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The nonparametric and the nuisance parameter approaches to consistently testing
statistical models are both attempts to estimate topological measures of distance
between a parametric and a nonparametric fit, and neither dominates in experi-
ments+ This topological unification allows us to greatly extend the nuisance param-
eter approach+How and why the nuisance parameter approach works and how it can
be extended bear closely on recent developments in artificial neural networks+ Sta-
tistical content is provided by viewing specification tests with nuisance parameters
as tests of hypotheses about Banach-valued random elements and applying the Ba-
nach central limit theorem and law of iterated logarithm, leading to simple proce-
dures that can be used as a guide to when computationally more elaborate procedures
may be warranted+

1. INTRODUCTION

In testing whether or not a parametric statistical model is correctly specified,
there are a number of apparently distinct approaches one might take+ The non-
parametric approach compares a nonparametric estimator of the object of interest
(say a conditional mean or density) to a parametric estimator (e+g+, Eubank and
Spiegelman, 1990; Eubank and LaRiccia, 1992;Gozalo, 1993;Härdle and Mam-
men, 1993; Hong and White, 1995; Leung and Yu, 1995; or Zheng, 1996)+ The
nuisance parameter approach tests whether a statistic depending on a “nuisance
parameter present only under the alternative” is zero for all values of the nuisance
parameter, as is true under the null (e+g+, Davies, 1977, 1987; Bierens, 1990)+
There are a variety of other possibilities and variants as well (e+g+, Eubank and
Hart, 1992; Eubank and LaRiccia, 1992; Blum, Kiefer, and Rosenblatt, 1961;
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Ghorai, 1980;Holst and Rao, 1980;Robinson, 1991;Schweizer and Wolff, 1976,
1981;Wolff , 1981; or Zheng, 1994)+

Our purpose here is to unify the apparently disparate nonparametric and nui-
sance parameter approaches to testing models consistently for arbitrary misspec-
ification (i+e+,with power approach one asymptotically for all deviations from the
null)+ The insight providing this unification is that, fundamentally, all the differ-
ent tests, and in particular the two of direct interest to us, are based on estimates
of topological “distances” between a restricted (e+g+, parametric) model and an
unrestricted model+ In this context, the notion of weak denseness or weak dense-
ness of a span in the space containing the object of interest plays the central role+
Further, verifying weak denseness is often quite easy+ As we shall see, the two
forms of the tests are distinct because one estimates the topological distance
directly in the nonparametric approach and indirectly in the nuisance parameter
approach+

By identifying the topological basis for a test and applying the notion of weak
denseness appropriately, the fundamental relations between many of the different
specifications testing approaches can be appreciated+ As just one example, Eu-
bank and Hart (1992) base a nonparametric specification test for a regression
model on the number of included terms appearing in an auxiliary regression+ The
estimated residuals of the original regression are the dependent variable, and
Fourier series terms in the original explanatory variables are the regressors+ They
reject the null hypothesis of correct specification if the number of included Fou-
rier terms is greater than zero (including a penalty for the number of terms to
control overfitting)+ This amounts to direct use of a nonvector space topology on
the space of possible conditional expectations of the residual given the explana-
tory variable—estimating “distance” from zero in a topology where “distance” is
the number of terms in the Fourier series representing the function+ It is the weak
denseness of Fourier series that makes this test consistent+

Thus, one can develop a taxonomy for specification testing that classifies tests
according to the object tested (e+g+, a density or an expectation), the topology
forming the basis for the test (e+g+, a normable or a nonnormable vector space
topology or a nonvector space topology),whether or not the distance is estimated
directly or indirectly, and other details of the testing procedure+ We leave this
exercise to other work but note that an informal survey reveals combinations of
features that have not yet been proposed for testing and which therefore consti-
tute interesting research opportunities+

An additional benefit to our approach is that it permits us to see the unity
underlying procedures directed toward testing models of distribution on the
one hand and regression models (i+e+, models of conditional expectation) on the
other+ Specifically we shall see how such apparently disparate procedures as
the Kolmogorov–Smirnov or Cramér–von Mises tests for the difference of dis-
tributions and Bierens’s (1990) test for regression model misspecification have
a common origin+ This unity suggests multivariate analogs of the Kolmogorov–
Smirnov and Cramér–von Mises tests that may have useful power+
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More broadly, our unification of the nonparametric and nuisance parameter
approaches to testing model specification permits us to obtain considerable ex-
tensions of the nuisance parameter approach, both in terms of the procedures
themselves and their domain of applicability+ Further, by putting such problems
in the context of testing hypotheses about Banach-valued random variables we
can obtain some simple test procedures that do not require computing the com-
plicated null distributions that can arise using such statistics and which can be
used as a simple guide as to when more elaborate computations may be warranted+

The plan of the paper is as follows+ In Section 2, we discuss Bierens’s (1990)
nuisance parameter approach to consistent testing of regression models to expose
certain fundamental issues and provide useful background for subsequent devel-
opments+ As a foretaste of the results to come, we present an extension of Bie-
rens’s results establishing the existence of a broad range of similar procedures
with identical properties+ Section 3 addresses the topological underpinnings of
the nuisance parameter approach for both regression models and probability mod-
els and unifies it with the nonparametric approach+ In this context, we also will
observe interesting connections between Bierens’s approach and the approxima-
tion capabilities of artificial neural networks (Hornik, Stinchcombe, and White,
1989;White, 1989a)+ In Section 4 we show how the nuisance parameter approach
to specification testing applies to testing probability models generally+ Section 5
lays out the Banach random variable testing approach and obtains some simple
but useful statistical procedures+

2. NUISANCE PARAMETER CONSISTENT TESTING
OF REGRESSION MODELS

For the sake of explicitness, all random variables are assumed to be defined on a
complete probability space~V,F,P!, ands~X! , F denotes the minimals-field
making the random variableX :V r Rk measurable+ Also for explicitness, pa-
rametrize the class of functions (or model)S :5 $ f ~{,u! :Rk r R6u [ Q%, Q ,
Rp, p [ N+ The model is correctly specified forE~Y6X! whenf ~X,u0! is a version
of E~Y6X! for someu0 [ Q+ Let $ Zun :V r Q% be a sequence of estimators con-
sistent for a “pseudotrue” valueu* [ Q regardless of the correctness ofS, such
that u* 5 u0 whenS is correctly specified+ For example, Zun can be a nonlinear
least-squares estimator from a random sample of sizen on ~Y,X! (e+g+, White,
1981)+

With e :5 Y2 f ~X,u*!, the correct specification ofS for E~Y6X! is equivalent
to e :5 E~e6X! 5 0 a+s+ Now, under suitable conditions onY andf, e is an inte-
grable function ofX, that is, e [ Lp~X! :5 Lp~V,s~X!,P! for somep [ @1,`#+
For 10p1 10q5 1, Lp~X! andLq~X! are a dual pair, that is, g [ Lp~X! is equal to
0 if and only if ^g,h& :5 *gh dP5 0 for all h [ Lq~X!, andh [ Lq~X! is equal to
0 if and only^g,h&50 for allg[ Lp~X!+Thus, the existence of a test functionh[
Lq~X! such that̂ e,h& Þ 0 is sufficient to conclude thateÞ 0+ The law of iterated
expectations giveŝe,h& [ ^e,h&+ Consequently, if for some test functionh we
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have evidence thatE~h~X!e! Þ 0, then we have evidence of misspecification of
S for E~Y6X!+

It is this fact that ensures the power against various misspecifications of the
Hausman (1978) test, because the Hausman test implicitly uses a particular choice
for h (see White, 1994,Ch+ 10)+Nevertheless, as Holly (1982) and Bierens (1982)
showed, the Hausman test can fail to have power against potentially important
departures fromH0, the null hypothesis of correct specification+ The same is true
of the conditional moment specification tests of Newey (1985), Tauchen (1985),
and White (1987, 1994), which also rely on various specific choices of test func-
tion h to obtain power against a range of misspecifications+

One way to ensure power against arbitrary misspecification (provided thatYhas
finite variance) is to chooseh5 eas the test function because7e72 5 ^e,e& 5 0 if
and only ife :5 E~e6X! 5 0 a+s+Althoughe is unknown a priori, consistent non-
parametric estimatorsIeof ecome arbitrarily close toe, ensuring the utility of the
nonparametric approaches to testing regression models of specification (e+g+,Eu-
bank and Spiegelman, 1990;Hong and White, 1995)+The nuisance parameter ap-
proach ensures power through essentially the same considerations+

Recall that the existence of a test functionh such that̂ e,h& Þ 0 is evidence of
misspecification+ Suppose thatH , Lq~X! satisfies

~∀g [ Lp~X!!~∀h [ Lq~X!!~∀d . 0!~∃h' [ spH!@6^g,h& 2 ^g,h' &6 , d#,

(1)

where spH is the span ofH+ Using the linearity of̂ g,{& and the definition of the
span, it is immediate thate5 0 if and only if ^e,h& 5 0 for all h [ H+ Now, the
weak topology onLq~X! is by definition the weakest (or smallest) topology mak-
ing all of the continuous linear functions of the formg ° ^ f,g&, f [ Lp~m!,
continuous+Directly from this definition,we see that a classH satisfies (1) if and
only if spH is dense in the weak topology inLq~X!+ It is this weak denseness that
is at the basis of the consistency of the nuisance parameter approach+

For example, Bierens (1990) showed that the class of functionsHexp 5
$ht6ht~x! 5 exp~x 't!, t [ Rk% has the property that whenevere Þ 0, there is
an h [ Hexp with ^e,h& Þ 0+ This leads to a consistent test because spH is
weakly dense+ For p,q [ ~1,`!, the weak closure and the norm closure of
convex sets are equal (Dunford and Schwartz, 1958, V+2+14, p+ 418), so that
weak denseness of spHexp is the same as norm denseness in these spaces+ The
nonparametric approach works because it is based on a class of functions that
comes arbitrarily close to any function; the nuisance approach works because it
is based on a class of functions with a span that comes arbitrarily close to any
function+

A remarkable feature of Bierens’s approach is that a smooth random choice of
t for the functionht~X! 5 exp~X 't! will deliver a consistent test+ To understand
how this is possible,we introduce some convenient terminology adapted from the
theory of topological vector spaces (Dunford and Schwartz, 1958,V+3+1, p+ 418)+

298 MAXWELL B. STINCHCOMBE AND HALBERT WHITE

https://doi.org/10.1017/S0266466698143013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698143013


DEFINITION 2+1+ LetH , Lq~X!, q [ @1,`#+ For given nonzero e[ Lp~X!,
10p1 10q5 1, h [ H reveals e if^e,h& Þ 0+ If for every nonzero e[ Lp~X! there
exists a revealing h[ H, thenH is totally revealing+ Further, if for every non-
zero e[ Lp~X!, all but a negligible set~defined precisely below! of h [ H are
revealing, thenH is generically totally revealing+

Note thatH is totally revealing if and only if its span, spH, is+ We do not
distinguish between a class and its span when discussing totality+When the func-
tion eor the collectionE is clear from the context, we speak ofh as revealing and
H as totally or generically totally revealing+ Bierens’s key result is as follows+

THEOREM 2+2 (Bierens, 1990, Theorem 1)+ Suppose thate is a random sca-
lar with E6e6,` and that X is a bounded random k3 1 vector, k [ N, such that
E~e6X! Þ 0+ For t [Rk, let ht~X!5exp~X 't!+ Then there is a subset S ofRk such
that for all t [ S, ^ht~X!,e& Þ 0+ Further, Sc, the complement of S, has Lebesgue
measure zero and is not dense inRk+

A continuity argument shows that the closure ofSc has empty interior, that is,
that it is negligible, so thatHexp is generically totally revealing+ If t is chosen
according to a smooth distribution, then the probability thatt [ Sc is equal to 0+

Bierens presents Theorem 2+2 as a “fundamental fact” but does not provide
much insight into its genesis+ However, from the previous discussion we know
thatH is revealing if and only if spH is weakly dense inLq~X! (and strongly
dense forq [ ~1,`!!+ This means that the topological basis of Bierens’s approach
is a check of whether or note is in the weak neighborhood of 0 of the form
$g : 6^g,ht&6 , r % wherer is determined by considerations involving the size of
the test+ Note that this is only implicitly an estimation ofebecausêe,h& 5 ^e,h&
for all h+

Another remarkable aspect of Theorem 2+2 is that it makes no use of properties
of X other than boundedness+ From this we know that spHexp must be weakly
dense inLq~X! for any (bounded) random vectorX, a very strong property+ But
this just deepens the mystery: for example, what is the role played by the exp({)
function? Bierens makes fundamental use of its properties in proving his result,
but would other functions also work? Recent results for artificial neural networks
provide an interesting answer to this question, considerably extending Bierens’s
result+

THEOREM 2+3+ Let e and X be as in Theorem2+2+ Let HG :5 $ht6ht~x! 5
G~ Ix 't!, t [ Rk11%,where Ix :5 ~1,x '!' and G is analytic+1 ThenHG is generically
totally revealing if and only if G is nonpolynomial+

Theorem 2+3 does not provide insight into how and why Bierens’s approach
works but only suggests that something deeper is at work than is revealed by
Bierens’s result or its proof+ The results of Section 3 provide the desired insight,
but first we complete our discussion of Bierens’s approach+
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Bierens’s result is contained as a special case of Theorem 2+3+2 Further, there
is a strong sense in which the exponential function is not special: the class of
nonpolynomial analytic functions is dense inC~R! in the compact-open topology
(uniform denseness inC~B! for every compactB , R!—a dense collection of
functions has the same property as Bierens’s familyHexp+

Bierens implements his test with the sample analog ofE~ht~X!e!,

ZMn~t! :5 n21 (
i51

n

ht~Xi ! [ei, (2)

where [ei :5 Yi 2 f ~Xi , Zun!, i 5 1,2, + + + , and$Zi :5 ~Yi ,Xi
'!' % is a random sample

drawn from the joint distribution ofZ5 ~Y,X '!'+ It follows that for givent [ Rk,
n102 ZMn~t! n N~0,s2~t!! underH0 and standard regularity conditions, where

s2~t! :5 var@~ht~Xi ! 2 b*~t!A*21¹f ~Xi ,u* !!ei #, (3)

b*~t! :5 E @ht~Xi !¹f ~Xi ,u*!# , A* :5 E~¹f ~Xi ,u*!¹f ~Xi ,u*! ' 2 e¹2f ~X,u*!!,
where¹ and¹2 are the gradient and Hessian operators with respect tou, yielding
ap3 1 vector andp3 p matrix, respectively+

Given a consistent estimator[sn
2~t! for s2~t! and appropriate regularity condi-

tions, it follows that for eacht outside of a negligible subset ofRk, ZWn~t! :5
n ZMn~t!20 [sn

2~t! n x1
2 underH0; in contrast, ZWn~t!0n r h~ht! . 0 a+s+ underHa+

Thus, a consistent test can be obtained by selectingt at random, as proposed in
Bierens (1987, 1988)+ However, random selection of the nuisance parametert
introduces a degree of arbitrariness into both the size and power of the test+

To avoid this difficulty,Bierens (1990) proposed choosingt to maximize ZWn~t!
over a hypercubeT , Rk+ If H , Lq~X! is any norm bounded set with weakly
dense span, then7g7H :5 sup$6^g,h&6 : h [ H% defines a norm onLp~X!+ This
type of norm gives rise to what is called a polar topology (Robertson and Rob-
ertson, 1973, III +2), and this is the topological basis of Bierens’s second type of
test+ Again, no direct estimation ofe need be made because^e,h& [ ^e,h&+

Denote the maximizing value as[tn+ The asymptotic distribution ofZWn~ [tn! is no
longerx1

2 but, as Bierens showed, is instead a somewhat complex distribution
associated with the extremum of the square of a particular Gaussian process+ To
avoid having to compute this distribution, Bierens proposed the following de-
vice: chooseg . 0, r [ ~0,1!, andt0 [ T independently of the sample, and put

Itn 5 Ht0 if ZWn~ [tn! 2 ZWn~t0! # gnr,

[tn if ZWn~ [tn! 2 ZWn~t0! . gnr+
(4)

Bierens (1990, Theorem 4) showed thatZWn~ Itn! n x1
2 under H0, whereas

ZWn~ Itn!0n r supt[T h~ht ! . 0 a+s+ underHA+ The test is thus consistent, and the
power of the test is asymptotically not dependent on the random choicet0+

As should be expected, finite-sample results can be highly sensitive to choice
of g, r, andt0 so that different researchers can arrive at different conclusions
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aboutH0 for the same model and data+ Hansen (1996) provided a direct Monte
Carlo–based method for computing the distribution ofZWn~ [tn!, avoiding this un-
desirable property+ In Section 5, we discuss a unified approach to hypothesis
testing with such statistics and provide simple bounds onZWn~ [tn!+

By contrast, the nonparametric approach to specification testing typically uses
tests based directly on a nonparametric estimator ofe, obtained, for example, by
solving

min
u[Qn

n21 (
i51

n

~ [ei 2 u~Xi !!
2 (5)

with

Qn 5 Hu :Rd r R6u~x! 5 (
j51

pn

bj cj ~x!, bj [ R, and cj :Rd r RJ , (6)

wherepn is chosen to grow at an appropriate rate with the sample sizen and$cj %
is a sequence of basis functions such as Fourier series, Eubank and Speckman’s
(1990) polynomial-trigonometric series, Gallant’s (1981) flexible Fourier form,
as considered by Hong and White (1995), or splines as in Cox and Koh (1989) and
Cox, Koh,Wahba, and Yandell (1988)+With an indirect approach, e need not be
estimated+

3. REVEALING TEST FUNCTIONS AND DUALITY

From the preceding section,we see that totally revealing classes of test functions
play a central role in the nuisance parameter approach+ In this section,we explore
the connections between these classes and duality, providing the topological un-
derpinnings for our unification of the nuisance parameter and the nonparametric
approach+

We first consider the properties of totally revealing classes of test functions+For
this,weuse thespacesLp~X!ofs~X!-measurable functions,p[ @1,`#+Bychange
of variable, we can equivalently useLp~ m! :5 Lp~Rk,Bk,m! wherem~A! :5
P~X21~A!! andBk is the Borels-field onRk+ For our later discussions of proba-
bility and conditional probability models, it is preferable to takem to be a signed
measure+3 Thus, Lp~ m! 5 Lp~Rk,Bk,m! denotes the set ofBk-measurable, real-
valued functionsf onRk with the property that7 f 7 :5 @*V 6 f ~r !6 p dvm~r !#10p ,`,
where vm is the variation ofm, that is, the unique finite, countably additive posi-
tive measure defined by vm~A! 5 sup(j51

J 6m~Aj !6, A [ Bk,where the supremum
is taken over finite measurable partitions ofA+Whenm is positive, for example,
a probability measure, then vm 5 m+

The spaceLp~m! is endowed with the metricd~ f1, f2! 5 7 f1 2 f27, and the
corresponding topology is called the norm topology+ The weak topology was
introduced previously+ Polar topologies are also of interest+Given a collection of
norm bounded setsA of Lq~m!, theA-polar topology onLp~m! is the weakest (or
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smallest) topology making the functions (seminorms) sup$6^g,h&6 : h [ A% con-
tinuous for eachA [ A+ WhenA is the set of all singleton sets inLq~m!, the
A-polar topology is the weak topology; whenA consists of only one set and that
set is the unit ball inLq~m!, theA-polar topology is the norm topology+4 A topol-
ogy is separated (or Hausdorff ) if points are closed sets+ In particular, having the
origin be a closed set is crucial to testing, hence the interest in whether or not a
topology is separated, or separated at 0, as in Eubank and Hart (1992)+

THEOREM 3+1+ Suppose that p[ @1,`# and that q satisfies10p110q51+ Let
H be a norm bounded subset of Lq~m!+ The following statements are equivalent:

(a) H is totally revealing+
(b) spH is weakly dense in Lq~m!+
(c) The$H%-polar topology is separated+

If in addition p[ ~1,`!, then the following statement is equivalent to(a)–(c):

(d) spH is norm dense in Lq~m!+

Becausem is often unknown, it is important to ensure that spH is weakly dense
in Lp~m! for anym+ For this, we assume (throughout) that there is a compact set
B such that vm~B!5vm~Rk!+ In the regression context, this is the assumption that
the explanatory variables, X,must be bounded; in the probability model context,
this is the assumption that the distributions have bounded support+This is without
loss of generality in the following sense: we can always homeomorphically em-
bedRk in ~21,11!k+ This retains all of the conditioning information in the re-
gression context and all of the differences in distributions in the probability model
context+

We let Mb~B! denote the set of bounded measurable functions onB+ Let
C~B! , Mb~B! be the set of continuous (hence bounded) functions onB+ Endow
Mb~B! and its subsets with the uniform topology+Uniform denseness and uniform
closure refer to denseness and closure in this topology+ We now strengthen the
concept of totality+

DEFINITION 3+2+ We say thatH , Mb~B! is comprehensively revealing if it
is totally revealing for Lp~m! for every p[ @1,`# and every finite signed mea-
suredm supported on B+

A key result regarding comprehensiveness is the following theorem+

THEOREM 3+3+

(a) For H , C~B!, H is comprehensively revealing if and only ifspH is uniformly
dense in C~B!+

(b) For H , Mb~B!, H is comprehensively revealing given any of the following con-
ditions:
(i) spH contains a subalgebra of C~B! containing the constants and separating

points;
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(ii) spH contains a subalgebraA of Mb~B! containing the constants, and the
minimals-field making all functions inA measurable isBk;

(iii) The uniform closure ofspH contains a comprehensively revealing set+

Theorem 3+3 permits many choices for comprehensively revealingH+ For ex-
ample,H can be any basis for the algebraic polynomials, Bernstein polynomials,
Chebyshev polynomials, trigonometric polynomials, Fourier series, B-splines,
etc+ Such choices form the basis for the nonparametric approach to specification
testing+ Theorem 3+3 thus provides the desired unification+ Further, we can ex-
tend Bierens’s approach by considering classesH of the form

HG 5 $h :Rk r R6h~x! 5 G@A~x!#,A affine} whereG :R r R, (7)

asHG preserves the appealing simplicity of Bierens’s classHexp+We say thatG
is totally revealing, comprehensively revealing, etc+, wheneverHG is+

To contrast the requirements for a comprehensively revealing class with those
given subsequently for a generically comprehensively revealing class, we intro-
duce the following linear spaces of functions:

S~G,T ! :5 Hg :B r R6g~x! 5 b0 1 (
j51

r

bj G~ Ix 'tj !, b0,bj [ R,

tj [ T , Rk11, j 5 1, + + + , r, r [ NJ , (8)

whereB is compact and supports vm+ The S in S~G,T ! suggests the span; the
weightstj of the affine combinationAj ~x!5 Ix 'tj are restricted toT , Rk11+When
T 5 Rk11, S~G,Rk11! 5 sp$HG,1% where1 is the function always equal to 1+
ProvidedG Þ 0, this equals spHG because we can sett1 5 ~b,0'!' whereb [ R
satisfiesG~b! Þ 0+ThusHG is comprehensively revealing if and only ifS~G,Rk11!
is comprehensively revealing+

The question of whenS~G,Rk11! is comprehensively revealing has been in-
tensely investigated in the artificial neural network literature+ This interest arises
because the functions inS~G,Rk11! 5 spHG are the “output functions” of a
leading class of artificial neural networks, the “single hidden layer feedforward
networks” (e+g+, Rumelhart, Hinton, and Williams, 1986)+ It suffices here to
find conditions onG such thatS~G,Rk11! is uniformly dense inC~B! for any
compactB+

DEFINITION 3+4+ A measurable function g:Rr R has a nice interval if for
some a, b, g is Riemann integrable in@a,b# and nonpolynomial+ If g is also
continuous on@a,b#, then g has avery nice interval+

In reading the first part of the following result, bear in mind thatG [ S~G,R!
and that if the domains and ranges match, the composition of an affine function
with an affine function is affine+
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LEMMA 3 +5+ SupposeS~G,R! contains a function g with a nice interval+
ThenHG is comprehensively revealing+ If G is continuous, HG is comprehen-
sively revealing if and only if G has avery nice interval+

Thus, the only continuous choices forG that arenot comprehensively reveal-
ing are the polynomials+ Bierens’s (1990) choiceG~a! 5 exp~a! and White’s
(1989b) choiceG 5 logistic cumulative distribution function (c+d+f+) are clearly
continuous and clearly not polynomials,whereas Hansen’s (1990) choiceG~a!5
1~0,`!~a! has a nice interval+

We now turn to issues of genericity+ For T a nonempty subset ofRk11, let
HG~T ! denote the set of functions of the formx r G~ Ix 't! with t [ T+

DEFINITION 3+6+ We say thatHG is generically comprehensively revealing
if for all T with nonempty interior, the uniform closure ofspHG~T ! contains
C~B! for everycompact B+

It is straightforward to show that this implies that the setSHG

c as defined in
Section 2 is negligible regardless of the (signed) measurem underlying the ex-
pectation+ The difference between spHG~T ! andS~G,T ! is that spHG~T ! might
not contain the constant functions+ We saw that this difference could not arise
whenT 5 Rk11; the same result holds here+

LEMMA 3 +7+ The classHG is generically comprehensively revealing if and
only if for every T with nonempty interior, S~G,T ! is uniformly dense in C~B! for
every compact B+

Thus, for givenG, the difference betweenHG being comprehensively reveal-
ing andHG being generically comprehensively revealing hinges on whether only
Rk11 or alternatively an arbitrarily chosen (small) setT in Rk11 with nonempty
interior can deliver the uniform denseness ofS~G,T !+ This seems a rather strong
condition, having a “universe in a grain of sand” flavor+ Nevertheless, Bierens
proves thatG 5 exp has this property, but it can be shown, for example, that
Hansen’sG~a! 5 1~0,`!~a! does not+ The real analytic functions have perhaps
surprising properties in this regard+

THEOREM 3+8+ Let G be real analytic+ ThenHG is comprehensively reveal-
ing if and only if it is generically comprehensively revealing+

In view of Lemma 3+5, we have the following+

COROLLARY 3+9+ Let G be real analytic+ ThenHG is generically compre-
hensively revealing ~hence comprehensively revealing! if and only if G is not a
polynomial+

This covers Bierens’s choiceG 5 exp and White’s choiceG 5 logistic c+d+f+
Theorem 2+3 follows immediately from this result+ It is, however, not necessary
thatG be real analytic+
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THEOREM 3+10+ Suppose thatsp$DaG~a!, 0 # a , `6a [ O% is dense in
C~R! for any nonempty open subset O ofR for G infinitely differentiable+ Then
for any T, Rk11 with nonempty interior, S~G,T ! is uniformly dense in C~B! for
any compact B, soHG is generically comprehensively revealing+

A nonanalytic function satisfying this condition is the normal c+d+f+ or density+
Thus, there is a large variety of choices besidesG5 exp that share the appeal-

ing features of Bierens’s consistent specification testing approach+ Indeed, Cor-
ollary 3+9 implies that the property thatG is generically comprehensively revealing
is itself “generic,” that is, it is a property possessed by a dense set of functionsG
in C~R!+ Let G , C~R! denote the class of continuous functionsG such that
S~G,T ! is dense inC~Rk! in the compact-open topology (uniform denseness in
C~B! for every compactB! for every setT having nonempty interior+

THEOREM 3+11+ The classG is dense in C~R! in the compact-open topology+

Note that the complement ofG contains the polynomials and so is also dense+

4. IMPLICATIONS AND APPLICATIONS

We next consider the scope of the foregoing theory and show that it extends well
beyond the standard regression framework and into probability and conditional
probability models+ Eubank and LaRiccia (1992) compare Cramér–von Mises
and nonparametric tests for the equality of distributions+ The Cramér–von Mises
and Kolmogorov–Smirnov tests are examples of the uses of polar or other norm
topologies to measure the distance between an estimated and a null hypothesis
distribution+ Eubank and LaRiccia cite a large body of literature on the problem
of distinguishing between different one-dimensional distributions+ Because the
nuisance parameter approach does not need to directly estimate densities for com-
parison purposes, it is more easily applicable to multidimensional problems+

We begin with a study of likelihood models of a scalar random variableYcon-
ditional on a randomk-vectorX distributed according toPX+5 Let the conditional
likelihood function with respect to as-finite measuren and parameterized byu [
Q, Q an open subset ofRp, be given by a measurable function, f :R3Rk 3 Q r

R1, with the property that for allx [ Rk andu [ Q, *R f ~ y6x,u! dn~ y! 5 1+
Let S denote$ f ~{6{,u!6u [ Q%+ S is correctly specified forYconditional onX

when forPX-almost allx, f ~{6x,u0! is a version of the true conditional density ofY
givenX5 x with respect ton for someu0 in the interior ofQ+ Under mild condi-
tions onf,we can differentiate both sides of the identity*R f ~ y6x,u! dn~ y![1 with
respect tou+ Under correct specification this yields (e+g+, White, 1994, Theo-
rem 6+6) E~s* 6X! 5 0 a+s+wheres*5 ~s1

*, + + + ,sp
*!'[ ¹u log f ~Y6X,u*! is thep3 1

“score” vector of the likelihood, with u* :5 argmaxu[Q E~log f ~Y6X,u!!+ (Here
u*5u0 under correct specification+) With j5 E~s* 6X!, Theorem 3+8 ensures that
for G in a dense set of choices and essentially everyt in Rk11

E~G~ FX 't!sj
*! Þ 0, j 5 1, + + + , p, (9)
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for any misspecification ofS leading to the failure ofE~s* 6X!50 a+s+This forms
the basis for statistically detecting any such failure as noted by Hansen (1990)+
Nevertheless, one may haveE~s* 6X! 5 0 in the presence of misspecification of
S, for example, one that leads to violation of the equation

E~¹'s* 1 s*s*' 6X! 5 0 a+s+, where¹'s* :5 ¹2 log f ~Y6X,u* !+ (10)

(To get this under correct specification, differentiate*R f ~ y6x,u! dn~ y![1 twice
w+r+t+ u+!

The question then arises whether the theory of Section 3 provides a way to
detect arbitrary misspecification inS+6 To show it can,we use the fact thatm may
be signed and consider testing whether two multivariate distributions, sayP and
Q, are the same+ In the likelihood context, we can viewP as the true distribution
of Z 5 ~Y,X '!' andQ as that implied by the likelihood atu*,

Q~A! 5 E
A

f ~ y6x,u* ! dn~ y!dPX~x!, A a Borel subset ofR 3 Rk+ (11)

BecauseP andQ each completely specify a joint distribution forY andX, a test
that will detect any deviation ofP from Q is a test that will detectanymisspec-
ification in S+ Formally, we test

H0 : r~P,Q! 5 0 vs+ HA : r~P,Q! . 0, (12)

wherer is any metric on the spaceM of finite measures inducing the weak star
topology on (variation) norm bounded subsets ofM, for example,

r~m1,m2! 5 (
n51

` 1

2n

*E f n dm1 2 E f n dm2*
1 1 *E f n dm1 2 E f n dm2*

, (13)

where$ f n%n[N is any uniformly dense subset ofC~B! (Dunford and Schwartz,
1958, p+ 426)+

Becauser is a metric,H0 is the hypothesis thatm :5 P2Q is the zero measure,
that is, r~m,0!50+ LetEP andEQ denote expectation with respect to the indicated
measures+ For anyh [ spH,

EP~h~X!! 2 EQ~h~X!! 5 Eh~x! dP~x! 2 Eh~x! dQ~x! 5E1h~x! dm~x!+

(14)

We now setj :5 1and test whether150 a+e+2m+Now, 150 a+e+2m if and only
if m is the zero measure, that is,P5Q+ Totality of spH implies that150 a+e+2m

306 MAXWELL B. STINCHCOMBE AND HALBERT WHITE

https://doi.org/10.1017/S0266466698143013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698143013


if and only if *h~x! dm~x! 5 0 for all h in spH+ Theorem 3+8 implies that under
HA for appropriateG and almost allt [ Rk12, t 5 ~t1,t2

' !',

EP~G~ EZ 't!! 2 EQ~G~ EZ 't!! Þ 0, (15)

where EZ 5 ~Y, FX '!'+ A statistic that estimates this difference is

n21 (
i51

n

G~ EZi
't! 2 n21 (

i51

n E G~ y 3 t1 1 FXi
't2! f ~ y6Xi , Zun! dn~ y!, (16)

where Zun :5 argmaxu[Q n21 (i51
n log f ~Yi 6Xi ,u!+ A test can be based on this dif-

ference, as described in the next section+We now see clearly the utility of treating
signed measures, as this reasoning requires thatm be a signed measure+

In addition to testing the correctness of likelihood models, testingr~P,Q! 5 0
againstr~P,Q! . 0 permits testing whether the (unknown) joint distributionQof
a random vectorX coincides with a specified joint distributionP—for example,
thatX is multivariate uniform—as well as testing that two independent random
samples are both drawn from the same unknown distribution+ In both cases, the
integral*G~ Ix 't!~dP~x! 2 dQ~x!! can be approximated by the statistic

n1
21 (

i51

n1

G~ FX1i
' t! 2 n2

21 (
i51

n2

G~ FX2i
' t!+ (17)

In the latter case, $X1i , i 5 1, + + + ,n1% and $X2i , i 5 1, + + + ,n2% are independent
samples from the two populations+ In the former, $X1i , i 5 1, + + + ,n1% is generated
by nature according toQ, and$X2i , i 5 1, + + + ,n2% is generated pseudorandomly by
the researcher according toP+ (Alternatively, a numerical integration may be
used+) WhenX is a scalar andG is chosen to be the indicator functionG~a! 5
1@a . 0#, usingG~ Ix 't! 5 1@x . t0# with t :5 ~t0,1! leads to tests closely related
to the familiar Kolmogorov–Smirnov test (e+g+, Serfling, 1980, pp+ 57–58) when
the uniform norm is applied, as described in the next section; choosing theL2-
norm instead leads to tests related to the Cramér–von Mises statistic (e+g+,Serfling,
1980, p+ 58)+ Recent work of Andrews (1997) extends the Kolmogorov approach
to testing parametric models with conditioning variables+

Applications of the sort discussed here approximate integrals*f~x,t! dm~x! for
finite signed measuresm with statistics*f~x,t! dmn~x!,wheremn converges tom
in the weak star topology+By definition,continuity and boundedness of eachf~{,t!
guarantees that*f~x,t! dmn~x!r *f~x,t! dm~x! for eacht [ T+ The next result
shows that if the class$f~{,t! : t [ T % (e+g+, f~x,t! 5 G~ Ix 't!! is comprehen-
sively revealing, thenmn converging tom is equivalent to*f~x,t! dmn~x! r
*f~x,t! dm~x! for eacht [ T+ Further, if the class$f~{,t! :t [ T % has compact
closure (in the sup norm), the convergence will be uniform overt [ T+

This uniformity is useful in two areas+ It provides a uniform law of large num-
bers, and it guarantees that small deviations from correct specification give rise
only to small values of our test statistics+
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THEOREM 4+1+ Let $mn%n50
` be a sequence of finite signed measures on B

with vmn~B! uniformly bounded+

(a) If the class$f~{,t! :t [ T % , C~B! is comprehensively revealing, thenmn r m0

in the weak star topology if and only if for every t [ T, *f~x,t! dmn~x! r

*f~x,t! dm0~x!+
(b) If $f~{,t! :t [ T % , C~B! is comprehensively revealing and has compact closure,

thenmn r m0 if and only if supt[T 6*f~x,t! dmn~x! 2 *f~x,t! dm0~x!6r0+

5. HYPOTHESIS TESTING WHEN A NUISANCE PARAMETER
IS PRESENT ONLY UNDER THE ALTERNATIVE

Our preceding results establish an equivalence between the hypothesis of correct
model specification and a family of moment conditions+7 For appropriate mo-
ment functionm, we write the null hypothesis as

H0 :E~m~Z,u0,t!! 5 0 for someu0 [ Q and allt [ T, (18)

whereT is an appropriate compact set andZ is an l 3 1 random vector+ For
example, to test a nonlinear regression model, takem to be given bym~Z,u,t! 5
G~ FX 't!@Y 2 f ~X,u!#+ The alternative toH0 is

HA :E~m~Z,u,t0!! Þ 0 for all u [ Q and somet0 [ T+ (19)

Nevertheless, we have seen that for certainm the alternative is in fact

HA
* :E~m~Z,u,t!! Þ 0 for all u [ Q and essentially allt [ T+ (20)

Now, t is indeterminate under the null but not underHA+ Thus, t is called a
“nuisance parameter present only under the alternative+” The phrase “identified
only under the alternative” is also used+ “Identification” here is not fully analo-
gous to the usual concept arising in estimation of parametric models, because of
HA
*+ Nevertheless, the terminology is now standard+
Hypothesis testing in such contexts presents challenges, as evidenced by our

brief discussion of Bierens’s (1990) approach in Section 2+The problem has been
addressed by several authors: Davies (1977, 1987) gave bounds for certain sta-
tistics; Andrews (1993) and Hansen (1996) discussed a variety of examples in
econometrics; Bierens (1990) and Hansen (1996) obtained the asymptotic distri-
bution for maxt[T ZWn~t!; and Andrews and Ploberger (1994) proposed an opti-
mality criterion and an optimal test+ In this section we present a natural approach
to solving this problem using Banach spaces and illustrate its application to test-
ing for misspecification of a nonlinear regression model+

The key to our approach is to castH0 as a hypothesis about the expectation of
a Banach space–valued random variable (a “Banach random element” or “Banach-
r+e+”) + Recall that a Banach space, B, is a complete normed linear space+ We
denote the norm7{7+ A Banach-r+e+ is a measurable mapX from a probability
space~V,F,P! into B, equipped with the (Borel)s-field generated by the open
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sets of the norm topology, with the tightness property that for eache . 0 there
exists a compact setKe in B such thatP@X , Ke# $ 1 2 e+

BecauseB is linear, the integral of a simple Banach-r+e+, X s, is E~X s! :5
(x P@X s5 x# [ B, summing over the finitely many values taken byX s+ Because
by tightness the range of a generalX is separable, it is theP-a+e+ limit of some
simple sequence$X j

s% j[N with 7X j
s~v!7# 7X~v!7+ If there is a unique7{7-limit of

$EX j
s% for all such sequences, then the integral ofX, denotedEX, is defined as

this limit+
As previously discussed, Zun is consistent foru* in Q, andu* 5 u0 underH0+

Denote byM*5 m~Z,u*,{! the mappingt r m~Z,u*,t!+ As Z is random,M* is
a random function oft, and under suitable conditionsM* is a Banach-r+e+We can
then expressH0 as

H0
B : g~E~M* !! 5 0, (21)

whereg :B r R1 is 7{7-continuous onB such thatg~x! 5 0 if and only if 7x75
0+ We chooseg, 7{7, and Zun jointly so that a convenient estimator ofg~E~M*!!
will have a tractable distribution under the null (with proper scaling) and have
power under the alternative+ For example, in the classical situation (withB5Rp!
a leading case isH0 : u*5 0+ Let 7u75 @u 'u#102, let Zun be the maximum likelihood
estimator foru*, and letg~u! 5 u 'I *u, whereI * is the MLE information matrix+
When !n Zun replacesu*, we obtain a statisticg~!n Zun! 5 n Zun

' I * Zun that has the
convenientxp

2 distribution under the null asymptotically and has optimal asymp-
totic power properties under local alternatives+

A variety of useful norms is available for the present case+ Often m~Z,u*,{!
is continuous onT, and so we are dealing with random elements ofC~T !+ This
space can be endowed with the uniform norm7{7`, so that 7E~M*!7` 5
supt[T 6E~m~Z,u*,t!!6+ So long as the smallest weakly closed set supportingn
has weakly dense span, this procedure yields a separated topology+ Taking
g~x! :5 7x7` satisfies the conditions required ofg and leads to statistics of the
form

gSn2102 (
i51

n

Mi
*D 5 sup

t[T
*n2102 (

i51

n

m~Zi ,u*,t!*, (22)

whereZi is a random sample onZ+ These are the statistics considered by Bierens
(1990), Hansen (1996), and Kolmogorov–Smirnov+

Alternatively, whenm~{,u*,{! is properly integrable we can considerLp~n!
norms of the form

7E~M* !7p,n 5 FE
T
6E @m~Z,u*,t!#6 p dn~t!G10p

, 1 # p , `, (23)

wheren is a given measure onT+ Takingg~x! 5 7x7p,n
p leads to statistics of the

form
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gSn2102 (
t51

n

Mi
*D 5 E

T
*n2102 (

t51

n

m~Zi ,u*,t!*
p

dn~t!+ (24)

Bierens (1982) proposed a statistic of this form withp 5 2 anddn~t! 5 dt+
Hansen (1996) also examined a version of this statistic+ For Cramér–von Mises
type tests, takep5 2 andn to be the distribution ofZ+ Andrews and Ploberger’s
(1994) optimal test arises withg of the form

g~x! 5 ~1 1 c!2~l11! Eexp@x~t!2c02~1 1 c!# dn~t!, (25)

wherec . 0 is a scalar constant determining whether the test has power against
near or far local alternatives andn is a given probability measure supported onT+
For x [ C~T ! this choice is continuous with respect to7{7`+

Thus, we are led to consider the asymptotic behavior of statistics of the form
g~n2102Sn!,whereSn5(i51

n Mi
* is a sum of Banach-r+e+’s and the normalization

by n2102 stabilizes the distribution of the sum+ The central limit theorem (CLT)
and law of the iterated logarithm (LIL) for Banach-valued random sums provide
the desired description of the asymptotic behavior ofn2102Sn+ Available results
of Ossiander (1987) and Ledoux and Talagrand (1991) provide convenient suf-
ficient conditions+

We therefore seek to testg~E~M*!! 5 0 based ong~n2102Sn!, using the CLT
and LIL for Banach-r+e+’s+ For simplicity,we treat only the independent and iden-
tically distributed (i+i+d+) case+ Generalizations may be taken up elsewhere+ We
first make the i+i+d+ assumption formal+

Assumption 1+ The termZi is a sequence of i+i+d+ random variables on the
probability space~V,F,P! taking values inRl and having the distribution of the
randoml 3 1 vectorZ+

To permit Zun to be anm-estimator (Huber, 1967), we impose

Assumption 2+ For eachn [ N, Zun :V r Q (with Q a compact subset ofRp! is
measurable+ Further, there exists a functions:Rl 3 Q r Rp and a finite, non-
singular, nonstochasticp 3 p matrix A* such thats is measurable onRl for each
u in Q and continuous inQ for eachz in Rl ;

n2102 (
i51

n

s~Zi , Zun! 5 oP~1!; (26)

and

!n~ Zun 2 u* ! 5 2A*21n2102 (
i51

n

s~Zi ,u* ! 1 oP~1!, (27)

whereu* is in the interior ofQ andE~s~Z,u*!! 5 0+

We next impose conditions onmsufficient to permit a Taylor series expansion
aroundu*+
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Assumption 3+

(a) Let T be a compact subset ofRq, q [ N+ The functionm:Rl 3 Q 3 T r R is
measurable inRl for each~u,t! [ Q 3 T and continuous onQ 3 T for eachz in Rl+
Further, for each~z,t! [ Rl 3 T,m~z,{,t! is continuously differentiable on an open
neighborhood ofu*+

(b) The function sup(u,t![Q3T 6¹m~Z,u,t!6 is integrable+

For simplicity, we havem mapping intoR+ Generalization to vector-valuedm
is straightforward+We writeM~u*,t! :5 E~¹'m~Z,u*,t!!+ The present assump-
tions suffice for the following lemma+

LEMMA 5 +1+ Suppose Assumptions1–3hold+ Then

**n2102 (
i51

n

ZMi 2 n2102 (
i51

n

Li
***
`

5 oP~1!, (28)

where ZMi :5 m~Zi , Zun,{! andLi
* :5 m~Zi ,u*,{! 2 M~u*,{!A*21s~Zi ,u*!+

Consequently, the probabilistic behavior of7n2102 (i51
n ZMi 7 can be approxi-

mated asymptotically by that of7n2102 (i51
n Li

*7 for any norm weaker than7{7`,
for example, 7{7p,n, 1 # p , `, n finite+

InspectingLi
*, we see that its dispersion may vary overT+We standardizeLi

*

using its standard deviation, says* : T r R1+ The existence ofs* is ensured by

Assumption 4+

(a) sup(u,t![Q3T m~Z,u,t!2 is integrable; and
(b) supu[Q s~Z,u!'s~Z,u! is integrable+

This also ensures thatt ° s*
2~t! :5 var@m~Z,u*,t! 1 M~u*,t!A*21s~Z,u*!# is

continuous onT+ To avoid division by zero, we impose

Assumption 5+ T is chosen such that inft[T s*
2~t! . 0, that is, 7s*227`, `+

From Lemma 5+1, the probabilistic behavior of7n2102 (i51
n Li

*0s*7 approxi-
mates that of7n2102 (i51

n ZMi 0s*7+ Becauses* is unknown, we replace it with a
consistent estimator+We consider two specific estimators+ The first is an uncen-
tered estimatorIsn

2, given by

Isn
2~t! 5 n21 (

i51

n

@m~Zi , Zun,t! 2 ZMn~ Zun,t! ZAn
21s~Zi , Zun!# 2, (29)

where ZMn~ Zun,t! :5 n21 (i51
n ¹'m~Zi , Zun,t!+ A centered estimator is[sn

2, given by

[sn
2~t! 5 Isn

2~t! 2 Sn21 (
i51

n

m~Zi , Zun,t!D2

+ (30)

To ensure the consistency of eitherIsn
2 or [sn

2 for s*
2 we impose the following

assumption+
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Assumption 6+ ZAn 5 A*1 oa+s+(1)+

The consistency ofIsn
2 for s*

2 holds underH0+ Under the alternative, Isn
2 con-

verges to a function not less thans*
2+ This is all that is necessary+ The estimator

[sn
2 is consistent under bothH0 andHA+
It remains to impose conditions that permit application of the Banach CLT and

LIL + We use conditions of Ossiander (1987) that are reasonably broad and not
difficult to verify+

First we define what it means forn2102Sn to obey the Banach CLT+ The fol-
lowing definition is standard+

DEFINITION 5+2+ Let $Zn% be a sequence of Banach-r+e+’s with correspond-
ing distributions$mn%+ ThenZn converges in distribution onB to Z, written
ZnnBZ, if for every bounded continuous function f:BrR, * f dmnr * f dm as
n r `, whereZ has distributionm+

We follow Ledoux and Talagrand in saying thatn2102Sn obeys the Banach CLT
if for some Banach-r+e+Z,n2102SnnBZ+We leave the distribution ofZunspecified+

For simplicity in stating our final assumption, definef :Rl 3 T r R as

f~z,t! :5 @m~z,u*,t! 2 M~u*,t!A*21s~z,u* !#0s*~t!+ (31)

From Lemma 2+1 and Theorem 3+1 of Ossiander (1987), the Banach CLT holds
for n2102 (i51

n Li
*0s* under the following condition onf, requiring essentially

thatf not be too irregular locally+

Assumption 7+ There exists a continuous strictly increasing functiong :R1 r

R1 such that

E*F sup
t[Nd~t0!

6f~Z,t! 2 f~Z,t0!62G # g~d!2 for eachd [ R11 (32)

for eacht0 [ T~d!, whereT~d! is a d-net for T and $Nd~t0! :t [ T~d!% is a
collection ofd neighborhoods of the members ofT~d! that coversT, and where
E* denotes outer expectation+ Further, g satisfies the “metric entropy” condition,
that is, for somed0 . 0,

E
0

d0

~2log@g21~a02!# !102 da , `+ (33)

As an example,we give conditions onG that suffice forAssumption 7 in the case
of Bierens-type specification testing for nonlinear regression+We putm~Z,u,t!5
G~ FX 't!~Y 2 f ~X,u!!, s~Z,u! 5 2¹f ~X,u!~Y 2 f ~X,u!! with ¹ 'm~Z,u,t! 5
2G~ FX 't!¹ ' f ~X,u! and A* 5 E @¹f ~X,u*!¹ ' f ~X,u*! 2 ¹2f ~X,u*!e# , where
e 5 Y2 f ~X,u*! andu* solves

min
u[Q

E~ @Y2 f ~X,u!# 2!+ (34)
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Example 5.3.

Let Q be compact and letf :Rk 3 Q rR be measurable onRk for eachu [ Q and
twice continuously differentiable on an open neighborhood ofQ for eachx [ Rk+
Suppose thatY, f ~X,u*!, and¹f ~X,u*! have finite second moments, that Assump-
tion 6 holds, and thatA*21 exists+ Let T be a compact subset ofRk11+ Then As-
sumption 7 holds ifG is Lipschitz on compact intervals+

We can now state our first main result of this section+

THEOREM 5+4+

(a) Let Assumptions1–7hold withB 5 C~T ! andsup norm7{7`+ Under H0

n2102 (
i51

n

Li
*0s*nB Z, n2102 (

i51

n

ZMi 0 [sn nB Z, and

n2102 (
i51

n

ZMi 0 Isn nB Z, (35)

where$Z~t! :t [ T % is the zero mean Gaussian process with covariance given by

cov~Z~t1!,Z~t2!! 5 cov~f~Z,t1!,f~Z,t2!!+ (36)

(b) Let g:BrR1 be7{7`-continuous onB such that g~x!50 if and only if x50+Then
g~n2102 (i51

n ZMi 0 [sn! nR g~Z! and g~n2102 (i51
n ZMi 0 Isn! nR g~Z!+

As a direct consequence of this result and Theorem 10+13 of Ledoux and Ta-
lagrand we also obtain convergence results for the norms7{7p,n, 1 , p , `, n
finite+

COROLLARY 5+5+ Suppose Assumptions1–7 hold and letB 5 C~T !+ Let
g :BrR1 be7{7p,n-continuous onB such that g~x!50 if and only if x50+ Then
under H0

gSn2102 (
i51

n

ZMi 0 [snDnR g~Z! and gSn2102 (
i51

n

ZMi 0 IsnDnR g~Z! (37)

for all 1 # p , `, n finite, whereZ is the Gaussian process of Theorem5+4+

Obtaining asymptotic critical values for our statistics is computationally chal-
lenging but feasible, for example,by Monte Carlo (Hansen 1996)+Andrews (1997)
discussed a semiparametric bootstrap procedure in a related application+ Never-
theless, a simple and sharp asymptotic bound follows from the Banach LIL
(Ledoux and Talagrand, 1991, Theorem 8+2)+We strengthen Assumption 2+

Assumption 2'+ For eachn [ N, Zun :V r Q (with Q a compact subset ofRp! is
measurable+Foru*[ int Q, Zun5u*1oa+s+(1)+There exists a functions:Rl 3Qr

Rp measurable onRl for eachu in Q and continuously differentiable on intQ for
eachz in Rl such that
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n2102 (
i51

n

s~Zi , Zun! 5 oa+s+(1), (38)

with E~s~Zi ,u*!!50 and supu[Q 6¹s~Zi ,u!6 integrable+DefineA*5E~¹s~Zi ,u*!!
and assume thatA* is nonsingular+

THEOREM 5+6+

(a) Suppose Assumptions1, 2', and3–7hold+ Then with probability1 under H0

lim sup
nr` **n2102 (

i51

n

Li
*0s***Y~2 loglogn!102

5 lim sup
nr` **n2102 (

i51

n

ZMi 0 [sn**Y~2 loglogn!102 (39)

5 lim sup
nr` **n2102 (

i51

n

ZMi 0 Isn**Y~2 loglogn!102 5 1, (40)

where7{75 7{7` or where7{75 7{7p,n for 1 # p , ` andn is any finite measure
on T+

(b) Further, let g:Br R1 be such that there existsTg :R1 r R1 monotone increasing
for which g~x! # Tg~7x7`! for all x [ B+ Then with probability one under H0 we
have

lim sup
nr`

gSn2102 (
i51

n

Li
*0s*DY Tg~@2 loglogn#102! # 1, (41)

lim sup
nr`

gSn2102 (
t51

n

ZMi 0 IsnDY Tg~@2 loglogn#102! # 1, (42)

and

lim sup
nr`

gSn2102 (
i51

n

ZMi 0 IsnDY Tg~@2 loglogn#102! # 1+ (43)

The statisticg~n2102 (i51
n ZMi 0 [sn! can exceed Tg~@2 loglogn#102! only fi-

nitely many times, with probability 1 (w+p+ 1) underH0, so that rejectingH0 if
g~n2102 (i51

n ZMi 0 [sn! . Tg~@2 loglogn#102! delivers a test of asymptotic size
zero.The LIL bound is independent of the norm+ For moderate-sized samples,
the LIL bound is likely to be rather conservative+ Table 1 gives some sample
values for (2 loglogn!102+ We therefore recommend basing a preliminary test
on the LIL bound+ If one fails to reject with the LIL bound, then the evidence
is well in accord withH0, and one can avoid further computation+ If the statis-
tic exceeds the LIL bound, we suggest using Monte Carlo or the bootstrap to
compute an accuratep-value+

Global power of tests based onn2102 (i51
n ZMi 0 [sn is established by the next

result+
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THEOREM 5+7+

(a) Suppose Assumptions1, 2', and3–6hold+ Then under HA and HA
*,

PF**n2102 (
i51

n

ZMi 0 [sn**
`

. n102d a+a+n+G
5 PF**n2102 (

i51

n

ZMi 0 Isn**
`

. n102d a+a+n+G5 1 (44)

for somed . 0+ Further, under HA

PF**n2102 (
i51

n

ZMi 0 [sn**
p,n

. n102d a+a+n+G
5 PF**n2102 (

i51

n

ZMi 0 Isn**
p,n

. n102d a+a+n+G5 1 (45)

for somed . 0, for all 1# p,` and alln placing positive measure in a sufficiently
small neighborhood oft0+ Under HA

*, the preceding relations hold for all1 # p ,
` and all finiten+

(b)
(i) Let g:BrR1 be such that there existsrg :R1 rR1 monotone increasing and

a measuren on T for which g~x! $ rg~7x71,n! for all x [ B+ Then under HA

PFgSn2102 (
i51

n

ZMi 0 [snD . rg~n102d! a+a+n+G
5 PFgSn2102 (

i51

n

ZMi 0 IsnD . rg~n2102d! a+a+n+G5 1 (46)

for somed . 0, provided thatn places positive measure in a sufficiently small
neighborhood oft0+ Under HA

* the restriction onn is unnecessary+
(ii) Let g:Br R1 be such that there existsrg :R1 r R1 monotone increasing for

which g~x! $ rg~7x7`! for all x [ B+ Then under HA and HA
* for somed . 0,

PFgSn2102 (
i51

n

ZMi 0 [snD . rg~n102d! a+a+n+G
5 PFgSn2102 (

i51

n

ZMi 0 IsnD . rg~n102d! a+a+n+G5 1+ (47)

Table 1. Values for~2 loglogn!102

n (2 loglogn!102

100 1+7477
500 1+9115

1,000 1+9660
5,000 2+0698

10,000 2+1073
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Thus, the asymptotic size zero test will be consistent wheng~{! is properly
chosen+

We complete the nonlinear regression example by specifying standard regu-
larity conditions under which the results of this section can be invoked+

Regularity Condition 1+ $Zi 5 ~Yi ,Xi
'!' % is an i+i+d+ sequence such thatE~Yi

2! ,
` andXi is bounded+

Regularity Condition 2+ f :Rk3QrR satisfies (a) supu[Q f ~Xi ,u!2 is integra-
ble; (b) supu[Q ¹ ' f ~Xi ,u!¹f ~Xi ,u! is integrable; (c) supu[Q 6¹2f ~Xi ,u!~Yi 2
f ~Xi ,u!!6 is integrable; (d) supu[Q~Yi 2f ~Xi ,u!!2¹'f ~Xi ,u!¹f ~Xi ,u! is integrable+

Regularity Condition 3+ (a)E~ @Yi 2 f ~Xi ,u# 2! has a unique minimum atu* [
int Q; (b) detA* Þ 0+

Regularity Condition 4+ Assumption 5 holds+

Regularity Condition 5+ G is Lipschitz on compacts andT is compact with
nonempty interior+

Regularity Conditions 1 and 2 guarantee the existence of a measurable solution
Zun to the problem

min
u[Q

n21 (
i51

n

@Yi 2 f ~Xi ,u!# 202+ (48)

Set ZAn5n21 (i51
n ¹ Zfi¹ Zfi'2¹2 Zfi [ei ,where¹ Zfi 5¹f ~Xi , Zun!,¹2 Zfi 5¹2f ~Xi , Zun! and

[ei 5 Yi 2 f ~Xi , Zun!+ Regularity condition 4 imposes Assumption 5 directly for
convenience+ It suffices that the conditional variance ofe 5 Y2 f ~X,u*! givenX
is bounded away from zero and that there is a less than perfect fit toG~ FXi

't! for
all t [ T from the “regression”¹' f ~Xi ,u* !A*21E~¹f ~Xi ,u* !G~ FXi

't!!+

COROLLARY 5+8+ The conclusions of Theorem5+4, Corollary 5+5, Theo-
rem5+6, and Theorem5+7 hold forLi

*, ZMi , [sn, and Isn constructed under regu-
larity conditions1–5+ In particular, H0 occurs when P@E~Y6X! 5 f ~X,u0!# 5 1
for someu0 interior to Q, whereas HA

* occurs when P@E~Y6X! 5 f ~X,u!# , 1 for
all u [ Q and G is a nonpolynomial, real analytic function+

6. MATHEMATICAL PROOFS

Proof of Theorem 2+3+ Immediate from Corollary 3+9+ n

Proof of Theorem 3+1+ The equivalence of (a), (b), and (d) is established in the
text+ The equivalence with (c) follows directly from the discussion of polar to-
pologies (Robertson and Robertson, 1973, III +2)+ n

Proof of Theorem 3+3+ (a) If spH is uniformly dense inC~B!, then Lusin’s
theorem (e+g+,Ash, 1972, Corollary 4+3+17(b)) implies comprehensiveness+ Sup-
pose spH isnotuniformly dense inC~B!+ The uniform closure of spH is a closed
linear subspace ofC~B!+ As the set of finite signed measures is the dual ofC~B!,
there is a nonzero finite signed measurem such that for allh in the uniform
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closure of spH, *Bh dm 5 *B1h dm 5 0+ Putj 5 1; thenH is not comprehensive
because1 Þ 0 m 2 a+e+

(b) By the dominated convergence theorem (DCT), uniform denseness in a
comprehensive set implies comprehensiveness,hence condition (iii) suffices+Con-
dition (i) thus suffices by Stone–Weierstrass+ To prove condition (ii) suffices, we
note thatMb~B! is comprehensive+A variant of the monotone class theorem (e+g+,
Dellacherie and Meyer, 1978,Theorem 22+2, p+ 15) implies that the smallest class
of functions containingA closed under both uniform convergence and bounded
monotone convergence isMb~B!+ Thus, for anym, anyh [ Mb~B! is them a+e+
limit of a uniformly bounded sequence of elements ofA+ Therefore, the DCT
implies comprehensiveness ofA+ n

Proof of Lemma 3+5+ See Hornik (1991)+ n

Proof of Lemma 3+7+ If the uniform closure of spHG~T ! containsC~B!, then
so must the uniform closure of its superset, S~G,T !+

Now suppose the uniform closure ofS~G,T ! containsC~B! for every compact
B , R andT , R2 has nonempty interior+ By Stinchcombe and White (1990,
Lemma 2+0), it suffices to treat this case+ Suppose for purposes of contradiction
that spHG~T ! is not dense inC~B! for someT andB+ This happens if and only if
there is a nonzero finite signed measurem supported onB such that for allt [ T,
*BG~ Ix 't!m ~dx! 5 0+ Taking a subset ofT if necessary, there is no loss in assum-
ing T belongs entirely in one quadrant ofR2+

Let @a,b# be a closed interval containing ane-neighborhood ofB for some
e . 0+ Pick d . 0 andt ' [ T such thatS~t ',2d!, the ball of radius 2d around
t ', is contained inT+ By assumption, S~G,S~t ',d!! is uniformly dense in
C~ @a,b# !+ In particular, for everyn [ N and for everya , a' # b' , b, some
element ofS~G,S~t ',d!! is uniformly within n21 of the continuous function
f n~x! :5 max$1 2 nd~x,@a',b'# !,0%, whered~x,@a',b'# ! is the distance fromx
to the set@a',b'#+

The sequencef n is uniformly bounded and converges pointwise to the indicator
of the interval@a',b'#+ Therefore, asn goes to infinity, *@a,b# f n~x! dm~x! goes to
m~@a',b'# !+ Because eachf n is in the span ofHG~S~t ',d!! and1, f n~x! 5 b0,n 1

(j,n
J,n bj,nG~tj,nx1t0, j,n!,where each~tj,n,t0, j,n! [ S~t ',d!+ The basic idea is that

we can “horizontally stretch” the functionsf n without changing their integral
againstm, and this cannot happen unlessm is equal to 0+ Formally, as the integral
of m against any element ofHG~T ! is 0, we can substitute any~tj,n, t0, j,n! [ T for
each~tj,n,t0, j,n! without changing the integral off n againstm+Letcj,n be that point
in R such thattj,ncj,n1t0, j,n5a', and letdj,n be that point inR such thattj,ndj,n1
t0, j,n 5 b'+ These exist becauseT belongs entirely to a single quadrant inR2+

BecauseS~t ',d! , S~t ',2d! , T, there exists someh [ ~0,e! such that for all
~ j,n!-pairs there exists~tj,n, t0, j,n [ T ! such thattj,ncj,n1 t0, j,n5 a' andtj,ndj,n1
t0, j,n 5 b'1 h+ BecauseT belongs to a single quadrant inR2, the signs oftj,n and
tj,n must agree+

Denote by$gn% the sequence of functions inS~G,T ! that are derived from$ f n%
by replacing each~tj,n,t0, j,n! by the corresponding~tj,n, t0, j,n!+The sequence$gn%

CONSISTENT SPECIFICATION TESTING 317

https://doi.org/10.1017/S0266466698143013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698143013


converges pointwise to the indicator of the interval of@a',b'1 h#+ Therefore, for
eacha , a' # b' , b, m~@a',b'# ! 5 m~@a',b'1 h#!+ Because the interval@a,b#
contains ane-neighborhood ofB andm is supported onB, this implies thatm is
the 0 measure, the contradiction that completes the proof+ n

Proof of Theorem 3+8+ If G is not generically comprehensive, then there is a
nonempty open setT , Rk11 and a compact setK such that sp$G~{'t! :t [ T % is
not uniformly dense inC~K !+ The Hahn–Banach theorem then implies exis-
tence of a nonzero finite signed measurem supported onK such that for allt [
T,m~t! :5 *G~ Ix 't!m~dx! 5 0+ But m is real analytic becauseG is and becausem
is compactly supported+As a real analytic function is equal to 0 on the open setT
if and only if it is equal to 0 everywhere, HG is not comprehensive+ n

Proof of Corollary 3+9+ If G is a polynomial then it is clearly not comprehen-
sive+ If G is real analytic but is not a polynomial, then every interval is a very nice
interval+ By Lemma 3+5, this implies thatG is comprehensive+ By Theorem 3+8,
this implies thatG is generically comprehensive+ n

Proof of Theorem 3+10+ See Stinchcombe and White (1992, Theorem 2+2)+ n

Proof of Theorem 3+11+ It is immediate that the real analytic functions that are
not polynomials are dense in the compact-open topology; hence the result fol-
lows from Corollary 3+9+ n

Proof of Theorem 4+1+ By Theorem 3+3, $f~{,t! :t [ T % , C~B! is compre-
hensive if and only if its span is uniformly dense inC~B!+ (a) follows from Dun-
ford and Schwartz (1958,Theorem V+5+1, p+ 426)+Given (a), (b) follows from the
observation that the mapping~m, f ! r * f dm is jointly continuous on sets of
measures with vm uniformly bounded+ n

Proof of Lemma 5+1+ Assumptions 1–3 permit a Taylor expansion aroundu*

of the form

n2102 (
i51

n

m~Zi , Zun,t!

5 n2102 (
i51

n

m~Zi ,u*,t! 1 Fn21 (
i51

n

¹'m~Zi , Nun,t!G!n~ Zun 2 u* !

5 n2102 (
i51

n

m~Zi ,u*,t! 2 Fn21 (
i51

n

¹'m~Zi , Nun,t!G
3 FA*21n2102 (

i51

n

s~Zi ,u* ! 1 oP~1!G
5 n2102 (

i51

n

m~Zi ,u*,t! 2 M~u*,t!FA*21n2102 (
i51

n

s~Zi ,u* ! 1 oP~1!G
2 Sn21 (

i51

n

¹'m~Zi , Zun,t! 2 M~u*,t!DFA*21n2102 (
i51

n

s~Zi ,u* ! 1 oP~1!G
5 n2102 (

i51

n

@m~Zi ,u*,t! 2 M~u*,t!A*21s~Zi ,u* !# 1 oP~1! (49)

318 MAXWELL B. STINCHCOMBE AND HALBERT WHITE

https://doi.org/10.1017/S0266466698143013 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466698143013


uniformly onT+ Uniformity follows asM~u*,{! is continuous on the compact set
T (implying that M~u*,t! 5 O~1! uniformly in t! and from the WULLN for
$¹'m~Zi ,u,t!%+ Thus~n21 (i51

n ¹'m~Zi , Nun,t! 2 M~u*,t!! 5 oP~1! uniformly in
t+ The result now follows immediately+ n

Proof of Example 5+3+ Because the integral (33) is finite wheng~d! 5 da, a .
0, it suffices that6f6 be bounded above by a square integrable random variable
times a Lipschitz function+ Given the moment conditions and thatG is Lipschitz
on the range of FX 'T, this is clearly true for the numerator off+ Given thats2~t!
is bounded below, the denominator is also Lipschitz+ BecauseT is compact, this
suffices+ n

Proof of Theorem 5+4+ (a) Assumptions 1–5 and 7 suffice to apply Os-
siander’s (1987) Banach CLT ton2102 (i51

n Li
*0s *+ The results for

n2102 (i51
n ZMi 0 [sn hold if 7n2102 (i51

n ZMi 0 [sn 2 n2102 (i51
n Li

*0s*7` 5 oP~1!+
The triangle inequality gives

**n2102 (
i51

n

ZMi 0 [sn 2 n2102 (
i51

n

Li
*0s***

`

# **n2102 (
i51

n

ZMi 0 [sn 2 n2102 (
i51

n

ZMi 0s***
`

1 **n2102 (
i51

n

ZMi 0s*2 n2102 (
i51

n

Li
*0s***

`

# 7s* [sn
21 2 17`**n2102 (

i51

n

ZMi 0s***
`

1 **n2102 (
i51

n

ZMi 0s*2 n2102 (
i51

n

Li
*0s***

`
+ (50)

As n2102 (i51
n Li

*0s* obeys the Banach CLT, Lemma 5+1 gives
7n2102 (i51

n ZMi 0s*7` 5 OP~1!+ The desired approximation holds if7s* [sn
21 2

17` 5 oP~1!+ For this it suffices that7 [sn
2 2 s*

27` 5 oP~1! given Assumption 5,
which follows easily given Assumptions 3, 4, and 6+ The argument with Isn

2 re-
placing [sn

2 is identical+
(b) Because$Z~t! :t [ T % is a continuous process andg is continuous with

respect to7{7`, it follows from the continuous mapping theorem (Billingsley,
1968, p+ 30) that

gSn2102 (
i51

n

ZMi 0 [snDnR g~Z! and gSn2102 (
i51

n

ZMi 0 IsnDnR g~Z!+ (51)

n
Proof of Corollary 5+5+ Apply the continuous mapping theorem+ n

Proof of Theorem 5+6+ (a) Assumptions 1, 2', 3–5, and 7 permit application
of the Banach LIL (Ledoux and Talagrand, 1991, Theorem 8+2) to
n2102 (i51

n Li
*0s*+ For 7{7, it suffices that
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**n2102 (
i51

n

ZMi 0 [sn 2 n2102 (
i51

n

Li
*0s ***Y~2 loglogn!102 5 oa+s+(1)+ (52)

The argument with Isn replacing [sn is identical+ The triangle inequality gives

**n2102 (
i51

n

ZMi 0 [sn 2 n2102 (
i51

n

Li
*0s ***Y~2 loglogn!102

# 7s* [sn
21 2 173 **n2102 (

i51

n

ZMi 0s***Y~2 loglogn!102

1 **n2102 (
i51

n

ZMi 0s*2 n2102 (
i51

n

Li
* 0s***Y~2 loglogn!102+ (53)

Thus it suffices that 7s* [sn
21 2 17 5 oa+s+(1), 7n2102 (i51

n ZMi 0s*70
~2 loglogn!102 5 Oa+s+(1) and that

**n2102 (
i51

n

ZMi 0s*2 n2102 (
i51

n

Li
*0s***Y~2 loglogn!102 5 oa+s+(1)+ (54)

The last equality and the Banach LIL forn2102 (i51
n Li

*0s* imply that
7n2102 (i51

n ZMi 0s*70~2 loglogn!102 5 Oa+s+(1)+ That7s* [sn
21 2 175 oa+s+(1) fol-

lows under Assumptions 3, 4, and 6+ The result thus follows by establishing (54)+
As s*~t! is bounded below,

**n2102 (
i51

n

ZMi 2 n2102 (
i51

n

Li
***Y~2 loglogn!102 5 oa+s+(1) (55)

suffices+ Taylor expansion aroundu* gives

n2102 (
i51

n

m~Zi , Zun,t!0~2 loglogn!102

5 n2102 (
i51

n

m~Zi ,u*,t!0~2 loglogn!102

1 Fn21 (
i51

n

¹'m~Zi , Nun,t!G!n~ Zun 2 u* !0~2 loglogn!102

5 n2102 (
i51

n

@m~Zi ,u*,t! 2 M~u*,t!A*21s~Zi ,u* !#0~2 loglogn!102

2 Fn21 (
i51

n

¹'m~Zi , Nun,t! 2 M~u*,t!G
3 A*21n2102 (

i51

n

s~Zi ,u* !0~2 loglogn!102

1 Fn21 (
i51

n

¹'m~Zi , Nun,t!GH!n~ Zun 2 u* !0~2 loglogn!102

1 A*21n2102 (
i51

n

s~Zi ,u* !0~2 loglogn!102J +
(56)
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The result follows if the second and third terms vanish asnr` a+s+, uniformly
in t+ Now Assumptions 1, 2' (on s!, and 4 ensure that the LIL applies to
n2102 (i51

n s~Zi ,u* !, so thatn2102 (i51
n s~Zi ,u* !0~2 loglogn!102 is Oa+s+(1)+ Here

A*21 isO~1! byAssumption 2' and@n21 (i51
n ¹'m~Zi , Nun,t!2M~u*,t!#5oa+s+(1)

uniformly in t by the strong uniform law of large numbers, provided that Nun r

u* a+s+ For this it suffices that Zun r u* a+s+, as imposed in Assumption 2'+ The
second term thus vanishes a+s+ uniformly in t as required+

Because sup(u,t![Q3T 6M~u,t!6 is finite given Assumption 3(b) and because
sup(u,t![Q3T 6@n21 (i51

n ¹'m~Zi ,u,t!2M~u,t!#6r0 a+s+, it follows that the term
@n21 (i51

n ¹'m~Zi , Nun,t!# appearing in the third term of (56) isOa+s+(1) uniformly
in t+ The result now follows if

!n~ Zun 2 u* !0~2 loglogn!102

5 2A*21n2102 (
i51

n

s~Zi ,u* !0~2 loglogn!102 1 oa+s+(1)+ (57)

By the standard mean value expansion

!n~ Zun 2 u* !0~2 loglogn!102

5 2¹ Ssn
21n2102 (

i51

n

s~Zi ,u* !0~2 loglogn!102

5 2A*21n2102 (
i51

n

s~Zi ,u* !0~2 loglogn!102

1 ~A*21 2 ¹ Ssn
21!n2102 (

i51

n

s~Zi ,u* !0~2 loglogn!102 a+s+, a+a+n, (58)

where¹ Ssn represents the gradient matrix ofn21 (i51
n s~Zi ,u! with each row eval-

uated at a (different) mean value lying betweenZunandu*+The SULLN for¹s~Zi ,u!
ensured byAssumptions 1 and 2' and the consistency ofZun for u* imply that¹ Ssn2
E~¹s~Zi ,u*!! 5 oa+s+(1)+ But n2102 (i51

n s~Zi ,u* !0~2 loglogn!102 is Oa+s+(1) by the
LIL , implying that (57) holds, so we are done+

(b) It suffices to considern2102 (i51
n Li

*0s*+ Other cases are analogous+ From
(a), for anye . 0 and for eachv in a set with probability one there existsNv~e! ,`
such that for alln . Nv~e! we have7n2102 (i51

n Li
*~v!0s*7`0~2 loglogn!102 ,

11e+By the condition ongwe haveg~n2102 (i51
n Li

*~v!0s*!0g@~2 loglogn!102# ,
11 e for all n . Nv~e! also, and the result holds+ n

Proof of Theorem 5+7+ (a) It suffices to treat7{71,n as7{71,n # 7{7p,n # 7{7`, 1#
p , `+ By definition

**n2102 (
i51

n

ZMi 0 [sn**
1,n

5 ES*n2102 (
i51

n

m~Zi , Zun,t!*Y [sn~t!Dn ~dt!+ (59)
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Assumptions 1, 2', and 3–6 ensure7 [sn
2 2 s*

27`5 0 a+s+ This and continuity of
s* on T ensure that7 [sn7` # D , ` a+a+n+ a+s+, so inft[T [sn

21~t! $ D21 .
0 a+a+n+ a+s+ The triangle inequality gives

6E~m~Z,u*,t!!6 # *n21 (
i51

n

m~Zi , Zun,t!*
1 *n21 (

i51

n

m~Zi , Zun,t! 2 E~m~Z, Zun,t!!*
1 6E~m~Z, Zun,t!! 2 E~m~Z,u*,t!!6+ (60)

Given the continuity ofE @m~Z,{,{!# onQ3T, if Zunr u* a+s+, then we have that
for anye . 0,

sup
t[T
6E~m~Z, Zun,t!! 2 E~m~Z,u*,t!!6 , e a+a+n+, a+s+ (61)

Assumptions 4(a) and 1 deliver a SULLN for$m~Zi ,u,t!%+ By Assumption 2',
Zun r u* a+s+, which then implies

sup
t[T

*n21 (
i51

n

m~Zi , Zun,t! 2 E~m~Zi , Zun,t!!* , e a+a+n+, a+s+ (62)

Consequently,

6E~m~Z,u*,t!!6 # *n21 (
i51

n

m~Zi , Zun,t!* 1 2e, a+a+n+, a+s+, (63)

so that (withn a probability measure for convenience)

n102E*n21 (
i51

n

m~Zi , Zun,t!* dn~t! . n102FE 6E~m~Z,u*,t!!6 dn~t! 2 2eG+
(64)

As we may takee 5 d *04, the test will be consistent whenever

d * 5 E 6E~m~Z,u*,t!!6n ~dt! . 0+ (65)

UnderHA, m is such that6E~m~Z,u*,t!!6 . 0 for somet0 [ T underHA+ Be-
causeE~m~Z,u*,t!! is continuous int, there will exist a neighborhood oft0of pos-
itive Lebesgue measure for which6E~m~Z,u*,t!!6 . 0+ Becausen puts positive
mass in this neighborhood andd * . 0 we have a consistent test+ UnderHA

*, n is
such that6E~m~Z,u*,t!!6. 0 for essentially allt [ T, and againd * . 0+
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When7{75 7{7`, the measuren does not enter+The conditions given guarantee
that

sup
t[T

*n21 (
i51

n

m~Zi , Zun,t!* r sup
t[T
6E~m~Z,u*,t!6 a+s+, (66)

so7n2102 (i51
n ZMi 0 [sn7` diverges almost surely underHA, henceHA

*+
(b) Immediate, given (a) and the conditions ong+ n

Proof of Corollary 5+8+ It suffices to verify that Regularity Conditions 1–5
imply Assumptions 1–7+ Clearly Regularity Condition 1 implies 1+ Regularity
Conditions 1–3 suffice for 2' (see White, 1981)+ Regularity Condition 2 ensures
3(a)+ Boundedness ofXi andT combined with continuity ofG imply G~ FXi

'T ! is
bounded+ Together with 1 and 2, these imply 3(b)+ Boundedness ofG~ FXi

'T ! plus
Regularity Conditions 1 and 3 imply 4(a) and 4(b)+Assumption 6 is ensured for
ZAn given Regularity Conditions 1 and 2 (which deliver a ULLN) and Regularity

Conditions 1, 2, and 3, which ensure Zun r u* w+p+ 1+ Assumption 7 holds given
Regularity Conditions 2 and 5 by Example 5+3+ ThatH0 andHA

* hold follows by
choice ofm and Corollary 3+9+ n

NOTES

1+ An analytic function is one locally equal to its Taylor expansion at each point of its domain,
such as exp({), the logistic, the hyperbolic tangent, the sine and cosine, polynomials, etc+

2+ Note thatHG contains transformations of affine combinations ofX, whereasHexp contains
transformations of linear combination ofX, so thatHG with G5 exp contains all scalar multiples of
the functions inHexp+ This has no substantive impact on the class of functions considered+ Theorem
2+3 derives from the study of denseness properties of spHG, a class of functions known in the study
of artificial neural networks as the output functions of single hidden layer feedforward networks with
activation functionG+

3+ See (12)–(16) et+ seq+
4+ Eubank and Hart (1993) note that several tests in the literature are “mostly of the formT 5

H~ [e!0 [s2, whereH~{! is a quadratic functional that vanishes when its argument is null,” in other
words, anL2 norm+

5+ Recall that we have in effect an assumption that all random variables have bounded support+We
argued in the text following Theorem 3+1 that this loses no generality+

6+ Zheng (1994) provided an information criteria based test for arbitrary misspecification+
7+ In this section we will discuss “moments” and “expectations+” To change to signed measures,

replace “moments” with “integrals” and “expectation” with “integral underm+”
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