θ(·), ρ(·)) is the solution of (3.4) satisfying (θ(0), ρ(0)) = (θ0, ρ0). Our aim
is to show that the asymptotic development of P , as ρ0 → +∞, fits the framework
of § 2.

Following Liu (2005, personal communication) we deduce that α and β are
bounded; as a consequence, from the second equation in (3.4) we obtain

ρ(t) = ρ0 + O(1), ρ0 → +∞. (3.5)

This relation implies that

1
ρ(t)

=
1
ρ0

+ o

(
1
ρ0

)
, ρ0 → +∞; (3.6)
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by replacing this equality in the first equation of (3.4) we may infer that

θ(t) = θ0 + t + O

(
1
ρ0

)
, ρ0 → +∞. (3.7)

For every (θ0, ρ0), let

I+(−)(θ0, ρ0) = {t ∈ [0, 2π] : φ(θ(t), ρ(t)) > (<)0}.

From lemma 3.2 and (3.7) it is easy to prove the validity of the following lemma.

Lemma 3.3. For every θ0 ∈ R, we have

lim
ρ0→+∞

I±(θ0, ρ0) = I±
0 .

We are in position to prove the following proposition.

Proposition 3.4. For every θ0 ∈ R, the Poincaré map P satisfies

P :

⎧⎪⎨
⎪⎩

θ1 = θ(2π) = θ0 + 2π +
1
ρ0

µ(θ0) + o

(
1
ρ0

)
,

ρ1 = ρ(2π) = ρ0 + c − µ′(θ0) + o(1), ρ0 → +∞,

(3.8)

where

µ(θ0) =
2n

a

(
g+

a
− g−

b

)
− 1

a

∫ 2π

0
ψ(t + θ0)p(t) dt, c = −2n

a
(F+ − F−).

Proof. We first prove the asymptotic formula for θ1; from (3.6) and the first equa-
tion in (3.4), recalling that α is bounded, we obtain

θ′ = 1 +
1
ρ0

α(θ, ρ, t) + o

(
1
ρ0

)
, ρ0 → +∞.

By integrating on [0, 2π] and using the expression for α we may infer that

θ1 = θ0 + 2π +
1
ρ0

∫ 2π

0
α(θ, ρ, t) dt + o

(
1
ρ0

)

= θ0 + 2π +
1
ρ0

∫ 2π

0

ρ

V ′(ρ)
(φρ(θ, ρ)g(φ(θ, ρ)) − φρ(θ, ρ)p(t)

− φtρ(θ, ρ)F (φ(θ, ρ))) dt + o

(
1
ρ0

)
. (3.9)

From (3.5) and assumption (2) on the asymptotic behaviour of V ′ we get

lim
ρ0→+∞

ρ

V ′(ρ)
=

1
a
. (3.10)

Moreover, lemma 3.2 and (3.7) imply that

lim
ρ0→+∞

φρ(θ, ρ) = ψ(θ0 + t). (3.11)

https://doi.org/10.1017/S030821050600062X Published online by Cambridge University Press

https://doi.org/10.1017/S030821050600062X


Solutions to perturbed damped isochronous oscillators at resonance 29

As a direct consequence, we infer that

lim
ρ0→+∞

∫ 2π

0

ρ

V ′(ρ)
φρ(θ, ρ)p(t) dt =

1
a

∫ 2π

0
ψ(θ0 + t)p(t) dt. (3.12)

Moreover, using also lemma 3.3, we have

lim
ρ0→+∞

∫ 2π

0

ρ

V ′(ρ)
φρ(θ, ρ)g(φ(θ, ρ)) dt

= lim
ρ0→+∞

∫
I+(θ0,ρ0)

ρ

V ′(ρ)
φρ(θ, ρ)g(φ(θ, ρ)) dt

+ lim
ρ0→+∞

∫
I−(θ0,ρ0)

ρ

V ′(ρ)
φρ(θ, ρ)g(φ(θ, ρ)) dt

=
1
a

(
g+

∫
I+
0

ψ(θ0 + t) dt + g−

∫
I−
0

ψ(θ0 + t) dt

)

=
2n

a

(
g+

a
− g−

b

)
. (3.13)

Analogously, we have

lim
ρ0→+∞

∫ 2π

0

ρ

V ′(ρ)
φtρ(θ, ρ)F (φ(θ, ρ)) dt

= lim
ρ0→+∞

∫
I+(θ0,ρ0)

ρ

V ′(ρ)
φtρ(θ, ρ)F (φ(θ, ρ)) dt

+ lim
ρ0→+∞

∫
I−(θ0,ρ0)

ρ

V ′(ρ)
φtρ(θ, ρ)F (φ(θ, ρ)) dt

=
1
a

(
F+

∫
I+
0

ψ′(θ0 + t) dt + F−

∫
I−
0

ψ′(θ0 + t) dt

)

= 0. (3.14)

From (3.9) and (3.12)–(3.14) we deduce the asymptotic development of θ1 given
in (3.8).

Now let us consider the asymptotic expansion of ρ1; by integrating the second
equation in (3.4) and recalling the expression for β, we may infer that

ρ1 = ρ0 +
∫ 2π

0
β(θ, ρ, t) dt

= ρ0 −
∫ 2π

0

ρ

V ′(ρ)
φt(θ, ρ)

ρ
g(φ(θ, ρ)) dt

+
∫ 2π

0

ρ

V ′(ρ)

(
φt(θ, ρ)

ρ
p(t) − V ′(φ(θ, ρ))

ρ
F (φ(θ, ρ))

)
dt. (3.15)

Lemma 3.2 and (3.7) imply that

lim
ρ0→+∞

φt(θ, ρ)
ρ

= ψ′(θ0 + t). (3.16)
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As a direct consequence, we may infer that

lim
ρ0→+∞

∫ 2π

0

ρ

V ′(ρ)
φt(θ, ρ)

ρ
p(t) dt =

1
a

∫ 2π

0
ψ′(θ0 + t)p(t) dt. (3.17)

Moreover, by also using lemma 3.3, we have

lim
ρ0→+∞

∫ 2π

0

ρ

V ′(ρ)
φt(θ, ρ)

ρ
g(φ(θ, ρ)) dt

= lim
ρ0→+∞

∫
I+(θ0,ρ0)

ρ

V ′(ρ)
φt(θ, ρ)

ρ
g(φ(θ, ρ)) dt

+ lim
ρ0→+∞

∫
I−(θ0,ρ0)

ρ

V ′(ρ)
φt(θ, ρ)

ρ
g(φ(θ, ρ)) dt

=
1
a

(
g+

∫
I+
0

ψ′(θ0 + t) dt + g−

∫
I−
0

ψ′(θ0 + t) dt

)

= 0. (3.18)

Analogously, we have

lim
ρ0→+∞

∫ 2π

0

ρ

V ′(ρ)
V ′(φ(θ, ρ))

ρ
F (φ(θ, ρ)) dt

= lim
ρ0→+∞

∫
I+(θ0,ρ0)

ρ

V ′(ρ)
V ′(φ(θ, ρ))

φ(θ, ρ)
φ(θ, ρ)

ρ
F (φ(θ, ρ)) dt

+ lim
ρ0→+∞

∫
I−(θ0,ρ0)

ρ

V ′(ρ)
V ′(φ(θ, ρ))

φ(θ, ρ)
φ(θ, ρ)

ρ
F (φ(θ, ρ)) dt

=
1
a

(
aF+

∫
I+
0

ψ(θ0 + t) dt + bF−

∫
I−
0

ψ(θ0 + t) dt

)

=
2n

a
(F+ − F−). (3.19)

From (3.15) and (3.17)–(3.19) we deduce the asymptotic development of ρ1 given
in (3.8). This concludes the proof.

We are now in a position to state the main theorem of this section.

Theorem 3.5. Suppose that assumptions (1)–(4) hold; moreover, assume that the
function µ is non-negative (or non-positive) and has finitely many zeros in [0, 2π],
all of which are degenerate.

If F+ �= F−, then (3.1) has at least one 2π-periodic solution.
Moreover, the following conclusions hold:

(a) if F+ < F−, then there exists R0 > 0 such that all the solutions x(t) of (3.1)
with x(0)2 + x′(0)2 � R2

0 satisfy

lim
t→+∞

(x2(t) + x′(t)2) = +∞;
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(b) if F+ > F−, then there exists R0 > 0 such that all the solutions x(t) of (3.1)
with x(0)2 + x′(0)2 � R2

0 satisfy

lim
t→−∞

(x2(t) + x′(t)2) = +∞.

Proof. We first show the existence of a 2π-periodic solution to (3.1). Let

ξ(θ) = 2n(F+ − F−) − µ′(θ);

since all the zeros of µ are degenerate, the sign of ξ at every zero of µ is the same.
This, together with the fact that µ does not change sign, ensures that the map P
fits the framework of [4]; as a consequence, arguing as in [4], we deduce that P
possesses at least one fixed point. Consequently, (3.1) has at least one 2π-periodic
solution.

We prove the result on the unboundedness of solutions with large initial energy
in the case when F+ < F−; the other case can be handled similarly.

By the assumption on µ and proposition 3.4, it follows that we can apply propo-
sition 2.1 to the Poincaré map P . Hence, there exists R0 > 0 such that, if ρ0 � R0,
then the orbit {(ρj , θj)} exists in the future and satisfies limj→+∞ ρj = +∞.

On the other hand, it follows from the second equality of (3.4) and the fact that
β is bounded that there exists a constant d0 > 0 such that |ρ(t) − ρ(s)| � d0 for t
and s satisfying |t − s| � 2π. Hence, we obtain

lim
t→+∞

ρ(t) = +∞.

By the expression for the change of variable Φ and by lemma 3.2 we deduce that

1
2y(t)2 + V (x(t)) = V (ρ(t)) for all t ∈ R,

which implies that
lim

t→+∞
(x2(t) + y2(t)) = +∞.

From the boundedness of F and since x′(t) = y(t) − F (x) we obtain

lim
t→+∞

(x2(t) + x′(t)2) = +∞.

Remark 3.6. Following the approach of [3], it is possible to prove an analogous
result for equation (3.1) in the case when the potential V is singular and at reso-
nance. Indeed, a result along the lines of theorem 3.5 can be given when assumption
(2) on the asymptotic behaviour of V ′ is replaced by

lim
x→+∞

V ′(x)
x

=
n2

4
, lim

x→a+

V ′(x)
x

= +∞,

for some a < 0. In this situation it is possible to see (see [3]) that all the computa-
tions can be repeated by replacing the function ψ by the function

ψ∗(t) = | cos 1
2nt|.
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