
Detecting transmission areas of malaria parasites
in a migratory bird species

LUZ GARCIA-LONGORIA1*, OLOF HELLGREN2, STAFFAN BENSCH2,
FLORENTINO DE LOPE1 and ALFONSO MARZAL1

1Departamento de Biología Animal, Universidad de Extremadura, E-06071 Badajoz, Spain
2Department of Biology, Molecular Ecology and Evolution Lab, Ecology Building, Lund University,
SE- 22362 Lund, Sweden

(Received 20 February 2015; revised 31 March 2015; accepted 8 April 2015; first published online 13 May 2015)

SUMMARY

The identification of the regions where vector-borne diseases are transmitted is essential to study transmission patterns and
to recognize future changes in environmental conditions that may potentially influence the transmission areas. SGS1, one
of the lineages of Plasmodium relictum, is known to have active transmission in tropical Africa and temperate regions of
Europe. Nuclear sequence data from isolates infected with SGS1 (based on merozoite surface protein 1 (MSP1) allelic di-
versity) have provided new insights on the distribution and transmission areas of these allelic variants. For example, MSP1
alleles transmitted in Africa differ from those transmitted in Europe, suggesting the existence of two populations of SGS1
lineages. However, no study has analysed the distribution of African and European transmitted alleles in Afro-Palearctic
migratory birds. With this aim, we used a highly variable molecular marker to investigate whether juvenile house martins
become infected in Europe before their first migration to Africa. We explored the MSP1 allelic diversity of P. relictum in
adult and juvenile house martins. We found that juveniles were infected with SGS1 during their first weeks of life, confi-
rming active transmission of SGS1 to house martins in Europe. Moreover, we found that all the juveniles and most of
adults were infected with one European transmitted MSP1 allele, whereas two adult birds were infected with two
African transmitted MSP1 alleles. These findings suggest that house martins are exposed to different strains of P. relictum
in their winter and breeding quarters.
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INTRODUCTION

Parasites can regulate their host populations by re-
ducing the fecundity or the survival of their host
population, but our current knowledge of popula-
tion regulation of hosts by parasites is still limited
(see reviews in Møller, 2005; Schmid-Hempel,
2011). In the case of malaria and related haemospor-
idian parasites, most of the mortalities of infected
birds normally occur during the acute phase of the
parasite infection, which usually happens several
days after the parasite transmission (Valkiūnas,
2005). Juvenile birds are especially susceptible for
infection because they are immunologically naïve,
which may drive to population decline (Samuel
et al. 2011). However, the areas of transmission of
these vector-borne diseases remain a key knowledge
gap in our understanding of these pathogens. The
use of newmolecular tools could provide an essential
knowledge to identify the regions where vector-borne
diseases are transmitted in order to study the host
population dynamics and to recognize future changes
in environmental conditions that may potentially
influence the transmission areas. Haemosporidians
are among the most well studied blood parasites of

reptiles, mammals and birds (Valkiūnas, 2005).
Avian Plasmodium species show a cosmopolitan distri-
bution, being found in all continents except Antarctica
(Valkiūnas, 2005). To date, more than 50 morphospe-
cies of avian malaria parasites of the genus Plasmodium
have been described worldwide (Valkiūnas, 2005;
Palinauskas et al. 2007). Plasmodium relictum is one
of the most widespread and harmful parasite species
of avian malaria, being responsible for mass mortality,
population declines and even extinctions of many bird
species (Van Riper III et al. 1986; Valkiūnas, 2005).
For all these reasons and due to its devastating
effects, the International Union for Conservation of
Nature classifies P. relictum as one of the worst inva-
sive species in the world (Lowe et al. 2000).
Therefore, it becomes essential to identify the geo-
graphical distribution of P. relictum lineages and to
assess their infection prevalence in birds in order
to develop appropriate management strategies to
promote biodiversity conservation policies worldwide.
With theuseofmtDNAcytochromebgene (cytb) to

barcode the parasites more than 500 avian Plasmodium
parasite lineages have been identified (MalAvi database
2015-01-15) (Bensch et al. 2009). Moreover, four
different cyt b lineages have been described within
the morphologically described species of P. relictum
(Palinauskas et al. 2007; Valkiūnas et al. 2007; Ilgunas
et al. 2013; Kazlauskiene et al. 2013). Two of the
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P. relictum cyt b lineages (SGS1 andGRW4) are some
of themost abundant and geographicallywidespread of
all bird Plasmodium lineages. Both lineages are host
generalists infecting 95 species of 28 families (SGS1)
and60species in19 families (GRW4) (MalAvidatabase
2015-01-15) (Bensch et al. 2009), respectively. The
lineages SGS1 and GRW4 exhibit different transmis-
sion areas (Hellgren et al. 2007), with GRW4 being
transmitted in New Zealand, Africa, Asia and
America (Beadell et al. 2006; Marzal et al. 2011),
whereas SGS1 shows a widespread distribution in
Europe, Africa and Asia (Palinauskas et al. 2007).
Recently, SGS1 was also detected in Oceania (Howe
et al. 2012) and South America (Marzal et al. 2015).
In consequence, SGS1 was suggested to be one of the
few Plasmodium lineages with active transmission in
both tropical Africa and temperate regions of Asia
and Europe (Hellgren et al. 2007).
Investigations based on multiple nuclear loci of

P.relictum have provided new insights into allelic
variation, geographical structure and parasite trans-
mission (Hellgren et al. 2013). The merozoite
surface protein 1 (MSP1) is a gene which shows a
high variability (Miller et al. 1993) and encodes
a protein involved in the attachment of the malaria
parasite to the red blood cell (Gerold et al. 1996).
Because of its high variability, this gene is a good
candidate for investigating population structure
and phylogeography of malaria lineages. For
example, the SGS1 lineage transmitted in tropical
Africa has a different set of MSP1 alleles compared
with those transmitted in Europe, suggesting the ex-
istence of separate SGS1 populations along the
European-African migratory flyways (Hellgren
et al. 2015). This pattern implies the existence of
transmission barriers (e.g. vector communities or
abiotic factors) limiting transmission between
regions, but further studies are required to confirm
this geographical distribution.
The house martin is a migratory species with a

high fidelity to its area of hatching and nesting
(Cramp and Perrins, 1994; Lope and Silva, 1998)
and also to its wintering grounds (Ambrosini et al.
2011). This species migrates from Africa to Europe
for breeding. Once the breeding is completed,
adult house martins and new-born individuals
migrate back to their African wintering quarters
(Tumer and Rose, 1989; Cramp and Perrins,
1994). Previous studies in different localities of
Europe and Northern Africa have found haemospor-
idian infections in more than 70% of adults (Marzal
et al. 2008, 2013a, b; Piersma and van der Velde,
2012; Van Rooyen et al. 2014). Additionally,
different P. relictum cyt b lineages such as SGS1,
GRW4 and GRW11 have been found infecting
adult house martins in these populations (Marzal
et al. 2008, 2013b; Piersma and van der Velde,
2012; van Rooyen et al. 2014). These blood parasite
infections are thought to be transmitted on the

African wintering grounds or during migration.
This assumption is based on the absence of haemos-
poridian infection in the single study analysing
haemosporidian infections in 112 fledgling and ju-
venile house martins before their first migration
(Piersma and van der Velde, 2012). However, the
confirmation of transmission areas of haemospori-
dian parasites in house martins requires further in-
vestigation. Therefore, the first goal of our study
was to determine whether haemosporidian transmis-
sion in house martins occurs at European sites by
sampling juvenile birds. Additionally, the second
objective of this study was to analyse the MSP1
alleles in P. relictum lineages infecting adult and ju-
venile house martins in order to identify their poten-
tial areas of transmission.

MATERIALS AND METHODS

Study site and collecting samples

The study was carried out in a colony of house
martins in the surroundings of Badajoz (38° 50′ N,
6° 59′ W), southwest Spain, during a 6-year period
(2006–2012) as part of a longer study. For the
present study we captured 422 house martins, 310
of them were classified as juveniles according to the
morphological characteristics established by
Svensson et al. (2009) and Lope (1986). Most of the
individuals were caught in July, at the end of their
breeding season (Pajuelo et al. 1992). Therefore, the
all of the juveniles included in this study were
between 2 and 3 months old. All birds were individu-
ally identified with numbered metal rings. One
microcapillary of blood (70 μL) was obtained from
the brachial vein of each individual and stored in
500 μL of SET buffer (0·15 M NaCl, 0·05 Tris,
0·001 M EDTA, pH 8·0) until DNA extraction.

Molecular detection of blood parasite infections

Haemosporidian parasites (Plasmodium spp.) were
detected from blood samples using molecular
methods (Bensch et al. 2000; Waldenström et al.
2004). DNA from the avian blood samples were
extracted in the laboratory using the standard phenol/
chloroform/isoamylalcohol method (Sambrook et al.
2002). Diluted genomic DNA (25 ng/μL) was used
as a template in a polymerase chain reaction (PCR)
assay for detection of the parasites using nested PCR-
protocols described by Waldenström et al. (2004).
The amplification was evaluated by running 2·5 μL
of the final PCR on a 2% agarose gel. All PCR experi-
ments contained one negative control for every eight
samples. In the very few cases of negative controls
showing signs of amplification (never more than faint
bands in agarose gels), the whole PCR-batch was run
again to make sure that all positives were true. All posi-
tive amplifications were precipitated and sequenced in
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order to identify the species and lineage in each infec-
tion. The obtained sequences were edited, aligned and
compared in a sequenced matrix using the program
Bioedit (Hall, 1999). We selected SGS1 and GRW4
infected house martins for further analyses of the
MSP1 gene (270 nucleotides, block 14) and detect
the MSP1 allele following the protocol described
by Hellgren et al. (2013) and using the primers
MSP1_3F,MSP1_3R,MSP1_3FN andMSP1_3RN.

Phylogenetic reconstruction

The obtained sequences were edited, aligned against
the SGS1_MSP1 gene (KC969175) and compared
in a sequence identity matrix using the program
BioEdit (Hall, 1999). The quality of the alignment
was checked by manual inspection. Genetic differ-
ences between the MSP1 alleles were calculated
using a Jukes-Cantor model as implemented in
MEGA 5·2. We used MEGA 5·2 for phylogenetic
reconstruction of the MSP1 alleles where the
homolog sequence of P. gallinaceum (AJ809338·1)
was used as an out-group. The phylogenetic tree
for all the alleles found was constructed in the pro-
gramme MEGA 5·2 and using a Maximum
Likelihood model. Bootstrap values were used in
order to obtain a consensus phylogeny using 200
iterations.

RESULTS

Prevalence of infection and genetic parasite diversity
(Cyt b gene analyses)

We analysed 422 blood samples from adult (N= 112)
and juvenile (N= 310) house martins in search for

haemosporidian parasites. Among adults 80 (71%)
individuals were infected with haemosporidian para-
sites. In juveniles only three were found to be infected
(0·96%).
Of the 80 infected adult birds, 20% were infected

with Plasmodium spp. and 80% were infected with
Haemoproteus spp. We found five different blood
parasite lineages infecting adult house martins, of
which three were of the genus Haemoproteus
(DELURB1: 32 infected birds; DELURB2: 29
infected birds; DELURB3: 3 infected bird), and
two of them from the genus Plasmodium (SGS1:
15 infected birds; GRW4: 1 infected bird). The
three infected juveniles were all infected with the
P. relictum lineage SGS1.

Genetic parasite diversity (MSP1 gene analyses)

All the samples infected with P. relictum lineages
(N= 19; 16 adults and 3 juveniles) were selected
for further molecular analyses. From each sample,
we obtained a 268 bp MSP1_ b14 fragment of high
quality. We used a SGS1_MSP1 gene (KC969175)
in order to confirm the amplification of the MSP1
block 14 (MSP1_b14). Within adults, 14 out of 16
individuals showed the allele Pr2 (SGS1), whereas
one individual was infected with Pr1 (SGS1) and
the other one was infected with Pr4 (GRW4)
(Fig. 1). Moreover, we found the same allele (Pr2;
SGS1) in all the juvenile house martins infected
with malaria (Fig. 1).

DISCUSSION

In this studywe analysedblood samples fromadult and
juvenile house martins in search for haemosporidian

Fig. 1. Phylogenetic relationship between all the MSP1_b14 alleles detected to date (Hellgren et al. 2015) and number of
individuals (adults or juveniles) infected by these alleles. * and § represent confirmed active transmission in Africa and
Europe, respectively (Hellgren et al. 2015).
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parasites. We showed, for the first time, that juvenile
housemartins become infected withPlasmodium para-
sites already before their first migration to Africa, thus
confirming that active transmissionofPlasmodium spp.
to house martins occur in Europe. By analysing the
MSP1 alleles in P. relictum lineages, we were able to
get a more detailed view of the likely transmission
areas for the infections found in the adult birds.
Below, we will discuss the biological meaning of
these results in detail.
House martins have been used in several studies to

analyse life-history consequences of haemosporidian
infections (e.g. Piersma and van der Velde, 2012;
Marzal et al. 2013a, b; Van Rooyen et al. 2014). In
our study, we show that 70% of adults were infected
with haemosporidian parasites. This prevalence is
similar to what has been reported from previous
studies in this house martin population (Marzal
et al. 2008, 2013a, b). Moreover, the prevalence of
haemosporidian parasites among adult house
martins greatly exceed the prevalence in juveniles.
This difference may be explained by a higher mortal-
ity of young individuals during the infection, before
being captured for sampling, due to their näive
immune system (Sol et al. 2003) and/or the mainten-
ance of haemosporidian infection in infected birds
that survived the acute phase of infection
(Valkiūnas, 2005). Alternatively, the juveniles may
not yet have been exposed to infections, or have
only recently been infected and in the phase when
Plasmodium cryptozoites are developing in reticulo-
endothelial cells, and therefore absent in the blood
stream (Valkiūnas, 2005).
Migratory birds are exposed to at least two

different parasite communities during their annual
cycle. Therefore, migratory species such as house
martins could become infected by blood parasites
during their breeding season in Europe and/or in
their African winter quarters and at stop-over sites.
Moreover, the parasites could be transported
within the migratory bird and be able to infect resi-
dent birds in the new area. However, Hellgren et al.
(2007) investigated the degree of geographical shifts
of transmission of 259 haemosporidian parasite
lineages. They showed that most of the parasite
lineages are restricted to a specific area and thus dis-
persing from one biogeographical zone to another is
a rare and slow evolutionary process. In line with the
data presented by Hellgren et al. (2007), all the
recent studies of haemosporidian parasites in house
martins have assumed that these parasites are only
actively transmitted on the African wintering
grounds or during migration (Marzal et al. 2008,
2013a, b; Piersma and van der Velde, 2012; Van
Rooyen et al. 2014). This assumption was supported
by Piersma and van der Velde (2012) in a population
of house martins in the Netherlands, where none of
the analysed juveniles were infected with haemos-
poridian parasites. In contrast, we detected the

presence of malaria parasites in juvenile house
martins. As far as we know, this is the first documen-
ted case of active transmission of Plasmodium para-
sites in house martins in Europe. These findings
give rise to new questions about the transmission
areas of malaria parasites in this migratory bird
species such as how many house martins can com-
plete the migration despite the infection by malaria
parasites.
The data on the distribution of nuclear MSP1

alleles across the cyt b lineages may facilitate the in-
vestigation on the distribution of these malaria para-
sites across geographical regions (Hellgren et al.
2013, 2015). A recent study has explored the global
phylogeography of the P. relictum based on MSP1
allelic diversity, showing several different MSP1
alleles within the cyt b lineages of SGS1 and
GRW4. In this study, we identified two MSP1
alleles from two cyt b lineages that are throught to
be transmitted in Africa (allele Pr1 from lineage
SGS1, and allele Pr4 from lineage GRW4), and
one allele from a cyt b lineage thought to be
confined to temperate regions (allele Pr2 from
lineage SGS1) (Hellgren et al. 2015). This pattern
suggests the existance of barriers limiting the tramis-
sion areas of these parasites. In the present study, we
have shown that most of the adult birds infected
with SGS1, as well as all the infected juveniles,
carried the MSP1 allele with European transmission
(Pr2) . Only one out of 15 adults was infected with a
tropically transmitted SGS1 allele (MSP1 allele
Pr1), while another one was infected with GRW4
(MSP1 allele Pr4) which is known to have transmis-
sion in the Afrotropics. These results indicate the ex-
istence of two different areas of transmission of
malaria parasites for house martins population: one
in the African winter range (Pr1 and Pr4), and the
other in the European breeding range (Pr2).
Moreover, the high number of house martins
infected with the MSP1 allele Pr2 compared with
the low number infected with the MSP1 African-
transmitted alleles (Pr1 and Pr4) suggest that most
of the malaria transmission takes place in Europe
during the breeding season. This finding agrees
with previous studies indicating that haemospori-
dian parasites are usually transmitted during the
breeding season in temperate regions, because
biotic and abiotic factors are optimal for the trans-
mission of vector-borne diseases such as malaria
(Githeko et al. 2000; Valkiūnas, 2005; Cosgrove
et al. 2008; but also see Dunn et al. 2014).
However, we cannot exclude that house martins fre-
quently become infected in tropical Africa during
the winter or at stop-over sites, but that such
infected individuals fail to reach their European
breeding quarters because they die during migra-
tion. In support of this hypothesis, several studies
have shown that blood parasites may increase mor-
tality in their avian hosts during stressful and
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energy-demanding periods such as migration
(Davidar and Morton, 1993; Valkiūnas, 2005;
Garvin et al. 2006).
In conclusion, we confirmed that active transmis-

sion of P. relictum (lineage SGS1) occurs in house
martins in Europe. Additionally, we detected
African and European MSP1 alleles in adult house
martins, suggesting two different areas of transmis-
sion for theP. relictum SGS1 lineage in this migratory
bird species. These findings emphasize the import-
ance of using multiple independent loci of avian
Plasmodium parasites to understand transmission
areas of blood parasites. Further studies exploring
the transmission and species limits of avian malaria
parasites are needed to evaluate the importance of mi-
gratory birds in spreading haemosporidian infections.
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