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The general exotic capillary tube is a non-uniform capillary tube which permits an
entire continuum of equilibrium menisci if applying a pressure p = −εz at the tube
inlet. The shapes of general exotic capillary tubes under positive and negative loads
are determined mathematically. Lowering the pressure at the tube inlet slightly from
the value p=−εz causes the tube to completely drain out, while raising the pressure
slightly forces the tube to fill up, which implies that the general exotic capillary tube
is sensitive to pressure. The general exotic capillary tube is also related to meniscus
stability. It is found that the boundary parameters χ1 of general exotic cylinders with
arbitrary contact angle are equal to the critical values χ∗1 for determining the meniscus
stability. Then, a convenient alternative to solving the Jacobi equation for determining
χ∗1 is proposed based on the ‘exotic’ property.

Key words: capillary flows

1. Introduction
Numerous natural systems contain narrow spaces that enable liquid transport, such

as porous media (e.g. Wang & Cheng 1996). This behaviour, called capillary action,
occurs because of the combination of surface tension and adhesive forces between
liquid and solid. A typical example is the rise of a liquid in a capillary tube vertically
positioned in an infinite liquid. From the aspect of statics, previous studies have been
conducted to examine the shapes of equilibrium menisci dating back to the nineteenth
century (Young 1805). It is known that the meniscus in a uniform circular tube can be
uniquely determined by the contact angle and the tube radius. However, a non-uniform
circular tube (i.e. an axisymmetric tube with a variable radius) may admit two or
more equilibrium menisci (e.g. Finn 1988; Tsori 2006). Except in a few cases, the
uniqueness of menisci cannot always be expected (Finn 1988).

Motivated by the non-uniqueness of menisci, an axisymmetric container (called
the exotic container) which permits an entire continuum of equilibrium menisci was
proposed and studied theoretically (Gulliver & Hildebrandt 1986; Finn 1988; Concus
& Finn 1989, 1991). The exotic container is determined mathematically so that all
the menisci have the same potential energy and bound the same volume of liquid.
However, these axisymmetric menisci turn out to be unstable (i.e. none of them is a
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local minimizer of energy) (Finn 1988; Concus & Finn 1989; Wente 1999), which
leads to the prediction that there are non-axisymmetric menisci with a local minimum
of energy in the exotic container. However, there is at present no known way to
determine the non-axisymmetric menisci theoretically in the exotic container. Using
the Surface Evolver software (Brakke 1992), the non-axisymmetric menisci were
found numerically by Callahan, Concus & Finn (1991). Results showed that there are
three distinct non-axisymmetric menisci in the exotic container. However, only two
non-axisymmetric menisci were observed experimentally (Concus, Finn & Weislogel
1992, 1999). The loss of axisymmetry (i.e. the non-axisymmetric instability) is not
an exclusive phenomenon for the exotic container. Non-axisymmetric instability can
occur even if conditions for an exotic container are not entirely met (Concus et al.
1999) and can also be observed for a liquid bridge when the Steiner limit is exceeded
(Gillette & Dyson 1972; Russo & Steen 1986; Slobozhanin, Alexander & Resnick
1997). Though the non-axisymmetric menisci, in general, cannot be determined
mathematically, the stability analysis of menisci can allow one to obtain the critical
conditions for the onset of non-axisymmetric instability. A comprehensive review of
the stability of menisci has been presented by Bostwick & Steen (2015).

Inspired by the exotic container, Wente (2011) extended the ‘exotic’ property
to a capillary tube and proposed a non-uniform circular tube, called the exotic
capillary tube (ECT), vertically positioned in an infinite liquid which permits an entire
continuum of equilibrium menisci. Following Wente (2011), Zhang & Zhou (2020)
investigated the interior, exterior and planar cases of ECTs together (collectively called
the exotic cylinder), and then examined their stabilities by the method of Slobozhanin
& Alexander (2003). Results showed that each of the menisci for the exotic cylinder
has the smallest eigenvalue λ01= 0 to axisymmetric perturbations and the menisci are
stable, in contrast to the case of the exotic container. This is because the stability
is sensitive to the constraint on the liquid. The eigenvalue λ is associated with
the second variation of energy and λ < 0 corresponds to instability. For the exotic
containers, only volume-preserving variations (called volume disturbances) of the
interface are allowed because there is a volume constraint. However, for the exotic
cylinders, there is no volume constraint restricting the variations (called pressure
disturbances). For an axisymmetric problem, both pressure and volume disturbances
consist of axisymmetric perturbations and non-axisymmetric perturbations, where
non-axisymmetric perturbations satisfy the volume constraint automatically (i.e. no
added volume constraint is enforced on non-axisymmetric perturbations even for the
constrained problem) (Myshkis et al. 1987).

Then, we discuss why the axisymmetric menisci in the exotic containers are
unstable to non-axisymmetric perturbations while the axisymmetric menisci in the
exotic cylinders are stable. The ‘exotic’ property indicates that the axisymmetric
menisci have the smallest eigenvalue λ01 = 0 to axisymmetric perturbations for
the exotic containers and the exotic cylinders (see Wente 1999; Zhang & Zhou
2020). Myshkis et al. (1987) have shown that for an unconstrained axisymmetric
problem one has λ01 < λ11, where λ11 is the smallest eigenvalue to non-axisymmetric
perturbations, which means that the unconstrained axisymmetric meniscus to
axisymmetric perturbations is less stable than to non-axisymmetric perturbations.
Thus, the unconstrained axisymmetric menisci for the exotic cylinder are stable and
have the smallest eigenvalue λ01 = 0 to pressure disturbances. For a constrained
axisymmetric problem, min(λ01, λ11) is, in general, the smallest eigenvalue, and
λ11 is the smallest eigenvalue in the case of simply connected menisci with Bond
number Bo > 0 (Myshkis et al. 1987). Then we have λ11 < λ01 = 0 for the exotic
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FIGURE 1. Profile of a meniscus meeting a solid at a contact angle θ under gravity g.
There are two directions of gravity: the downward and upward directions corresponding
to positive loads ε=+1 and negative loads ε=−1, respectively. The meniscus is simply
connected when the meniscus touches the axis of symmetry r = 0. The case of an
unconstrained liquid is considered and the water line is fixed at z= 0 so that the pressure
difference 1p=−εz.

container, and therefore the menisci are unstable to non-axisymmetric perturbations.
This conclusion was also drawn by Wente (1999) by examining the second variation
of energy of the planar meniscus in the exotic container to all gravity levels. It was
found that the infimum of the second variation of energy is less than zero. This can
also be explained in that the axisymmetric planar menisci (which are assumed to
exist in the exotic container) always have the relations λ01 > λ11 for all values of the
Bond number (see Myshkis et al. 1987, pp. 140–143) and λ01= 0 due to the ‘exotic’
property.

The ECTs discussed above studied by Wente (2011) and Zhang & Zhou (2020)
need to be vertically positioned correctly in an infinite liquid under positive loads
(gravity down into the liquid) to have the ‘exotic’ property. To ensure the ECT is
in contact with the infinite liquid, there must be an axisymmetric planar meniscus in
the ECT. For negative loads, to our knowledge, the infinite liquid cannot be stable,
though the corresponding ECT shapes can be determined mathematically. To make
the ECTs under negative loads physically meaningful, we set an appropriate constant
pressure at the inlet of the ECT (called a general ECT) instead of placing the ECT in
an infinite liquid even though the above two considerations are in a sense the same
mathematically. Thus, there will not necessarily be an axisymmetric planar meniscus
in the general ECT and the general ECT shapes can be determined under positive and
negative loads. Meanwhile, the stability analysis of axisymmetric menisci in ECTs can
be also extended to the case of negative loads.

2. Theory
We describe the configuration of an unconstrained axisymmetric liquid partially

wetting a solid using the notation shown in figure 1. By introducing cylindrical
coordinates (r, z) with the origin located at the water line, r is the radius from the axis
of symmetry and z is the height of the meniscus from the water line. The meniscus
profile is represented by the parameterized curve (r(s), z(s)) by the introduction of
its arc length s. We scale all lengths by the capillary length l =

√
σ/ρg, curvature

by l−1 and pressure by ρgl, where σ is the surface tension of the interface, ρ is the
density difference between the two fluids and g is the gravitational acceleration.
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2.1. Family of solution curves
As shown in figure 1, there are two directions of gravity for the configuration: the
downward and upward directions corresponding to positive loads ε=+1 and negative
loads ε = −1, respectively. It is well known that the profile of the equilibrium
meniscus is governed by the Young–Laplace equation, which can be expressed in
parametric form (see e.g. Huh & Scriven 1969; Boucher & Evans 1975; Finn 1986):

dr
ds
= cosψ,

dz
ds
= sinψ,

dψ
ds
= εz−

sinψ
r
, (2.1a−c)

where ψ is the inclination angle of the meniscus. The initial conditions for the simply
connected meniscus are

r= 0, z= z0 at s= 0. (2.2a,b)

In practice, the solutions of the linearized Young–Laplace equation r2z′′ + rz′ −
εr2z= 0 (valid at small inclination angles) satisfying (2.2) (Siegel 1980; Finn 1986),

z= tanψ∗I0(r)/I1(r∗), for ε=+1, (2.3a)
z=−tanψ∗J0(r)/J1(r∗), for ε=−1, (2.3b)

are used to determine the initial conditions to avoid the singularity of (2.1c) at r= 0,
where J (I) are the (modified) Bessel functions of the first kind, the subscripts ‘0’
and ‘1’ indicate the orders of the (modified) Bessel functions and r∗ and ψ∗ are the
parameters of the solution curve. Arbitrarily choosing a value of r∗ and a small value
of ψ∗, a solution curve for 06 r 6 r∗ is determined by (2.3). Then substituting r= r∗
into (2.3) gives the initial conditions (r, z, ψ)= (r∗, z∗, ψ∗) for (2.1). The appropriate
value of ψ∗ can be chosen as +0.01◦, leading to z∗ ≈ z0. The cases of ψ∗ =−0.01◦
can be determined easily because of the symmetry with respect to z= 0.

Integrating (2.1) with the initial conditions (r∗, z∗, ψ∗) for a set of values of r∗
and ψ∗ = 0.01◦, two families of solution curves under positive and negative loads
are determined, as shown in figure 2. The solution curves for ε = +1 can also be
determined by integrating a different parametric form of the Young–Laplace equation
(see e.g. Zhang & Zhou 2020), where the parameter is not the arc length s but the
inclination angle ψ . However, this parametric form is not suitable for the case of
ε = −1, because of the singularity of (d/dψ) (i.e. the curvature dψ/ds = 0) at the
inflection points (e.g. the red point in figure 2b).

In figure 2(a,b), a pair (ψ, z0) can be uniquely determined by its coordinates
(r, z) in the regions Λ1 and Λ2 (Wente 2011), because the coordinates (r, z) can
uniquely determine a solution curve and an inclination angle in Λ1 and Λ2. These
two regions (grey shaded areas) in the quadrant of the r–z plane are bounded by
the coordinate axes and the envelopes (ζ1 and ζ2 in figure 2). In these regions, the
Jacobian determinants of (r(ψ, t), z(ψ, t)),

F=
∂r
∂ψ

∂z
∂t
−
∂r
∂t
∂z
∂ψ

, (2.4)

are non-zero and keep the same sign (Finn 1986; Wente 2011). The vanishing of
F locates the envelopes ζ1 and ζ2. As shown in figure 2(a), the envelope ζ1 is
represented by a function z = e1(r), decreasing with r with limr→0+e1(r) = +∞ and
limr→+∞e1(r) = 2 (Wente 2011). In figure 2(b), the envelope ζ2 is represented by a
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FIGURE 2. Two families of solution curves for (2.1): (a) ε = +1 for ψ ∈ [0, π] and
(b) ε = −1 for s ∈ [0, 3]. The shaded areas Λ1 and Λ2 represent the maximal stability
regions. The black lines are the solution curves, which are divided by the envelopes into
two parts: the lower part is denoted by the solid line in the maximal stability regions and
the upper part is denoted by the dashed line. The blue point (r0, 0) is the endpoint of the
envelope ζ2.

function z= e2(r), increasing with r with limr→0+e2(r)=−∞ and e2(r0)= 0 (see the
blue point). The endpoint (r0, 0) of ζ2 can be determined by the asymptotic solution
of the Young–Laplace equation G(z, r, t)= z− tJ0(r)= 0, i.e. (2.3b). By substituting
the asymptotic solution into ∂G/∂t= 0 for determining the envelope (Lawrence 2013),
we have J0(r0)= 0, where r0 ≈ 2.405 is the first zero of J0(r).

Zhang & Zhou (2020) have shown that the envelopes ζ1 and ζ2 are closely related
to meniscus stability. It is known that an envelope of a family of curves is defined as
a curve that touches every member of the family tangentially (Lawrence 2013). The
envelopes also bound the maximal stability regions (Λ1 and Λ2) which correspond
to the maximal possible profiles of stable menisci, called the maximal stable profiles
by Slobozhanin & Alexander (2003). This means that only the meniscus in Λ1 and
Λ2 is likely to be stable, for reasons discussed in § 3.2. Therefore, the points on the
envelope are conjugate points of the Jacobi equation, i.e. the instability points. This
can be explained in that the envelopes can be regarded as ECTs with zero contact
angle, and the menisci in the ECTs correspond to the instability points to pressure
disturbances (Zhang & Zhou 2020). This implies that the shape of the ECT is closely
related to meniscus stability. In the calculus of variations, a similar fact is that if a
family of extremals to a functional through a fixed point has an envelope, then a point
where an extremal intersects the envelope is a conjugate point to the fixed point (see
e.g. Gulliver & Hildebrandt 1986).

2.2. Determination of the shape of ECTs
The shape of the ECT with contact angle θ is the integral curve of the slope field
{cos(ψ + θ), sin(ψ + θ)}, where the scalar fields ψ(r, z) for ε = ±1 are determined
in the regions Λ1 and Λ2, respectively (see figure 2) (Wente 2011). Meanwhile, we
know that the integral curve of the slope field {cosψ, sinψ} is the solution curve of
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the Young–Laplace equation. Thus, following the parametric form (2.1a–c), we can
construct

dx
ds

∣∣∣∣
S

= cos(ψ + θ),
dy
ds

∣∣∣∣
S

= sin(ψ + θ),
dψ
ds

∣∣∣∣
S

= K̃(x, y; θ) (2.5a−c)

to determine the ECT, where (x, y) denotes a point on the generatrix of the ECT in the
r–z plane, K̃(x, y; θ) is the curvature of the integral curve of {cos(ψ + θ), sin(ψ + θ)}
(K̃ < 0 if the solid is convex to the liquid) and (d/ds)|S denotes the directional
derivative along the solid surface, i.e. in the direction (cos(ψ + θ), sin(ψ + θ)).

Then we have

K =
dψ
ds

∣∣∣∣
L

=ψr cosψ +ψz sinψ, (2.6a)

K̃ =
dψ
ds

∣∣∣∣
S

=ψr cos(ψ + θ)+ψz sin(ψ + θ), (2.6b)

where K is the curvature of the integral curve of {cosψ, sinψ}, the subscripts r and
z denote the partial derivatives and (d/ds)|L denotes the directional derivative along
the liquid surface, i.e. in the direction (cosψ, sinψ). Therefore, the partial derivatives
ψr and ψz are related by

ψr cosψ +ψz sinψ = εz−
sinψ

r
. (2.7)

Once ψr or ψz is determined, K̃ in (2.5c) is determined by (2.6b), and then the
shape of the ECT is obtained by integrating (2.5).

The partial derivative ψr can be calculated by integrating (2.1) together with

dψr

ds

∣∣∣∣
L

=
sinψ

r2
+
ψr(ψr − εz cosψ)

sinψ
. (2.8)

The derivation of (2.8) is shown in appendix A. To determine K̃, the boundary
conditions for (2.1) and (2.8) are

r(0)= 0, ψ(0)= 0 and r(s1)= x, z(s1)= y. (2.9a,b)

In summary, there are two systems to be solved for the shapes of the ECTs. The
first system consists of the initial-value problem: equations (2.5) with appropriate
initial conditions, where K̃(x, y; θ) is determined by solving the second system. The
second system consists of the boundary-value problem: equations (2.1) and (2.8) with
the boundary conditions (2.9).

The second system is solved here by the shooting method. Equation (2.1) is
integrated first, using (2.9a) and a guessed value of z(0) as initial conditions, until
r= x. At this point, the boundary condition z= y is generally not satisfied. Then, the
value of z(0) is adjusted by the secant method and this process is repeated until z= y
is satisfied to the desired accuracy. Thus, the appropriate value of z(0) is found to
accommodate the boundary conditions (2.9). Then, we integrate (2.1) and (2.8), using
(ψ, r, z)= (0, 0, z(0)) and the value of ψr at the point (0, z(0)) as initial conditions,
to obtain the value of ψr at (x(s1), y(s1)). Finally, K̃(x, y; θ) is determined by (2.6b)
and (2.7).
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In the above computations, to avoid the singularity of (2.1) and (2.8) at r= 0, the
asymptotic solutions (2.3) are used for determining the initial conditions (ψ∗, r∗, z∗)
at s= r∗ (due to small inclination angles), where the value of ψ∗ is chosen as +0.01◦.
The initial condition for ψr is determined by differentiating (2.3) with r∗ and ψ∗

replaced, respectively, by r and ψ with respect to r.

2.3. Relation to meniscus stability
As discussed in § 1, the unconstrained axisymmetric meniscus is less stable to
axisymmetric perturbations than to non-axisymmetric perturbations (i.e. λ01 < λ11).
Thus, only axisymmetric perturbations are considered in this section. Because
the meniscus is unconstrained, the meniscus stability is with regard to pressure
disturbances. Following the method described by Slobozhanin & Alexander (2003),
the stability of the configuration in figure 1 is investigated by solving the Jacobi
equation in the axisymmetric case:

−ϕ′′0 −
r′

r
ϕ′0 + a(s)ϕ0 = 0, (2.10)

with

a(s)≡ cosψ −K2
−

sin2ψ

r2
, (2.11)

and the initial conditions

ϕ0(0)= 1, ϕ0
′(0)= 0. (2.12a,b)

The points letting ϕ0(sc)= 0 are conjugate points on the boundaries of the regions
Λ1 and Λ2, i.e. the envelopes of the solution curves (see figure 2). In Λ1 and Λ2, the
boundary parameter of the solid (figure 1) is defined as

χ1 ≡
K(s1) cos θ − K̃

sin θ
, (2.13)

where K(s1) is the curvature of the meniscus profile at which the meniscus meets the
solid. The critical value of χ1 is calculated by

χ∗1 =−
ϕ0
′

ϕ0
. (2.14)

By comparing the boundary parameter χ1 and its critical value χ∗1 , the stability of
menisci to pressure disturbances is determined: the equilibrium within the regions Λ1
and Λ2 is stable if χ1 > χ

∗

1 , and is unstable if χ1 < χ
∗

1 (Slobozhanin & Alexander
2003). For a fixed meniscus shape, the meniscus stability is sensitive to the boundary
conditions for the disturbance. For free disturbances (with a free contact line), we
conclude from (2.13) that a convex solid (K̃ < 0) is relatively stable to a planar solid
(K̃= 0), which is relatively stable to a concave solid (K̃> 0). For pinned disturbances
(with a fixed contact line), the meniscus is in contact with a sharp solid edge (i.e.
K̃→−∞) and therefore the meniscus has the boundary parameter χ1→∞. If the
meniscus is in the maximal stability regions Λ1 and Λ2, the meniscus with χ1→∞

is stable.
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The ECT has the boundary parameter χ1 = χ
∗

1 corresponding to each meniscus
because of its ‘exotic’ property, as discussed in § 1. We have verified that χ1 = χ1

∗

for exotic cylinders with ε = +1 by numerically solving (2.10) in a previous study
(Zhang & Zhou 2020). The Jacobi equation (2.10) for ε =+1 is numerically solved
using the spectral parameter power series method (Kravchenko & Porter 2010), which
expresses the general solution of the Sturm–Liouville equation as a spectral parameter
power series.

Substituting (2.6) into (2.13), we obtain the boundary parameter of the ECT:

χ1 = χ
∗

1 =ψr sinψ −ψz cosψ, (2.15)

where ψr and ψz are determined as in § 2.2. This relation provides a convenient
method for calculating the critical value χ∗1 of the boundary parameter for a simply
connected axisymmetric meniscus without solving the Jacobi equation (2.10). This
method was proposed earlier for ε = +1 in Zhang & Zhou (2020), where the
parameter is the inclination angle ψ instead of the arc length s in this work.

There is also a rich geometry surrounding the critical value χ1
∗, which is closely

related to the curvature K̃N of the generatrix of the ECT with θ =π/2:

χ∗1 =−K̃N, (2.16)

which can be easily derived by substituting θ =π/2 into (2.6b) or (2.13). From (2.13),
we can see that the boundary parameter χ1 is related to the contact angle θ , the
curvature K of the meniscus and the curvature K̃ of the solid. However, from (2.15)
we have that the critical value χ∗1 is independent of θ and can be determined uniquely
by its location (r, z) and ε. Thus, if two different ECTs with different contact angles
under the same loads have an intersection point (r, z), their boundary parameters will
be equal at the point (r, z).

3. Results and discussion
Using appropriate initial conditions for the mathematical model described in § 2.2,

the general ECTs are determined and investigated. Then the critical values χ∗1 of
the boundary parameters are calculated using the method proposed in § 2.3 for the
configuration in figure 1.

3.1. General ECTs
Wente (2011) investigated ECTs that permit a flat disc-shaped meniscus. These ECTs
are proposed under the consideration that the ECTs are positioned in an infinite liquid
bath under positive loads (i.e. the case of ε=+1 in figure 1), and the ECT shapes are
parts of the entire integral curves of {cos(ψ + θ), sin(ψ + θ)} for ε =+1. Following
Wente (2011), we consider a non-uniform circular capillary tube (called a general
ECT) with a specific shape that has constant pressure at the inlet and also permits an
entire continuum of equilibrium menisci in itself. Thus, each integral curve for ε=+1
and ε=−1 corresponds to a general ECT.

Figure 3(a–d) shows the integral curves (black thick lines) of the slope fields
{cos(ψ + θ), sin(ψ + θ)} for ε = +1, −1 and θ = 45◦, 90◦. These integral curves
intersect the menisci (thin lines) at a constant angle θ (i.e. the ‘exotic’ property). In
figure 3(a,b), the integral curves for ε=+1 and θ = 45◦, 90◦ can be divided into five
types depending on the number and locations of the endpoints: (i) one endpoint is
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FIGURE 3. Integral curves of {cos(ψ + θ), sin(ψ + θ)} (thick lines) and {cosψ, sinψ}
(thin lines): (a) ε =+1, θ = 45◦; (b) ε =+1, θ = 90◦; (c) ε =−1, θ = 45◦; (d) ε =−1,
θ = 90◦. There are five types of integral curves for ε=+1 (a,b) and three types of integral
curves for ε=−1 (c,d). The regions of integral curves of different types are separated by
their boundaries (blue dashed lines). Typical general ECT shapes (black solid lines) for
(e) ε=+1 and ( f ) ε=−1 are depicted, which intersect the menisci (red dashed lines) at
a constant angle θ .

on the positive half-axis of z (region I); (ii) one endpoint is on the negative half-axis
of z (region II); (iii) two endpoints are on the negative half-axis of z and the lower
envelope (red thick line), respectively (region III); (iv) one endpoint is on an envelope
(region IV); and (v) there is no endpoint (region V). The integral curves in II and
V which have been studied by Wente (2011) intersect the r axis and correspond to
the ECTs that permit a flat disc-shaped meniscus. The integral curves in V which
have no endpoint appear only when θ = 90◦. In I, III and IV, the integral curves
do not intersect the r axis and the corresponding ECTs are connected to a liquid
which has a constant pressure at the inlet, rather than are vertically positioned in
an infinite bath, to process the ‘exotic’ property (see figure 3e). Therefore, these
general ECTs, extended from the ordinary ECTs studied by Wente (2011), can be
seen as non-uniform circular nozzles connected to a liquid bath which has a constant
pressure at the inlet. The general ECTs can also be constructed under negative loads
(ε = −1), as shown in figure 3(c,d, f ). The integral curves for ε = −1 and θ = 45◦,
90◦ can be divided into three types depending on the number and locations of their
endpoints: (i) two endpoints are on the positive half-axis of z and the upper envelope,
respectively (region I−); (ii) two endpoints are on the negative half-axis of z and
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the upper envelope, respectively (region II−); and (iii) two endpoints are on two
envelopes, respectively (region III−). Only the curves in region I− do not intersect the
r axis. The above classifications for θ =π/4 can be extended to the case θ ∈ (0,π/2).
The supplementary cases of π− θ can be obtained by reflecting the cases of θ about
z= 0.

In the study of Wente (2011), the ordinary ECTs (in II and V) have a surprising
behaviour whereby lowering the ECT slightly from its natural position (as shown
in figure 3e) causes the ECT to completely fill up, while raising the ECT slightly
forces the ECT to drain out. Wente (2011) proved the above results by comparing
the energies, E(Ω1) and E(Ω), of the configurations with a meniscus Ω1 (the profile
of which is the integral curve of {cosψ, sinψ} and meets the ECT at a contact angle
θt) and an admissible meniscus Ω , where the ECT has a natural contact angle θn.
Here the contact angle θt denotes the intersection angle between the meniscus and
the ECT and may not equal θn. It was found that E(Ω1) < E(Ω) when θt < θn and
Ω lies above Ω1 (or when θt > θn and Ω lies below Ω1). Wente (2011) also showed
that if the ECT with contact angle θn is shifted upward then the new contact angle
θt will satisfy θt < θn, and if the tube is shifted downward then we will have θt > θn.
Therefore, when raising the ECT slightly, there is always a meniscus with θt <θn and
a lower energy below any admissible meniscus, which implies that the fluid is unable
to remain inside the ECT and must flow out. An analogous situation that the fluid
fills up the ECT occurs when lowering the ECT slightly.

Motivated by the above observations, the general ECTs also have a similar
behaviour whereby lowering the pressure at the ECT inlet slightly from the value
p=−εz causes the ECT to completely drain out, while raising the pressure slightly
forces the ECT to fill up. This is because raising and lowering the pressure are
equivalent to lowering and raising the ECT for the case of ε =+1, respectively. We
note that the shifted ECT (e.g. in region III in figure 3a) may not locate in the
extremal field (bounded by two envelopes and the z axis) and the meniscus on the
part not in the extremal field is always unstable and has a higher energy. Thus, the
above results can be extended to the case of ε=+1. For the case of ε=−1, raising
the pressure is equivalent to raising the ECT, while lowering the pressure corresponds
to lowering the ECT. Contrary to the case of ε =+1, raising the ECT with ε =−1
will lead to θt > θn, and lowering the ECT corresponds to θt < θn. The conclusion
that E(Ω1) < E(Ω) when θt < θn and Ω lies above Ω1 (or when θt > θn and Ω lies
below Ω1) still holds true for the case of ε=−1. Therefore, raising and lowering the
pressure will lead to the filling and drainage in the ECT for both the cases ε = +1
and ε=−1, respectively. This surprising behaviour implies that the ECT is sensitive
to pressure.

3.2. Critical values χ∗1 for ε=±1
Figure 4 shows the contour lines of χ∗1 (red lines) and the menisci (black lines). As
discussed in § 2.3, the critical value χ∗1 is related to the shape of the ECT with θ =
π/2 by χ∗1 =−K̃N . Thus, the points on the line χ∗1 = 0 in figure 4(a) are the inflection
points of the ECTs with θ =π/2 for ε=+1, and there is no inflection point on the
ECT with θ =π/2 for ε=−1. The contour lines χ∗1 =+∞ are the envelopes of the
solution curves because the envelopes can be seen as ECTs with θ = 0 which have
the boundary parameters χ1 =+∞.

The critical value χ∗1 can be used to determine the meniscus stability to pressure
disturbances. For a simply connected axisymmetric meniscus with arbitrary contact
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FIGURE 4. Contour lines (red lines) of χ∗1 for (a) ε = +1 (see also figure 4 in Zhang
& Zhou (2020)) and (b) ε =−1. The black lines are the solution curves of the Young–
Laplace equation. The values of χ∗1 for the contour lines along the arrow direction are
given in each box from top to bottom.

angle θ wetting a solid, the boundary parameter χ1 is calculated by (2.13) and then
is compared to its critical value χ∗1 (i.e. the value at the contact point in figure 4).
It is shown that the equilibrium within regions Λ1 and Λ2 is stable if χ1 > χ∗1 ,
and is unstable if χ1 < χ∗1 (Slobozhanin & Alexander 2003). It is noted that only
the meniscus in the maximal stability regions Λ1 and Λ2 can be stable to pressure
disturbances because the envelopes (i.e. the boundaries of Λ1 and Λ2) correspond to
χ∗1 =+∞.

To illustrate how to determine the meniscus stability by comparing χ1 and χ∗1 , we
examine the stability of the planar meniscus in a vertical straight circular tube with
contact angle θ = π/2 and radius R for both positive and negative loads. For this
configuration, substituting K̃ = 0 and K = 0 into (2.13) gives the boundary parameter
χ1 = 0. By comparing χ1 and χ∗1 (see figure 4), it is found that the planar meniscus
in the tube with an arbitrary radius R is stable for positive loads and is unstable for
negative loads.

4. Conclusions

A mathematical model for determining the general ECT shapes under positive and
negative loads has been proposed by following the parameterized Young–Laplace
equation (2.1), where the curvatures of the ECTs are determined by the system of
ordinary differential equations (2.1) and (2.8). There are five types of ECTs for ε=+1
and three types for ε = −1 (see figure 3). The general ECTs, which are extended
from the ordinary ECTs studied by Wente (2011), can be seen as non-uniform
circular nozzles connected to a liquid bath which has a constant pressure at the inlet.
The ECT has a surprising behaviour whereby lowering the pressure at the ECT inlet
slightly from the value p=−εz causes the ECT to completely drain out, while raising
the pressure slightly forces the ECT to fill up. This surprising behaviour implies that
the ECT is sensitive to pressure.
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Because the ECTs have a boundary parameter that is equal to the critical value
χ∗1 , the curvatures K̃N of the ECTs with θ = π/2 are related to the critical value by
χ∗1 =−K̃N . This relation provides a convenient method for calculating the critical value
χ∗1 of the boundary parameter for a simply connected axisymmetric meniscus without
solving the Jacobi equation (2.10).
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Appendix A
We know that

dψr

ds

∣∣∣∣
L

=ψrr cosψ +ψrz sinψ. (A 1)

Differentiating (2.6a) with respect to r gives

∂

∂r

(
dψ
ds

∣∣∣∣
L

)
=ψrr cosψ +ψrz sinψ −ψr

2 sinψ +ψrψz cosψ. (A 2)

Comparing (A 1) and (A 2), one finds

dψr

ds

∣∣∣∣
L

=
∂

∂r

(
dψ
ds

∣∣∣∣
L

)
+ψr

2 sinψ −ψrψz cosψ. (A 3)

Differentiating (2.1c) with respect to r, we have

∂

∂r

(
dψ
ds

∣∣∣∣
L

)
=

sinψ − rψr cosψ
r2

. (A 4)

Substituting (A 4) into (A 3), we obtain

dψr

ds

∣∣∣∣
L

=
sinψ

r2
+
ψr (ψr − εz cosψ)

sinψ
. (A 5)
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