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Low- and high-frequency acoustic resonances are computed numerically via a high-
order finite-element code for a generic two-dimensional high-lift configuration with a
leading-edge slat. Zero mean flow is assumed, approximating the low-Mach-number
situation at aircraft landing and approach. To avoid unphysical reflections at the
boundaries of the truncated computational domain, perfectly matched layer absorbing
boundary conditions are implemented in the form of the complex scaling method of
atomic and molecular physics. It is shown that two types of resonance exist: resonances
of surface waves which scale with the total airfoil length and longitudinal cavity-type
resonances which scale with the slat cove length. Minima exist in the temporal decay
rate which can be associated with the slat cove resonances and depend on the slat
cove geometry. All resonances are damped owing to radiation losses. However, if
coherent noise sources exist, as observed in low-Reynolds-number experiments, these
sources can be enhanced acoustically by the above resonances if the source frequency
is close to a resonant frequency.

1. Introduction
Through technological progress, such as ultra high bypass ratio turbofan engines

and improved acoustical liners in the nacelle, aircraft engines of modern commercial
airliners have become significantly quieter in the past four decades. With the efficient
reduction of engine noise, airframe noise has emerged as an ever more important
component of the overall aircraft noise, especially during aircraft approach and
landing when the engines are at low power (Crighton 1991). Experimental studies on
both sides of the Atlantic based on free-flight tests of production aircraft (Michel
et al. 1998 (various aircraft); Piet, Michel & Böhning 2002 (Airbus A340); Stoker
et al. 2003 (Boeing 777)), or wind-tunnel tests of scaled aircraft models (for example
Grosche, Schneider & Stiewitt 1997 (Airbus A340); Hayes et al. 1997 (DC 10); Davy,
Moens & Remy 2002 (Airbus A320/A321), Soderman et al. 2002 (Bombardier CRJ-
700); Oerlemans & Sijtsma 2004 (Airbus A340); Horne et al. 2005 (Boeing 777)), have
pinpointed high-lift devices and landing gears as dominant sources of airframe noise.
In order to understand the noise source mechanisms better and find ways to reduce
the noise emission, various aircraft components were investigated in more detail by
advanced experimental and computational tools. Model-scale aeroacoustic tests on
high-lift configurations such as Dobrzynski et al. (1998) (ALVAST high-lift model),
Storms et al. (1999) (high-lift model), Khorrami, Berkman & Choudhari (2000)
(high-lift model), Olson, Thomas & Nelson (2000) (high-lift model), Dobrzynski,
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Gehlhar & Buchholz 2001 (Airbus A320 full-scale wing) or Dobrzynski & Pott-
Pollenske (2001) (high-lift model), have identified the leading-edge slat as a major
source of airframe noise. In addition to broadband noise, strong tones were observed
under certain operating conditions in several of the above experiments. However, there
is now general agreement that the observed low- to mid-frequency tones are due to
model-scale Reynolds-number effects and full-scale slat flows are mostly broadband
in character. Therefore, in order to simulate full-scale flight in wind-tunnel tests,
boundary-layer tripping is usually employed on the upper and lower slat surface (see
for example Andreou, Graham & Shin 2006; Fischer et al. 2006). Any evidence of
low- to mid-frequency narrowband behaviour in full-scale tests can usually be traced
to whistling caused by refuelling or vent holes (Czech et al. 2006), or other small-scale
features such as slat tracks.

The above experiments and numerical studies performed mainly at NASA revealed
two dominant slat noise sources, see the brief overview by Khorrami (2003): the tonal
hump at high frequencies has been attributed to the finite thickness of the slat trailing
edge. Using unsteady Reynolds-averaged Navier–Stokes simulations (URANS) with a
high spatial resolution, Khorrami et al. (2000) were able to prove their conjecture that
self-excited vortex shedding at the blunt trailing edge of the slat is the likely source for
the tonal peak in the acoustic spectra at high frequencies. The vortex shedding at the
trailing edge of the slat has since been confirmed by the experimental investigations of
Olson et al. (2000) and Takeda, Zhang & Nelson (2002). Singer, Lockard & Brentner
(2000) used the URANS data of Khorrami et al. (2000) to compute the acoustic far
field by an acoustic analogy formulation based on the Ffowcs-Williams and Hawkings
equation.

For the low-frequency noise, various source mechanisms have been proposed (Guo
1997; Olson, Thomas & Nelson 2001; Pott-Pollenske, Alvarez-Gonzalez & Dobrzynski
2003). As suggested by Storms et al. (1999), Roger & Pèrennés (2000) and Takeda
et al. (2001), the convectively unstable separated shear layer in the slat cove can
become self-excited by a feedback loop similar to the Rossiter modes in an open
cavity (Rossiter 1964). To test this conjecture, Khorrami et al. (2002a) extended
their two-dimensional URANS plus far-field computations to the slat cavity flow.
The fully turbulent simulations proved overly diffusive and required explicit forcing
of the shear layer to excite and maintain the large-scale structures. To circumvent
the excessive diffusive effects of the turbulence model they used an ad hoc zonal
approach in later versions (Khorrami et al. 2002b, 2004). With this, the shear
layer became self-excited and qualitatively similar flow structures were found in
the experiments of Takeda et al. (2001), Jenkins, Khorrami & Choudhari (2004) and
Kaepernick, Koop & Ehrenfried (2005). To rectify remaining differences between
the numerical and experimental results of Khorrami et al. (2004) and Jenkins et al.
(2004), Choudhari & Khorrami (2006) extended their computations to include the
effects of three-dimensional disturbances. Related three-dimensional simulations have
been produced by Terracol et al. (2003) using a hybrid Reynolds-averaged Navier–
Stokes simulation/large-eddy simulation (RANS/LES) method and by Deck (2005)
employing a zonal detached eddy simulation. Choudhari & Khorrami (2006) and Deck
(2005) showed encouraging comparisons between the computed and measured results.

The prominent peaks observed in the frequency spectra of several small-scale
experiments (Dobrzynski et al. 1998; Pott-Pollenske et al. 2003; Roger & Pèrennés
2000), are now thought to be an artefact of low Reynolds number because no
evidence was found in full-scale experiments such as Dobrzynski et al. (2001). Full-
scale tests are costly and detailed wind-tunnel experiments will continue to be one
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of the main sources of slat noise data. Therefore it is of importance to understand
the limitations of these low-Reynolds-number wind-tunnel tests and why these tones
occur. A better physical understanding of those tonal contributions may also allow
us to circumvent these limitations in future experiments. One of the reasons behind
these prominent narrowband tones might be an aeroacoustic feedback mechanism or
enhancement of self-excited noise sources by acoustic resonances. The aeroacoustic
feedback mechanism in the sense of the Rossiter mode physics is beyond the scope
of this investigation. The present investigation concerns only acoustic resonances.

Storms et al. (1999) and Khorrami et al. (2000) have raised the question as to
whether a feedback mechanism is operative in the gap between the slat and the
main wing. This so-called gap resonance was investigated by Tam & Pastouchenko
(2001) and Agarwal & Morris (2002) using a simple wall jet model. They conjectured
that the shedding frequency at the slat trailing edge might be regulated by an
acoustic feedback loop, when the shedding frequency matches one of the transverse
resonance frequencies of the gap between the slat and the main wing, an intense tone
is produced. Based on this feedback loop, Tam & Pastouchenko (2001) developed
a simple formula for the gap tone frequency as a function of gap height, local flow
speed and the local speed of sound. For a finite-length plate above a semi-infinite
wall, Hein, Hohage & Koch (2004) showed that for zero flow, the one-dimensional
gap resonances of Tam & Pastouchenko (2001) agree exactly with the least damped
two-dimensional acoustic resonances. The gap resonances are resonances of transverse
acoustic modes corresponding to the dominant modes in a simple two-mirror laser
cavity. However, the slat cove resembles more a shallow open cavity than a laser
cavity, and in a shallow cavity the longitudinal modes dominate (Koch 2005). This
is probably why the frequencies computed via the simple acoustic feedback formula
of Tam & Pastouchenko (2001) differed markedly from the experimental results of
Takeda et al. (2002). Takeda, Zhang & Nelson (2004) extended the wall jet model
of Tam & Pastouchenko (2001) to include the slat cove region using an idealized
two-dimensional slat model. Performing a systematic variation of slat overlap and
gap, their compressible URANS computations indeed indicated a strong influence of
the slat/wing geometry on the high-frequency tones.

The objective of the present paper is the computation of acoustic resonances
(also termed scattering frequencies) for a generic two-element high-lift system with a
leading-edge slat in order to see if they are related in any way to the observed tones
in low-Reynolds-number experiments. No account is taken of the underlying noise-
generation mechanisms of these tones, and mean flow effects are neglected assuming
that the acoustic resonances depend only weakly on Mach number. However, it
should be pointed out that the noise sources in the form of unstable shear layers
exist only if mean flow is present. Hein et al. (2004) argued that acoustic resonances
in the high-lift system could provide a viable mechanism for the selection of a
particular frequency: if the resonances are near any discrete-source frequency and are
only weakly damped, one can expect enhanced noise levels. Hein, Koch & Schöberl
(2005) computed the low-frequency resonances of a generic three-element high-lift
configuration without flow and the computed resonances turned out to be very close
to the low-frequency tonal frequencies measured by Pott-Pollenske et al. (2003). The
resonant frequencies were practically independent of the slat cove geometry, which
means that the low-frequency resonances cannot be resonances of the slat cove but
are resonances of surface waves. In the literature such surface waves are called Franz-
type creeping waves (Überall, Dragonette & Flax 1977), which resonate when exactly
n wavelengths fit over the circumference of the whole high-lift configuration. In
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Hein et al. (2005) we proved the surface wave assertion by numerically computing the
resonances of a circular cylinder without flow and compared the computed resonances
with the analytic results of Morse & Ingard (1968) for the corresponding diffraction
problem.

On the other hand, the slat cove acts like a shallow cavity and the corresponding
resonances should scale with the length of the slat cove between slat hook and main
wing. To test this hypothesis, we investigate first the resonances of an extended model
problem, namely a circular cylinder with a rectangular cutout, finding that the cavity
resonances dominate at high frequencies. For our generic high-lift configuration
only slight local peaks are observed near the slat cove resonance frequencies in
the otherwise fairly flat resonance spectrum. This appears to be due to the more
complicated geometry and the slat cavity being open between slat and main wing,
which causes higher radiation damping.

The outline of the paper is as follows. After a brief summary of the solution
method in § 2, the different physical characteristics of surface-wave resonances and
cavity resonances are illustrated for the simple model problem of a circular cylinder
with a rectangular cutout in § 3. In § 4, acoustic resonances are computed for a
generic high-lift configuration, and the resonances are compared with the low-
frequency experimental results of Pott-Pollenske et al. (2003). The influence of slat cove
parameters on the resonances of a two-element high-lift configuration is investigated
in § 5 and a short conclusion completes the paper.

2. Governing equation and perfectly matched layer (PML) boundary condition
The equation governing acoustic disturbances in a medium with zero mean flow

is the wave equation. Because of the large spanwise extent of the slat system, the
high-lift configuration can be treated as two-dimensional. In the following, all lengths
will be non-dimensionalized with a characteristic reference length l∗

ref, velocities with
the ambient speed of sound c∗

0, densities with the ambient density ρ∗
0 , and pressures

with ρ∗
0c

∗
0
2. Here the asterisk superscript denotes a dimensional quantity. Assuming

periodic time dependence exp(−iω∗t∗), where ω∗ is the circular frequency, the wave
equation can be reduced to the Helmholtz equation,

�φ(x, y) + K2φ(x, y) = 0, (2.1)

for the (non-dimensional) velocity potential φ(x, y). �= ∂2/∂x2 + ∂2/∂y2 is the
two-dimensional Laplacian in (non-dimensional) Cartesian coordinates x, y, and
K =ω∗l∗

ref/c
∗
0 denotes the dimensionless frequency, with K/2π being the Helmholtz

number (Helmholtz 1954). The time-independent dimensionless disturbance velocity
and pressure are then given by v(x, y) = ∇φ and p(x, y) = iKφ, respectively. Moreover,
we impose the Neumann boundary condition,

∂φ

∂n
= 0, (2.2)

on solid walls.
A complex number K with Im(K) < 0 is called a resonance if there exists a non-

trivial solution φ to the eigenvalue equation (2.1) satisfying the Neumann boundary
condition (2.2) and a radiation condition at infinity as discussed below. It turns
out that the eigenfunctions φ grow exponentially at infinity. Often resonances are
equivalently defined as poles of the meromorphic extension of the resolvent of −�

(see Hislop & Sigal 1996; Taylor 1996). To complete our first definition of resonances
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it remains to define a radiation condition. For scattering with real K > 0, the standard
Sommerfeld radiation condition in two dimensions is

lim
r→∞

r1/2

(
∂φ

∂r
− iKφ

)
= 0, (2.3)

but this is no longer a valid characterization of outgoing waves for Im(K) < 0.
Alternative formulations of the radiation condition also valid for Im(K) < 0 include
complex coordinate stretching (or complex rescaling) (Reed & Simon 1978), the pole
condition suggested by Frank Schmidt as discussed in Hohage, Schmidt & Zschiedrich
(2003a , b), series representations, and integral representations.

Numerical computations are necessarily conducted on truncated domains. Without
non-reflecting or absorbing boundary conditions at the finite grid boundaries, which
approximate the radiation condition at infinity, unphysical reflections at the truncated
domain boundary often cause large errors. The perfectly matched layer (PML)
absorbing boundary condition of Bérenger (1994) has become increasingly popular
in computational electrodynamics as well as in acoustics (see for example Hu
2004). Modelling a physically absorbing layer in Cartesian coordinates, Bérenger
(1994) added fictitious damping terms in his split-field Maxwell equations with
the remarkable property that no reflections are generated at the interface for all
frequencies and angles of wave incidence. It was soon recognized that Bérenger’s
PML formulation is equivalent to a complex coordinate stretching (Chew & Weedon
1994), which can be interpreted as an analytic continuation of the governing equations
into a complex spatial domain (see Chew, Jin & Michielssen 1997; Collino & Monk
1998; Lassas & Somersalo 1998). This can easily be implemented into existing finite-
difference or finite-element (FE) codes, and PML formulations in three-dimensional
Cartesian, cylindrical or spherical coordinates soon became available. For example,
in polar coordinates the complex variable,

ρ(r, K) = r +
i

K
σ (r), (2.4)

is introduced instead of r . The damping function σ (r) is usually expressed in power
form (Hu 2004), smoothly starting at the PML interface r = rPML, e.g.

σ (r) =

{
σ0 (r − rPML)β, r > rPML,

0, r � rPML.
(2.5)

For a positive (real) damping coefficient σ0 > 0 and constant β � 1 outgoing waves will
decay exponentially in the PML. In numerical computations, the PML can therefore
be truncated at rPML + dPML, as shown schematically in figure 1 for a typical high-lift
configuration with a leading-edge slat with deflection δs and a trailing-edge flap with
deflection δf . Here, dPML denotes the width of the PML, and instead of enforcing
(2.3), a Dirichlet boundary condition can be imposed at the outer edge of the PML
(Collino & Monk 1998). The error due to artificial reflections at this truncated outer
edge of the PML is small if σ0 and dPML are chosen properly.

For scattering problems, K is a prescribed (real) constant and therefore can be
absorbed into the damping coefficient σ0. Then the above PML formulation is
practically identical with the complex scaling method of atomic and molecular physics
(Hislop & Sigal 1996; Moiseyev 1998). For resonance problems, K is part of the
solution and the PML formulation, (2.4), would result in a nonlinear eigenvalue
problem with much larger coefficient matrices when solving the problem numerically.
Consequently, for the numerical computation of resonances in unbounded space, it is
advantageous to use the complex scaling method, i.e. (2.4) without K , see for example
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PML

rPML

dPML

x

y

l

δf
δs

Figure 1. Generic three-element high-lift configuration of Pott-Pollenske et al. (2003) at
landing approach with annular PML.

(a) (b)

Figure 2. Finite-element grids for l/d = 0.5 rectangular cavity with �= 0.3. (a) Annular PML
with rPML = 1 and dPML = 1, (b) rectangular PML with xPML = ± 1, yPML = 0.5 and dPML = 1.
The PML is the shaded area.

Hein et al. (2004). Then the damping coefficient is no longer constant, but has to be
adjusted to the relevant frequency domain.

As mentioned before, the above PML formulation can be easily implemented into
existing finite-element codes. For the present paper, we use the high-order finite-
element code NGSolve of Joachim Schöberl. Before proceeding with the computation
of resonances in open domains with more complicated boundaries we validated our
finite-element code by comparing the results for a two-dimensional rectangular open
cavity l/d = 0.5 with the resonances computed by Koch (2005) which were verified
with the classical semi-analytic results of Tam (1976). For this example, we chose the
reference length l∗

ref to be the cavity length l∗ such that l = 1. d = 2 is then the depth
of the cavity for our chosen test example. For y � 0, we apply an annular PML with
rPML = 1 and dPML = 1 and generate a triangulated macro mesh with maximum mesh
size �= 0.3 using the net generating code NETGEN of Schöberl (1997) (figure 2a).
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0 1 2 3
–0.12

–0.08

–0.04

0(a) (b)

Im
(K

/2
π

)

Re(K/2π) Re(K/2π)

0 1 2 3
–0.12

–0.08

–0.04

0

Figure 3. Comparison of resonances in a two-dimensional rectangular cavity with l/d = 0.5
obtained via the spectral collocation method of Koch (2005)(�, symmetric, �, antisymmetric
in x) and via the finite-element method (×) using the mesh of figure 2(a) with PML
parameters σ0 = 5, β = 1, but differing FE polynomial order p: (a) p = 2 (Ndof = 721),
(b) p = 12 (Ndof = 9217).

Near the singular exit corners of the cavity the grid was adapted locally by geometric
mesh refinement (Szabó & Babuška 1991). This means, we cut off the vertex of the
triangle at one-eighth of the edge-length. This procedure was repeated several times.
The resulting mesh consists of triangles and quadrilaterals.

The computed resonant frequencies are depicted in figure 3(a) for low order p =2
and in figure 3(b) for high order p =12 of the finite-element method. The open
symbols correspond to the results computed by Koch (2005) via the multi-domain
spectral collocation method and the crosses represent our present results obtained
for the mesh of figure 2(a) via the finite-element code NGSolve. This comparison
constitutes a severe test for both computations: in the collocation method, a strong
formulation with C1 continuity across the rectangular domain boundaries is employed
in conjunction with a rectangular PML, and the eigenvalue problem is solved by a
standard eigenvalue problem solver. The variational formulation of the finite-element
code requires only C0 continuity across the triangular mesh elements and uses an
annular PML together with a shifted Arnoldi algorithm. Keeping the same mesh,
i.e. �= 0.3, we vary the order p of the FE polynomial on a triangular element, and
hence the number of degrees of freedom Ndof. From the spectra shown in figure 3(a)
with p = 2 and figure 3(b) with p = 12 it is apparent that for the coarse mesh of
figure 2(a), a high-order finite-element code is a necessity to reach convergence of the
results. Other convergence tests include changing the PML parameters or the shift in
the Arnoldi method for the numerical solution of the eigenvalue problem. Practically
identical results were obtained using the rectangular PML shown in figure 2(b) which
also demonstrates convergence of the solution.

3. Resonances for a cylinder with a rectangular cutout
After validating our finite-element code NGSolve we investigated the resonances

of a simple model problem namely a rigid circular cylinder with a rectangular cavity
carved out on one side of the cylinder (figure 4b). From this model problem we
hope to obtain a deeper insight into the physics behind the resonances of a high-lift
configuration. For this model problem, the natural choice for the reference length
l∗
ref is the diameter D∗ of the cylinder, i.e. KD =ω∗D∗/c∗

0. Without the cavity (figure
4a), only resonances of surface waves are possible (Hein et al. 2005). By introducing
a rectangular cavity of depth d and length l, which we use to model a slat cove,
cavity resonances are added which modify these surface-wave resonances. Varying

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

57
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005770


186 S. Hein, T. Hohage, W. Koch and J. Schöberl

x

PML

rPML

dPML

(a)

D

y y

x

PML

rPML

dPML

(b)

D

l

d

Figure 4. (a) Solid circular cylinder and (b) circular cylinder with a two-dimensional
rectangular cavity enclosed by annular PML.

the parameters l/D and l/d , the cavity resonances can be changed over a wide range
while the surface-wave resonances remain almost constant. For our results, shown in
figure 5 and discussed in the following, we chose l/D = 1/6 and l/d = 2.

The complex resonances of the surface waves computed for the solid cylinder of
figure 4(a) are depicted by the solid dots in figure 5(a) (the points near the negative
imaginary axis represent the discrete approximations of the continuous spectrum and
should be disregarded for our present investigation). The classical solution for the
pressure ps(r, ϕ) of an acoustic wave scattered by an infinite rigid cylinder of radius
R =D/2 can be written down explicitly (Morse & Ingard 1968, p. 400ff),

ps(r, ϕ) = − p̂i

∞∑
n= 0

(2 − δn0) in J ′
n(kR)

H
(1)
n

′
(kR)

H (1)
n (kr) cos(nϕ). (3.1)

Here ϕ is measured from the direction of the incoming plane wave with amplitude
p̂i and propagating in the x-direction, δn0 is Kronecker’s delta, k = ω∗/c∗

0 is the
wavenumber, Jn is the nth-order Bessel function and H (1)

n is the nth-order Hankel
function of the first kind. Complex resonances (also called scattering frequencies)
occur at the zeros of H (1)

n

′
(z) = 0 (the so-called nth-Franz zero) which can be computed

easily via Newton–Raphson iteration. The first ten zeros (n= 1, . . . , 10) computed this
way are marked by the diamond symbols in figure 5(a) and agree very well with our
numerically computed resonances. In our numerical computation we considered only
the half cylinder for x � 0 with Dirichlet or Neumann conditions imposed at the plane
x = 0. Owing to symmetry, the resonances for the Dirichlet and Neumann problem
are equal, i.e. the plotted resonances are double resonances.

In electromagnetic scattering theory, the frequency region when the dimensions
of the scattering object are comparable to the wavelength is called the resonance
region, and the frequently used canonical model of a perfectly conducting circular
cylinder is very similar to our above acoustical model. For this model, Heyman &
Felsen (1983) demonstrated the connection between creeping waves and complex
resonances. In particular, they showed that the complex resonances can be identified
by two indices (m, n), where n marks the angular harmonics and m is associated with
the creeping waves. Figure 5(a), shows mainly the m =1 branch with the first ten
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0 4 8 12 16
–1.2

–0.8

–0.4

0

Im
 (

K
D

/2
π

)
Im

 (
K

D
/2

π
)

Im
 (

K
D

/2
π

)

σ0 = 8 σ0 = 4

(a)

(b)

(c)

0 4 8 12 16
–1.2

–0.8

–0.4

0

σ0 = 8 σ0 = 4

0 4 8 12 16
–1.2

–0.8

–0.4

 0.0

Re (KD /2π)

σ0 = 8 σ0 = 4

Figure 5. (a) Surface-wave resonances for a solid circular cylinder: �, numerical resonances;

�, first ten zeros of H
(1)
n

′
(z) = 0 in (3.1). (b) Resonances for a circular cylinder with a

two-dimensional rectangular cavity with l/D = 1/6, l/d = 2: �, �, symmetric and antisymmetric
resonances; �, surface-wave resonances replotted from (a); ×, +, symmetric and antisymmetric
cavity resonances replotted from (c). (c) Cavity resonances for l/D =1/6, l/d = 2: ×, +,
symmetric and antisymmetric resonances for cavity on cylinder; �, resonances of Koch (2005)
for cavity in half-plane.
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Figure 6. Circular cylinder with a two-dimensional rectangular cavity enclosed by
rectangular PML.

zeros n= 1, . . . , 10 marked by the diamond symbols, whereas the resonances of the
m =2 branch are highly damped and therefore not so important in our acoustical
problem.

If the rectangular cavity is added to the cylinder (figure 4b), the double resonances
of figure 5(a) split into symmetric and antisymmetric surface-wave resonances as
depicted by the open circles and triangles, respectively, in figure 5(b). The few weakly
damped symmetric and antisymmetric resonances correspond to cavity resonances.
To demonstrate this more clearly we surrounded the cavity with a rectangular
PML (figure 6), and computed the corresponding resonances. This way surface-
wave resonances are excluded. Again imposing Neumann or Dirichlet conditions
at the symmetry plane x =0, we obtained the symmetric and antisymmetric cavity
resonances marked by the cross and plus symbols, respectively, in figure 5(c). For
comparison, we replotted the resonances of Koch (2005) for a rectangular cavity
in a half-plane in figure 5(c) by the open square symbols. Again, the longitudinal
resonances are the least-damped resonances for this shallow cavity with l/d = 2, and
of the longitudinal cavity resonances only the fundamental resonance is noticeably
influenced by the cylinder curvature.

In figure 5, the dash-dotted lines indicate where we patched together two
overlapping spectra computed with different PML and Arnoldi shift parameters,
i.e. σ0 = 8 for Re(KD/2π) < 6, and σ0 = 4 for Re(KD/2π) � 6. For the annular PML
we used rPML = 0.7, and for the rectangular PML of figure 6 we chose xmax

PML = 0.3,
ymax

PML = 0.7. In both cases, the PML thickness was dPML =0.5. The order p of the FE
polynomial was p = 10, and the maximal mesh size � in the above computations was
�= 0.1.

From figure 5(b) we conclude that the resonances of a circular cylinder with a
two-dimensional shallow rectangular cavity consist of two types: resonances of the
surface waves and cavity resonances with the longitudinal cavity resonances being
the least damped resonances. A sequence of resonances with imaginary part tending
to zero has to be expected since there exist trapped rays between the sidewalls of the
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Figure 7. Finite-element grid of two-element high-lift configuration with slat angle δs = 26◦,
slat overlap os = −0.018, slat gap gs = 0.0217 and rectangular PML (shaded region).

rectangular cavity. This was conjectured by Lax & Phillips (1967). For a review of
rigorous results on the distribution of resonances we refer to Zworski (1999).

4. Resonances for an airfoil with leading-edge slat
With the insight gained from the model problem, we proceed now with the

computation of the acoustic resonances of a two-element high-lift configuration
consisting of the main airfoil and a leading-edge slat (figure 7). The geometry is based
on the three-element geometry investigated experimentally by Pott-Pollenske et al.
(2003) with a retracted flap. For our baseline configuration we chose a slat angle
δs = 26◦, a slat overlap o = −0.018 and a slat gap g =0.0217 (see figure 15 for the
definition of the slat parameters). Now the reference length l∗

ref is taken to be the
chord length l∗ of the clean wing with the slat stowed (cruise condition) (figure 1).
Then K = ω∗l∗/c∗

0, and figure 7 shows a typical grid with maximal mesh size �= 0.1.
To keep the degrees of freedom as low as possible in our finite-element computation,
we used a rectangular PML as depicted in figure 7 and refined the grid locally in the
slat cove and around the two airfoils.

Following the approach taken for our model problem, we solve the high-lift
configuration first with a retracted slat in order to obtain the surface-wave resonances
of the high-lift configuration in cruise condition. To avoid the weakly damped
whistling tones from the gap between the retracted slat and the main wing, as
observed in figure 6 of Hein et al. (2005), we eliminate this gap by smoothing the
contour (in experiments this is often done with clay). The corresponding surface-wave
resonances are depicted in figure 8 up to Re(K/2π = 20). For this we patched together
the spectrum from three overlapping spectra with different σ0 (and Arnoldi shifts)
(figure 8). In our finite-element computation, we used the polynomial order p = 12.
Without the symmetry of our model problem, the double resonances of the circular
cylinder in figure 5(a) split into two distinct branches starting with a dipole-like
eigenfunction similar to that shown by Hein et al. (2005) for the symmetric NACA0012
profile. A few of the higher surface-wave eigenfunctions marked (a) to (e) in figure 8,
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Figure 8. Surface-wave resonances (�) for high-lift configuration with retracted slat (clean
wing) and rectangular PML: dPML = 0.5, �= 0.1, p = 12. The overlapping spectra are patched
together at the dash-dotted lines.

which were chosen near the slat cove resonances in figure 11, are depicted in figure 9.
In figure 9 as well as all the other contour plots the real part Re(φ) of the complex
eigenfunction is plotted and the (darker) maxima are separated from the (lighter)
minima by narrow nodal regions. Figure 9 clearly shows the standing surface waves
surrounding the airfoil which can be compared with the corresponding eigenfunctions
in figure 14 for the airfoil with extracted slat.

Next, we compute the resonances in the slat cove of our baseline configuration with
extracted slat and slat angle δs = 26◦ excluding all surface-wave resonances around
the whole wing. This can be achieved by surrounding the extracted slat by an annular
PML ending on the main wing as shown in figure 10 where a corresponding grid is
depicted. The resulting least-damped resonances are shown in figure 11 together with
three sample eigenfunctions. Note that for these slat parameters the least-damped
resonances are not the gap modes of Tam & Pastouchenko (2001), but modes which
resemble longitudinal cavity modes (Koch 2005), with n nodal lines between slat hook
and main wing.

Finally, we consider the high-lift baseline configuration with the slat extracted at
a slat angle of δs = 26◦ (figure 7). Contrary to the clear separation of surface-wave
resonances and cavity resonances in our model problem now the slat cove resonances
interact strongly with the surface-wave resonances and we obtain the fairly flat
resonance spectrum in figure 12. The influence of the slat cove resonances shows up
merely as subtle peaks in the resonance spectrum which are marked by arrows in
figure 12. Again we patched together the spectrum from three overlapping spectra
with different σ0 as indicated in figure 12 by the dash-dotted lines. The resonances
are depicted by open circles. Also included are the surface-wave resonances for the
clean wing of figure 8 by solid dot symbols and the slat cove resonances of figure 11
by the star symbols. In general, the resonances of the high-lift configuration with
extracted slat have much lower radiation losses than the clean configuration, i.e. more
noise is radiated to the far field. Only for very low frequencies do the resonances
follow the surface-wave resonances which are essentially independent of slat cove
geometry.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

57
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005770


Acoustic resonances in high-lift configuration 191

(e)

(d)

(c)

(b)

(a)

Figure 9. Clean wing eigenfunctions Re(φ) corresponding to the five surface-wave
resonances marked (a)–(e) in figure 8.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

07
00

57
70

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112007005770


192 S. Hein, T. Hohage, W. Koch and J. Schöberl

Figure 10. Finite-element grid of slat cove with annular PML (shaded region).
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–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

Im
(K

/2
π

)

Re(K/2π)

σ0 = 4 σ0 = 1

.

Figure 11. Slat cove resonances (*) for high-lift configuration with slat angle δs = 26◦, slat
overlap os = −0.018, slat gap gs = 0.0217 and annular PML: dPML = 0.5, σ0 = 1, �= 0.08 and
p = 12. The two overlapping spectra are patched together at the dash-dotted line.
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Figure 12. Resonances (�) for high-lift configuration with slat angle δs = 26◦, slat overlap
os = −0.018, slat gap gs = 0.0217 and rectangular PML: dPML = 0.5, �= 0.15 and p = 12. Also
included are the surface-wave resonances (�) of the clean wing of figure 8 and the slat cove
resonances (*) of figure 11.

For a generic three-element high-lift model with δs = 26◦ and δf = 34◦, Pott-
Pollenske et al. (2003) showed that the experimentally measured spectrum (figure 13a)
contains distinct frequency peaks at almost constant frequencies for several angles of
attack α of the whole high-lift configuration. The high-lift model of Pott-Pollenske
et al. (2003) had a slat extending over the whole span whereas the trailing-edge flap
extended over only half the span. Hein et al. (2005) computed the resonances of
the three-element model of Pott-Pollenske et al. (2003) with the flap extending over
the whole span. Here we recomputed the low-frequency resonances for the three-
element high-lift configuration without flap. This no-flap configuration consists of the
extracted slat and the main wing with wing cove. The results are plotted in figure 13(b).
The computed dimensional resonant frequencies (in Hz, using l∗ =0.4 m and
c∗
0 = 340 m s−1) are indicated on top of the arrows in figure 13(b) and a (dimensional)

frequency scale corresponding to that in figure 13(a) is added to allow a better
comparison. The two-dimensional results in figure 13(b) for the no-flap configuration
and the two-dimensional results of Hein et al. (2005) for the flap extending over the
whole span differ, indicating that the influence of three-dimensionality due to the
half-span flap in the experiment cannot be neglected. Therefore, a direct comparison
of the computed resonant frequencies for the two-dimensional configuration with
the measured tones is unrealistic. Nevertheless, the computed resonant frequencies
seem to be surprisingly close to the measured frequency peaks despite our no-flow
approximation, suggesting that already existing discrete frequency noise sources might
be enhanced by acoustic resonances similar to the enhancement of Rossiter modes by
cavity resonances (Koch 2005). Also, the peak tone in the experiment of Pott-Pollenske
et al. (2003) is close to the first slat cove resonance of figure 11.

The slight local peaks in the spectrum marked by arrows in figure 12 occur near
the slat cove resonances of figure 11, even though the latter are highly damped. The
eigenfunctions corresponding to the first five peaks marked (a)–(e) in figure 12 are
shown in figure 14. In the cove region, the eigenfunctions (c), (d) and (e) of figure 14
agree quite well with the three slat cove eigenfunctions depicted in figure 11. Near
Re(K/2π) = 13, the two resonance branches seem to interchange in a similar way
to the repeated interchanges of the x-symmetric and x-antisymmetric resonances in
figure 5(b), but it is not clear what that means physically.
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Figure 13. Comparison with generic three-element high-lift configuration: (a) experimental
results (reproduced from Pott-Pollenske et al. (2003) with permission of the authors),
(b) resonance spectrum for high-lift configuration with δs = 26◦ but without flap (dPML = 0.5,
�= 0.1 and p =12).

5. Variation of resonances with slat cove parameter changes
The traditional geometric parameters determining the aerodynamic performance of

leading-edge slats are the slat angle δs , the slat overlap os and the slat gap gs (figure 15).
Following Pott-Pollenske et al. (2003), we used in our baseline configuration the slat
cove parameters δs = 26◦, os = −0.018, and gs = 0.0217. Hein et al. (2005) varied these
parameters for the generic three-element high-lift configuration of Pott-Pollenske
et al. (2003) and found only negligible changes for low-frequency resonances up to
Re(K/2π) = 5. In the following, we investigate the influence of the slat cove parameters
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(a)

(b)

(c)

(d )

(e)

Figure 14. High-lift configuration eigenfunctions Re(φ) corresponding to the five resonances
marked (a)–(e) in figure 12.
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Slat

Main

Element

Gap

Constant gap

Constant overlap line

line

(Negative) overlap

Variable slat angle

Figure 15. Slat cove parameters with δs = 10◦, 20◦, 26◦ (shaded baseline configuration)
and 30◦.

on the high-frequency resonances by extending the frequency range by a factor of
four up to Re(K/2π) = 20.

First we vary the slat angle δs , keeping the slat overlap os = −0.018 and slat
gap gs = 0.0217 fixed. The results for δs = 10◦, 20◦ and 30◦ are shown in figure 16
complementing figure 12 with δs = 26◦. We increased the polynomial order up to
p = 14 and p = 16 to check the convergence of the resonances shown and eliminate
spurious modes. However, with p = 16 we reached the limits of our computational
facilities. Again, the subtle peaks in the spectrum are determined by the highly damped
slat cove resonances marked by the asterisks in figure 16 which were computed with
a similar grid to that shown in figure 10. The complete spectra were computed with a
grid similar to that in figure 7 using a rectangular PML. At lower δs (figure 16a), the
slat cove resonances have lower damping at the higher frequencies, resulting in more
distinct resonance peaks there; but, in general, the slat cove resonances do not change
much by varying δs from 10◦ to 30◦. However, Khorrami et al. (2000) showed that
the self-excited trailing-edge source can change radically with δs and this is probably
why the highest noise level was observed at the highest slat deflection angle (see also
Storms et al. 1999).

Next we vary the slat overlap os , keeping the slat angle δs = 26◦ and the slat
gap gs =0.0217 fixed. The resulting spectra for negative and positive slat overlaps
are shown in figure 17 complementing figure 12 with os = −0.018. With increasing
(positive) overlap, the slat cove resonances become more damped at higher frequencies,
smoothing the corresponding resonant peaks. Slat overlap seems to have a large
influence on the slat cove resonances.

Finally, we vary the slat gap gs , keeping the slat angle δs = 26◦ and the slat overlap
os =+0.005 fixed. We selected the positive slat overlap os = +0.005 so that we could
let the slat gap gs go to zero and thereby obtain a closed cavity for comparison even
though this case is of no interest for actual high-lift configurations. The resulting
spectra are shown in figure 18. For gs = 0 in figure 18(c), i.e. a slat cove cavity closed
at the slat trailing edge, we see clearly how the longitudinal slat cove resonances
dominate the resonance spectrum at higher frequencies. At Re(K/2π) ≈ 17, the slat
cove resonance agrees almost exactly with the weakly damped resonance of the high-
lift system similar to our model problem of § 3. From this we conclude that a cavity
closed at the bottom has resonances with much lower damping than a cavity with an
opening at the cavity bottom. An actual high-lift system has such an opening between
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Figure 16. Influence of slat angle δs on resonances (�) of two-element high-lift configuration
with fixed slat overlap os = −0.018 and fixed slat gap gs = 0.0217 using a rectangular PML:
dPML = 0.5, �= 0.15 and p = 16. (*) denotes the slat cove resonances. (a) δs = 10◦, (b) δs = 20◦,
(c) δs = 30◦.
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Figure 17. Influence of slat overlap os on resonances (�) of two-element high-lift configuration
with fixed slat angle δs = 26◦ and fixed slat gap gs = 0.0217 using a rectangular PML:
dPML = 0.5, �= 0.15 and p = 16. (*) denotes the slat cove resonances. (a) os = −0.005,
(b) os = +0.005, (c) os = +0.02.

the slat trailing edge and the main wing and therefore shows higher damping than
our model problem. However, the effect of mean flow through such an opening still
has to be assessed.
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Figure 18. Influence of slat gap gs on resonances (�) of two-element high-lift configuration
with fixed slat angle δs =26◦ and fixed slat overlap os = +0.005 using a rectangular
PML: dPML =0.5, �= 0.15 and p =16. * denotes the slat cove resonances. (a) gs = 0.0217,
(b) gs = 0.01, (c) gs = 0.

6. Conclusion
We computed acoustic resonances of a generic two-element high-lift configuration

with a single leading-edge slat. These resonances are damped by radiation losses to
infinity, but could possibly enhance coherent slat noise sources observed in small-scale
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low-Reynolds-number experiments. For the computation of the acoustic resonances
we neglected mean flow effects, assuming that mean flow is not important at the low
Mach numbers of aircraft landing and approach. However, for the exciting shear-
layer sources, mean flow is essential. To avoid unphysical reflections at the truncated
domain boundaries we employed perfectly matched layer boundary conditions in the
form of the complex scaling method of atomic and molecular physics.

Studying first the simple model of a circular cylinder with a rectangular cutout,
we demonstrated the existence of two distinct types of resonance: the first type of
resonance is due to surface waves and scales with the total circumference, i.e. the
airfoil length. The second type of resonance corresponds to longitudinal resonances
in a cavity and scales with the length of the cavity. For our model problem, the
weakly damped longitudinal cavity resonances dominate the resonance spectrum and
are expected to considerably enhance discrete frequency sources if their frequency is
close to these cavity resonances. Similar types of resonance are found in our generic
high-lift system. However, in the high-lift system, the cavity resonances are much
more damped owing to the opening between the slat trailing edge and the main wing,
and these exist as local peaks only slightly above the surface-wave resonances in
the otherwise fairly flat frequency spectrum. These longitudinal cavity resonances of
the slat cove between the slat hook and the main wing are much less damped than the
transverse gap resonances of Tam & Pastouchenko (2001) and Agarwal & Morris
(2002) between the slat trailing edge and the main wing. Varying the slat parameters,
we showed that the slat cove geometry, in particular the slat overlap and the slat gap,
have a strong influence on the resonances and therefore on the response to coherent
noise sources in a high-lift system.

We are grateful to the three referees for their valuable suggestions. In particular,
the constructive criticism of one referee concerning the non-existence of coherent
slat noise sources in real aircraft led to considerable improvements of our paper.
In this context we gratefully acknowledge helpful advice from M. Choudhari and
W. Dobrzynski.
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