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CONSISTENT SPECIFICATION
TESTING WITH NUISANCE
PARAMETERS PRESENT ONLY
UNDER THE ALTERNATIVE
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The nonparametric and the nuisance parameter approaches to consistently testing
statistical models are both attempts to estimate topological measures of distance
between a parametric and a nonparametricafitd neither dominates in experi-
ments This topological unification allows us to greatly extend the nuisance param-
eter approactHow and why the nuisance parameter approach works and how it can
be extended bear closely on recent developments in artificial neural netv@baks
tistical content is provided by viewing specification tests with nuisance parameters
as tests of hypotheses about Banach-valued random elements and applying the Ba-
nach central limit theorem and law of iterated logaritheading to simple proce-

dures that can be used as a guide to when computationally more elaborate procedures
may be warranted

1. INTRODUCTION

In testing whether or not a parametric statistical model is correctly specified
there are a number of apparently distinct approaches one mightTtagenon-
parametric approach compares a nonparametric estimator of the object of interest
(say a conditional mean or density) to a parametric estimatgy, feubank and
Spiegelman199Q Eubank and LaRiccid 992 Gozalg 1993 Héardle and Mam-

men 1993 Hong and White1995 Leung and Yu1995 or Zheng 1996) The
nuisance parameter approach tests whether a statistic depending on a “nuisance
parameter present only under the alternative” is zero for all values of the nuisance
parameteras is true under the null @@, Davies 1977, 1987 Bierens 1990)

There are a variety of other possibilities and variants as wejl,([Eubank and

Hart, 1992 Eubank and LaRiccial992 Blum, Kiefer, and Rosenblatt1961;
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Ghoraj 198Q Holst and Rap198Q Robinson1991, Schweizer and Wolff1976
1981 Wolff, 1981 or Zheng 1994)

Our purpose here is to unify the apparently disparate nonparametric and nui-
sance parameter approaches to testing models consistently for arbitrary misspec-
ification (i.e., with power approach one asymptotically for all deviations from the
null). The insight providing this unification is thdtuindamentallyall the differ-
ent testsand in particular the two of direct interest to ase based on estimates
of topological “distances” between a restrictedy(eparametric) model and an
unrestricted modeln this contextthe notion of weak denseness or weak dense-
ness of a span in the space containing the object of interest plays the central role
Further verifying weak denseness is often quite e#sywe shall segthe two
forms of the tests are distinct because one estimates the topological distance
directly in the nonparametric approach and indirectly in the nuisance parameter
approach

By identifying the topological basis for a test and applying the notion of weak
denseness appropriatgliye fundamental relations between many of the different
specifications testing approaches can be appreciagejlist one exampleEu-
bank and Hart (1992) base a nonparametric specification test for a regression
model on the number of included terms appearing in an auxiliary regre3sien
estimated residuals of the original regression are the dependent vaaable
Fourier series terms in the original explanatory variables are the regreBseys
reject the null hypothesis of correct specification if the number of included Fou-
rier terms is greater than zero (including a penalty for the number of terms to
control overfitting) This amounts to direct use of a nonvector space topology on
the space of possible conditional expectations of the residual given the explana-
tory variable—estimating “distance” from zero in a topology where “distance” is
the number of terms in the Fourier series representing the fundtisrihe weak
denseness of Fourier series that makes this test consistent

Thus one can develop a taxonomy for specification testing that classifies tests
according to the object tested.de a density or an expectatiarihe topology
forming the basis for the test.(g, a normable or a nonnormable vector space
topology or a nonvector space topologyhether or not the distance is estimated
directly or indirectly and other details of the testing procedW¢e leave this
exercise to other work but note that an informal survey reveals combinations of
features that have not yet been proposed for testing and which therefore consti-
tute interesting research opportunities

An additional benefit to our approach is that it permits us to see the unity
underlying procedures directed toward testing models of distribution on the
one hand and regression models.(imodels of conditional expectation) on the
other Specifically we shall see how such apparently disparate procedures as
the Kolmogorov—Smirnov or Cramér—von Mises tests for the difference of dis-
tributions and Bierens’s (1990) test for regression model misspecification have
a common originThis unity suggests multivariate analogs of the Kolmogorov—
Smirnov and Cramér—von Mises tests that may have useful power
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More broadly our unification of the nonparametric and nuisance parameter
approaches to testing model specification permits us to obtain considerable ex-
tensions of the nuisance parameter apprpaoih in terms of the procedures
themselves and their domain of applicabilfurther by putting such problems
in the context of testing hypotheses about Banach-valued random variables we
can obtain some simple test procedures that do not require computing the com-
plicated null distributions that can arise using such statistics and which can be
used as a simple guide as to when more elaborate computations may be warranted

The plan of the paper is as followls Section 2we discuss Bierens’s (1990)
nuisance parameter approach to consistent testing of regression models to expose
certain fundamental issues and provide useful background for subsequent devel-
opmentsAs a foretaste of the results to convee present an extension of Bie-
rens’s results establishing the existence of a broad range of similar procedures
with identical propertiesSection 3 addresses the topological underpinnings of
the nuisance parameter approach for both regression models and probability mod-
els and unifies it with the nonparametric approadchthis contextwe also will
observe interesting connections between Bierens’s approach and the approxima-
tion capabilities of artificial neural networks (Horpi&tinchcombgand White
1989 White, 1989a) In Section 4 we show how the nuisance parameter approach
to specification testing applies to testing probability models genef@digtion 5
lays out the Banach random variable testing approach and obtains some simple
but useful statistical procedures

2. NUISANCE PARAMETER CONSISTENT TESTING
OF REGRESSION MODELS

For the sake of explicitnesall random variables are assumed to be defined on a
complete probability spadel, F, P), ando (X) C F denotes the minimat-field
making the random variabbé: O — R* measurableAlso for explicitnesspa-
rametrize the class of functions (or mods&l)= {f(-,6):RK - R|§ € 0}, 0 C

RP, p € N. The model is correctly specified f&1( Y| X) whenf (X, 6,) is a version

of E(Y|X) for somef, € O. Let {4,: 2 — O} be a sequence of estimators con-
sistent for a “pseudotrue” valuE € 0 regardless of the correctnessf)fsuch
thaté* = 6, whensS is correctly specifiedFor exampleé, can be a nonlinear
least-squares estimator from a random sample ofrsiae (Y, X) (e.g., White,
1981)

With e := Y — f(X,0%), the correct specification & for E(Y|X) is equivalent
to e:= E(e| X) = 0 as. Now, under suitable conditions oviandf, eis an inte-
grable function ofX, that is e € LP(X) := LP(Q,o (X),P) for somep € [1L].
For 1/p + 1/g= 1, LP(X) andL9X) are a dual pajthat is g € LP(X) is equal to
0if and only if(g,h) := fgh dP= 0 for allh € L%(X), andh &€ L9(X) is equal to
0ifand only{g, hy = 0 for allg € LP(X). Thus the existence of a test functitre
L9(X) such thate, h) # 0 is sufficient to conclude that# 0. The law of iterated
expectations give&, h) = (e, h). Consequentlyif for some test functiorh we
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have evidence th&i(h(X)e) # 0, then we have evidence of misspecification of
S for E(Y[X).

It is this fact that ensures the power against various misspecifications of the
Hausman (1978) tediecause the Hausman test implicitly uses a particular choice
for h (see White1994 Ch. 10). Neverthelessas Holly (1982) and Bierens (1982)
showed the Hausman test can fail to have power against potentially important
departures froniy, the null hypothesis of correct specificatidrhe same is true
of the conditional moment specification tests of Newey (198&uchen (1985)
and White (19871994) which also rely on various specific choices of test func-
tion h to obtain power against a range of misspecifications

One way to ensure power against arbitrary misspecification (provideM kizest
finite variance) is to chooge= e as the test function becaule|? = (e,e) = 0 if
and only ife:= E(e| X) = 0 as. Althougheis unknown a prioticonsistent non-
parametric estimatosof e come arbitrarily close te, ensuring the utility of the
nonparametric approaches to testing regression models of specificatjo& (e
bank and Spiegelmah99Q Hong and White1995) The nuisance parameter ap-
proach ensures power through essentially the same considerations

Recall that the existence of a test functiosuch thate, h) # 0 is evidence of
misspecificationSuppose that{ C L9(X) satisfies

(Og € LP(X)(Oh € LY(X)) (08 > 0)(Ch” € spH)[Kg,h) —(g,h")| < &],

(1)

where s is the span of{. Using the linearity of g, -) and the definition of the
span it is immediate thae = 0 if and only if(e, h) = 0 for allh € H. Now, the
weak topology or.9(X) is by definition the weakest (or smallest) topology mak-
ing all of the continuous linear functions of the fogn— (f,g), f € LP(u),
continuousDirectly from this definition we see that a clagg satisfies (1) if and
only if sp’H is dense in the weak topology if¥(X). Itis this weak denseness that
is at the basis of the consistency of the nuisance parameter approach

For example Bierens (1990) showed that the class of functidis, =
{h,|h.(x) = exp(x'7), 7 € R} has the property that whenever# 0, there is
anh € Heyp With (e,h) # 0. This leads to a consistent test becausé(sig
weakly denseFor p,q € (L00), the weak closure and the norm closure of
convex sets are equal (Dunford and Schwat@58 V.2.14, p. 418) so that
weak denseness of 3, is the same as norm denseness in these spébes
nonparametric approach works because it is based on a class of functions that
comes arbitrarily close to any functipthe nuisance approach works because it
is based on a class of functions with a span that comes arbitrarily close to any
function

Aremarkable feature of Bierens’s approach is that a smooth random choice of
7 for the functionh,(X) = exp(X'r) will deliver a consistent tesTo understand
how this is possiblave introduce some convenient terminology adapted from the
theory of topological vector spaces (Dunford and Schwad@58 V.3.1, p. 418).
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DEFINITION 2.1. LetH C L9(X), q € [Lec]. For given nonzero & LP(X),
1/p+1/g=1 h & Hreveals eif(e h) # 0. If for every nonzero & LP(X) there
exists a reealing he H, thenH is totally revealing Further, if for every non
zero e LP(X), all but a negligible setdefined precisely belowof h & H are
revealing then’ is generically totally reealing

Note thatH is totally revealing if and only if its sparsp’, is. We do not
distinguish between a class and its span when discussing toshisn the func-
tion eor the collectior€ is clear from the contextve speak oh as revealing and
'H as totally or generically totally revealingierens’s key result is as follows

THEOREM 22 (Bierens199Q Theorem 1) Suppose thatis a random sca
lar with E|€| < oo and that X is a bounded randomkl vector, k € N, such that
E(e|X) # 0. For r € RX leth,(X) = exp(X'7). Then there is a subset SRf such
thatforall7 € S (h.(X),e) # 0. Further, S¢, the complement of, 8as Lebesgue
measure zero and is not denserif

A continuity argument shows that the closureSSthas empty interigithat is
that it is negligible so thatH.,, is generically totally revealindf 7 is chosen
according to a smooth distributiptinen the probability that € S¢is equal to 0

Bierens presents TheorenkZas a “fundamental fact” but does not provide
much insight into its genesislowever from the previous discussion we know
thatH is revealing if and only if s is weakly dense il X) (and strongly
dense fog € (1,00)). This means that the topological basis of Bierens’s approach
is a check of whether or nat is in the weak neighborhood of 0 of the form
{g:{g,h,)| < r} wherer is determined by considerations involving the size of
the testNote that this is only implicitly an estimation efbecausée, h) = (e, h)
for all h.

Another remarkable aspect of Theorer & that it makes no use of properties
of X other than boundednedsrom this we know that spey, must be weakly
dense inL%(X) for any (bounded) random vect a very strong propertyut
this just deepens the mystefpr examplewhat is the role played by the exg(
function? Bierens makes fundamental use of its properties in proving his,result
but would other functions also work? Recent results for artificial neural networks
provide an interesting answer to this questioonsiderably extending Bierens'’s
result

THEOREM 23. Lete and X be as in Theorex2. Let Hg := {h,|h.(x) =
G(x'r), 7 € R¥"1}, wherex:= (1,x’)’ and G is analyti¢ ThenH is generically
totally revealing if and only if G is nonpolynomial

Theorem 23 does not provide insight into how and why Bierens’s approach
works but only suggests that something deeper is at work than is revealed by
Bierens'’s result or its proofrhe results of Section 3 provide the desired insight
but first we complete our discussion of Bierens’s approach
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Bierens's result is contained as a special case of Theor@fmRurther there
is a strong sense in which the exponential function is not spetialclass of
nonpolynomial analytic functions is densed(R) in the compact-open topology
(uniform denseness i6(B) for every compacB C R)—a dense collection of
functions has the same property as Bierens'’s fafttily,.

Bierens implements his test with the sample analoB®f (X)e),

M (r) = n_lzhr(xi)éi, )

whereé, =Y, — f(X;,6,),i = 1,2,..., and{Z, := (Y,,X!)'} is a random sample
dravan from the joint distribution aZ = (Y, X")". It follows that for givenr € R¥,
nY2M,(7) = N(0,s%(7)) underH, and standard regularity conditianghere

$%(r) := varf(h, (X;) — b (1) A" LVE(X,0°)) e ] ®)

b*(7) := E[h,(X)VE(X;,0%)], A* := E(VE(X;,0%)V(X;,0%)" — eV (X,0%)),
whereV andV? are the gradient and Hessian operators with respégtjielding
ap X 1 vector ang X p matrix, respectively

Given a consistent estimatéf(r) for s?(7) and appropriate regularity condi-
tions it follows that for eachr outside of a negligible subset &, W, (7) :=
NM,(7)%/82(1) = xZ underHy; in contrastW,(r)/n — n(h,) > 0 as. underH,.
Thus a consistent test can be obtained by selectiagrandomas proposed in
Bierens (19871988) However random selection of the nuisance parameter
introduces a degree of arbitrariness into both the size and power of the test

To avoid this difficulty Bierens (1990) proposed choosintp maximizeW, (r)
over a hypercub& C R If H C L9(X) is any norm bounded set with weakly
dense sparthen| gl := sup{|{g,h)| : h € H} defines a norm om.P(X). This
type of norm gives rise to what is called a polar topology (Robertson and Rob-
ertson 1973 I11.2), and this is the topological basis of Bierens’s second type of
test Again, no direct estimation of need be made becaugeh) = (e, h).

Denote the maximizing value &s. The asymptotic distribution af,(7,) is no
longer x? but, as Bierens showeds instead a somewhat complex distribution
associated with the extremum of the square of a particular Gaussian prbezess
avoid having to compute this distributipBierens proposed the following de-
vice: choosey > 0, p € (0,1), andry € T independently of the sampland put

- {TO if VAVn(%n) - Wn(TO) =yn®, @)
" A i Wh(R) — Wi(r) > Y2
. Bierens (1990 Theorem 4) showed thad,(7,) = x2 underH,, whereas

W, (7,)/n — sup.erm(h,) > 0 as. underH,. The test is thus consisternd the

power of the test is asymptotically not dependent on the random chgice

As should be expectefinite-sample results can be highly sensitive to choice
of y, p, andr, so that different researchers can arrive at different conclusions
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aboutH, for the same model and datdansen (1996) provided a direct Monte
Carlo—based method for computing the distributioMgfz,), avoiding this un-
desirable propertyin Section 5 we discuss a unified approach to hypothesis
testing with such statistics and provide simple bound¥\¢t,).

By contrastthe nonparametric approach to specification testing typically uses
tests based directly on a nonparametric estimatey olbtained for example by

solving

minn~t > (& — 6(X))? 5)
€0, i=1

with

pn
@nz{G:Rdema(x)zzlﬁjwj(x), B; €R, and dll-:Rd—ﬂR}, (6)
o

wherep, is chosen to grow at an appropriate rate with the samplensiel{y; }

is a sequence of basis functions such as Fourier sé&igmnk and Speckman’s
(1990) polynomial-trigonometric serieGallant’s (1981) flexible Fourier form
as considered by Hong and White (199&)splines as in Cox and Koh (1989) and
Cox, Koh, Wahba and Yandell (1988)With an indirect approacle need not be
estimated

3. REVEALING TEST FUNCTIONS AND DUALITY

From the preceding sectipwe see that totally revealing classes of test functions
play a central role in the nuisance parameter apprdachis sectionwe explore

the connections between these classes and dyalityiding the topological un-
derpinnings for our unification of the nuisance parameter and the nonparametric
approach

We firstconsider the properties of totally revealing classes of test funcions
this, we use the spac&$8(X) of o (X)-measurable functionp € [ 1,c0]. By change
of variablg we can equivalently useP(u) := LP(RK B¥ u) where u(A) :=
P(X1(A)) andBXis the Borelo-field onR¥. For our later discussions of proba-
bility and conditional probability model# is preferable to take to be a signed
measurée Thus LP(u) = LP(RX BX 1) denotes the set d#k-measurablereal-
valued function$ onR* with the property thatf|| := [ fo | f(r)|Pdvu (r)]*P < oo,
where  is the variation ofu, that is the unique finitecountably additive posi-
tive measure defined bya(A) = supi=l |n(A)], A€ BX where the supremum
is taken over finite measurable partitionsfofWheny is positive for example
a probability measur¢hen vu = u.

The spacd.P(u) is endowed with the metrid( f;, f,) = |f; — f,|, and the
corresponding topology is called the norm topolo@iie weak topology was
introduced previouslyPolar topologies are also of intereGliven a collection of
norm bounded setd of L9 ), the A-polar topology or.P( u) is the weakest (or
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smallest) topology making the functions (seminorms){${gh)|: h € A} con-
tinuous for eachA € A. When A is the set of all singleton sets If'(u), the
A-polar topology is the weak topologwhen.4 consists of only one set and that
setis the unit ball in9( ), the A-polar topology is the norm topolodyA topol-
ogy is separated (or Hausdorff) if points are closed. $etsarticular having the
origin be a closed set is crucial to testjimpnce the interest in whether or not a
topology is separatedr separated at,@s in Eubank and Hart (1992)

THEOREM 31. Suppose that g [1,00] and that q satisfie$/p+ 1/q= 1. Let
‘H be a norm bounded subset df(lw). The following statements are egalent:

(a) H is totally revealing
(b) spH is weakly dense inA ).
(c) The{H}-polar topology is separated

If in addition p € (1,00), then the following statement is egalent to(a)—(c)
(d) spH is norm dense in % w).

Becauseu is often unknownit isimportant to ensure that i is weakly dense
in LP( ) for any u. For this we assume (throughout) that there is a compact set
B such that u (B) = v (R¥). In the regression contesthis is the assumption that
the explanatory variableX, must be boundedn the probability model context
this is the assumption that the distributions have bounded sufpustis without
loss of generality in the following sensee can always homeomorphically em-
bedR¥ in (—1,+1)% This retains all of the conditioning information in the re-
gression context and all of the differences in distributions in the probability model
context

We let My(B) denote the set of bounded measurable function®8.obhet
C(B) C My(B) be the set of continuous (hence bounded) functionB.dndow
Mp(B) and its subsets with the uniform topolo@niform denseness and uniform
closure refer to denseness and closure in this topoMMgynow strengthen the
concept of totality

DEFINITION 3.2. We say that{ C My(B) is comprehensktly revealing if it
is totally revealing for LP(w) for every p € [100] and eery finite signed mea
suredu supported on B

A key result regarding comprehensiveness is the following theorem
THEOREM 33.

(a) For H C C(B), H is comprehenskly revealing if and only ifspH is uniformly
dense in CB).
(b) For H C My(B), H is comprehensely revealing gven any of the following cen
ditions
(i) sp™H contains a subalgebra of B) containing the constants and separating
points
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(i) sp’H contains a subalgebrad of M,(B) containing the constantand the
minimal o-field making all functions ind measurable i$%;
(iii) The uniform closure o§pH contains a comprehensly revealing set

Theorem 3 permits many choices for comprehensively reveaktfigror ex-
ample H can be any basis for the algebraic polynomiBlsrnstein polynomials
Chebyshev polynomiald¢rigonometric polynomialsFourier seriesB-splines
etc Such choices form the basis for the nonparametric approach to specification
testing Theorem 3 thus provides the desired unificatidrurther we can ex-
tend Bierens’s approach by considering claggesf the form

Hg = {h:R* = R|h(x) = G[A(X)], A affine} whereG:R — R, (7)

asTH g preserves the appealing simplicity of Bierens'’s cltgs,. We say thaG
is totally revealingcomprehensively revealingtc, wheneverH is.
To contrast the requirements for a comprehensively revealing class with those
given subsequently for a generically comprehensively revealing, elaessitro-
duce the following linear spaces of functions

2(G’T) = {g- B— R'g(x) = BO + E:LBJG(X/TJ)’ BO’Bj € R’
j=

TjeTC]R"”,sz...,r,rEN}, (8)

whereB is compact and supportawThe S in 3(G,T) suggests the spathe
weightsr; of the affine combinatiod (x) = X'r; are restricted t& C R*"*. When
T = R*L 3(G,R*"1) = sp{H, 1} wherel is the function always equal to. 1
ProvidedG # 0, this equals sf{¢ because we can set= (b,0’)’ whereb € R
satisfiesG (b) # 0. ThusH is comprehensively revealing if and onliG, R<" 1)
is comprehensively revealing

The question of whel (G,R¥"?) is comprehensively revealing has been in-
tensely investigated in the artificial neural network literatdreis interest arises
because the functions B(G,R*"1) = spH are the “output functions” of a
leading class of artificial neural netwotkse “single hidden layer feedforward
networks” (eg., Rumelhart Hinton, and Williams 1986) It suffices here to
find conditions onG such thats(G,R¥*?) is uniformly dense irC(B) for any
compactB.

DEFINITION 3.4. A measurable function:gR — R has a nice interal if for
some a< b, g is Riemann integrable ifa, b] and nonpolynomiallf g is also
continuous ora, b], then g has aery nice inteval.

In reading the first part of the following resuliear in mind thaG € (G, R)
and that if the domains and ranges mattie composition of an affine function
with an affine function is affine
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LEMMA 3.5. Suppose(G,R) contains a function g with a nice inteal.
ThenHg is comprehensely revealing If G is continuous’¢ is comprehen
sively revealing if and only if G has aery nice inteval.

Thus the only continuous choices f@ that arenot comprehensively reveal-
ing are the polynomialsBierens’s (1990) choic&(a) = exp(a) and White's
(1989b) choices = logistic cumulative distribution function (@.f.) are clearly
continuous and clearly not polynomialghereas Hansen’s (1990) choiééa) =
10.)(a) has a nice interval

We now turn to issues of genericitifor T a nonempty subset a&<, let
H(T) denote the set of functions of the fosm— G(X'7) with 7 € T.

DEFINITION 3.6. We say that{s is generically comprehensily revealing
if for all T with nonempty interigrthe uniform closure o6pHs(T) contains
C(B) for everycompact B

It is straightforward to show that this implies that the 8¢t as defined in
Section 2 is negligible regardless of the (signed) meagunaderlying the ex-
pectationThe difference between 8¢ (T) and>(G,T) is that spH(T) might
not contain the constant functiand/e saw that this difference could not arise
whenT = R¥™1; the same result holds here

LEMMA 3.7. The classH is generically comprehengly revealing if and
only if for every T with nonempty interig® (G, T) is uniformly dense in (B) for
every compact B

Thus for givenG, the difference betweeH s being comprehensively reveal-
ing andH g being generically comprehensively revealing hinges on whether only
R¥*1 or alternatively an arbitrarily chosen (small) ein R¥** with nonempty
interior can deliver the uniform densenes&606, T). This seems a rather strong
condition having a “universe in a grain of sand” flavdfeverthelessBierens
proves thaiG = exp has this properyput it can be shownfor example that
Hansen'sG(a) = 1., (a) does natThe real analytic functions have perhaps
surprising properties in this regard

THEOREM 38. Let G be real analyticThen s is comprehenskely reveal
ing if and only if it is generically comprehensiy revealing

In view of Lemma 35, we have the following

COROLLARY 39. Let G be real analyticThenH is generically compre
hensbvely revealing (hence comprehengly revealing if and only if G is not a
polynomial

This covers Bierens’s choidg = exp and White’s choic& = logistic cd.f.
Theorem 23 follows immediately from this resultt is, however not necessary
thatG be real analytic
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THEOREM 310. Suppose thasp{D*G(a), 0 = a < oo|a € O} is dense in
C(R) for any nonempty open subset ORfor G infinitely differentiable Then
for any TC R¥"* with nonempty interiars (G, T) is uniformly dense in (B) for
any compact BsoH is generically comprehensgily revealing

A nonanalytic function satisfying this condition is the normal.t or density

Thus there is a large variety of choices besides exp that share the appeal-
ing features of Bierens’s consistent specification testing apprdadbed Cor-
ollary 3.9 implies that the property th&tis generically comprehensively revealing
is itself “generi¢” that is, it is a property possessed by a dense set of funct®ns
in C(R). Let G C C(R) denote the class of continuous functidB@ssuch that
3(G,T) is dense inC(R) in the compact-open topology (uniform denseness in
C(B) for every compacB) for every sefl having nonempty interior

THEOREM 311 The clasgjis dense in €R) in the compacbpen topology
Note that the complement ¢fcontains the polynomials and so is also dense

4. IMPLICATIONS AND APPLICATIONS

We next consider the scope of the foregoing theory and show that it extends well
beyond the standard regression framework and into probability and conditional
probability models Eubank and LaRiccia (1992) compare Cramér—von Mises
and nonparametric tests for the equality of distributidrie Cramér—von Mises
and Kolmogorov—Smirnov tests are examples of the uses of polar or other norm
topologies to measure the distance between an estimated and a null hypothesis
distribution Eubank and LaRiccia cite a large body of literature on the problem
of distinguishing between different one-dimensional distributi®@ecause the
nuisance parameter approach does not need to directly estimate densities for com-
parison purposest is more easily applicable to multidimensional problems
We begin with a study of likelihood models of a scalar random vari#lglen-
ditional on a randonk-vectorX distributed according tByx.° Let the conditional
likelihood function with respect to@-finite measure and parameterized ltye
0, ® an open subset @P, be given by a measurable functignR X R X 6 —
R, with the property that for alk € R<and6 € 0, [ f(y|x,0) dv(y) = L
LetSdenote{ f(-|-,0)|0 € ®}. Sis correctly specified fol conditional onX
when forPx-almost allx, f (-] %, 6,) is a version of the true conditional density\of
given X = x with respect to’ for somef, in the interior of®. Under mild condi-
tions onf, we can differentiate both sides of the idenfityf (y|x, 6) dv(y)= 1 with
respect ta@. Under correct specification this yields.¢e White, 1994 Theo-
rem 66) E(s*|X) =0 as. wheres* = (sj,...,s5)" = Vylogf (Y| X,0%) isthep X 1
“score” vector of the likelihoogwith 6* := argmaxcq E(logf (Y| X,0)). (Here
0" = 6y under correct specificationWith £ = E(s*| X), Theorem 38 ensures that
for Gin a dense set of choices and essentially evaryR<**

E(G(X'1)S) #0, j=1,...,p, (9)
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for any misspecification of leading to the failure oE(s*| X) = 0 as. This forms

the basis for statistically detecting any such failure as noted by Hansen (1990)
Neverthelessone may havé&(s*|X) = 0 in the presence of misspecification of

S, for example one that leads to violation of the equation

E(V's* +s*s”|X) =0 as, whereV's*:=V2logf(Y|X,6%). (10)

(To get this under correct specificatiatifferentiatef f (y|x,6) dv(y) = 1 twice
w.r.t. 6.)
The question then arises whether the theory of Section 3 provides a way to
detect arbitrary misspecification $° To show it capwe use the fact that may
be signed and consider testing whether two multivariate distributsays and
Q, are the samédn the likelihood contextwe can viewP as the true distribution
of Z= (Y, X’)’ andQ as that implied by the likelihood &t",

Q(A) = fAf(y|x,0*) dv (y)dPy(X), A a Borel subset oR X R, (11)

BecauseéP andQ each completely specify a joint distribution fgrand X, a test
that will detect any deviation d? from Q is a test that will deteciny misspec-
ification in S. Formally, we test

Ho:p(P,Q) =0 vs Ha:p(P,Q) >0, 12)

wherep is any metric on the spackt of finite measures inducing the weak star
topology on (variation) norm bounded subsets\df for example

ff”d,ul—ff“d,uz
JERCTIE EAL™

where{ f "}, is any uniformly dense subset 6fB) (Dunford and Schwartz
1958 p. 426).

Because is a metricHy is the hypothesis that := P — Qis the zero measuye
thatis p (u,0) = 0. LetEp andEg denote expectation with respect to the indicated
measuresFor anyh € spH,

e 1
p(p1,pa) = 2 on ) (13)

n=1

1+

Er(h(X)) — Eq(h(X)) = fh(x)dP(X) - fh(x) dQ(x) =f1h(X) du ().

(14)

We now set := 1and testwhethek=0ae — u. Now,1=0ae. — pifand only
if wisthe zero measuythatis P = Q. Totality of spH impliesthatl=0ae. — u
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if and only if fh(x) du(x) = 0 for all hin spH. Theorem 3B implies that under
Ha for appropriateG and almost alk € R¥*2, 7 = (1,,73)’,

Er(G(Z'1)) — Eq(G(Z'7)) # 0, (15)

whereZ = (Y, X')". A statistic that estimates this difference is

nflEElG(Zi’T) —n?t Zl f G(yX 7+ )~(i'72)f(y|Xi,én) dv(y), (16)

wheref, := argmayceon 1 =1 logf(Y;| X;,6). Atest can be based on this dif-
ferenceas described in the next sectidde now see clearly the utility of treating
sighed measuress this reasoning requires thabe a signed measure

In addition to testing the correctness of likelihood mogdstingp (P,Q) =0
againsip (P, Q) > 0 permits testing whether the (unknown) joint distribut{@of
a random vectoX coincides with a specified joint distributidh—for example
thatX is multivariate uniform—as well as testing that two independent random
samples are both drawn from the same unknown distributiohoth casesthe
integral [ G(X'7)(dP(x) — dQ(x)) can be approximated by the statistic

Ny Nz

nflze(iiiT)_nflzG(iéiT)- a7

In the latter case{Xy;,i = 1,...,n;} and{X,;,i = 1,...,n,} are independent
samples from the two populations the former{X;;,i = 1,...,n,} is generated
by nature according tQ, and{X,;,i = 1,...,n,} is generated pseudorandomly by
the researcher according B (Alternatively a numerical integration may be
used) WhenX is a scalar ands is chosen to be the indicator functi@®(a) =
1[a> 0], usingG(X'7) = 1[x > 7] with 7 := (7(,1) leads to tests closely related
to the familiar Kolmogorov—Smirnov test.(g, Serfling 198Q pp. 57-58) when
the uniform norm is appliedas described in the next sectiarhoosing the.2-
norm instead leads to tests related to the Cramér—von Mises statigtiSézfling
198Q p. 58). Recent work of Andrews (1997) extends the Kolmogorov approach
to testing parametric models with conditioning variables

Applications of the sortdiscussed here approximate inte§jta(s, 7) du (x) for
finite signed measureswith statisticsf ¢ (x, 7) du,(X), whereu,,converges ta
inthe weak star topologBy definition, continuity and boundedness of eafth, 7)
guarantees thdtp (x, 7) dun(X) = [ ¢ (x,7) du(x) for eachr € T. The next result
shows that if the clasgp(-,7):7 € T} (e.g., ¢(x,7) = G(X'7)) is comprehen-
sively revealingthenu,, converging tou is equivalent tof ¢ (x,7) dun(X) —
Jé(x,7) du(x) for eachr € T. Further if the class{¢ (-, 7) : 7 € T} has compact
closure (in the sup normyhe convergence will be uniform overe T.

This uniformity is useful in two area#t provides a uniform law of large num-
bers and it guarantees that small deviations from correct specification give rise
only to small values of our test statistics
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THEOREM 41. Let{u,}no be a sequence of finite signed measures on B
with v, (B) uniformly bounded

(a) If the class{¢(-,7):7 € T} C C(B) is comprehensely revealing thenw, — uo
in the weak star topology if and only if fowery r € T, [¢(X,7) dun(X) —

Jo(x,7) duo(X).
(b) If {&(-,7):7 € T} C C(B)is comprehenskly revealing and has compact closyre

thenu, — woif and only ifsuper|f (X, 7) dun(x) = f (X, 7) duo(x)| — 0.

5. HYPOTHESIS TESTING WHEN A NUISANCE PARAMETER
IS PRESENT ONLY UNDER THE ALTERNATIVE

Our preceding results establish an equivalence between the hypothesis of correct
model specification and a family of moment conditidnSor appropriate mo-
ment functionm, we write the null hypothesis as

Ho: E(M(Z,6p,7)) =0 forsomedy € ® andallr €T, (18)

whereT is an appropriate compact set adds anl X 1 random vectorFor
exqvmpleto test a nonlinear regression modakemto be given byn(zZ,0,7) =
G(X'7)[Y — f(X,0)]. The alternative tdd, is

Ha:E(M(Z,0,79)) # 0 forall6 € ® andsome, & T. (29)
Neverthelesswe have seen that for certaimthe alternative is in fact
Hi:E(M(Z,6,7)) # 0 foralld € ® and essentially alt € T. (20)

Now, 7 is indeterminate under the null but not und¢y. Thus 7 is called a
“nuisance parameter present only under the alternéfivree phrase “identified
only under the alternative” is also uséttentification” here is not fully analo-
gous to the usual concept arising in estimation of parametric mdukstause of
Hx. Neverthelessthe terminology is now standard

Hypothesis testing in such contexts presents challeragesvidenced by our
brief discussion of Bierens’s (1990) approach in Sectiorh2 problem has been
addressed by several authobavies (19771987) gave bounds for certain sta-
tistics Andrews (1993) and Hansen (1996) discussed a variety of examples in
econometricsBierens (1990) and Hansen (1996) obtained the asymptotic distri-
bution for max1W,(7); and Andrews and Ploberger (1994) proposed an opti-
mality criterion and an optimal tedn this section we present a natural approach
to solving this problem using Banach spaces and illustrate its application to test-
ing for misspecification of a nonlinear regression model

The key to our approach is to cd$f as a hypothesis about the expectation of
a Banach space—valued random variable (a “Banach random element” or “Banach-
r.e.”). Recall that a Banach spadg, is a complete normed linear spadile
denote the nornj-|. A Banach-re. is a measurable mag’ from a probability
space(), F, P) into B, equipped with the (Boreky-field generated by the open
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sets of the norm topologyvith the tightness property that for eaeh> 0 there
exists a compact s&t. in B such thaP[X C K.] =1 —e.

BecauseB is linear the integral of a simple Banacter, XS, is E(X®) :=
>x P[X®=x] € B, summing over the finitely many values takenl§. Because
by tightness the range of a genedals separablgt is the P-a.e. limit of some
simple sequenceY}jcn With [ X¥(w)| = | X(w)]. If there is a uniqué - ||-limit of
{EX} for all such sequencethen the integral oft, denotedEX, is defined as
this limit.

As previously discussed, is consistent fop* in ©, andg* = 6, underHo.
Denote byM* =m(Z,60%,-) the mapping —» m(Z,6*,7). AsZis random M * is
arandom function of, and under suitable conditiorig! * is a Banach-e. We can
then expressig as

Hg : g(E(M™)) = 0, (21)

whereg: B — R™ is |- |-continuous o such thag(x) = 0 if and only if | x| =
0. We chooseg, | - |, andé, jointly so that a convenient estimator @fE(M*))
will have a tractable distribution under the null (with proper scaling) and have
power under the alternativEor examplein the classical situation (with = RP)
aleading case ido: 8* = 0. Let 0] =[6'6]2 let 6, be the maximum likelihood
estimator forv*, and letg(#) = 0’l *6, wherel * is the MLE information matrix
When vné, replacesd*, we obtain a statistig(vhd,) = né,l “6, that has the
convenientyZ distribution under the null asymptotically and has optimal asymp-
totic power properties under local alternatives

A variety of useful norms is available for the present c&@3enm(Z,0%,-)
is continuous o, and so we are dealing with random element€6T). This
space can be endowed with the uniform nofni.., so that|E(M*)|., =
sup.er|E(M(Z,0%7))|. So long as the smallest weakly closed set supponting
has weakly dense spathis procedure yields a separated topologgking
g(x) := ||x|., satisfies the conditions required gfand leads to statistics of the
form

n n
g<n1/2 D M?) =sup|n"Y2> m(z;,6%7)|, (22)
i=1 T7€T i=1

whereZ; is a random sample o These are the statistics considered by Bierens
(1990) Hansen (1996)and Kolmogorov—Smirnav

Alternatively whenm(-,6%,-) is properly integrable we can conside?(»)
norms of the form

p
IEM ), = [LIE[m(Z,H*,T)] pdV(T)} , 1=p<o, (23)

wherev is a given measure oh Takingg(x) = | x|}, leads to statistics of the
form
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doeson)-

Bierens (1982) proposed a statistic of this form with= 2 anddv(7) = dr.
Hansen (1996) also examined a version of this statiBtic Cramér—von Mises
type teststakep = 2 andv to be the distribution oZ. Andrews and Ploberger’s
(1994) optimal test arises witlof the form

n

n~Y2> m(z;,6%1) " dv (7). (24)

t=1

g(x) =1+ ¢ (*Y fexp[x(r)zc/Z(l + o)]dv(r), (25)

wherec > 0 is a scalar constant determining whether the test has power against
near or far local alternatives amds a given probability measure supportedion
Forx € C(T) this choice is continuous with respect|td...

Thus we are led to consider the asymptotic behavior of statistics of the form
g(n~Y2S,), whereS,, = X", Mi is a sum of Banache.’s and the normalization
by n~%? stabilizes the distribution of the surfihe central limit theorem (CLT)
and law of the iterated logarithm (LIL) for Banach-valued random sums provide
the desired description of the asymptotic behaviono¥2S,,. Available results
of Ossiander (1987) and Ledoux and Talagrand (1991) provide convenient suf-
ficient conditions

We therefore seek to tegtE(M*)) = 0 based omy(n~Y2S,,), using the CLT
and LIL for Banach-e.’s. For simplicity we treat only the independent and iden-
tically distributed (jii.d.) case Generalizations may be taken up elsewh¥gve
first make the i.d. assumption formal

Assumption 1 The termZ; is a sequence ofiid. random variables on the
probability spacé(, 7, P) taking values irR' and having the distribution of the
randoml X 1 vectorZ.

To permité, to be anm-estimator (HuberL967) we impose

Assumption 2 For eachn € N, 6,,: Q — © (with ® a compact subset &) is
measurableFurther there exists a functios: R' X ® — RP and a finite non-
singular nonstochastip X p matrix A* such thasis measurable oR' for each
6 in ® and continuous i® for eachzin R';

12 (Z,,0,) = op(L); (26)
=
and
(- 0°) = —A—In"2 S §(Z;,6%) + op(D), (27)
i=1

wheref* is in the interior of® andE(s(Z,6%)) = 0.

We next impose conditions ansufficient to permit a Taylor series expansion
aroundd*®.
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Assumption 3

(a) LetT be a compact subset &, g € N. The functionm:R' X ® X T — R is
measurable ifR' for each(d,7) € ® X T and continuous o® X T for eachzin R'.
Furtherfor each(z,7) € R' X T, m(z,-,7) is continuously differentiable on an open
neighborhood ob*.

(b) The function sup, ,coxT|VM(Z,6,7)]| is integrable

For simplicity we havem mapping intoR. Generalization to vector-valued
is straightforwardWe write M(0*,7) := E(V'm(Z,6* 7)). The present assump-
tions suffice for the following lemma

LEMMA5.1. Suppose Assumptiofis3hold. Then

= 0p(1), (28)

[ee]

n n
nY2Y M —n V2 Lr
i=1 i=1

whereM; := m(Z;,0,,-) and £ := m(Z;,6%,-) — M(0*,-) A*1s(Z;,6%).

Consequentlythe probabilistic behavior dfn~2 3" ; A1;|| can be approxi-
mated asymptotically by that ¢f~+2 3., £7| for any norm weaker thaj | .,
for example |- ||, ,, 1 = p < oo, v finite.

InspectingL;, we see that its dispersion may vary oveiWe standardiz&;
using its standard deviatipeayo..: T — R, . The existence of is ensured by

Assumption 4

(@) SuRs,ncoxTM(Z,6,7)%is integrableand
(b) supees(Z,6)'s(Z,0) is integrable

This also ensures that— ¢ 2(7) := vaifm(Z,0*,7) + M(0*, 7) A" *s(Z,0%)] is
continuous orT. To avoid division by zerpwe impose

Assumption 5 T is chosen such that infr o:2(r) > 0, that is |0, 2| ,< 0.

From Lemma 5L, the probabilistic behavior dfn~Y2 3, £ /o.| approxi-
mates that ofn" Y23, M, /o.|. Becauser, is unknown we replace it with a
consistent estimatowe consider two specific estimatoi@he first is an uncen-
tered estimato#?, given by

&nZ(T) = nil 2 [m(zhémT) - Mn(én’T)Agls(Zi’én)]za (29)
i=1
whereM,(6,,7) == n"1 3, V'm(Z;,6,,7). Acentered estimator %2, given by
n 2
G2(r) = 62(r) — <nl > m(zivén,7)> . (30)
i=1

To ensure the consistency of eith&f or .2 for o> we impose the following
assumption
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Assumption 6 A, = A* + 0,4 (1).

The consistency of,2 for o2 holds undeH,. Under the alternatiyes? con-
verges to a function not less thatf. This is all that is necessaryhe estimator
62 is consistent under botH, andH,.

It remains to impose conditions that permit application of the Banach CLT and
LIL . We use conditions of Ossiander (1987) that are reasonably broad and not
difficult to verify.

First we define what it means for /25, to obey the Banach CLTrhe fol-
lowing definition is standard

DEFINITION 5.2. Let{Z,} be a sequence of Banatte.’s with correspond
ing distributions{u,}. Then Z,, corverges in distribution orB to Z, written
Z.,=y Z, if for every bounded continuous functiont —» R, [fdu, — [fdu as
n — oo, whereZ has distribution.

We follow Ledoux and Talagrand in saying tmat/2S, obeys the Banach CLT
iffor some Banach:e. Z,n~ Y25, = Z. We leave the distribution & unspecified
For simplicity in stating our final assumptipdefine¢: R' X T — R as

&(z,7) = [m(z,0% 1) — M(O*,7)A*1s(2,60%)] /0. (7). (31)

From Lemma 2L and Theorem .3 of Ossiander (1987}jhe Banach CLT holds
for n~¥Y23 L, L7 /o, under the following condition owb, requiring essentially
that¢ not be too irregular locally

Assumption 7 There exists a continuous strictly increasing functoriR . —
R, such that

E*[ sup |(2,7) —¢<z,ro)|2] =y(5)? foreachs € R, (32)
7EN;(7g)

for eachry € T(5), whereT(8) is ad-net for T and{Ns(7o):7 € T(5)} is a

collection ofé neighborhoods of the members™s) that coversT, and where
E* denotes outer expectatidfurther y satisfies the “metric entropy” condition
that is for someé, > 0,

o
JO (—log[y *(a/2)])Y? da < co. (33)

As an examplave give conditions o that suffice for Assumption 7 inthe case
of Bierens-type specification testing for nonlinear regresdimputm(Z,6,7) =
G(X'T)(Y — £(X,0)), S(Z,0) = —VI(X,0)(Y — f(X,0)) with V'm(Z,0,7) =
—G(X'7)V'E(X,0) and A" = E[VI(X,0")V'f(X,0%) — V2f(X,0*)€], where
e=Y—f(X,0") andd* solves

r(;neig E([Y - f(X,0)]2). (34)
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Example 5.3.

Let® be compact and lét R X ® — R be measurable di* for eachy € ® and
twice continuously differentiable on an open neighborhooé @dr eachx € RX,
Suppose that, f (X,6%), andVf(X,0*) have finite second momentiat Assump-
tion 6 holds and thatA*~* exists Let T be a compact subset &"*. Then As-
sumption 7 holds ifs is Lipschitz on compact intervals

We can now state our first main result of this section
THEOREM 5&4.

(a) Let Assumption&—7hold withB = C(T) andsup norm|- ... Under Hy

n n
N2> Lijo, =5 2,  nYV2Y M /6,= 2, and
i=1 i=1

N2y M, /6, =5 Z, (35)
i=1

where{Z(r):7 € T} is the zero mean Gaussian process withastance gven by
COV(Z(71), Z(12)) = COV(P(Z,71),$(Z,72)). (36)

(b) Letg:B—>R" peH - |,-continuous oi® such that gx) = 0if and only if x= 0. Then
g(n" Y23l M;/6,) =g 9(Z2) and gn V2L, M, /6,) =g 9(2).

As a direct consequence of this result and Theorerh3l6f Ledoux and Ta-
lagrand we also obtain convergence results for the ndris, 1 < p < oo, v
finite.

COROLLARY 5.5. Suppose Assumptiords-7 hold and letB = C(T). Let
g:B—>R"* be|-|,,-continuous o such that gx) = 0if and only if x= 0. Then
under H,

g (n_l/z i M, /&n> =r0(2) and g(n‘l/2 i Mi/&n> =r9(2) (37)
i=1 i=1

forall 1 = p < oo, v finite, where Z is the Gaussian process of Theorém.

Obtaining asymptotic critical values for our statistics is computationally chal-
lenging but feasibldor exampleby Monte Carlo (Hansen 199@ndrews (1997)
discussed a semiparametric bootstrap procedure in a related applitdicar-
theless a simple and sharp asymptotic bound follows from the Banach LIL
(Ledoux and Talagrand 991, Theorem &). We strengthen Assumption 2

Assumption 2 For eactn € N, 8,: Q — © (with ©® a compact subset &P) is
measurableFor6* € int ©,6, = 6* + 0,5 (1). There exists a functios: R' X ® —
RP measurable oR' for eachd in ® and continuously differentiable on iétfor
eachzin R' such that
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n-Y2 i S(Zi’én) = Oa.s(l)’ (38)
-1

with E(s(Z;,0*)) =0 and supee | VS(Z;,0)| integrable DefineA* = E(Vs(Z;,0%))
and assume th&" is nonsingular

THEOREM 56.

(a) Suppose Assumptiofis2’, and3—7hold. Then with probabilityl under H,

n
N2> /o,
i=1

/(2 loglogn)¥/2

limsup
n—oo
n ~
= limsup||n~Y2> M; /6, /(2 loglogn)*/2 (39)
n—co i=1
n A
= limsup|n~Y2> M, /a, /(2 loglogn)¥/2 = 1, (40)
n—oo =
where|-| = |-[., or where|-| = ||, for 1= p < co andv is any finite measure
onT.

(b) Further,letg: B — R* be such that there exisis R* — R monotone increasing
for which gx) = ¥(||x|..) for all x € B. Then with probability one under Hve
have
lim s.upg(n‘l/2 > E?/@)/}‘/([Z loglogn]¥?) = 1, (41)
n—oo i=1

lim supg(n‘l/2 > /\?li/&n)/?([Z loglogn]¥?) = 1, (42)
n—oo =1

and

lim supg(n‘l/2 > Mi/&n>/7([2 loglogn]¥?) = 1. (43)
n—oo i=1

The statisticg(n~ Y23, M, /&,) can exceedy([2 loglogn]¥2) only fi-
nitely many timeswith probability 1 (wp. 1) underH,, so that rejectindd, if
g(n~vY23", M, /6,) > ¥([2loglogn]Y2) delivers a test of asymptotic size
zero.The LIL bound is independent of the norfRor moderate-sized samples
the LIL bound is likely to be rather conservativeable 1 gives some sample
values for (2 loglog) 2. We therefore recommend basing a preliminary test
on the LIL bound If one fails to reject with the LIL boundhen the evidence
is well in accord withHy, and one can avoid further computatiohthe statis-
tic exceeds the LIL boundve suggest using Monte Carlo or the bootstrap to
compute an accuraggvalue

Global power of tests based on 23 ; M, /4, is established by the next
result
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TasLE 1. Values for(2 loglogn)¥/?

n (2 loglogn)/2
100 17477
500 19115

1,000 19660
5,000 20698
10,000 21073

THEOREM 57.
(a) Suppose Assumptiofis?’, and3-6hold. Then under K and Hx,
n-%2 2 Mi /&n
i=1

|
A

for somed > 0. Further, under Hy
n
n~Y23 M, /6,
i=1

|
o

forsomed > 0O, for all 1 < p < co and allv placing positie measure in a sufficiently
small neighborhood of,. Under Hx, the preceding relations hold for all =< p <
oo and all finitew.
(b)
(i) Letg:B — R* be suchthatthere exisig R* — R* monotone increasing and
a measurer on T for which gx) = y(H_XHL,,) for all x € B. Then under K

> n%/2§ aa.n.}

%)

> n¥2s aa.n.] =1 (44)

n-%2 E Mi/&n
i=1

=%}

> nY2§ a.a.n.]

p,v

> n¥2s a.a.n} =1 (45)

n~v2 > M;/é,
=1

p.v

P[g <n*1/2 En‘, A?li/&n) > y(n%2) a.an.]

i=1
= P[g (n*1/2 i Mi/&n> > y(n~Y25) a.a_n.] =1 (46)

for somes > 0, provided thatr places positie measure in a sufficiently small
neighborhood ofry. Under Hx the restriction orv is unnecessary

(i) Letg:B — R* be such that there exisjs R" — R* monotone increasing for
which gx) = y (| x||..) for all x € B. Then under H and Hx for somes > 0,

P[g <n*1/2 En‘, /\?li/&n> > y(n¥/25) a.an.]
i=1

= P[g (n’l/z i Mi/&n> > y(n¥/2) a.a.n.] =1 (47)
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Thus the asymptotic size zero test will be consistent whén is properly
chosen

We complete the nonlinear regression example by specifying standard regu-
larity conditions under which the results of this section can be invoked

Regularity Condition 1 {Z; = (Y;, X/)'}is an ii.d. sequence such thEt Y;?) <
oo andX; is bounded

Regularity Condition 2 f: R* X ® — R satisfies (a) sup-o f (X;,0)?is integra-
ble; (b) supee V'T(Xi,0)Vi(X;,0) is integrable (c) supeeo|V3f(Xi,0)(Y;, —
f(X;,0))|isintegrable(d) supeo (Y —(X;,0))V'f (X;,0)V(X;,0) isintegrable

Regularity Condition 3 (a) E([Y; — f(X;,8]?) has a unique minimum &t €
int ®; (b) detA* # 0.

Regularity Condition 4 Assumption 5 holds

Regularity Condition 5 G is Lipschitz on compacts antlis compact with
nonempty interiar

Regularity Conditions 1 and 2 guarantee the existence of a measurable solution
0, to the problem

n
minn~ > [Y, — f(X;,0)]%2. (48)
0€06 -

SetA,=n"1t 3, VfVf/ — V2f &, whereVf, = Vf (X;,6,), Vf; = V2 (X;,0,) and

é& =Y, — f(X,0,). Regularity condition 4 imposes Assumption 5 directly for
conveniencelt suffices that the conditional varianceof Y — f(X,6%) givenX

is bounded away from zero and that there is a less than perfec@GitXor) for

all 7 € T from the “regressionV'f (X;,0) A" *E(Vf(X;,0%)G(X/7)).

COROLLARY 5.8. The conclusions of TheoreBd4, Corollary 5.5, Thec
rem5.6, and Theoren5.7 hold for £, M;, &,, andé, constructed under regu
larity conditions1-5 In particular, Hy occurs when PE(Y|X) = f(X,6)] = 1
for somed, interior to ®, whereas H occurs when PE(Y|X) =f(X,6)] < 1 for
all # € ® and G is a nonpolynomiateal analytic function

6. MATHEMATICAL PROOFS
Proof of Theorem B. Immediate from Corollary 3. u

Proof of Theorem A. The equivalence of (ajb), and (d) is established in the
text The equivalence with (c) follows directly from the discussion of polar to-
pologies (Robertson and Roberts@873 111.2). u

Proof of Theorem 3. (a) If spH is uniformly dense inC(B), then Lusin’s
theorem (., Ash, 1972 Corollary 43.17 (b)) implies comprehensivene&aip-
pose s is notuniformly dense irC(B). The uniform closure of sp{ is a closed
linear subspace @ (B). As the set of finite signed measures is the dudl (B),
there is a nonzero finite signed measuresuch that for allp in the uniform
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closure of spH, [zn du = [gln du = 0. Puté = 1; then™ is not comprehensive
becausd # O u — ae.

(b) By the dominated convergence theorem (DQIniform denseness in a
comprehensive setimplies comprehensiverfessce condition (iii) sufficesCon-
dition (i) thus suffices by Stone—Weierstrass prove condition (ii) sufficesve
note thaiM,(B) is comprehensivé\ variant of the monotone class theoreny(e
Dellacherie and Meyel978 Theorem 222, p. 15) implies that the smallest class
of functions containing4 closed under both uniform convergence and bounded
monotone convergence My,(B). Thus for any u, anyh € My(B) is theu ae.
limit of a uniformly bounded sequence of elements4fTherefore the DCT
implies comprehensiveness 4f u

Proof of Lemma 3. See Hornik (1991) u

Proof of Lemma . If the uniform closure of sp{s(T) containsC(B), then
so must the uniform closure of its supe;sStG,T).

Now suppose the uniform closuredfG, T ) containsC(B) for every compact
B C R andT C R? has nonempty interioBy Stinchcombe and White (1990
Lemma 20), it suffices to treat this cas&uppose for purposes of contradiction
that spH(T) is not dense it©(B) for someT andB. This happens if and only if
there is a nonzero finite signed measursupported o8 such that for alr € T,
JzG(X'7)u (dx) = 0. Taking a subset of if necessarythere is no loss in assum-
ing T belongs entirely in one quadrant &f.

Let[a,b] be a closed interval containing &neighborhood oB for some
e > 0. Pické > 0 andr’ € T such thatS(7’,268), the ball of radius 2 around
7', is contained inT. By assumption 2(G,S(7',8)) is uniformly dense in
C([a,b]). In particular for everyn € N and for everya < a’ = b’ < b, some
element of3(G,S(7',8)) is uniformly within n=* of the continuous function
f(x) :== max{l — nd(x,[a’,b’]),0}, whered(x,[a’,b’]) is the distance fronx
to the sefa’,b’].

The sequenci’is uniformly bounded and converges pointwise to the indicator
of the intervalla’,b’]. Thereforgasn goes to infinity [j, ;) f "(x) du(X) goes to
wn([a’,b’]). Because eact' is in the span of{s(S(7',6)) andl, f"(x) = Bo.n +
Efj,? Bi.nG(7j,nX+ 79 j,n), Where eacltr; n, 7o j n) € S(7',6). The basicidea s that
we can “horizontally stretch” the functiori$ without changing their integral
againstu, and this cannot happen unlgsss equal to OFormally as the integral
of u against any element @{(T) is 0, we can substitute anyf »,to ;) € T for
each(r; », 70 j,n) Without changing the integral 6f againsju. Letg; , be that point
inR such that; ¢ , + 70 j, = @', and letd; ,, be that pointirR such that; ,d; ,+
7o,j,n = b'. These exist becaugebelongs entirely to a single quadrantia.

BecauseS(7',8) C S(7/,26) C T, there exists some € (0,¢) such that for all
(j,n)-pairs there existj n, 1o j n € T) such that ¢, + to j,n = &’ andt; ,d; , +
to..n= b’ + 1. Becausdl belongs to a single quadrantlitt, the signs ofr; , and
t; » must agree

Denote by{g"} the sequence of functions¥{G, T ) that are derived frorhf "}
by replacing eacly; , 7o j n) by the corresponding; », 1o ; n). The sequencigy”}
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converges pointwise to the indicator of the interval@fb’ + n]. Thereforefor
eacha<a' =b’' <b, u([a,b’]) = u([a’,b’ + n]). Because the intervih, b]
contains are-neighborhood oB andu is supported o, this implies thafu is
the 0 measutghe contradiction that completes the proof u

Proof of Theorem B. If G is not generically comprehensivien there is a
nonempty open s@ C R*"! and a compact sét such that sSpG(-'r):7 € T}is
not uniformly dense inC(K). The Hahn—-Banach theorem then implies exis-
tence of a nonzero finite signed measureupported oK such that for al- €
T, m(7) := [G(X'T) u(dx) = 0. Butmis real analytic becauseis and becausg
is compactly supporteds a real analytic function is equal to 0 on the openlset
if and only if it is equal to O everywheyé&is is not comprehensive u

Proof of Corollary 39. If Gis a polynomial then it is clearly not comprehen-
sive If Gisreal analytic butis not a polynomijahen every interval is a very nice
interval By Lemma 35, this implies thatG is comprehensiveBy Theorem 3,
this implies thatG is generically comprehensive |

Proof of Theorem 30. See Stinchcombe and White (199heorem 2). &

Proof of Theorem 1. Itisimmediate that the real analytic functions that are
not polynomials are dense in the compact-open topglbgynce the result fol-
lows from Corollary 39. u

Proof of Theorem 4. By Theorem 33, {¢(-,7):7 € T} C C(B) is compre-
hensive if and only if its span is uniformly denseGxiB). (a) follows from Dun-
ford and Schwartz (1958 heorem \5.1, p. 426). Given (a) (b) follows from the
observation that the mappinge, f) — [fduw is jointly continuous on sets of
measures withy uniformly bounded n

Proof of Lemma 5. Assumptions 1-3 permit a Taylor expansion arodid
of the form

n
n71/2 2 m(zl 5 énaT)

=
n n

— V2 2 m(z;,0% 7 {n‘l ZV’m(Zi,H_n,T)}/ﬁ(én—ﬁ*)
<~ =
n n _

— n71/22 m(z|,6 ,7_) |:n1 EV’m(Zi,HnyT):|
i=1 i=1

X [A*lnl/2 > s(z;,0%) + Op(l)}
=

n n

=n"Y23 m(Z,6%7) — M(6%7) [A*_ln_l/z 2, 8(2;,67) + Op(l)}
i=1 =1

_ (nl iV'm(Zi,émr) - M(e*,r))[A*lnl/z i s(Z;,6%) + op(l)}
i—1 i=1

n-12 i [(M(Z;,6%,7) — M(6%,7) A" 15(Z;,6%)] + 0p(1) (49)
=
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uniformly onT. Uniformity follows asM (6*,-) is continuous on the compact set
T (implying thatM(6*,7) = O(1) uniformly in 7) and from the WULLN for
{V'm(Z;,6,7)}. Thus(n "t 3L, V'm(Z;,6,,7) — M(6%,7)) = 0p(1) uniformly in
7. The result now follows immediately u

Proof of Example 8. Because the integral (33) is finite whes) = 62 a>
0, it suffices that ¢| be bounded above by a square integrable random variable
times a Lipschitz functionGiven the moment conditions and tiais Lipschitz
on the range oK'T, this is clearly true for the numerator ¢f Given thato 2(r)
is bounded beloythe denominator is also LipschitBecausel is compactthis
suffices [ |

Proof of Theorem 3. (a) Assumptions 1-5 and 7 suffice to apply Os-
siander’s (1987) Banach CLT ton Y23, L{/c* The results for
N2 3Ly M, /6 hold if [n"Y232Ly M/ 6 — 0722 L7 /o]0 = 0p(D).
The triangle inequality gives

n n
N2 Mi/én—nTV2 Y Lo,
i=1 i=1

oo

n n
=[n"Y2> Mi/6,—n"V2D M, /o,
i—1 i=1 -
n R n
+ nfl/z_Zl./\/li/O'* —n~v2 _21£i*/0'*
i= 1= [ee]

= ”0'*6'n71 - 1“00

n
nY2> M;/o.
i=1

[ee]

+

n n
nY2y Mi/o,—n"Y2Y Li/o,
i=1 i=1

(50)

As n Y23, Li/o, obeys the Banach CLT Lemma 51 gives
In~Y23", M; /o], = Op(1). The desired approximation holds|if.é * —
1], = op(1). For this it suffices thai? — 2., = 0p(1) given Assumption 5
which follows easily given Assumptions 3, and 6 The argument witl&? re-
placingé? is identical

(b) Becausd Z(7):7 € T} is a continuous process agds continuous with
respect to| - |, it follows from the continuous mapping theorem (Billingsley
1968 p. 30) that

n n
g(ﬂ” > Mi/frn> = g(2) and g(n”z > Mi/&n> =r0(2). (51)
i=1 i=1
|
Proof of Corollary 55. Apply the continuous mapping theorem u

Proof of Theorem %. (a) Assumptions 12’, 3—5 and 7 permit application
of the Banach LIL (Ledoux and Talagrandl991 Theorem &) to
n~Y23 | £¥/o.. For|-|, it suffices that

https://doi.org/10.1017/50266466698143013 Published online by Cambridge University Press


https://doi.org/10.1017/S0266466698143013

320 MAXWELL B. STINCHCOMBE AND HALBERT WHITE

/(2 loglogn)¥2 = 0, (1). (52)

The argument witld,, replacingad, is identical The triangle inequality gives

/(2 loglogn)/2

n n
Y2 M /6, — 02 Lifo”
i=1 i=1

n n
Y23 M /6, —n V2 Lt o
i=1 i=1

= Ha'*&nil - 1” X

/(2 loglogn)/2

n
N2> Mi/o,
i=1

n n
+ |In"v2 2 M, /o, —n~Y? 2 L /o,
i—1 i—1

/(2 loglogn)¥/2. (53)

Thus it suffices that|o.dyt — 1] = 0as(1), [N"Y23y M, /0.l/
(2loglogn)¥? = O, (1) and that

n n
n-Y2 2 M /o, —n~Y2 2 Li /o,
i=1 =]

/(2 loglogn)¥? = 0,4 (1). (54)

The last equality and the Banach LIL for Y23, £ /o, imply that
In~¥2 3L, M /o.]/(21oglogn)¥? = Ou4 (1). That o6 * — 1] = 0.5 (1) fol-
lows under Assumptions &, and 6 The result thus follows by establishing (54)
As o.(7) is bounded beloyw

n n
n—l/2 E Mi _ n—l/2 2 £:i<
i=1 i=1

/ (2loglogn)*/? = 0,4 (1) (55)

suffices Taylor expansion aroung’ gives

n

n~v2 3 m(Z;,6,,7)/(2 loglogn)*?

i=1

= n¥23 m(z,,6%7)/(2loglogn) 2
i=1

n
+|(n7?t EV’m(Zi,én,r)}«m(én —6%)/(2 loglogn)¥/2
i

=1

=n"Y2Y [m(Z;,0% 1) — M(6*,7) A" 1s(Z;,0%)]/(2 loglogn)*/?
i=1

—|n7? EV’m(Zi,O_n,T) — M(O*,T):|
=

X A In"Y2 'Y 5(Z,,6%)/(2 loglogn) /2
i=1

+n™t EV’m(Zi,én,T)H\m(én — 6%)/(2loglogn)*2
L i=1

+ATINTY2 Y 8(Z,,60%)/(2 Ioglogn)l/z}'
i=1
(56)
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The result follows if the second and third terms vanish asco a.s., uniformly
in 7. Now Assumptions 12’ (on s), and 4 ensure that the LIL applies to
n~Y23"s(Z;,6%), so than Y23, s(Z;,6%)/(2 loglogn)¥/? is O, (1). Here
A*~1isO(1) by Assumption 2and[n " * 3L, V'mM(Z;,0,,7) — M(0*,7)] = 0,5 (1)
uniformly in 7 by the strong uniform law of large numbemovided tha®),, —
6* as. For this it suffices that,, — 6* as., as imposed in Assumption.Zlhe
second term thus vanishes.auniformly in = as required

Because syp . coxt|M(8,7)] is finite given Assumption 3(b) and because
SURs.neoxT [N it V'M(Z;,0,7) — M(6,7)]| — 0 as, it follows that the term
N1, V'm(Z;,6,,7)] appearing in the third term of (56) B, (1) uniformly
in 7. The result now follows if

VTi(d, — 6*)/(2 loglogn) /2
n
= —A"In"Y23 5(z;,60%)/(2loglogn)Y? + 0,5 (1). (57)
i=1

By the standard mean value expansion

VA(6, — 0*)/(2 loglogn) ¥/

n
= —Vs, In"Y2> 5(z;,6%)/(2 loglogn) /2
i=1

—A"In"Y2 ¥ 5(Z;,6%)/(2 loglogn)¥/?

i=1
+ (A1 -vs, Hn V2> 5(Z,,0%)/(2loglogn)¥?  as,aan, (58)
i=1

whereVs, represents the gradient matrixof! 3., s(Z;,0) with each row eval-
uated ata (different) mean value lying betwégandd*. The SULLN forVs(Z;,6)
ensured by Assumptions 1 antkhd the consistency 6f for 6* imply thatVs, —
E(Vs(Z;,0%)) = 0,5 (1). Butn Y23, 5(Z;,6%)/(2 loglogn)?is O, (1) by the
LIL, implying that (57) holdsso we are done

(b) It suffices to considen~Y2 3L, £#/o,. Other cases are analogo&som
(a), foranye > 0 and for eacln in a set with probability one there exidg(e) < oo
such that for alih > N, (¢) we have|n Y23, Li(w)/0.]../(2 loglogn)¥? <
1+ €. By the condition omwe havey(n~Y2 3, £ (w)/0)/9[(2 loglogn) 2] <
1+ eforalln> N,(e) alsq and the result holds u

Proof of Theorem 5. (a) Itsufficestotreat- |1, as| |1, =|lp, =[]0, 1=
p < oo. By definition

.
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Assumptions 12', and 3—6 ensurfs,? — 0.2, = 0 as. This and continuity of
o. on T ensure thaf|6,)l, = A < o0 aan. as, so infcrdyt(r) = A7 >
0 aan. as. The triangle inequality gives

n
|[E(M(Z,0% 7)) < [n"1 > m(Z;,0,,7)
i=1

+ n_l 2 m(zi’émT) - E(m(z’én77))
i=1
+ |E(M(Z,6,,7)) — E(M(Z,6%,7)|. (60)
Giventhe continuity oE[m(Z,-,-)]on® X T, if 6,— 6* as., then we have that
for anye > O,
SupE(M(Z,6,,7)) — E(M(Z,6%7))| < e aan., as. (61)
TET

_ Assumptions 4(a) and 1 deliver a SULLN fon(z;,6,7)}. By Assumption 2,
0, — 0" a.s., which then implies

sup
TET

n

n~t> m(z;,6,,7) — E(m(Zi,én,r))‘ <e aan,as (62)
i=1

Consequently

|E(M(Z,60%,7))| =

n
nt> m(z,6,7)| + 2 aan.,as, (63)
i=1

so that (withr a probability measure for convenience)

nl/2f

As we may take: = §%/4, the test will be consistent whenever

n-t i m(Z;,6,,7)| dv(r) > n¥?2 { f |[E(M(Z,0% 7)) dv(T) — 26].
=1

(64)

6* = f|E(m(Z,6*,T))|V (dr) > 0. (65)

UnderHa, mis such thatE(m(Z,6* 7))| > 0 for somery € T underH,. Be-
causee(m(Z,0% 7)) is continuous irr, there will exist a neighborhood ef of pos-
itive Lebesgue measure for whick(m(Z,6* 7))| > 0. Because’ puts positive
mass in this neighborhood aad > 0 we have a consistent tektnderHz, v is
such thatE(m(Z,0*,7))| > 0 for essentially altr € T, and agairs* > 0.
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When|-| = ||, the measure does not enteilhe conditions given guarantee
that
n A
sup|n~t> m(z;,6,,7)| = supE(m(Z,0%7)| as, (66)
TET i=1 T7€T

so|n~Y23", M, /é.|.. diverges almost surely undet,, henceH;.
(b) Immediategiven (a) and the conditions an u

Proof of Corollary 58. It suffices to verify that Regularity Conditions 1-5
imply Assumptions 1-7Clearly Regularity Condition 1 implies. Regularity
Conditions 1-3 suffice for'’Asee White 1981) Regularity Condition 2 ensures
3(a) Boundedness of; andT combined with continuity o6 imply G(X/T) is
boundedTogether with 1 and,2hese imply 3(h)Boundedness d&(X/ T) plus
Regularity Conditions 1 and 3 imply 4(a) and 4.(Aysumption 6 is ensured for
A, given Regularity Conditions 1 and 2 (which deliver a ULLN) and Regularity
Conditions 12, and 3 which ensureﬁln — 6" w.p. 1. Assumption 7 holds given
Regularity Conditions 2 and 5 by Example&5ThatHy, andH4 hold follows by
choice ofmand Corollary 3. |

NOTES

1. An analytic function is one locally equal to its Taylor expansion at each point of its dpmain
such as exp(), the logistic the hyperbolic tangenthe sine and cosin@olynomials etc

2. Note thatH s contains transformations of affine combinationsXofwhereasH ., contains
transformations of linear combination ¥f so thatH g with G = exp contains all scalar multiples of
the functions irf{ex,. This has no substantive impact on the class of functions considEnedrem
2.3 derives from the study of denseness properties @{spa class of functions known in the study
of artificial neural networks as the output functions of single hidden layer feedforward networks with
activation functiorG.

3. See (12)—(16) eseq

4. Eubank and Hart (1993) note that several tests in the literature are “mostly of thelferm
H(é)/62 whereH(-) is a quadratic functional that vanishes when its argument is"rinllother
words anL? norm

5. Recallthat we have in effect an assumption that all random variables have bounded.apport
argued in the text following Theorem13that this loses no generality

6. Zheng (1994) provided an information criteria based test for arbitrary misspecification

7. In this section we will discuss “moments” and “expectatiéfi® change to signed measuyes
replace “moments” with “integrals” and “expectation” with “integral undet
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