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Abstract

We consider a gradual-impulse control problem of continuous-time Markov decision
processes, where the system performance is measured by the expectation of the exponen-
tial utility of the total cost. We show, under natural conditions on the system primitives,
the existence of a deterministic stationary optimal policy out of a more general class of
policies that allow multiple simultaneous impulses, randomized selection of impulses
with random effects, and accumulation of jumps. After characterizing the value func-
tion using the optimality equation, we reduce the gradual-impulse control problem to
an equivalent simple discrete-time Markov decision process, whose action space is the
union of the sets of gradual and impulsive actions.
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1. Introduction

This paper considers a gradual-impulse control problem for continuous-time Markov
decision processes (CTMDPs) with the performance to be minimized being the expected
exponential utility of the total cost. In this model, the decision-maker can control the pro-
cess gradually via its local characteristics (transition rate), and also has the option of affecting
impulsively the state of the process. The system dynamics is depicted in Figure 1 below.

There is no lack of situations where an action can affect the state of the controlled process
instantaneously. For example, in a susceptible–infected–recovered (SIR) epidemic model, the
controller elaborates the immunization policy, affecting the transition rate from the susceptible
to the infected population, as well as the isolation policy, which instantaneously reduces the
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FIGURE 1: Illustration of the system dynamics in the gradual-impulse control problem, and how the
policy acts on the system dynamics. Here X = [0,∞). The second coordinate indicates the impulse
(including the ‘pseudo-impulse’ �) used at that state, which is recorded in the first coordinate. At the
initial time t = θ1 ≡ 0, three impulses are applied in turn. The first jump in the indicated sample path of
the marked point process {(Tn, Yn)}∞n=1 takes place at t2 = θ2. It is triggered by a natural jump because
x′

0 �= x3. Along the displayed sample path, the system state remains at x3 before the first jump of the
marked point process. The second jump of the marked point process is triggered by a planned (or let us say
active) impulse, because x′′

0 = x′
0. Infinitely many impulses are applied at t3 = t2 + θ3, so that the process

is ‘killed’ after the infinitely many impulses at t3; i.e., ω= (y0, 0, y1, θ2, y2, θ3, y3,∞, �,∞, �, . . .).
Note also that, under the policy u = {un}∞n=0 in Definition 3, y1 ∈ Y3 is a realization from the distribu-
tion u0( · |x0), x̄(y1) = x3; y2 ∈ Y0 is a realization from the distribution �0

1( · |h1, θ2, x′
0), as the jump at

t2 is triggered by a natural jump, x̄(y2) = x′
0; and y3 ∈ (X × AI)∞ is a realization from the distribution

�1
2( · |h2), as the jump at t3 is not triggered by a natural jump, x̄(y3) =�.

number of infected individuals. Let us formulate another simple example, which contains
some features motivating the present paper.

Example 1. A rat (or intruder) may invade the kitchen. For each time unit it remains alive in the
kitchen, a constant cost of l ≥ 0 is incurred. The rat spends an exponentially distributed amount
of time with mean 1

μ
> 0 in the kitchen, and then goes outside and settles down in another house

(and thus never returns). When the rat is in the kitchen, the housekeeper (defender) can decide
to shoot at it, with a chance p ∈ (0, 1) of hitting and killing the rat. If the rat dodges, it remains
in the kitchen. Each bullet costs C> 0. Assume that the successive shootings are independent.

Let us mention some features in the above example. ‘Shoot’ is an impulse. The location of the
rat is the state. The effect of an impulse on the post-impulse state is random, as the shooting
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may be dodged. Each time unit the rat is present in the kitchen is costly. Suppose the cost of
impulse is relatively low. It can happen that after one impulse, if the rat is still alive and in
the kitchen, then it is reasonable to immediately shoot again. This means one should allow
multiple impulses at a single time moment in this problem. We will return to this problem in
Example 2 below, which demonstrates the situations in which applying only one impulse is
insufficient for optimality.

Most previous works on gradual-impulse control do not allow multiple simultaneous
impulses at a single time moment; see [3, 4, 6, 14, 17, 18, 21]. Extra conditions are imposed in
these works to guarantee that there is no need to apply more than one impulse at a single time
moment. Example 1 described a situation that does not satisfy those conditions. There is con-
venience if only one impulse is allowed at a given time moment, because at each time moment,
there is only one state, so that one can construct the process under control in the (original)
state space of the gradual-impulse control problem. When there is only gradual control, it is
convenient to construct the CTMDP using a marked point process with the mark space being
the same as the state space of the original control problem. If multiple impulses were applied
in a sequence at a single time moment, then there would be multiple states associated with
the single time moment. If one wishes to construct the problem using a marked point process,
then the mark space must be enlarged, so that a sequence of impulses applied at the single
time moment and the post-impulse states are merged as a single ‘mark’, which will be called
an intervention. Necessarily this leads to a more complicated marked point process with each
mark corresponding to a sample path of a discrete-time Markov decision process (DTMDP).
This idea was employed and implemented in [7].

Another way of constructing rigorously a gradual-impulse control problem of CTMDPs
admitting multiple simultaneous impulses comes from [24]. The idea is to keep the original
state space, but to enlarge the time t ∈ [0,∞) to (n, t), with the first coordinate, roughly speak-
ing, counting the number of impulses applied at the time t. Consequently, several concepts
about stochastic processes need to be extended.

In the present work, we follow the construction of [7] but with more general control poli-
cies. Compared to the previous literature on impulse or gradual-impulse control problems of
CTMDPs, to the best of our knowledge, we consider the most general setup: the policy allows
relaxed gradual controls and randomized impulsive controls with randomized consequences,
multiple simultaneous impulses are allowed, and accumulation of jumps of the process is
not excluded. We study the gradual-impulse control problem of CTMDPs with the system
performance measure being the expectation of the exponential utility of the total cost to be
minimized. For risk-sensitive CTMDPs with gradual control only and total or average cost
criteria, see e.g. [11, 12, 16, 19, 22, 25]. In close relation to the present paper, the paper [1]
recently considered the risk-sensitive optimal stopping problem of a continuous-time Markov
chain, which is a special impulse control problem but with a more general utility function.

The main optimality results of this paper lie in the following. We characterize the value
function of the gradual-impulse control problem for CTMDPs in terms of the optimality
equation, and show the existence of deterministic stationary optimal policies, under quite
general and natural conditions compared to the literature. For example, the growth on the
gradual cost rates and impulse cost functions, as well as the transition rate, can be quite
general. In comparison, only bounded transition and cost rates were allowed in [7], which
deals with a discounted problem with linear utility. The boundedness conditions guarantee
that the Dynkin formula is applicable to the functions of interest in [7], which is important for
the argument therein.
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The method of investigation in the present paper is different from that of [7], but is closer
to that of [25], which studies a similar problem for CTMDPs but with gradual control only.
Although both the present paper and [25] follow the same idea of reducing the original problem
to a DTMDP, the implementation for the gradual-impulse control problem is more involved.
In particular, the connection between a strategy in the induced DTMDP and a policy in the
gradual-impulse control problem, which is at the core of the justification of the reduction,
becomes more delicate; see Subsection 4.2 below.

In the induced DTMDP, an action is a triplet, consisting of the time until the next time
an impulse is applied (if no natural jump has occurred by then), the next impulse itself, and
the decision rule for the selection of gradual controls. Apart from having a more complicated
action space than the original problem, the induced DTMDP model is not so convenient. For
example, it is not a semicontinuous model even if the system primitives of the gradual-impulse
control problem satisfy the compactness–continuity conditions. Consequently, the existence of
an optimal policy does not follow automatically from the reduction to this DTMDP. In this
connection, we mention that Lemma 5.12 of [25] is inaccurate unless further conditions are
imposed therein. Here we incidentally show that the optimality results in [25] remain correct
in spite of that error. Accordingly, the second step in the investigation is to further reduce the
DTMDP model to yet another one, which is a semicontinuous model, and with a simple action
space (the union of the set of gradual actions and impulses). This second reduction is done
based on the investigation of the optimality equation of the DTMDP obtained from the first
reduction.

The rest of the paper is organized as follows. We present the rigorous construction of the
controlled process and problem statement in Section 2. Section 3 consists of the main optimal-
ity results, whose proof is postponed to Section 5. The argument is based on the connection
with a DTMDP model, which is introduced in Section 4. The paper is finished with a conclu-
sion in Section 6. To improve readability, we summarize the relevant notions and facts about
DTMDPs in the appendix.

Notation and conventions. In what follows, B(X) is the Borel σ -algebra of the topological
space X, I stands for the indicator function, and δx(·) is the Dirac measure concentrated on the
singleton {x}, assumed to be measurable. A measure is σ -additive and [0,∞]-valued. Here
and below, unless stated otherwise, the term ‘measurability’ is always understood in the Borel
sense. Throughout this paper, we adopt the conventions 0

0 := 0, 0 · ∞ := 0, 1
0 := +∞, ∞ −

∞ := ∞. For each function f on X, we let ||f || := supx∈X |f (x)|.

2. Model description and problem statement

2.1. System primitives of the gradual-impulse control problem

We describe the primitives of the model as follows. The state space is X, the space of gradual
controls is AG, and the space of impulsive controls is AI . It is assumed that X, AG, and AI are
all Borel spaces, endowed with their Borel σ -algebras B(X), B(AG), and B(AI), respectively.
The transition rate, on which the gradual control acts, is given by q(dy|x, a), which is a signed
kernel from X × AG, endowed with its Borel σ -algebra, to B(X), satisfying the following
conditions:

q(�|x, a) ∈ [0,∞) for each � ∈B(X), x /∈ �;

q(X|x, a) = 0, x ∈ X, a ∈ AG;

q̄x := sup
a∈AG

qx(a)<∞, x ∈ X,
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where qx(a) := −q({x}|x, a) for each (x, a) ∈ X × AG. For notational convenience, we intro-
duce q̃(dy|x, a) := q(dy \ {x}|x, a), for every x ∈ X, a ∈ AG. If the current state is x ∈ X, and an
impulsive control b ∈ AI is applied, then the state immediately following this impulse obeys
the distribution given by Q(dy|x, b), which is a stochastic kernel from X × AI to B(X). Finally,
given the current state x ∈ X, the cost rate of applying a gradual control a ∈ AG is cG(x, a),
and the cost of applying an impulsive control b ∈ AI is cI(x, b, y), where cG and cI are [0,∞)-
valued measurable functions on X × AG and X × AI × X, respectively. Throughout this paper,
we assume that AG and AI are compact Borel spaces. Without loss of generality we may regard
AG and AI as two disjoint compact subsets of a Borel space Ã = AG ∪ AI . Furthermore, we
assume that

sup
a∈AG

cG(x, a)<∞ ∀x ∈ X. (1)

The system dynamics in the gradual-impulse control problem of interest can be described as
follows. In the absence of impulses, the system is just a controlled Markov pure jump process
in the state space X, where the (gradual) control, selected from AG, acts on the local charac-
teristics of the process, leading to natural jumps. This is conveniently described as a marked
point process, which consists of the pairs of subsequent jump moments and the post-jump
states (marks). The mark space is thus X.

In the gradual-impulse control problem, we will again describe the system using a marked
point process. However, when the decision-maker is allowed to apply a finite or countably
infinite sequence of impulses from AI at a single time moment, with each impulse resulting in
a post-impulse state, there will be a sequence of states in X at a single time moment. Moreover,
the order of the impulses and their resulting states are also relevant. Therefore, the marked
point process we use now is in an enlarged mark space. More precisely, each mark contains
a sequence of impulses applied at the same time moment, the state before the impulses are
applied, and all the states resulting from these impulses. Each jump moment is triggered either
by an impulse (or a sequence of impulses), or by a natural jump. A mark in this marked point
process is referred to as an intervention. This term is naturally understandable when the mark
consists of impulses. That said, we will also allow ‘interventions’ that do not contain any
impulses, or that consist of an empty sequence of impulses. This occurs when the decision-
maker chooses not to apply any impulse immediately after a natural jump. In the rest of this
section, following the method of [7], we will elaborate on this idea and describe rigorously the
continuous-time gradual-impulse control problem that we are studying. We begin by stating
the precise definition of an intervention in the next subsection.

2.2. Definition and interpretation of an intervention

At the beginning of an intervention, the decision-maker chooses whether to apply an
impulse, and which impulse to apply. If the current state is x ∈ X, after an impulse b ∈ AI is cho-
sen, the new state, say y ∈ X, is instantaneously realized, following the distribution Q(dy|x, b).
Then, based on x, b, y, the decision-maker chooses the next impulse, if any at all, and so on.
To be consistent, a cemetery point � /∈ AI ∪ X is artificially fixed, which is chosen when the
decision-maker decides not to apply any more impulses at the current instant; this leads to the
post-impulse state, also denoted by �, which is absorbing, i.e., Q(�|�,�) ≡ 1. Therefore,
an intervention is itself a sequential decision process. More precisely, an intervention can be
regarded as a trajectory of the following DTMDP, which we refer to as the ‘intervention’
DTMDP model, to distinguish it from several other DTMDP models to appear subsequently.

Definition 1. The intervention DTMDP model is specified by the tuple {X�,AI
�,Q}, which

is defined in terms of the primitives of the gradual-impulse control problem given in
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Subsection 2.1, where the state space is X� := X ∪ {�} with � /∈ X ∪ AI being a ceme-
tery point, the action space is AI

�
:= AI ∪ {�}, and the one-step transition probability from

X� × AI
� to B(X�) is Q(dy|x, b). Here we have accepted that Q({�}|x, b) := 1 if x =� or

b =�.

Let the initial distribution in the intervention DTMDP be always concentrated on X. Then
its canonical sample space is Y := (⋃∞

k=0 Yk
)∪ (X × AI)∞, where, for each ∞> k ≥ 1,

Yk := (X × AI)k × (X × {�}) × ({�} × {�})∞,
and Y0 := (X × {�}) × ({�} × {�})∞. Here, if y ∈ Yk, ∞> k ≥ 0, then there are k impulses
applied in the intervention y. Similarly, if y ∈ (X × AI)∞, then there are infinitely many
impulses applied in the intervention y.

Now we give the following definition.

Definition 2. An intervention is an element of Y.
In other words, Y as defined above is the space of all interventions. It will be the mark

space of the marked point process {(Tn, Yn)} introduced in the next subsection.

With the notation introduced above, we now reiterate, more rigorously than in the beginning
of this subsection, the interpretation of an intervention. Given the current state x ∈ X, if the
controller decides to use �, then this means that no more impulse is used at this instant,
and the intervention DTMDP is absorbed at � in the next step; if the controller decides to
use an impulse b ∈ AI , then the post-impulse state follows the distribution Q(dy|x, b). At the
next post-impulse state y, if y =�, then the only decision is �; if y �=�, then the controller
decides either to use no impulse, leading to the next post-impulse state �, or to use impulse
b’, leading to the next post-impulse state, which follows the distribution given by Q( · |y, b′),
and so on. In other words, an intervention consists of a state and a finite or countable sequence
of pairs of impulsive actions and the associated post-impulse states. In particular, no impulse
is applied in an intervention if the intervention belongs to Y0; see Figure 1 and its caption for
an example. Let

Y∗ := Y \ Y0 =
( ∞⋃

k=1

Yk

)
∪ (X × AI)∞

be the set of interventions where some impulses are applied.
In an intervention, locally, the selection of impulses (including the ‘pseudo-impulse’ �)

from AI
� is governed by a strategy in the intervention DTMDP model. This adverb ‘locally’ is

understood in comparison with the definition of a policy for the gradual-impulse control prob-
lem, as given in Definition 3 below, which governs the selection of impulsive controls as well
as gradual controls, and is thus ‘global’. Let � be the set of (possibly randomized and history-
dependent) strategies σ in the intervention DTMDP. We refer the reader to the appendix for
standard terminology related to DTMDPs. The way that a strategy in the intervention DTMDP
model is incorporated into a policy in Definition 3 below is through its strategic measure.
Let βσ ( · |x) denote the corresponding strategic measure of a strategy σ of the intervention
DTMDP, given the initial state x ∈ X. By the Ionescu-Tulcea theorem (see e.g. Proposition
C.10 in [13]), the mapping x ∈ X → βσ ( · |x) is measurable. Let PY be the collection of all
such stochastic kernels generated by some strategy σ ∈�, and PY(x) := {βσ ( · |x):σ ∈�} for
each state x ∈ X. Let

PY∗
:= {β( · | · ) ∈PY : β(Y∗|x) = 1 ∀ x ∈ X},
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and for each x ∈ X,

PY∗
(x) := {β( · |x):β( · | · ) ∈PY, β(Y∗|x) = 1}.

2.3 Construction of the controlled process

Let us now describe the promised marked point process {(Tn, Yn)}∞n=1 for the system dynam-
ics of the gradual-impulse control problem, where the mark space is the space of interventions.
Then the continuous-time process {ξt}t≥0 under control is defined based on this marked point
process.

Let Y� := Y ∪ {�},
�0 := Y × ({0} × Y) × ({∞} × {�})∞,

and
�n := Y × ({0} × Y) × ((0,∞) × Y)n × ({∞} × {�})∞

for all n = 1, 2, . . . . The canonical space � is defined as

� :=
( ∞⋃

n=0

�n

)
∪ (Y × ((0,∞) × Y)∞

)

and is endowed with its Borel σ -algebra, denoted by F . We will use the following generic
notation for a point in �: ω= (y0, θ1, y1, θ2, y2, . . . ). Below, unless stated otherwise, the
notation x0 ∈ X will indicate the initial state of the gradual-impulse control problem. Then
we put

y0 := (x0, �, �, . . .), θ1 ≡ 0. (2)

The sequence {θn}∞n=1 represents the sojourn times between consecutive interventions. Here
θ1 = 0 corresponds to the fact that we allow the possibility of applying impulsive control at the
initial time moment; cf. (5) below.

For each n = 0, 1, . . . , let

hn := (y0, θ1, y1, θ2, y2, . . . θn, yn) = (y0, 0, y1, θ2, y2, . . . θn, yn),

where the second equality holds because θ1 ≡ 0; see (2). The collection of all such partial
histories hn is denoted by Hn. Let us introduce the coordinate mappings

Yn(ω) = yn ∀ n ≥ 0,

�n(ω) = θn ∀ n ≥ 1.

The sequence {Tn}∞n=1 of [0,∞]-valued mappings is defined by

Tn(ω) :=
n∑

i=1

�i(ω) =
n∑

i=1

θi

and
T∞(ω) := lim

n→∞ Tn(ω)
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for all ω ∈�. Let Hn := (Y0, �1, Y1, . . . , �n, Yn). Finally, we define the controlled process{
ξt
}

t∈[0,∞) by

ξt(ω) =
{

Yn(ω) if Tn ≤ t< Tn+1 for n ≥ 1,
� if T∞ ≤ t.

.

It is convenient to introduce the random measure μ of the marked point process
{(Tn, Yn)}∞n=1 on (0,∞) × Y:

μ(dt × dy) =
∑
n≥2

I{Tn<∞}δ(Tn,Yn)(dt × dy).

Let
Ft := σ {H1} ∨ σ {μ((0, s] × B) : s ≤ t, B ∈B(Y)}

for t ∈ [0,∞).
We will use the following notation in the next definition. For each intervention

y = (x0, b0, x1, b1, . . .) ∈ Y, define x̄(y) := xk if ∞> k = 0, 1, . . . is the unique integer such
that y ∈ Yk (if k ≥ 1, then x̄(y) is the state after the last impulse in the intervention y); if such an
integer k does not exist, then y ∈ (X × AI)∞ and x̄(y) :=�. The previous equality corresponds
to the fact that we kill the process after an infinite number of impulses are applied at a sin-
gle time moment. An example of a trajectory of the system dynamics in the gradual-impulse
control problem is displayed in Figure 1.

Definition 3. A policy is a sequence u = {un}∞n=0 such that u0 ∈PY and, for each n = 1, 2, . . . ,
un = (

n, �n, �
0
n, �

1
n

)
, where n is a stochastic kernel on (0,∞] given Hn such that

n({∞}|hn) = 1 if yn ∈ (X × AI)∞; �n is a stochastic kernel on AG given Hn × (0,∞); �0
n

is a stochastic kernel on Y given Hn × (0,∞) × X satisfying

�0
n( · |hn, t, x) ∈PY(x)

for each hn ∈ Hn, x ∈ X, and t ∈ (0,∞); and �1
n is a stochastic kernel on Y given Hn satisfying

�1
n( · |hn) ∈PY∗

(x̄(yn))

for each hn ∈ Hn. (The above conditions apply when yn �=�; otherwise, all the values of n,
�n, �0

n , and �1
n are immaterial and may be put arbitrarily.)

The set of policies is denoted by U .
Let us provide an interpretation of how a policy u acts on the system dynamics. Roughly

speaking, an intervention is over as soon as the (possibly empty) sequence of simultaneous
impulses is over. Given that the nth intervention is over, the kerneln specifies the conditional
distribution of the planned time until the next impulse (or next sequence of impulses). The
(conditional) distribution of the time until the next natural jump (if there are no interventions
before it) is the non-stationary exponential distribution with rate

∫
AG qx̄(Yn)(a)�n(da|Hn, t).

Below, we put q�(a) := 0 for each a ∈ AG. In other words, �n is the (decision rule of) relaxed
gradual control. Given that the nth intervention is over, the next intervention is triggered by
either the next planned impulse or the next natural jump; in the former case, the new inter-
vention has the distribution given by �1

n , and in the latter case the new intervention has the
distribution given by �0

n . This interpretation will be seen to be consistent with (3) and (4)
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below, where one can see how a policy u acts on the conditional law of the marked point
process {(Tn, Yn)}∞n=1. See also the caption of Figure 1.

Suppose a policy u = {un}∞n=0 is fixed. Let us now present the conditional law of the
marked point process {(Tn, Yn)}∞n=1 under the policy u, which determines the underlying
probability measure P

u
x0

on (�,F), where x0 ∈ X is the fixed initial state of the system
dynamics. For brevity, we introduce the following notation for each n ≥ 1, � ∈B(X), and
hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn:

λu
n(�|hn, t): =

∫
AG

q̃(�|x(yn), a)�n(da|hn, t), �u
n(�|hn, t): =

∫ t

0
λu

n(�|hn, s)ds.

Now, for each n ≥ 1, we introduce the stochastic kernel Gu
n on (0,∞] × Y� given Hn as

follows. For each hn = (y0, θ1, y1, . . . , θn, yn) ∈ Hn,

Gu
n({+∞} × {�}|hn) := δyn ({�}) + δyn(Y)e−�u

n(X|hn,+∞)n({+∞}|hn), (3)

and

Gu
n(dt × dy|hn) := δyn(Y)

{
�1

n(dy|hn)e−�u
n(X|hn,t)n(dt|hn)

+
∫

X
n([t,∞]|hn)�0

n(dy|hn, t, x)λu
n(dx|hn, t)e−�u

n(X|hn,t)dt

}
(4)

on (0,∞) × Y. For each fixed initial state x0 ∈ X, by the Ionescu-Tulcea theorem (see e.g.
Proposition C.10 in [13]), there exists a probability P

u
x0

on (�,F) such that the restriction of
P

u
x0

to (�,F0) is given by

P
u
x0

(({y0} × {0} × �× ((0,∞] × Y�)∞
)∩�)=u0(�|x0) (5)

for each � ∈B(Y); and for each n ≥ 1, under Pu
x0

, the conditional distribution of (Yn+1, �n+1)
given FTn := σ {Hn} is determined by Gu

n( · |Hn), while the conditional survival function of
�n+1 given FTn under Pu

x0
is given by Gu

n([t,+∞] × Y�|Hn).
The cost associated with an intervention y = (x0, b0, x1, b1, . . . ) ∈ Y is given by CI(y) :=∑∞
k=0 cI(xk, bk, xk+1). Here, recall that an intervention consists of the current state, the

sequence of impulses applied in turn at the same time moment, and the associated post-impulse
states; and each impulse b applied at state x results in a cost cI(x, b, z) if it leads to the post-
impulse state z. (We accept that cI(x, �, �) := 0 for all x ∈ X�.) With this notation, we now
introduce the performance measure considered in this paper:

V(x, u):=E
u
x

[
e
∑∞

n=1

(
CI (Yn)+∫ Tn+1

Tn

∫
AG cG(x̄(ξs),a)�n(da|Hn,s−Tn)ds

)]

for each x ∈ X and policy u ∈ U . Here we recall that T1 =�1 ≡ 0; see (2). To illustrate more
explicitly how the policy acts on the impulses, consider the example of only one intervention
and null gradual cost cG(x, a) ≡ 0. Then we may write

E
u
x

[
eCI (Y1)

]
=
∫

X×AI×X×...
u0(dx0 × db0 × dx1 × db1 × . . . |x)e

∑∞
k=0 cI (xk,bk,xk+1)

=
∫

X×AI×X×...
u0(dy|x)eCI (y).
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More generally, one can compute

E
u
x

[
eCI (Yn+1)

]
=E

u
x

[
E

u
x

[
eCI (Yn+1)|Hn

]]
,

where
E

u
x

[
eCI (Yn+1)|Hn

]
can be written out as an integral similar to that of the n = 0 case using the conditional laws (3)
and (4).

Let the value function V∗ be denoted by V∗(x) := infu∈U V(x, u) for each x ∈ X. A policy
u∗ satisfying V(x, u∗) = V∗(x) for all x ∈ X is called optimal for the following gradual-impulse
control problem:

Minimize over u ∈ U : V(x, u). (6)

In this paper, we will present conditions on the system primitives that guarantee the existence
of an optimal policy in a simple form as defined next.

Definition 4. A policy u is called deterministic stationary if there exist some measurable map-
pings (ϕ, ψ, f ) on X, where ϕ(x) ∈ {0,∞} for each x ∈ X, and ψ and f are AI-valued and
AG-valued, such that n({∞}|hn) = 1,

�n(da|hn, t) = δf (x̄(yn))(da)

for all t ≥ 0, and u0( · |x) = �0
n( · |hn, t, x) = βπ ( · |x) for some deterministic stationary strategy

π in the intervention DTMDP model defined by

π ({�}|x0, b0, x1, b1, . . . , xn) = I{ϕ(xn) = ∞}
and

π (db|x0, b0, x1, b1, . . . , xn) = I{ϕ(xn) = 0}δψ(xn)(db).

In the above definition, �1
n was left arbitrary, because, under such a deterministic stationary

policy, a new intervention taking place at some t ∈ (0,∞) is always triggered by a natural
jump.

3. Optimality results

In this section, we present the main optimality results in this paper. In a nutshell, under
natural conditions on the system primitives of the gradual-impulse control problem (6), we
show that it can be solved via the problem (21) for a simple DTMDP model, which we refer to
as the tilde DTMDP model. In this way, we show that the gradual-impulse control problem (6)
admits a deterministic stationary optimal policy.

In order to formulate the tilde DTMDP model, we impose the following condition.

Condition 1. There exists a [1,∞)-valued continuous function w on X such that cG(x, a) +
qx(a) + 1 ≤ w(x) for each (x, a) ∈ X × AG.

If cG is a continuous function, then the above condition is a consequence of Condition 2 below
and the Berge theorem; see Proposition 7.32 of [2]. Several of the statements below do not need
the bounding function w in Condition 1 to be continuous. In this connection, we also mention
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that a Borel measurable function w satisfying the inequality in Condition 1 always exists; see
Lemma 1 of [9] and recall (1).

Recall that Ã = AI ∪ AG is the disjoint union of AG and AI . We are now in position to
define the tilde DTMDP model in terms of the system primitives of the gradual-impulse control
problem (6).

Definition 5. The tilde DTMDP model is specified by {X, Ã, Q̃, l̃}, where X and Ã are its state
and action spaces, and its transition probability Q̃ on X given X × Ã and cost function l̃ are
defined by

Q̃(dy|x, a) := q(�|x, a)

w(x)
+ δx(dy), l̃(x, a, y) := ln

w(x)

w(x) − cG(x, a)

for all a ∈ AG, and

Q̃(dy|x, b) := Q(dy|x, b), l̃(x, b, y) := cI(x, b, y)

for all b ∈ AI .

For the solvability of the problem (21) for the tilde DTMDP model, we impose the following
compactness–continuity condition.

Condition 2. The functions cI and cG are lower semicontinuous on X × AI × X and X ×
AG, respectively, and for each bounded continuous function g on X,

∫
X g(y)Q(dy|x, b) and∫

X g(y)q̃(dy|x, a) are continuous in (x, b) ∈ X × AI and (x, a) ∈ X × AG, respectively. (Recall
also that AG and AI are compact.)

Under Conditions 1 and 2, one can easily check that the tilde DTMDP model is semicon-
tinuous, so that the value function W∗ of the problem (21) for the tilde DTMDP model is
lower semicontinuous, and there exists an optimal deterministic stationary strategy for it; see
Proposition 4(e). We collect these observations in the next statement for future reference.

Proposition 1. Suppose Conditions 1 and 2 are satisfied. Then the value function W∗ of the
problem (21) for the tilde DTMDP model is the minimal [1,∞]-valued lower semicontinuous
function satisfying

V(x) = inf
ã∈Ã

{∫
X

el̃(x,ã,y)V(y)Q̃(dy|x, ã)

}
, x ∈ X. (7)

(W∗ is also the minimal [1,∞]-valued lower semicontinuous solution to the optimality
inequality obtained by replacing ‘=’ with ‘≥’ in (7).) A pair of measurable mappings (ψ∗, f ∗)
from X to AI and AG, respectively, is a deterministic stationary optimal strategy for the prob-
lem (21) for the tilde DTMDP model if and only if, for all x ∈ X, there is some x-dependent
ã∗ ∈ Ã such that∫

X
el̃(x,ã∗,y)W∗(y)Q̃(dy|x, ã∗) = inf

ã∈Ã

{∫
X

el̃(x,ã,y)W∗(y)Q̃(dy|x, ã)

}

=
∫

X
el̃(x,ψ∗(x),y)W∗(y)Q̃(dy|x, ψ∗(x))I{ã∗ ∈ AI}

+
∫

X
el̃(x,f ∗(x),y)W∗(y)Q̃(dy|x, f ∗(x))I{ã∗ ∈ AG}. (8)

Such a pair (ψ∗, f ∗) of measurable selectors exists.
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We introduce the notation to be used in the next statement. For each [1,∞]-valued
universally measurable function g on X, define

XG(g) :=
{

x ∈ X : ∞> g(x) = inf
a∈AG

{ ∫
X

g(y)q̃(dy|x, a)

− (qx(a) − cG(x, a))g(x)

}}
(9)

and

XI(g) :=
{

x ∈ X : g(x) = inf
b∈AI

{∫
X

g(y)ecI (x,b,y)Q(dy|x, b)

}}
.

Proposition 4 asserts that, without imposing Condition 2, W∗ is universally measurable, so that
the integrals

∫
X W∗(y)q̃(dy|x, a) and∫

X
W∗(y)ecI (x,b,y)Q(dy|x, b)

are defined.

Theorem 1. Suppose Conditions 1 and 2 are satisfied. Then the following assertions hold.

(a) The value function W∗ of the problem (21) for the tilde DTMDP model coincides
with V∗.

(b) X \ XI(W∗) ⊆ XG(W∗).

(c) There is a deterministic stationary optimal policy for the gradual-impulse control prob-
lem (6), which can be obtained as follows. For each pair (ψ∗, f ∗) of measurable
mappings satisfying (8) (and there exists such a pair by Proposition 1), the determinis-
tic stationary policy (ϕ, ψ∗, f ∗) is optimal, where ϕ(x) = ∞ for all x ∈ X \ XI(W∗) and
ϕ(x) = 0 for all x ∈ XI(W∗).

The proofs of this and the other statements in this section are postponed to Section 5.
According to Theorem 1, roughly speaking, if the current state is in XG(W∗), then it is

optimal not to apply an impulse until the next natural jump; and if the current state is in XI(W∗),
then it is optimal to apply an impulse immediately. Also, Equation (7) is the optimality equation
for the gradual-impulse control problem (6). It can be written out in an equivalent form that
does not involve the function w, which might be more convenient sometimes.

Corollary 1. Suppose Conditions 1 and 2 are satisfied. Then the following assertions hold.

(a) V∗ is the minimal [1,∞]-valued lower semicontinuous function on X satisfying

inf
a∈AG

{∫
X
V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x)

}
≥ 0 (10)

∀ x ∈ X∗(V∗) := {x ∈ X : V∗(x)<∞}
and

V∗(x) ≤ inf
b∈AI

{∫
X

ecI (x,b,y)V∗(y)Q(dy|x, b)

}
, x ∈ X, (11)

where at each x ∈ X, the inequality in either (10) or (11) holds with equality.
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(b) A pair (ψ∗, f ∗) of measurable mappings satisfies (8) if and only if

inf
a∈AG

{∫
X
V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x)

}

=
∫

X
V∗(y)q̃(dy|x, f ∗(x)) − (qx(f ∗(x)) − cG(x, f ∗(x)))V∗(x)

for each x ∈ XG(V∗), and

inf
b∈AI

{∫
X

ecI (x,b,y)V∗(y)Q(dy|x, b)

}
=
∫

X
V∗(y)ecI (x,ψ∗(x),y)Q(dy|x, ψ∗(x))

for each x ∈ X. (According to Theorem 1, (ψ∗, f ∗) gives rise to a deterministic stationary
optimal policy for the gradual-impulse control problem (6).)

To end this section, we present a simple example to demonstrate a situation where it is
natural and necessary to allow multiple impulses at a single time moment.

Example 2. Let us revisit Example 1. The model has a state space {1, 2}, where 1 indicates
that the rat is present in the kitchen, and 2 indicates that the rat is either dead or outside the
house. The space of gradual controls is a singleton and will not be indicated explicitly, and the
space of impulses is AI = {0, 1}, with 1 or 0 standing for shooting or not. So the inequalities
(10) and (11) for the value function V∗ read as follows:

V∗(2) = 1;

μV∗(2) − (μ− l)V∗(1) ≥ 0; V∗(1) ≤ min{eCpV∗(2) + eC(1 − p)V∗(1), V∗(1)}.
Suppose 1 − eC(1 − p)> 0. By Theorem 1 and Corollary 1, if

eCp

1 − eC(1 − p)
>

μ

μ− l
> 0,

then
V∗(1) = μ

μ− l
,

and the optimal deterministic stationary policy is to never shoot at the rat; otherwise,

V∗(1) = eCp

1 − eC(1 − p)
= E

[
eCZ]

with Z following the geometric distribution with success probability p, and the optimal deter-
ministic stationary policy is to keep shooting as soon as the rat is in kitchen, until the rat
is hit.

The proofs of the statements in this section are based on the investigation of an optimal
control problem for another DTMDP model, which will be introduced in the next section.

4. The hat DTMDP model

In this section, we describe a DTMDP problem which will serve the investigation of the
gradual-impulse control problem. To distinguish it from the intervention DTMDP model, we
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shall refer to it as the hat DTMDP model. The system primitives of this DTMDP model are
defined in terms of those of the gradual-impulse control problem. At the end of this sec-
tion we will reveal in greater detail the connections relevant to this paper between the hat
DTMDP problem and the gradual-impulse control problem. For a first impression, roughly
speaking, the state process of the hat DTMDP model comes from the system dynamics of the
gradual-impulse control problem in the following way. The state has two coordinates. Along
the (discrete-time) state process of the hat DTMDP model, the second coordinate records the
system state of the graduate-impulse control problem immediately after a natural jump (of the
marked point process {(Tn, Yn)}∞n=1) or an ‘actual’ impulse (thus the state immediately after
the pseudo-impulse � will not be recorded). The first coordinate records the time elapsed in
the gradual-impulse control problem between two consecutive states as recorded in the second
coordinate.

The hat DTMDP has a more complicated action space than the original gradual-impulse
control problem. To describe the action space of the hat DTMDP model, let us recall some
known and general facts. Let R be the collection of P(AG)-valued measurable mappings
on [0,∞) with any two elements therein being identified if they differ only on a null set
with respect to the Lebesgue measure. Recall that P(AG) stands for the space of probability
measures on (AG,B(AG)). We endow P(AG) with its weak topology (generated by bounded
continuous functions on AG) and the Borel σ -algebra, so that P(AG) is a Borel space; see
Chapter 7 of [2]. It is known (see Lemma 1 of [23]) that the space R, endowed with the
smallest σ -algebra with respect to which the mapping

ρ = (ρt(da)) ∈R→
∫ ∞

0
e−tg(t, ρt)dt

is measurable for each bounded measurable function g on (0,∞) ×P(AG), is a Borel space.
Recall that AI and AG are compact Borel spaces. Then, according to Section 43 of [6], the space
R is a compact metrizable space, endowed with the Young topology, which is the coarsest
topology with respect to which the mapping

ρ = (ρt(da)) ∈R→
∫ ∞

0

∫
AG

g(t, a)ρt(da)dt

is continuous for each function g on (0,∞) × AG satisfying the following properties:

(a) for each t ∈ (0,∞), g(t, ·) is continuous on AG;

(b) for each a ∈ AG, g(·, a) is measurable on (0,∞); and

(c) ∫ ∞

0
sup

a∈AG
|g(t, a)|dt<∞.

Below we shall use, without special reference, the following notation: if μ is a measure
on a Borel space (X,B(X)), then f (μ) := ∫

X f (x)μ(dx) for each measurable function f on
(X,B(X)), provided that the integral is well defined.

4.1. Primitives of the hat DTMDP model
{

X̂, Â, p, l
}

The state space of the hat DTMDP model is X̂ := {(∞, x∞)} ∪ [0,∞) × X, where (∞, x∞)
is an isolated point, and the action space of the DTMDP is Â := [0,∞] × AI ×R. Endowed
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with the product topology, where [0,∞] is compact in the standard topology of the extended
real line, Â is also a compact Borel space. Here, X, AI , and AG are the state, impulse, and
gradual action spaces in the gradual-impulse control problem. The transition probability p
is defined as follows, using the notation introduced prior to this subsection, e.g., qx(ρt) :=∫

AG qx(a)ρt(da) and

cG(x, ρt) :=
∫

AG
cG(x, a)ρt(da).

For each bounded measurable function g on X̂ and action â = (c, b, ρ) ∈ Â,∫
X̂

g(t, y)p(dt × dy|(θ, x), â)

:= I{c = ∞}
{

g(∞, x∞)e− ∫∞
0 qx(ρs)ds +

∫ ∞

0

∫
X

g(t, y)q̃(dy|x, ρt)e
− ∫ t

0 qx(ρs)dsdt

}

+ I{c<∞}
{∫ c

0

∫
X

g(t, y)q̃(dy|x, ρt)e
− ∫ t

0 qx(ρs)dsdt

+e− ∫ c
0 qx(ρs)ds

∫
X

g(c, y)Q(dy|x, b)

}

=
∫ c

0

∫
X

g(t, y)q̃(dy|x, ρt)e
− ∫ t

0 qx(ρs)dsdt + I{c = ∞}g(∞, x∞)e− ∫∞
0 qx(ρs)ds

+ I{c<∞}e− ∫ c
0 qx(ρs)ds

∫
X

g(c, y)Q(dy|x, b)

for each state (θ, x) ∈ [0,∞) × X, and∫
X̂

g(t, y)p(dt × dy|(∞, x∞), â) := g(∞, x∞).

It is known (see e.g. [5, 10]) that for each bounded measurable function g on X̂, the above
expressions are indeed measurable on X̂ × Â, and the same also holds for the cost function l
on X̂ × Â × X̂, defined as follows:

l((θ, x), â, (t, y)) := I{(θ, x) ∈ [0,∞) × X}
{∫ t

0
cG(x, ρs)ds + I{t = c}cI(x, b, y)

}

for each (θ, x), â, (t, y)) ∈ X̂ × Â × X̂, accepting that cI(x, b, x∞) ≡ 0. Recall that the generic
notation â = (c, b, ρ) ∈ Â for an action in this hat DTMDP model has been in use. The pair (c,
b) is the pair of the planned time until the next impulse and the next planned impulse, and ρ is
(the rule of) the relaxed control to be used during the next sojourn time. Figure 2 displays the
realization of the components {(Cn, Bn)}∞n=0 of the action process in the hat DTMDP model
corresponding to the sample path in Figure 1 for the gradual-impulse control problem.

The optimal control problem for the hat DTMDP model reads as follows:

Minimize over σ : Êσ(θ,x)

[
e
∑∞

n=0 l(X̂n,Ân,X̂n+1)
]
=: V((θ, x), σ ), (12)
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FIGURE 2: The realization of the state process in the hat DTMDP model corresponding to the sample
path in the gradual-impulse control problem in Figure 1. The time index is discrete from {0, 1, . . . }. The
realizations of the components {(Cn, Bn)}∞n=0 in the action process {Ân}∞n=0 are indicated above the dashed
lines between consecutive states. For example, (0, b0) next to the state (0, x0) indicates that the decision-
maker applies an impulse b0 immediately, which results in the next state (0, x1). All the components
x0, x1, . . . , x′

0, x′′
1, x′′

2 and b1, b2, b′′
0, b′′

1, b′′
2 are the same as in Figure 1. The only exception is (c3, b3),

which does not appear in Figure 1. Nevertheless, c3 > θ2, because in Figure 1, the first jump in the marked
point process therein at the time moment θ1 + θ2 = θ2 is triggered by a natural jump.

where {X̂n}∞n=0 and {Ân}∞n=0 are the state and action processes, and the minimization problem
is over all strategies σ in the hat DTMDP model. We denote by V∗ the value function of this
optimal control problem, i.e.,

V∗(θ, x) := inf
σ

Ê
σ
x̂

[
e
∑∞

n=0 l(X̂n,Ân,X̂n+1)
]

for each x̂ = (θ, x) ∈ X̂, where the infimum is over all strategies. Clearly, V∗(∞, x∞) = 1. It
will be seen in Lemma 5 that V∗ depends on (θ, x) only through x, and a strategy σ is optimal
if V((0, x), σ ) = V∗(x) for each x ∈ X. Below, when the context is clear, we often consider the
restriction of V∗ on X but still use the same notation.

Let ĥn = ((θ0, x0), (c0, b0, ρ0), (θ1, x1), (c1, b1, ρ1), (θ2, x2), . . . , (θn, xn)) be the generic
notation for an n-history in the hat DTMDP model. A strategy in the hat DTMDP model is
a sequence σ = {σn}∞n=0, where for each n ≥ 0, σn(dâ|ĥn) is a stochastic kernel on Â given

ĥn, which specifies the conditional distribution of the next action (c, b, ρ) given ĥn. In gen-
eral, a strategy in the hat DTMDP model can make use of past decision rules of relaxed
controls, and the selection of the next relaxed control and that of the next planned impulse
time and impulse need not be (conditionally) independent. Therefore, a general strategy in the
hat DTMDP model does not immediately correspond to a policy in the gradual-impulse control
problem described in the previous section. To relate the gradual-impulse control problem (6)
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and the hat DTMDP problem (12) (see Proposition 2 below), we introduce the following class
of strategies in the hat DTMDP model.

Definition 6. A strategy σ in the hat DTMDP model is called typical if under it, given ĥn,
the selection of the next action (c, b) and ρ are conditionally independent, and moreover, the
selection of ρ is deterministic, i.e.,

σn(dc × db × dρ|ĥn) = σ ′
n(dc × db|ĥn)δFn(ĥn)(dρ),

where Fn(ĥn) is measurable in its argument and takes values in R, and σ ′
n(dc × db|ĥn) is a

stochastic kernel on [0,∞] × AI given ĥn.

One can always write σ ′
n(dc × db|ĥn) = ϕn(dc|ĥn)ψn(db|ĥn, c) for some stochastic kernels ϕn

andψn. Intuitively, ϕn defines the (conditional) distribution of the planned time duration till the
next impulse, and ψn(db|ĥn, c) specifies the distribution of the next impulsive action given the
history ĥn and the next impulse moment c, provided that it takes place before the next natural
jump. Therefore, we identify a typical strategy σ = {σn}∞n=0 as {(ϕn, ψn, Fn)}∞n=0. For further
notational brevity, when the stochastic kernels ϕn are identified with underlying measurable
mappings, we will use ϕn for the measurable mappings, and write ϕn(ĥn) instead of ϕn(dc|ĥn).
The same applies to other stochastic kernels such as ψn. The context will exclude any potential
confusion. Finally, in general, we often do not indicate the arguments that do not affect the
values of the mappings in question. For example, if ϕn(ĥn) depends on ĥn only through xn, then
we write ϕn(dc|ĥn) as ϕn(dc|xn).

4.2 Relation between gradual-impulse control and hat DTMDP problems

Each policy u as introduced in Definition 1 induces a strategy {(ϕn, ψn, Fn)}∞n=0 in the hat
DTMDP model as follows, where we need only consider xn ∈ X, as the definition of the strate-
gies at xn = x∞ is immaterial and can be arbitrary. For each m ≥ 1, and hm ∈ Hm, there exists a
strategy

π�
1
m,hm = {π�1

m,hm
n }∞n=0

in the intervention DTMDP model such that

�1
m(dy|hm) = βπ

�1
m,hm

(dy|x̄(ym)).

Similarly, for each x ∈ X, t> 0, there exists a strategy

π�
0
m,hm,t,x = {π�0

m,hm,t,x
n }∞n=0

in the intervention DTMDP model such that

�0
m(dy|hm, t, x) = βπ

�0
m,hm,t,x

(dy|x).

Finally, there is a strategy
πu0 = {(πu0

n )}∞n=0

in the intervention DTMDP model satisfying

u0(dy|x) = βπ
u0 (dy|x)

for each x ∈ X.
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Consider the case n = 0. Here we define

ϕ0({0}|θ, x) := 1 − π
u0
0 ({�}|x);

ϕ0(dc|θ, x) := π
u0
0 ({�}|x)1(dc|(x, �, �, . . .), 0, (x, �, �, . . .)) on (0,∞];

ψ0(db|θ, x, c) := π
u0
0 (db|x)

1 − π
u0
0 ({�}|x)

I{c = 0}

+ I{c> 0} π
�1

1 ,((x,�,...),0,(x,�,...))
0 (db|x)

1 − π
�1

1 ,((x,�,...),0,(x,�,...))
0 ({�}|x)

= π
u0
0 (db|x)

1 − π
u0
0 ({�}|x)

I{c = 0} + I{c> 0}π�1
1 ,((x,�,...),0,(x,�,...))

0 (db|x);

and F0(θ, x)t(da) :=�1(da|(x, �, �, . . .), 0, (x, �, �, . . .), t), where the second equality in
the definition of ψ0(db|θ, x, c) holds because

π
�1

1 ,((x,�,...),0,(x,�,...))
0 ({�}|x) = 0,

which follows from the requirement that

�1
n( · |hn) ∈PY∗

(x̄(yn))

for all n ≥ 1 in Definition 3. Also concerning the definition of ψ0(db|θ, x, c), note that if the
denominator 1 − π

u0
0 ({�}|x) equals 0, we put

π
u0
0 (db|x)

1 − π
u0
0 ({�}|x)

as an arbitrary stochastic kernel. The reason is that in the expression

π
u0
0 (db|x)

1 − π
u0
0 ({�}|x)

I{c = 0},

equality 1 − π
u0
0 ({�}|x) = 0 would indicate that the probability of selecting an instantaneous

impulse is zero, and so I{c = 0} = 0 almost surely. The same explanation applies to the defini-
tions of ψn(db|ĥn, c) below, and will not be repeated there. Note that the right-hand side does
not depend on θ ∈ [0,∞), because the initial time moment is always fixed to be θ = 0.

The intuition behind the above definition of (ϕ0, ψ0, F0) is as follows. Recall that if the
initial system state is x ∈ X, then the intervention y1 ∈ Y at the initial time in the gradual-
impulse control problem is a realization from the distribution

u0( · |x) = βπ
u0 ( · |x),

which is the strategic measure of some strategy πu0 = {πu0
n }∞n=0 in the intervention DTMDP

model. Then π
u0
0 ({�}|x) is the probability that no impulse is applied at the initial time

0 (given the initial system state x) in the gradual-impulse control problem. Consequently,
1 − π

u0
0 ({�}|x) is the probability of applying an impulse immediately, i.e., of waiting time
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0 until the next impulse, and thus ϕ0({0}|θ, x). This quantity does not depend on θ , because the
initial time is always 0. Then for a measurable subset �1 ⊆ (0,∞],

π
u0
0 ({�}|x)1(�1|(x, �, �, . . .), 0, (x, �, �, . . .))

= P(no impulse at initial time 0 given initial system state x)

× P(time to wait until next impulse is in �1 given no impulse is immediately

applied at the initial time with the initial state x),

which is equal to

P(no immediate impulse, and the time duration until the next planned

impulse is in �) = P(the time duration until the next planned impulse is in �),

and thus ϕ0(�|θ, x), where the equality follows because � ⊆ (0,∞]. (Recall that a planned
impulse takes place if no natural jump occurs during the time leading up to it.) Finally, as for
ψ0(db|θ, x, c), if c = 0 and �2 ∈B(AI), then

π
u0
0 (�2|x)

1 − π
u0
0 ({�}|x)

= P(an immediate impulse from �2 is applied)

P(an immediate impulse is applied)

= P(an impulse is applied immediately from �2

given that an impulse is applied after time duration 0),

which is thus ψ0(�2|θ, x, 0). One can understand ψ0(db|θ, x, c) when c> 0 in the same
manner. Very similar intuition guides the definition of (ϕn, ψn, Fn) below.

Now consider n ≥ 1. Let ĥn be the n-history in the hat DTMDP model. If {1 ≤ i ≤ n : θi >

0} = ∅, then we define ϕn({0}|ĥn) := 1 − π
u0
n ({�}|x0, b0, . . . , bn−1, xn);

ϕn(dc|ĥn) :=πu0
n ({�}|x0, b0, . . . , bn−1, xn)1(dc|y0, 0, (x1, b1, . . . , xn, �, �, . . .))

on (0,∞];

ψn(db|ĥn, c) := π
u0
n (db|x0, b0, x1, b1, . . . , xn)

1 − π
u0
n ({�}|x0, b0, x1, b1, . . . , xn)

I{c = 0}

+ I{c> 0} π
�1

1 ,(y0,0,(x0,b0,...,xn,�,...))
0 (db|xn)

1 − π
�1

1 ,(y0,0,(x0,b0,...,xn,�,...))
0 ({�}|xn)

= π
u0
n (db|x0, b0, x1, b1, . . . , xn)

1 − π
u0
n ({�}|x0, b0, x1, b1, . . . , xn)

I{c = 0}

+ I{c> 0}π�1
1 ,(y0,0,(x0,b0,...,xn,�,...))

0 (db|xn);

and Fn(ĥn)t(da) :=�1(da|y0, 0, (x0, b0, . . . , xn, �, �, . . .), t). Recall the notation that was
introduced earlier: y0 = (x0, �, �, . . .).

If {1 ≤ i ≤ n : θi > 0} �= ∅, then let m(ĥn) := #{1 ≤ i ≤ n : θi > 0} and l(ĥn) := max{1 ≤ i ≤
n : θi > 0}. When the context is clear, we write m and l instead of m(ĥn) and l(ĥn) for brevity. Let
hm be the m-history in the gradual-impulse control problem contained in ĥn. More precisely, hm
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is defined based on ĥn as follows. Let τ0(ĥn) = 0, and τi(ĥn) := inf{j> τi−1 : θj > 0} for each
i ≥ 1. Note that l = τm. Then

hm = hm(ĥn) = (y0, 0, y1, θτ1 , y2, . . . , θτm−1 , ym),

where y0 = (x0, �, �, . . .);

y1 = (x0, b0, x1, b1, . . . , xτ1−1, �, �, . . .);

if θτ1 = cτ1−1, then

y2 = (xτ1−1, bτ1−1, xτ1 , bτ1 , . . . , xτ2−1, �, �, . . .),

while if θτ1 < cτ1−1, then

y2 = (xτ1 , bτ1 , . . . , xτ2−1, �, �, . . .);

. . . ; if θτm−1 = cτm−1−1, then

ym = (xτm−1−1, . . . , xτm−1, �, �, . . .),

while if θτm−1 < cτm−1−1, then

ym = (xτm−1, . . . , xτm−1, �, �, . . .).

For example, if

ĥ5= ((0, x0), (b0, 0, ρ0), (0, x1), (b1, 3, ρ1), (3, x2), (b2, 0, ρ2), (0, x3),

(b3, 2, ρ3), (1, x4), (b4, 0, ρ4), (0, x5)),

then n = 5, m = 2, l = 4, τ1 = 2, τ2 = 4, and h2 = (y0, 0, y1, 3, y2) with y1 =
(x0, b0, x1, �, . . .) and y2 = (x1, b1, x2, b2, x3, �, . . .). Roughly speaking, the integer
m(ĥn) counts the number of interventions (except y0) contained in the n-history of the hat
DTMDP model.

If 0< θl = cl−1, we define

ϕn({0}|ĥn) :=1 − π
�1

m,hm
n−l+1({�}|xl−1, bl−1, . . . , bn−1, xn);

ϕn(dc|ĥn) :=π�1
m,hm

n−l+1({�}|xl−1, bl−1, . . . , bn−1, xn)m(dc|hm) on (0,∞];

ψn(db|ĥn, c) := π
�1

m,hm
n−l+1(db|xl−1, bl−1, . . . , bn−1, xn)

1 − π
�1

m,hm
n−l+1({�}|xl−1, bl−1, . . . , bn−1, xn)

I{c = 0}

+ I{c> 0} π
�1

m+1,(hm,θl,(xl−1,bl−1,...,xn,�,...))
0 (db|xn)

1 − π
�1

m+1,(hm,θl,(xl−1,bl−1,...,xn,�,...))
0 ({�}|xn)

= π
�1

m,hm
n−l+1(db|xl−1, bl−1, . . . , bn−1, xn)

1 − π
�1

m,hm
n−l+1({�}|xl−1, bl−1, . . . , bn−1, xn)

I{c = 0}

+ I{c> 0}π�
1
m+1,(hm,θl,(xl−1,bl−1,...,xn,�,...))

0 (db|xn);

Fn(ĥn)t(da) :=�m(da|hm, t).
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Finally, if 0< θl < cl−1, then we define

ϕn({0}|ĥn) := 1 − π
�0

m,hm,θl,xl
n−l ({�}|xl, bl, . . . , bn−1, xn);

ϕn(dc|ĥn) := π
�0

m,hm,θl,xl
n−l ({�}|xl, bl, . . . , bn−1, xn)m(dc|hm) on (0,∞];

ψn(db|ĥn, c) := π
�0

m,hm,θl,xl
n−l (db|xl, bl, . . . , bn−1, xn)

1 − π
�0

m,hm,θl,xl
n−l ({�}|xl, bl, . . . , bn−1, xn)

I{c = 0}

+ I{c> 0} π
�1

m+1,(hm,θl,(xl,bl,...,xn,�,...))
0 (db|xn)

1 − π
�1

m+1,(hm,θl,(xl,bl,...,xn,�,...))
0 ({�}|xn)

= π
�0

m,hm,θl,xl
n−l (db|xl, bl, . . . , bn−1, xn)

1 − π
�0

m,hm,θl,xl
n−l ({�}|xl, bl, . . . , bn−1, xn)

I{c = 0}

+ I{c> 0}π�
1
m+1,(hm,θl,(xl,bl,...,xn,�,...))

0 (db|xn);

Fn(ĥn)t(da) :=�m(da|hm, t).

To be specific, we refer to the typical strategy σ = {(ϕn, ψn, Fn)}∞n=0 defined above as the
strategy induced by the policy u. The next statement reveals a connection between a policy u
and its induced strategy σ for the hat DTMDP model.

Proposition 2. For each policy u and the strategy σ = {(ϕn, ψn, Fn)}∞n=0 induced by u,
V(x, u) = V((0, x), σ ), and therefore V∗(x) ≥ V∗(x) for each x ∈ X.

Proof. One can verify that

E
u
x

[
e
∑n

i=1 CI (Yi)+∑n
i=2

∫ �i
0

∫
AG cG(x(Yi−1),a)�i−1(da|Hi−1,s)ds

]

= Ê
σ
(0,x)

[
e
∑τn−1

i=0 cI (Xi,Bi,Xi+1)I{Ci=�i+1}

e
∑n

i=2
∫ �τi−1

0

∫
AG cG(Xτi−1−1,a)Fτi−1−1(Ĥτi−1−1)s(da)ds

]

for each n ≥ 1. Passing to the limit as n → ∞ and applying the monotone convergence theorem
yields the equality in the statement. The last assertion follows automatically from the first
assertion. �
Remark 1. A deterministic stationary policy, say uD, identified by (ϕ, ψ, f ) as in Definition 4
is associated with a strategy σD = (ϕ, ψ, F) in the hat DTMDP model, where F(x)t(da) =
δf (x)(da) for all t ≥ 0, and vice versa. It is evident that V(x, uD) = V(x, σD) for each x ∈ X.
Thus, if the hat DTMDP problem (12) has an optimal strategy in this form σD = (ϕ, ψ, F),
then the previous discussions imply that V∗(x) = V∗(x), and that the deterministic stationary
policy uD associated with σD is optimal for the gradual-impulse control problem (6).
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To end this section, note that Condition 2 does not imply that the hat DTMDP model is
semicontinuous, as defined in the appendix. In fact, the transition probability p, in general,
does not satisfy the weak continuity condition, even under Condition 2. The simplest example
is as follows.

Example 3. Suppose qx(a) ≡ 0, and AG and AI are both singletons. Consider ân = (cn, b, ρ),
where cn → ∞ and cn ∈ [0,∞) for each n ≥ 1, together with the bounded continuous function
on X̂ defined by g(t, x) ≡ 1 for each (t, x) ∈ [0,∞) × X, and g(∞, x∞) = 0. Then∫

X̂
g(t, y)p(dt × dy|(θ, x), ân) =

∫
X

g(cn, y)Q(dy|x, b) = 1

for each n ≥ 1, whereas∫
X̂

g(t, y)p(dt × dy|(θ, x), (∞, b, ρ)) = g(∞, x∞) = 0 �= 1.

One can also construct examples where the transition probability p is not continuous with
respect to ρ ∈R.

5. Proofs of the main statements

In this section, we prove the results stated in Section 3. This is based on the investigation
of the problem (12) for the hat DTMDP model described in Section 4. In this section, unless
specified otherwise, V∗ is understood as the value function of the problem (12) for the hat
DTMDP model. The main facts concerning V∗ are summarized in the next statement.

Proposition 3. (a) V∗ is a [1,∞]-valued lower semianalytic function on X satisfying

inf
a∈AG

{∫
X

V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x)

}
≥ 0 (13)

∀ x ∈ X∗(V∗) := {x ∈ X : V∗(x)<∞}
and

V∗(x) ≤ inf
b∈AI

{∫
X

ecI (x,b,y)V∗(y)Q(dy|x, b)

}
, x ∈ X, (14)

where at each x ∈ X, the inequality in either (13) or (14) holds with equality.
(b) X \ XI ⊆ XG, where XG := XG(V∗) (see (9)), and XI := XI(V∗). (Lemma 1 below

asserts that V∗ is universally measurable, so that the integrals
∫

X V∗(y)q̃(dy|x, a) and∫
X

V∗(y)ecI (x,b,y)Q(dy|x, b)

are defined.)

Proof. See Lemmas 1, 3, and 4 below. �
Lemma 1. (a) The value function V∗ depends on the state (θ, x) only through the second coor-
dinate, and thus we write V∗(x) instead of V∗(θ, x). The function V∗ is a [1,∞]-valued lower
semianalytic function satisfying
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V(x)= inf
â∈Â

{∫ c

0

∫
X

V(y)q̃(dy|x, ρt)e
− ∫ t

0 (qx(ρs)−cG(x,ρs))dsdt (15)

+ I{c = ∞}e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+ I{c<∞}e− ∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X

V(y)ecI (x,b,y)Q(dy|x, b)

}
, x ∈ X,

V(x∞)= 1,

and is the minimal [1,∞]-valued lower semianalytic function satisfying the following
inequality:

V(x)≥ inf
â∈Â

{∫ c

0

∫
X

V(y)q̃(dy|x, ρt)e
− ∫ t

0 (qx(ρs)−cG(x,ρs))dsdt (16)

+ I{c = ∞}e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+ I{c<∞}e− ∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X

V(y)ecI (x,b,y)Q(dy|x, b)

}
, x ∈ X,

V(x∞)= 1.

(b) For each ε > 0, there exists an ε-optimal deterministic Markov universally measurable
strategy that depends on the state (θ, x) only through the second coordinate for the hat DTMDP
problem (12).

(c) A deterministic stationary strategy that depends on the state (θ, x) only through x is
optimal if and only if it attains the infimum in (15) with V∗ replacing V, for each x ∈ X.

(d) For each x ∈ X, V∗(x) = infπ∈�U V(x, π ), where �U is the class of universally
measurable strategies in the hat DTMDP model.

Proof. The fact that the value function V∗ is the minimal [1,∞]-valued lower semianalytic
function satisfying

g(θ, x) ≥ inf
â∈Â

{∫ c

0

∫
X

g(t, y)q̃(dy|x, ρt)e
− ∫ t

0 (qx(ρs)−cG(x,ρs))dsdt

+I{c = ∞}e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c<∞}e− ∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X

g(c, y)ecI (x,by)Q(dy|x, b)

}
, x ∈ X,

g(∞, x∞) =1,

where the inequality can be replaced by equality, follows from Proposition 4. The exis-
tence of an ε-optimal deterministic Markov universally measurable strategy follows from
Proposition 4, too. Furthermore, note that the first coordinate in the state (θ, x) does not affect
the cost function or the transition probability, from which the independence from the first coor-
dinate of the state (θ, x) follows; cf. [8, 25]. Now assertions (a) and (b) follow. Finally, the last
two assertions follow from Proposition 4. �
Lemma 2. The function in t ∈ [0,∞) defined by∫ t

0

∫
X

e− ∫ τ
0 (qx(ρs)−cG(x,ρs))dsV∗(y)q̃(dy|x, ρτ )dτ + e− ∫ t

0 (qx(ρs)−cG(x,ρs))dsV∗(x)

is increasing, for each x ∈ X and ρ ∈R.
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Proof. Let 0 ≤ t1 < t2 <∞ and x ∈ X be fixed, and we will verify

∫ t2

0
e− ∫ τ

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρτ )dτ

+ e− ∫ t2
0 (qx(ρs)−cG(x,ρs))dsV∗(x)

≥
∫ t1

0
e− ∫ τ

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρτ )dτ

+ e− ∫ t1
0 (qx(ρs)−cG(x,ρs))dsV∗(x),

as follows. It is sufficient to consider the case when the left-hand side is finite, for otherwise
the above inequality would hold automatically. Then the goal is to show, by subtracting the
right-hand side from the left-hand side, that

0 ≤
∫ t2

t1
e− ∫ τ

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρτ )dτ

+ e− ∫ t2
0 (qx(ρs)−cG(x,ρs))dsV∗(x) − e− ∫ t1

0 (qx(ρs)−cG(x,ρs))dsV∗(x).

The right-hand side of this inequality can be further rewritten as

∫ t2−t1

0
e− ∫ t1

0 (qx(ρs)−cG(x,ρs))dse− ∫ τ+t1
t1

(qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)

q̃(dy|x, ρτ+t1 )dτ + e− ∫ t1
0 (qx(ρs)−cG(x,ρs))ds

(
e− ∫ t2

t1
(qx(ρs)−cG(x,ρs))ds − 1

)
V∗(x)

= e− ∫ t1
0 (qx(ρs)−cG(x,ρs))ds

{∫ t2−t1

0
e− ∫ τ

0 (qx(ρs+t1 )−cG(x,ρs+t1 ))ds

∫
X

V∗(y)q̃(dy|x, ρτ+t1 )dτ +
(

e− ∫ t2−t1
0 (qx(ρt1+s)−cG(x,ρt1+s))ds − 1

)
V∗(x)

}
.

Introduce ρ̃s := ρt1+s for each s ≥ 0. The target becomes to show

∫ t2−t1

0
e− ∫ τ

0 (qx(ρ̃s)−cG(x,ρ̃s))ds
∫

X
V∗(y)q̃(dy|x, ρ̃τ )dτ

+ e− ∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV∗(x) ≥ V∗(x).

To this end, for a fixed ε > 0, let us consider a deterministic Markov ε-optimal universally
measurable strategy {(ϕ∗

n , ψ
∗
n , F∗,n)}∞n=0 coming from Lemma 1, and an associated univer-

sally measurable strategy πNew = {(ϕn, ψn, Fn)}∞n=0 defined by ϕ0(θ, x) := ϕ∗
0 (x) + t2 − t1,

ψ0(θ, x) =ψ∗
0 (x), F0(θ, x)s = ρ̃s if s ≤ t2 − t1, and

F0(θ, x)s = F∗,0(θ, x)s−(t2−t1)

if s> t2 − t1; and for n ≥ 1, ϕn((θ, x), â, (t, y)) = ϕ∗
n−1(y), ψn((θ, x), â, (t, y)) =ψ∗

n−1(y), and
Fn((θ, x), â, (t, y))s = F∗,n−1(y)s for all s ≥ 0. Under the universally measurable strategy πNew,
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only the gradual control action ρ̃ is used up to either t2 − t1 or the natural jump moment,
whichever takes place first, after which the ε-optimal universally measurable strategy is in use,
and so

V∗(x) ≤ V(x, πNew) ≤
∫ t2−t1

0
e− ∫ τ

0 (qx(ρ̃s)−cG(x,ρ̃s))ds

∫
X

(V∗(y) + ε)q̃(dy|x, ρ̃τ )dτ + e− ∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))ds(V∗(x) + ε)

=
∫ t2−t1

0
e− ∫ τ

0 (qx(ρ̃s)−cG(x,ρ̃s))ds
∫

X
V∗(y)q̃(dy|x, ρ̃τ )dτ

+ e− ∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV∗(x)

+ ε

(∫ t2−t1

0
e− ∫ τ

0 (qx(ρ̃s)−cG(x,ρ̃s))dsqx(ρ̃τ ))dτ + e− ∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))ds

)
,

where the first inequality holds because of the last assertion of Lemma 1. Since the expression
in the last pair of brackets is nonnegative and finite, and ε > 0 was arbitrarily fixed, we see that

V∗(x) ≤
∫ t2−t1

0
e− ∫ τ

0 (qx(ρ̃s)−cG(x,ρ̃s))ds
∫

X
V∗(y)q̃(dy|x, ρ̃τ )dτ

+ e− ∫ t2−t1
0 (qx(ρ̃s)−cG(x,ρ̃s))dsV∗(x),

as desired. �
Lemma 3. The relations (13) and (14) hold. (Recall from Lemma 1 that V∗ is universally
measurable.)

Proof. Let x ∈ X be fixed. Inequality (14) immediately follows from Lemma 1, if on the
right-hand side of (15), with V∗ replacing V , one takes the infimum over actions â ∈ Â with
c = 0. (Recall the notation in use: â = (c, b, ρ) ∈ Â.) Let us verify (13) as follows. Suppose
V∗(x)<∞. Let a ∈ AG be arbitrarily fixed. If

∫
X V∗(y)q̃(dy|x, a) = ∞, then trivially

∫
X

V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x) ≥ 0.

Consider the case when
∫

X V∗(y)q̃(dy|x, a)<∞. Let t> 0 be arbitrarily fixed. Then

∫ t

0
e−τ (qx(a)−cG(x,a))

∫
X

V∗(y)q̃(dy|x, a)dτ + e−t(qx(a)−cG(x,a))V∗(x)

is finite. Upon differentiating it with respect to t and applying the fundamental theorem of
calculus, we see

e−(qx(a)−cG(x,a))t
∫

X
V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))e−t(qx(a)−cG(x,a))V∗(x) ≥ 0,
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where the inequality follows from Lemma 2. Thus,

∫
X

V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x) ≥ 0.

Since a ∈ AG was arbitrarily fixed, we see that (13) holds. �
Lemma 4. For each x ∈ X, the inequality in either (13) or (14) holds with equality.

Proof. Let x ∈ X be fixed. If the equality in (14) holds at this point, then there is nothing to
prove. Suppose that strict inequality holds in (14). Then necessarily V∗(x)<∞. The objective
is to show that, in this case, (13) holds with equality. For the infimum in (15) with V∗ replacing
V , it suffices to consider c> 0, because (14) holds with strict inequality at the fixed point x ∈ X
here. Let ε > 0 be fixed, and let (c∗, b∗, ρ∗) ∈ Â be such that

V∗(x) + ε ≥
∫ c∗

0

∫
X

V∗(y)q̃(dy|x, ρ∗
t )e− ∫ t

0 (qx(ρ∗
s )−cG(x,ρ∗

s ))dsdt

+ I{c∗ = ∞}e− ∫∞
0 qx(ρ∗

s )dse
∫∞

0 cG(x,ρ∗
s )ds

+ I{c∗ <∞}e− ∫ c∗
0 (qx(ρ∗

s )−cG(x,ρ∗
s ))ds

∫
X

V∗(y)ecI (x,b∗,y)Q(dy|x, b∗).

There are two cases to be considered: (a) 0< c∗ <∞, and (b) c∗ = ∞.
Consider Case (a). Then

ε + V∗(x) ≥
∫ c∗

0

∫
X

V∗(y)q̃(dy|x, ρ∗
t )e− ∫ t

0 (qx(ρ∗
s )−cG(x,ρ∗

s ))dsdt

+ e− ∫ c∗
0 (qx(ρ∗

s )−cG(x,ρ∗
s ))ds

∫
X

V∗(y)ecI (x,b∗,y)Q(dy|x, b∗)

≥ inf
ρ∈R

{∫ c∗

0
e−∫ t

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρt)dt

+e− ∫ c∗
0 (qx(ρs)−cG(x,ρs))dsV∗(x)

}
≥ V∗(x),

where the second inequality holds because of (14), and the last inequality holds because of
Lemma 2. Thus, as ε > 0 was arbitrarily fixed,

V∗(x) = inf
ρ∈R

{∫ c∗

0
e−∫ t

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρt)dt

+ e− ∫ c∗
0 (qx(ρs)−cG(x,ρs))dsV∗(x)

}
. (17)

Let δ > 0 be fixed. There is some ρ ∈R such that
∫ c∗

0 (qx(ρs) − cG(x, ρs))ds<∞,

∫ c∗

0
e−∫ t

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρt)dt<∞,
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and

δ≥
∫ c∗

0
e− ∫ s

0 (qx(ρv)−cG(x,ρv))dv
∫

X
V∗(y)q̃(dy|x, ρs)ds

+ e− ∫ c∗
0 (qx(ρs)−cG(x,ρs))dsV∗(x) − V∗(x)

=
∫ c∗

0
e− ∫ s

0 (qx(ρv)−cG(x,ρv))dv
∫

X
V∗(y)q̃(dy|x, ρs)ds

−
∫ c∗

0
(qx(ρτ ) − cG(x, ρτ ))e− ∫ τ

0 (qx(ρs)−cG(x,ρs))dsdτV∗(x)

=
∫ c∗

0
e− ∫ s

0 (qx(ρv)−cG(x,ρv))dv
{∫

X
V∗(y)q̃(dy|x, ρs)

− (qx(ρs) − cG(x, ρs))V
∗(x)

}
ds ≥

∫ c∗

0
e− ∫ s

0 (qx(ρv)−cG(x,ρv))dvds

× inf
a∈AG

{∫
X

V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x)

}

≥
∫ c∗

0
e−qxsds inf

a∈AG

{∫
X

V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x)

}
≥ 0,

where the last inequality holds because of (13). Since
∫ c∗

0 e−qxsds> 0 and δ > 0 was arbitrarily
fixed, we see that (13) holds with equality.

Now consider Case (b). Here,

ε + V∗(x)≥ inf
ρ∈R

{∫ ∞

0
e−∫ t

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρt)dt

+ e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

}
.

One can show that for each t ∈ [0,∞),

V∗(x)= inf
ρ∈R

{∫ t

0
e−∫ t

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρt)dt

+ e− ∫ t
0 (qx(ρs)−cG(x,ρs))dsV∗(x)

}
. (18)

The details are as follows. We only need consider t> 0; the case of t = 0 is trivial. Let δ > 0
be arbitrarily fixed. Then there is some ρ̂ ∈R such that

ε + V∗(x) + δ≥
∫ ∞

0
e− ∫ τ

0 (qx(ρ̂s)−cG(x,ρ̂s))ds
∫

X
V∗(y)q̃(dy|x, ρ̂τ )dτ

+ e− ∫∞
0 qx(ρ̂s)dse

∫∞
0 cG(x,ρ̂s)ds.
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Define ρ̃ ∈R by ρ̃s = ρ̂t+s for each s ≥ 0. Then, for each t ≥ 0,

ε + V∗(x) + δ ≥
∫ t

0
e− ∫ τ

0 (qx(ρ̂s)−cG(x,ρ̂s))ds
∫

X
V∗(y)q̃(dy|x, ρ̂τ )dτ

+
∫ ∞

t
e− ∫ τ

0 (qx(ρ̂s)−cG(x,ρ̂s))ds
∫

X
V∗(y)q̃(dy|x, ρ̂τ )dτ

+ e− ∫ t
0 (qx(ρ̂s)−cG(x,ρ̂s))dse− ∫∞

t qx(ρ̂s)dse
∫∞

t cG(x,ρ̂s)ds

=
∫ t

0
e− ∫ τ

0 (qx(ρ̂s)−cG(x,ρ̂s))ds
∫

X
V∗(y)q̃(dy|x, ρ̂τ )dτ + e− ∫ t

0 (qx(ρ̂v)−cG(x,ρ̂v))dv

×
{∫ ∞

0
e− ∫ s

0 (qx(ρ̃v))−cG(x,ρ̃v))dv
∫

X
V∗(y)q̃(dy|x, ρ̃s)ds

+e− ∫∞
0 qx(ρ̃s)dse

∫∞
0 cG(x,ρ̃s)ds

}

≥
∫ t

0
e− ∫ τ

0 (qx(ρ̂s)−cG(x,ρ̂s))ds
∫

X
V∗(y)q̃(dy|x, ρ̂τ )dτ + e− ∫ t

0 (qx(ρ̂v)−cG(x,ρ̂v))dvV∗(x)

≥ inf
ρ∈R

{∫ t

0
e− ∫ τ

0 (qx(ρs)−cG(x,ρs))ds
∫

X
V∗(y)q̃(dy|x, ρτ )dτ

+e− ∫ t
0 (qx(ρv)−cG(x,ρv))dvV∗(x)

}
≥ V∗(x),

where the second inequality is by Lemma 1(a), which in particular asserts that V∗ satisfies
(15), and the last inequality is by Lemma 2. Since ε > 0 and δ > 0 were arbitrarily fixed, the
above implies (18). Comparing (18) with (17), we see that Case (b) is reduced to Case (a).

Lemma 5. Let w be a measurable [1,∞)-valued function satisfying the inequality in Condition
1, whose existence is guaranteed as mentioned in the paragraph below Condition 1. Consider
the transition probability p̃(dy|x, a) on B(X) given (x, a) ∈ X × AG defined by

p̃(�|x, a) := q(�|x, a)

w(x)
+ δx(dy)

for each � ∈B(X), (x, a) ∈ X × AG. Then a [1,∞]-valued lower semianalytic function V∗
(here the notation V∗ does not necessarily mean the value function) satisfies (13) and (14),
and for each x ∈ X, either (13) or (14) holds with equality, if and only if it satisfies (14), for
each x ∈ X

V∗(x) ≤ inf
a∈AG

{
w(x)

w(x) − cG(x, a)

∫
X

V∗(y)p̃(dy|x, a)

}
, (19)

and either (14) or (19) holds with equality, i.e.,

V∗(x) = min

{
inf

a∈AG

{
w(x)

w(x) − cG(x, a)

∫
X

V∗(y)p̃(dy|x, a)

}
,

inf
b∈AI

{∫
X

V∗(y)ecI (x,b,y)Q(dy|x, b)

}}
. (20)
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Note that (19) automatically holds with equality at x ∈ X \ X∗(V∗) := {x ∈ X : V∗(x) = ∞}.
Also note that the function w in the previous lemma does not need to be continuous.

Proof of Lemma 5. We prove the ‘only if’ part (the argument for the ‘if’ part is the same,
and is omitted). Consider a [1,∞]-valued lower semianalytic function V∗ that satisfies (13)
and (14), such that for each x ∈ X, either (13) or (14) holds with equality. For x ∈ X∗(V∗) =
{x ∈ X : V∗(x)<∞}, (13) implies for each a ∈ AG that

0 ≤ cG(x, a)V∗(x) +
∫

X
V∗(y)q(dy|x, a)

= (cG(x, a) − w(x))V∗(x) + w(x)
∫

X
V∗(y)p̃(dy|x, a),

and so

V∗(x) ≤ inf
a∈AG

{
w(x)

w(x) − cG(x, a)

∫
X

V∗(y)p̃(dy|x, a)

}
,

i.e., (19) holds. Let x ∈ X∗(V∗) be a point where (13) holds with equality. Let us verify that
at this point x ∈ X∗(V∗), (19) also holds with equality. For each ε > 0, there is some aε ∈ AG

such that ε ≥ cG(x, aε)V∗(x) + ∫
X V∗(y)q(dy|x, aε), so that

V∗(x) + ε ≥V∗(x) + ε

w(x) − cG(x, aε)

≥V∗(x) + cG(x, aε)V∗(x) + ∫
X V∗(y)q(dy|x, aε)

w(x) − cG(x, aε)

= w(x)

w(x) − cG(x, aε)

∫
X

p̃(dy|x, aε)V
∗(y)

≥ inf
a∈AG

{
w(x)

w(x) − cG(x, a)

∫
X

V∗(y)p̃(dy|x, a)

}
,

and thus

V∗(x) ≥ inf
a∈AG

{
w(x)

w(x) − cG(x, a)

∫
X

V∗(y)p̃(dy|x, a)

}
.

The opposite direction of this inequality was seen earlier, and so (19) holds with equality at
this point. This completes the ‘only if’ part. As previously mentioned, the argument for the ‘if’
part is the same, and is omitted. �
Remark 2. Consider the function V∗ in the previous statement. By inspecting the above proof
we see the following fact: a pair of measurable mappings ψ∗ and f ∗ from X to AI and AG

satisfy

w(x)

w(x) − cG(x, f ∗(x))

∫
X

V∗(y)p̃(dy|x, f ∗(x))

= inf
a∈AG

{
w(x)

w(x) − cG(x, a)

∫
X

V∗(y)p̃(dy|x, a)

}

for each x ∈ X at which (19) holds with equality, and∫
X

ecI (x,ψ∗(x),y)V∗(y)Q(dy|x, ψ∗(x)) = inf
b∈AI

{∫
X

ecI (x,b,y)V∗(y)Q(dy|x, b)

}
∀ x ∈ X,
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if and only if

inf
a∈AG

{∫
X

V∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))V∗(x)

}

=
∫

X
V∗(y)q̃(dy|x, f ∗(x)) − (qx(f ∗(x)) − cG(x, f ∗(x)))V∗(x)

for each x ∈ X at which the left-hand side equals zero, and∫
X

ecI (x,ψ∗(x),y)V∗(y)Q(dy|x, ψ∗(x)) = inf
b∈AI

{∫
X

ecI (x,b,y)V∗(y)Q(dy|x, b)

}
∀ x ∈ X.

Lemma 6. Suppose Conditions 1 and 2 are satisfied. Then W∗(x) = V∗(x) for each x ∈ X.

Proof. According to Proposition 4(a)–(b), the value function W∗ for the tilde model is
the minimal [1,∞]-valued lower semianalytic function satisfying (7) as well as the inequal-
ity obtained by replacing the equality in (7) by ‘≥’. Let us verify that W∗ = V∗ as follows.
According to Lemmas 3, 4, and 5, the value function V∗ is a [1,∞]-valued lower semianalytic
function satisfying (7); cf. (20). Therefore, W∗ ≤ V∗ pointwise.

For the opposite direction of this inequality, let x ∈ X be fixed. It suffices to show that W∗
satisfies (16) at the point x. Then, since the point x ∈ X was arbitrarily fixed, one can apply
Lemma 5 to obtain V∗ ≤ W∗ pointwise.

Recall that, as observed in the beginning of this proof, W∗ satisfies (20). By Lemma 5, it
satisfies (13) and (14), one of which holds with equality at this point x. If (14) holds with
equality for W∗ at x, then

W∗(x) = inf
b∈AI

{∫
X

W∗(y)ecI (x,b,y)Q(dy|x, b)

}

≥ inf
â∈Â

{∫ c

0

∫
X

W∗(y)q̃(dy|x, ρt)e
− ∫ t

0 (qx(ρs)−cG(x,ρs))dsdt

+I{c = ∞}e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c<∞}e− ∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X

W∗(y)ecI (x,b,y)Q(dy|x, b)

}
,

and thus (16) is satisfied by W∗ at x, as required. Now suppose (13) holds with equality for
W∗ at x. It suffices to consider W∗(x)<∞, for otherwise (16) automatically holds for W∗ at x.
According to Remark 2 after Lemma 5, and because the tilde model is semicontinuous, there
is some a∗ ∈ AG satisfying∫

X
W∗(y)q̃(dy|x, a∗) − (qx(a∗) − cG(x, a∗))W∗(x)

= inf
a∈AG

{∫
X

W∗(y)q̃(dy|x, a) − (qx(a) − cG(x, a))W∗(x)

}
= 0,

and hence
∫

X W∗(y)q̃(dy|x, a∗) = (qx(a∗) − cG(x, a∗))W∗(x). This implies qx(a∗) ≥ cG(x, a∗),
as the left-hand side of the previous equality is nonnegative and W∗(x) ≥ 1, and for the same
reason, if cG(x, a∗) = qx(a∗), then cG(x, a∗) = qx(a∗) = 0, in which case
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W∗(x) ≥1

=
∫ ∞

0

∫
X

W∗(y)q̃(dy|x, a∗)e− ∫ t
0 (qx(a∗)−cG(x,a∗))dsdt

+ e− ∫∞
0 qx(a∗)dse

∫∞
0 cG(x,a∗)ds

≥ inf
â∈Â

{∫ c

0

∫
X

W∗(y)q̃(dy|x, ρt)e
− ∫ t

0 (qx(ρs)−cG(x,ρs))dsdt

+ I{c = ∞}e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c<∞}e− ∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X

W∗(y)ecI (x,b,y)Q(dy|x, b)

}
.

That is, (16) is satisfied by W∗ at x, as desired. Finally, if cG(x, a∗)< qx(a∗), then

inf
â∈Â

{∫ c

0

∫
X

W∗(y)q̃(dy|x, ρt)e
− ∫ t

0 (qx(ρs)−cG(x,ρs))dsdt

+I{c = ∞}e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c<∞}e− ∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X

W∗(y)ecI (x,b,y)Q(dy|x, b)

}

≤
∫ ∞

0

∫
X

W∗(y)q̃(dy|x, a∗)e− ∫ t
0 (qx(a∗)−cG(x,a∗))dsdt + e− ∫∞

0 qx(a∗)dse
∫∞

0 cG(x,a∗)ds

=
∫

X W∗(y)q̃(dy|x, a∗)

qx(a∗) − cG(x, a∗)
+ 0 = W∗(x),

as desired. Thus, W∗ satisfies (16). Consequently, W∗ = V∗ on X, as required. �
Proof of Theorem 1. Part (b) was seen in the proof of Lemma 4.
Consider the pair of measurable mappings (ψ∗, f ∗) from Proposition 1. Recall that W∗ = V∗

on X by Lemma 6. Keeping in mind Remark 2, we find from an inspection of the proof of
Lemma 6 that the deterministic stationary strategy (ϕ(x), ψ∗(x), t → δf ∗(x)(da)) ∈ Â in the hat
DTMDP model, where ϕ is defined in Part (c) of this theorem, attains the infimum in

V∗(x) = inf
â∈Â

{∫ c

0

∫
X

V∗(y)q̃(dy|x, ρt)e
− ∫ t

0 (qx(ρs)−cG(x,ρs))dsdt

+I{c = ∞}e− ∫∞
0 qx(ρs)dse

∫∞
0 cG(x,ρs)ds

+I{c<∞}e− ∫ c
0 (qx(ρs)−cG(x,ρs))ds

∫
X

V∗(y)ecI (x,b,y)Q(dy|x, b)

}

for each x ∈ X. By Theorem 3, this deterministic stationary strategy (ϕ(x), ψ∗(x), t →
δf ∗(x)(da)) ∈ Â is optimal for the problem (12) for the hat DTMDP model. This and Remark 1
imply that V∗ = V∗ on X and that Part (c) holds. By Lemma 6, we see now that V∗ = W∗ on
X, and thus Part (a) holds. �

Proof of Corollary 1. This corollary follows at once from Theorem 1, Lemma 5, and
Remark 2.
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6 Conclusion

In this paper we investigated the gradual-impulse control problem of CTMDPs with a
rigorous and general construction, which allows the consideration of quite a large class of
control policies, and is not restricted to the form of performance measures under consid-
eration. Possible future research thus includes the investigation of gradual-impulse control
problems of CTMDPs with other performance measures (such as the long-run average cost in
the risk-neutral as well as risk-sensitive setups).

Appendix A. Relevant results about DTMDPs

In this appendix we present the relevant facts about DTMDPs. The proofs of these state-
ments can be found in [15] or [25]. The standard description of a DTMDP can be found in e.g.
[13, 20]. The notation used in this section is independent of the previous sections.

A DTMDP has the primitives {X,A, p, l}, where X is a nonempty Borel state space, A is
a nonempty Borel action space, p(dy|x, a) is a stochastic kernel on B(X) given (x, a) ∈ X × A,
and l is a [0,∞]-valued measurable cost function on X × A × X.

Condition 3. (a) The function l(x, a, y) is lower semicontinuous in (x, a, y) ∈ X × A × X.
(b) For each bounded continuous function f on X,

∫
X f (y)p(dy|x, a) is continuous in (x, a) ∈

X × A.
(c) The space A is a compact Borel space.

The DTMDP model {X,A, p, l} is called semicontinuous if it satisfies Condition 3.
Let us define Hn := X × (A × X)n for each n = 1, 2, . . . ,∞, and H0 := X. A strategy

σ = (σn)∞n=0 in the DTMDP is given by a sequence of stochastic kernels σn(da|hn) on B(A)
from hn ∈ Hn for n = 0, 1, 2, . . . . A strategy σ = (σn) is called deterministic Markov if for each
n = 0, 1, 2, . . . we have σn(da|hn) = δ{ϕn(xn)}(da), where ϕn is an A-valued measurable map-
ping on X. We identify such a deterministic Markov strategy with (ϕn). A deterministic Markov
strategy (ϕn) is called deterministic stationary if ϕn does not depend on n, and it is identified
with the underlying measurable mapping ϕ from X to A. Let � be the space of strategies, and
let �DM be the space of all deterministic Markov strategies for the DTMDP.

Let the controlled and controlling process be denoted by {Yn}∞n=0 and {An}∞n=0. Here, for
each n = 0, 1, . . . , Yn is the projection of H∞ to the (2n + 1)th coordinate, and An to the
(2n + 2)th coordinate. Under a strategy σ = (σn) and a given initial probability distribution ν
on (X,B(X)), by the Ionescu-Tulcea theorem (cf. [13, 20]), one can construct a probability
measure P

σ
ν on (H∞,B(H∞)) such that

P
σ
ν (Y0 ∈ dx) = ν(dx),

P
σ
ν (An ∈ da|Y0, A0, . . . , Yn) = σn(da|Y0, A0, . . . , Yn), n = 0, 1, . . . ,

P
σ
ν (Yn+1 ∈ dx|Y0, A0, . . . , Yn, An) = p(dx|Yn, An), n = 0, 1, . . . .

As usual, equalities involving conditional expectations and probabilities are understood in the
almost sure sense.

The probability measure P
σ
ν is called a strategic measure (of the strategy σ ) in the DTMDP

model {X,A, p, l} (with the initial distribution ν). The expectation taken with respect to P
σ
ν

is denoted by E
σ
ν . When ν is concentrated on the singleton {x}, Pσν and E

σ
ν are written as

P
σ
x and E

σ
x .
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Consider the following optimal control problem:

Minimize over σ : Eσx
[
e
∑∞

n=0 l(Yn,An,Yn+1)
]
=: V(x, σ ), x ∈ X. (21)

We denote the value function of the problem (21) by V∗. Then a strategy σ ∗ is called optimal
for the problem (21) if V(x, σ ∗) = V∗(x) for each x ∈ X. For a constant ε > 0, a strategy is
called ε-optimal for the problem (21) if V(x, σ ∗) ≤ V∗(x) + ε for each x ∈ X.

Occasionally we will also consider the so-called universally measurable strategies, in which
case the stochastic kernels σn(da|hn) are universally measurable, i.e., for each measurable
subset � of A, σ (�|hn) is universally measurable in hn ∈ Hn. The meaning of ‘universally
measurable deterministic Markov strategy’ or ‘universally measurable deterministic stationary
strategy’ is understood similarly, i.e., the underlying mappings are universally measurable in
their arguments. See Chapter 7.7 of [2] for the definition of universal measurability and other
related measurability concepts, such as the definition of a lower semianalytic function.

We collect the relevant statements in Section 3 of [25] in the next proposition.

Proposition 4. (a) The value function V∗ is the minimal [1,∞]-valued lower semianalytic
solution to

V(x) = inf
a∈A

{∫
X

el(x,a,y)V(y)p(dy|x, a)

}
, x ∈ X. (22)

(b) Let U be a [1,∞]-valued lower semianalytic function on X. If

U(x) ≥ inf
a∈A

{∫
X

el(x,a,y)U(y)p(dy|x, a)

}
∀ x ∈ X,

then U(x) ≥ V∗(x) for each x ∈ X.
(c) Let ϕ be a deterministic stationary strategy for the DTMDP model {X,A, p, l}. If

V∗(x) =
∫

X
el(x,ϕ(x),y)V∗(y)p(dy|x, ϕ(x)) ∀ x ∈ X, (23)

then V∗(x) = V(x, ϕ) for each x ∈ X.
(d) V∗(x) = infσ∈�U V(x, σ ), where �U is the set of universally measurable strategies.

Moreover, for each ε > 0, there is some universally measurable deterministic stationary
ε-optimal strategy for the problem (21).

(e) Suppose Condition 3 is satisfied. Then the value function V∗ is the minimal [1,∞]-
valued lower semicontinuous solution to (22). Moreover, there exists a deterministic stationary
strategy ϕ satisfying (23), and so in particular there exists a deterministic stationary optimal
strategy for the problem (21).

Part (d) of the above statement follows from the proof of Proposition 3.2 of [25], while all
the other parts follow from Propositions 3.1, 3.4, and 3.7 of [25].
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