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SUMMARY
In this study, we analyze the influence of passive joint viscous friction (PJVF) on modal space
decoupling for a class of symmetric spatial parallel mechanisms (SSPM). The Jacobian matrix
relating the platform movements to each passive joint velocity is first gained by vector analysis and
the passive joint damping matrix is then derived by applying the Kane method. Next, an analytic
formula index measuring the degree of coupling effects between the damping terms in the modal
coordinates is proposed using classical modal analysis of dynamic equations in task space. Based on
the index, a new optimal design method is found which establishes the kinematics parameters for
minimizing the coupling degree of damping and achieves optimal fault tolerance for modal space
decoupling when all struts have identical damping and stiffness coefficients in their axial directions.
To illustrate the effectiveness of the theory, the new method was used to redesign two configurations
of a specific manipulator.

KEYWORDS: Passive joints; Kane method; Coupling; Optimal design method; Modal space
decoupling.

Nomenclature

ai the vector of the upper joint point
bi the vector of the lower joint point
ra distribution radius of upper joint points
rb distribution radius of lower joint points
α the half central angle for the upper joints
β the half central angle for the lower joints
H the height between the upper and lower joint plane
h the height of the payload center
Mt inertia matrix in task space
Bt damping matrix in task space
Kt stiffness matrix in task space
Jlx Jacobian matrix
l the length vector of the actuator
x the vector of the platform position
q the modal coordinate
δ the index based on the modal damping matrix
U the modal matrix
� the modal frequency matrix
D the modal damping matrix
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f the generalized damping forces of the system
f∗ the generalized active forces of the system
Tpj the friction torque of the passive joint j
Bpj the damping coefficient of the passive joint j
ωpj the angular velocity of the passive joint j
Jpj,x Jacobian matrix relating the j passive joint velocity to

platform velocity
Bcri, Bcdi1, Bcdi1, Bcdi2, Bcui1, Bcui2 the damping coefficients of the related passive joints,

respectively
Jr,i , Jdi1,x ,Jdi2,x, Jui1,x, Jui2,x the Jacobian matrix relating the related passive joint velocity

to platform velocity, respectively
ln,1 the unitary direction vector of the first leg
v1 the vector representing ln,1× a1

m the mass of the payload
Ixx, Iyy, Izz the moments of inertia of the payload
Md modal mass matrix
D⊥ the coupling term of the modal damping matrix D
Do the proportional damping term of the modal damping

matrix D
θ damping coupling angle
n radius ratio
w1, w2, w3, w4, w5 weighting factors
Ccd1, Ccd2, Ccu1, Ccu2, Ccr the normalized damping matrices of the related passive

joints, respectively

1. Introduction
In the past few decades, parallel mechanisms have attracted a great deal of attention, and this
technology has seen a variety of applications, such as in motion simulators, micro positioning
devices, and vibration isolation platforms. This focus on parallel mechanisms is primarily driven
by their high load/mass ratio capability and the potential for high precision.1,2,3 However, the
system couplings resulting from the complex dynamic characteristics of such parallel manipulators
may degrade the control performance (lower system precision and have undesired cross-coupling
outputs), which means changing one input to control its corresponding output will affect other
outputs.

In the literature, pioneering attempts4,5 have been undertaken to decouple multiple-input multiple-
output (MIMO) plants into single-input single-output (SISO) plants. McInroy4 proposed two
decoupling algorithms by combining static input–output transformations with hexapod geometric
design. Chen and McInroy,5 then proposed a modal space decoupled controller which maps
input–output variables from the joint space to the decoupled modal space using singular value
decomposition of the joint space inverse mass matrix. McInroy6 proposed a design method to get
the dynamically decoupled and equalized manipulator. Plummer,7,8,9,10 presented a modal position
controller for improving the performance of an electro-hydrostatic flight simulator motion system. In
all these cases, the system is simplified as a proportional damping system where passive joint viscous
friction (PJVF) is simply ignored, because of the size and motion amplitudes of the passive joints.
However, not every parallel mechanism necessarily has small and frictionless passive joints. Thus, a
PJVF system becomes a damping coupling system.

It is clear that systems with damping coupling can be decoupled within the framework of state-
variable models,11,12,13 but these models lack the transparency of the usual second-order models, and
hence, have not found their way into daily engineering practice.

Engineers feel more comfortable when working with proportional damped systems. However,
to the best of our knowledge, no one has yet built a PJVF model and determined the relationship
between the degree of coupling effects caused by PJVF and the kinematics parameters for symmetric
spatial parallel mechanisms (SSPM) considered in this study, which will lead to an optimal design
method.
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Fig. 1. Schematic of a symmetric spatial parallel mechanism (SSPM) with 2p struts.

In this paper, we propose a new optimal design method to reduce the coupling between modal
coordinates due to joint damping and achieve optimal fault tolerance for modal space decoupling by
choosing the geometry of parallel mechanisms.

This paper is organized as follows. Section 2 presents a concise survey on the theory of modal
decoupling. This survey sets up the terminology and notation used throughout the paper. In Section 3,
the explicit dynamic modal including PJVF and an analytical formulation of a modal matrix in
task space for the SSPM is derived. An index measuring the degree of coupling effects between
the damping terms in the modal coordinates is expressed in analytical form as functions of the
configuration parameters. In Section 4, the relationship between the degree of coupling effects caused
by each part of the PJVF and geometry configuration parameters, is explored. In Section 5, the optimal
conditions, including optimal function and optimization constraints, are discussed and an optimal
design method is proposed for determining the geometry configuration parameters using an iterative
procedure. Finally, we present our conclusions.

2. Problem Formulation
Figure 1 shows a class of symmetric parallel mechanisms with N = 2p (p ∈ Z, Z is the set of
positive integers, and p ≥ 3) actuators under study. In this manipulator, the spatial motion of the
moving platform is generated by 2p piston–cylinder actuators. Each piston–cylinder actuator consists
of two parts connected by a universal joint. The actuators are connected to the fixed base and the
moving platform by universal joints at points ai and bi , where i = 1 . . . 2p. The upper and lower joint
points ai and bi are located on circles with radii of ra and rb (C and C’ are the centers of these two
circles). Figure 1 shows the inertial coordinates {B}: O-XYZ in the base and fixed coordinates {M}:
O′-X′Y′Z′ in the moving platform. α and β denote the half central angle for the upper and lower
joints. The height between the upper and lower joint plane is H . The height of the payload center
is h.

In this paper, the proportional viscous friction in the passive joints is considered, then the vibration
equation in the task space for the SSPM is:

Mt ẍ + Bt ẋ + Ktx = 0, (1)

where Mt is a 6× 6 inertia matrix in task space, Bt is a 6× 6 damping coefficient matrix caused by
PJVF, Kt = JT

lxKlJlx , Jlx is a 2p× 6 Jacobian matrix relating the platform velocities to the actuator
length rates in the joint space, Jlx ẋ = l̇.Kl = diag(kli), kli is the stiffness coefficient of the ith leg,
and i = 1. . .2p.
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The differential matrix Eq. (1) is highly coupled. The ith component equation involves not only xi

and its derivatives but also other coordinates and their derivatives.
Now let U be a modal matrix that satisfies:

x = Uq. (2)

In terms of the principal coordinate q, the equation for damped free vibration takes the canonical
form:

q̈ + Dq̇ + �2q = 0, (3)

where � =
√

UT(M−1
t Kt )U is the modal frequency matrix and D = UT(M−1

t Bt )U is the modal
damping matrix.

A system has proportional damping if it can be decoupled by a real modal matrix U, whereby the
modal damping matrix D is diagonal. A system is proportionally damped if Bt = αMt + βKt , where
α and β are constants. However, because of passive viscous friction, there is no reason the condition
should be satisfied.

Over the years, various types of decoupling approximations were employed in the analysis of
damped systems.20–22 Several indices for the quantification of damping coupling were also proposed
in.23–26 These indices can be classified into two types: one based on individual complex modes and
one based on the modal damping matrix or mass-normalized damping matrix. The indices based on
the modal damping matrix are of analytical value if the modal damping matrix is known.

The index proposed in26 is defined as:

δ =
6∑

i=1

6∑
j=1,j �=i

∣∣Dij

∣∣/ 6∑
i=1

6∑
j=1

∣∣Dij

∣∣. (4)

If δ = 0, damping is proportional and if δ � 1, the system can be considered as a proportional
damping system.

To design so that D is a diagonal approximation, parameters must be chosen to ensure the index
δ is small enough, and we need to find an optimal configuration as close to the ideal proportional
damped configuration as possible with simultaneously fewer coupling effects in modal space.

3. Classical Modal Analysis
In this section, a classical modal analysis is used to obtain an analytic formula index which measures
the degree of coupling effects of the modal damping matrix D.

3.1. Passive joints viscous friction modeling for SSPM
In the literature, closed form dynamic equations for SSPM assuming rigid legs, a stationary base
and frictionless passive joints were derived using the Newton–Euler,14,15 Lagrange,16,17 or Kane
methods.18,19 However, to characterize the PJVF influence, the model for the SSPM including PJVF
must first be established.

Viscous friction forces have a simple equation:

Tpj = Bpjωpj , (5)

where Tpj is the friction torque of the passive joint j, and Bpj and ωpj are the corresponding damping
coefficient and angular velocity respectively.

To calculate the viscous friction force in the passive joint j, it is necessary to determine the angular
velocity. Its explicit formulation is derived in Appendix A by vector analysis of the kinematics.Explicit
PJVF formulation is derived using the Kane method. The Kane method is a projection method, this
method in which all active forces and damping forces are projected along a limited set of generalized
velocities, will be central in the derivation of the motion system mechanical model. Considering only
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PJVF of SSPM, the Kane equation can be expressed as:

f + f ∗ = 0, (6)

where f and f ∗ are the generalized damping forces and active forces of the system.
Choosing the platform velocity ẋ as the generalized velocity for the system, the generalized

damping forces of a SSPM can be projected along the generalized velocity by:

f =
N∑

j=1

J T
pj,xTpj , (7)

where Jpj,x is a Jacobian matrix relating the passive joint velocity to platform velocity.
Combining Eqs. (5) and (6), gives Eq. (7) written as:

f =
2p∑
i=1

(
BcriJT

r,iJr,i + Bcdi1JT
di1,xJdi1,x + Bcdi2JT

di2,xJdi2,x + Bcui1JT
ui1,xJui1,x + Bcui2JT

ui2,xJui2,x

)
ẋ,

(8)
where Bcri , Bcdi1, Bcdi2, Bcui1, and Bcui2 reflect the damping coefficients of the ith passive joints.

The generalized active forces for the system can be expressed as:

f ∗ = Bt ẋ. (9)

Inserting Eqs. (8) and (9) into the Kane Eq. (6) gives the explicit passive joint damping matrix in
task space derived as:

Bt =
2p∑
i=1

(
BcriJT

r,iJr,i + Bcdi1JT
di1,xJdi1,x + Bcdi2JT

di2,xJdi2,x + Bcui1JT
ui1,xJui1,x + Bcui2JT

ui2,xJui2,x

)
.

(10)
If the passive joints are assumed to have identical damping coefficients in each axial direction, a

concise expression for Bt is obtained, which is derived in Appendix B:

Bt =
[

diag([Btx Bty Btz]T) ρ̃ t

−ρ̃ t diag([Btxx Btyy Btzz]T)

]
. (11)

where ρ̃ t =
⎡
⎣ 0 −ρtz 0

ρtz 0 0
0 0 0

⎤
⎦ .

3.2. Classical Modal decoupling
Modal matrix U and frequency matrix � can be obtained by solving the Eigen problem:

Ktu = λMtu. (12)

The undamped Eigen problem, Eq. (12), has been solved by Jiang et al.27 in joint space, and HE
Jing-feng et al.28 in task space, when it was supposed that the platform is at a neutral pose, the inertial
effects of all the actuators are not considered, the origins O′(O) of the coordinate systems are placed
at the center of gravity (COG) of the payload and the 2p actuators have identical stiffness, i.e., kli = k.

Using their results, the frequency matrix � can be obtained when using the unitary direction vector
ln,1 = [ ln1x ln1y ln1z ]T and the vector v1 = [ v1x v1y v1z ]T of the first leg:

� =
√

k · M−1
d , (13)
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where M−1
d = diag([λ1 λ2 λ3 λ4 λ5 λ6 ]),

λ1 = 2pv2
n1z

Izz

λ2 = p

2m

(
m

Ixx

(
v2

1x + v2
1y

) + l2n1y + l2n1x −
((

m

Ixx

(
v2

1y − v2
1x

) + l2n1x − l2n1y

)2

+ 4

(
m

Ixx

v1yv1x − ln1x ln1y

)2
) 1

2

⎞
⎠

λ3 = p

2m

(
m

Ixx

(
v2

1x + v2
1y

) + l2n1y + l2n1x +
((

m

Ixx

(
v2

1y − v2
1x

) + l2n1x − l2n1y

)2

+ 4

(
m

Ixx

v1yv1x − ln1x ln1y

)2
) 1

2

⎞
⎠

λ4 = 2pl2n1z

m

λ5 = p

2m

(
m

Iyy

(
v2

1x + v2
1y

)
+ l2n1y + l2n1x −

((
m

Iyy

(
v2

1y − v2
1x

) + l2n1x − l2n1y

)2

+ 4

(
m

Iyy

v1yv1x − ln1x ln1y

)2
) 1

2

⎞
⎠

λ6 = p

2m

(
= m

Iyy

(
v2

1x + v2
1y

)
+ l2n1y + l2n1x +

((
m

Iyy

(
v2

1y − v2
1x

) + l2n1x − l2n1y

)2

+ 4

(
m

Iyy

v1yv1x − ln1x ln1y

)2
) 1

2

⎞
⎠ ,

m is the mass of the payload, Ixx , Iyy , Izz are the moments of inertia of the payload, and

v1x = ln1za1y − ln1ya1z, v1y = ln1xa1z − ln1za1x, v1z = ln1ya1x − ln1xa1y

We then find an explicit formula for the modal matrix expressed as:

U = 1√
pln1zv1z

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −v1y sin ψ − v1x cos ψ v1x sin ψ − v1y cos ψ

0 v1y sin ϕ − v1x cos ϕ v1y cos ϕ + v1x sin ϕ 0 0 0
0 0 0 v1z√

2
0 0

0 ln1y cos ϕ + ln1x sin ϕ ln1x cos ϕ − ln1y sin ϕ 0 0 0
0 0 0 0 ln1x sin ψ − ln1y cos ψ ln1x cos ψ + ln1ysinψ

ln1z√
2

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (14)
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where

cos ϕ = t1√
t2
1 + 1

, sin ϕ = 1√
t2
1 + 1

t1 = 1

2

m
Ixx

(
v2

1x − v2
1y

)
+ l2n1y − l2n1x +

((
m
Ixx

(
v2

1y − v2
1x

)
+ l2n1x − l2n1y

)2
+ 4

(
m
Ixx

v1yv1x − ln1x ln1y

)2
) 1

2

− m
Ixx

v1yv1x + ln1x ln1y

cos ψ = t2√
t2
2 + 1

, sin ψ = 1√
t2
2 + 1

t2 = 1

2

m
Iyy

(
v2

1x − v2
1y

)
+ l2n1y − l2n1x +

((
m
Iyy

(
v2

1x + v2
1y

)
+ l2n1y + l2n1x

)2
− 4 m

Iyy

(
ln1xv1x + ln1yv1y

)2
)1/2

m
Iyy

v1yv1x − ln1x ln1y

.

The modal matrix U is orthogonal with respect to either Mt or Kt , which means UTMtU = Md

and UTKtU = kE6×6, and E6×6 is a six order identity matrix.

3.3. Coupling index of viscous damping
Using modal matrix U, the modal damping matrix can be obtained:

D = UT
(
M−1

t Bt

)
U = M−1

d

(
UTBtU

)
. (15)

Combining Eqs. (11) and (13) gives Eq. (15) expressed as:

D =
[

�1 03×3

03×3 �2

]
, (16)

where

�1 =
⎡
⎣Dzz 0 0

0 Dxxy ρxxy

0 ρyxx Dyxx

⎤
⎦ , �2 =

⎡
⎣Dz 0 0

0 Dyyx ρyyx

0 ρxyy Dxyy

⎤
⎦

Dzz = λ1BtzzU
2
61, Dz = λ4BtzU

2
34

Dxxy = λ2
(
BtyU

2
22 + BtxxU

2
42 + 2ρtzU22U42

)
, Dyxx = λ3

(
BtyU

2
23 + BtxxU

2
43 + 2ρtzU23U43

)
Dyyx = λ5

(
BtxU

2
15 + BtyyU

2
55 − 2ρtzU15U55

)
, Dxyy = λ6

(
BtxU

2
16 + BtyyU

2
56 − 2ρtzU16U56

)
ρxxy = λ2

(
BtyU22U23 + BtxxU42U43 + ρtz (U22U43 + U23U42)

)
ρyxx = λ3

(
BtyU22U23 + BtxxU42U43 + ρtz (U22U43 + U23U42)

)
ρyyx = λ5

(
BtxU15U16 + BtyyU55U56 − ρtz (U15U56 + U16U55)

)
ρxyy = λ6

(
BtxU15U16 + BtyyU55U56 − ρtz (U15U56 + U16U55)

)
Eq. (16) gives the coupling indices of the modal damping matrix D, from which we can clearly

distinguish the coupling effects in modal space. Note that the degrees of freedom (DOFs) of heave
(z) and yaw (rz) are still decoupled, but the DOFs of surge (x) and pitch (ry), as well as sway (y) and
roll (rx), which are fully decoupled when ignoring PJVF, are now coupled because of ρxxy and ρyxx ,
and ρyyx and ρxyy .

Define D⊥ = |ρxxy | + |ρyxx | + |ρyyx | + |ρxyy | as coupling term and Do = Dzz + Dxxy + Dyxx +
Dz + Dyyx + Dxyy as proportional damping term of the system and then the coupling term can be
considered as perpendicular to the proportional damping term, seen in Fig. 2.
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Fig. 2. The angle between coupling term D⊥ and proportional damping term Do.

According to the triangle theory and combining Eq. (4), the angle between coupling term and
proportional damping term can be expressed as:

θ = arctan

(
D⊥
Do

)
= arctan

( |ρxxy | + |ρyxx | + |ρyyx | + |ρxyy |
Dzz + Dxxy + Dyxx + Dz + Dyyx + Dxyy

)
, (17)

where θ is an analytic formula for quantifying the coupling effects of viscous damping and 0◦ ≤ θ <

90◦. When θ = 0◦ the system becomes a proportional damped system.
For ease of analysis, the index θ can be expressed as a function of the configuration parameters

(ra, rb, h, H, L, α, β) and the payload inertial parameters (m, Ixx, Iyy, Izz):

ln,1 = [
ln1x ln1y ln1z

]T =
[
racosα − rbcos

(
π
p

− β
)

rasinα − rbsin
(

π
p

− β
)

−H
]T

/L,

(18a)

where L denotes the strut length and L =
√

r2
a + r2

b − 2rarbcos(π
p

− α − β) + H 2.

a1 = [
a1x a1y a1z

]T = [ racosα −rasinα h ]T. (18b)

Substituting Eq. (18) into Eq. (17) we obtain:

θ = f (ra, rb, h, H, L, α, β, m, Ixx, Iyy, Izz). (19)

Equation (19) means the configuration parameters are related to the degree of coupling caused
by PJVF, which means we can redesign a system for minimizing the degree of coupling of viscous
damping by changing the geometric design parameters.

4. The relationship between the degree of coupling caused by PJVF and the kinematic
parameters
Defining radius ratio n:

n = ra

rb

. (20)

Then, the kinematic parameters become the five elements n, h, H, α, β, but it is still too complex
to find the relationship between these elements and the degree of coupling caused by PJVF. For ease
of analysis, we divided the kinematics parameters into two groups:

Case A: where H, α, β are fixed parameters and n, h are variable quantities.
Case B: where H, n, h are fixed parameters and α, β are variable quantities.
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Equation (19) then becomes a two-element optimizing problem:

θ = f (n, h), (21)

Or:

θ = f (α, β). (22)

However, it is difficult to consider θ in a concise symbolic form at this stage. Next, we give a
numerical example to demonstrate the relationship between these elements and the degree of coupling
caused by PJVF.

We give the configuration parameters of the Delft SIMONA motion system (data adopted from
the literature19) as follows (see Table I):

Table I. Configuration parameters.

Parameters Descriptions Values Units

Ra Distribution radius of upper joint points 1.60 m
Rb Distribution radius of lower joint points 1.65 m
H Platform height in neutral position 2.20 m
h Height of payload mass center −0.23 m
m Payload mass 2600 kg
IXX Moment of inertia 2300 kg m2

IYY Moment of inertia 2300 kg m2

IZZ Moment of inertia 3800 kg m2

α Half of the distributing angle for the upper joints 0.0625 rad
β Half of the distributing angle for the lower joints 0.1828 rad

Note that Bt is a linear combination of five parts, including Bcd1, Bcd2, Bcu1, Bcu2, Bcr , and the
relationship between each part’s influence on the coupling effects in modal space and on the kinematics
parameters are depicted in Figs. 3 and 4.

We can clearly distinguish the degree of coupling effect caused by each part of PJVF which is the
white point in Figs. 3 and 4. Note that each part of PJVF has different degrees of coupling for the
same configuration parameters and the received optimal result is not a single point but an area which
is blue in Figs. 3 and 4.

5. An Optimal Design Method
The index θ in analytical form allows us to scrutinize the relationship between configuration
parameters and the degree of coupling caused by PJVF. We shall see that θ becomes a two-
element optimizing problem by selecting proper restricted conditions. In this section, we present
a novel optimal design method for minimizing the coupling effects of PJVF. First we discuss optimal
conditions and then we list the optimal design procedures.

5.1. Optimal Conditions
According to the analysis of Section 4.1, when choosing n and h or α and β as optimal parameters,
we can achieve minimized coupling effects for the PJVF. Thus, Eqs. (21) and (22) are taken as the
functions for optimal design.

Considering each part of the PJVF, the normalized PJVF is expressed as:

Bt = w1Ccd1 + w2Ccd2 + w3Ccu1 + w4Ccu2 + w5Ccr , (23)

where w1, w2, w3, w4, w5 are normalized weighting factors. Different weighting factors means
different damping coefficients of each part of the PJVF

Note that although Eq. (23) is derived from the limb type of UCU (universal-cylindrical-
universal), it still can be used for other limb types such as SPS (spherical-prismatic-spherical),
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Fig. 3. The relationship between the degree of coupling caused by each part of PJVF and the parameters n, h.

UPS (universal-prismatic-spherical) or SPU(spherical-prismatic-universal) because

Ccd =
2p∑
i=1

(JT
di,xJdi,x) = Ccd1 + Ccd2 and Ccu =

2p∑
i=1

(JT
ui,xJui,x) = Ccu1 + Ccu2.

In other words, assuming w1 = w2, the damping matrix caused by the lower spherical joint can be
expressed as w1Ccd1 + w2Ccd2 and assuming w3 = w4, the damping matrix caused by the upper
spherical joint can be expressed as w1Ccd1 + w2Ccd2.

Two groups of optimization constraints were chosen in Section 4.1, but in practice, the strut length

L may be used as an optimization constraint. With L =
√

r2
a + r2

b − 2rarbcos(π
p

− α − β) + H 2,
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Fig. 4. The relationship between the degree of coupling caused by each part of PJVF and the parameters α, β.

another group of optimization constraints can still be used when the platform height in neutral
position H is substituted by strut length L in Case A or Case B mentioned in Section 4.

5.2. Optimal design procedures
The above optimal conditions provide a solid foundation for a novel optimal design method for
minimizing the coupling effects of PJVF. The iterative design procedures are listed as follows:

(a) Choose limb types (UCU, SPS, SPU, UPS) and Weighting Factors w1, w2, w3, w4, w5.
(b) Choose optimization constraints

(Option a): H, m, Ixx, Iyy, Izz

(Option b): L, m, Ixx, Iyy, Izz

https://doi.org/10.1017/S0263574714000526 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000526


Modal space decoupled optimal design for a class of SSPM 839

Table II. Case A’s Configuration parameters.

Parameters Descriptions Values Units

Ra Distribution radius of upper joint points 0.56 m
Rb Distribution radius of lower joint points 1.20 m
L Strut length 1.83 m
h Height of payload mass center −0.16 m
m Payload mass 295.54 kg
IXX Moment of inertia 36.7075 kg m2

IYY Moment of inertia 40.0476 kg m2

IZZ Moment of inertia 67.1330 kg m2

α half the distributing angle for the upper joints 0.2343 rad
β half the distributing angle for the lower joints 0.1886 rad

Table III. Case B’s Configuration parameters.

Parameters Descriptions Values Units

Ra Distribution radius of upper joint points 2.1148 m
Rb Distribution radius of lower joint points 2.5170 m
L Strut length 3.41 m
h height of payload mass center −1.772 m
m Payload mass 13642 kg
IXX Moment of inertia 46477.1 kg m2

IYY Moment of inertia 49396.1 kg m2

IZZ Moment of inertia 53865.0 kg m2

α Half the distributing angle for the upper joints 0.0541 rad
β Half the distributing angle for the lower joints 0.0454 rad

(c) According to the optimal function Eq. (21), and assuming α = β = 0, draw a 3D map which
reflects the relationship between n, h, and θ , and find an acceptable optimal result n and h.

(d) According to the optimal function Eq. (22), draw a 3D map which reflects the relationship
between α, β, and θ , and find an acceptable optimal result for α and β.

(e) Combining other technical specifications such as workspace volume, manipulability, dexterity,
singularity, accuracy, actuator interference, and dynamic isotropy,29 if some modifications are
needed, return to step (b) and start another design iteration.

Next, we use an example to illustrate how to discover the architecture parameters based on the
above design procedures. We obtained a Stewart–Gough platform (SGP) for the case p = 3, considered
the influence of the payload inertial parameters, and used two configurations of SGP. Case A has
small inertial parameters and Case B has larger inertial parameters, as shown in Tables II and III.

The redesign problem can now be described as: for each case, given the above inertial parameters of
the payload, find a Stewart–Gough platform such that it is as close to a proportional damping system
as possible. The limb type is UCU and the weighting factors are: w1 = w2 = w3 = w4 = w5 = 1.

For Case A, we choose Option (b) which means the strut length is fixed. Using Eq. (20), we drew
the 3D map depicted in Fig. 5.

The white circle point denotes the index θ . As can be deduced from Fig. 5, the index θ is 26.47◦,
and the kinematics parameters need to be optimized for decoupling in modal space.

When we choose θ ≤ 10◦ as an acceptable fault for modal space decoupling, the acceptable optimal
result is the dark blue area in Fig. 5. The details of the result are discussed as follows:

For n ≤ 0.4, the system is nonproportionally damped in most cases, although we can obtain an
approximate proportionally damped system by changing the height h of the payload mass center, and
the result is seriously sensitive.

For 0.4 < n ≤ 0.8, the system becomes proportionally damped when the center h of the payload
mass is changed.

For 0.8 < n ≤ 1, the system can be considered proportionally damped.
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Fig. 5. The result of the optimized n and h for Case A.

Fig. 6. The result of the optimized n and h for Case B.

When the center height h of the payload mass is fixed, the optimal radius ratio can be established
as n = 0.95. The index θ is 1.40◦ which is the red point in Case A2 of Fig. 5.

For Case B, we choose Option (b) as optimization constraint. Using Eq. (21), we drew the 3D map
depicted in Fig. 6.

As can be deduced from Fig. 6, the index θ is 7.29◦, and the system can be considered as
approximately proportionally damped in this case.

In contrast to Case A, the results for optimizing n and h are:
For n ≤ 0.4, the system is nonproportionally damped.
For 0.4 < n ≤ 0.8, the system becomes proportionally damped with changes in the center h of

the payload mass, where increasing or reducing the center h of the payload mass is a function of the
inertial parameters.

For 0.8 < n ≤ 1, the system can be considered as proportionally damped.
For minimizing the degree of nonproportional damping further, using the optimal function, Eq.

(22), we drew a 3D map which reflects the relationship between α, β, and θ as shown in Fig. 7.
The white point denotes the index θ for the two cases. For Case A, the index θ is 2.57◦, and for

case B, 5.38◦. Optimizing α and β, we obtain a lower degree of coupling which is the red point. For
Case A, the index θ is 0.092◦ when α is 0.2389 rad and β is 0.1401 rad, while for Case B, the index θ
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Fig. 7. The result for the optimized α and β.

Fig. 8. Construction of modified SGP of Case B.

is 0.1952◦ when α is 0.05 rad and β is 0.1824 rad. Construction of modified SGP of Case B is shown
in Fig. 8.

Although the above optimal design procedures assume the weighting factors are equal, the results
still have enough tolerance provided by the result of the random combination of the five weighting
factors w1, w2, w3, w4, w5 as depicted in Fig. 9.

As can be deduced from Fig. 9, the index θ is lower than 15◦ in most cases, which can be considered
a proportional damping system in engineering.

6. Conclusions
We presented an optimal design method for minimizing the coupling effects of PJVF for the SSPM.

Analytical formulation Jacobian matrixes relating the platform movements to each passive joint
velocity were derived. With the formulation given, the damping matrix for PJVF was established.

Solving the undamped Eigen problem, an analytical formulation modal matrix was found and
the index was then expressed as functions of the configuration parameters and the payload inertial
parameters in analytical form.

From the above results, a two-element optimizing function was obtained. The relationship between
the degree of coupling caused by each part of the PJVF and optimal parameters is explicit. It was
found that an acceptable optimal result was not a single point but an area, and we can see that
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Fig. 9. The tolerance results.

it is possible to achieve an approximate proportionally damped system by adjusting the kinematic
parameters.

Finally, we redesigned two cases for the SGP with different payload inertial parameters using the
optimal design method proposed in this paper.
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Appendix A: Detailed kinematics analysis of passive joint
According to the relationship between the vector space, the length vectors of a 2p cylinder li (i =
1, . . . , 2p) can be expressed as:

li = c + Tai − bi , (A1)

where T is the rotation matrix, c is the displacement vector of the center of {B} in {M}, ai is the
vector of the upper joint in the fixed coordinates, bi is the vector of the lower joint in the inertial
coordinates.

Suppose vai is the velocity of the upper joints, which can be expressed as:

vai = ċ + ω × Tai , (A2)

where ω is the angular velocity of {M} relative to {B} and ċ is the velocity vectors of the center
points of {M} in the {B}.

Equation (A2) can also be expressed by the Jacobian transformation:

vai =
[

I T
(
Ãm

i

)T
TT

]
ẋ = Jai,x ẋ, (A3)

where Ãm
i is a skew symmetric matrix of the vector ai , ẋ is the platform velocity vector, and Jai,x

is the Jacobian matrix for the general velocity of the moving platform to the velocity of the upper
attachment points.

The structure diagram of the actuator is shown in Fig. A1.
The angular velocity of the actuator can be expressed as:

ωai = ln,i × vai

|li | , (A4)

where ln,i is the 3× 1 unit vector of li
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Fig. A1. SSPM actuator link construction.

The synthesis of the angular velocity of lower universal joint is expressed as:

ωd,i = ωai =
[

l̃n,i

|li |
1

|li | l̃n,iT
(
Ãm

i

)T
TT

]
ẋ = Jdi,x ẋ, (A5)

where l̃n,i is a skew symmetric matrix of the vector ln,i

The directions of the lower universal joint axes are expressed as:

ri,1 = ln,i × z

rni,1 = ri,1∣∣ri,1

∣∣
ri,2 = −rni,1 × ln,i

rni,2 = ri,2∣∣ri,2

∣∣
, (A6)

where z = [ 0 0 1 ]T

The decomposed angular velocity of lower universal joint is expressed as:

ωdi,1 = (
ωd,i · rni,1

)
rni,1 = rni,1

(
rni,1 · ωd,i

) = rni,1rT
ni,1Jdi,x ẋ = Jdi1,x ẋ

(A7)
ωdi,2 = (

ωd,i · rni,2
)

rni,2 = rni,2
(
rni,2 · ωd,i

) = rni,2rT
ni,2Jdi,x ẋ = Jdi2,x ẋ.
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The synthesis of the angular velocity of upper universal joint is expressed as:

ωu,i = ωd,i + ωm =
[

l̃n,i

|li |
1

|li | l̃n,iT
(
Ãm

i

)T
TT + TT

]
ẋ = Jui,x ẋ, (A8)

where ωm is the angular velocity of {B} relative to {M}.
The directions of the upper universal joint is expressed as:

ri,3 = ln,i × Tr

rni,3 = ri,3∣∣ri,3

∣∣
ri,4 = −rni,3 × ln,i

rni,4 = ri,4∣∣ri,4

∣∣
, (A9)

where r is the orthogonal axis with the installation plane of upper universal joint.
The decomposed angular velocity of upper universal joint is expressed as:

ωui,1 = (
ωu,i · rni,3

)
rni,3 = rni,3

(
rni,3 · ωu,i

) = rni,3rT
ni,3Jui,x ẋ = Jui1,x ẋ

ωui,2 = (
ωu,i · rni,4

)
r̄ni,4 = rni,4

(
rni,4 · ωu,i

) = rni,4rT
ni,4Jui,x ẋ = Jui2,x ẋ

, (A10)

The revolute angular velocity of the actuator is expressed as:

ωr,i = (
ωm · ln,i

)
ln,i = ln,i lTn,i

[
03×3 TT

]
ẋ = Jr,i ẋ. (A11)

Appendix B: Derivation of Bt
For ease of analysis, we assume the damping coefficients of each related passive joint are equal, which
means Bcd1 = Bcdi1, Bcd2 = Bcdi2, Bcu1 = Bcui1, Bcu2 = Bcui2, Bcr = Bcri , with i = 1, 2 · · · 2p.

The damping matrix for each related passive joint is expressed as

Bcd1 = Bcd1Ccd1 = Bcd1

[
diag([Ccd1x Ccd1y Ccd1z]T) ρ̃cd1

−ρ̃cd1 diag([Ccd1xx Ccd1yy Ccd1zz]T)

]
,

(B1)
where Bcd1 = ∑2p

i=1 (Bcd1JT
di1,xJdi1,x) is the damping matrix in the direction of the lower universal

joint axes rni,1.

Ccd1x = Ccd1y = p

|l|2 l2n1z, Ccd1z = 2p

|l|2
(
1 − l2n1z

)
Ccd1xx = Ccd1yy = p

|l|2
(
(ln1xa1x + ln1za1z)

2 + (ln1ya1y + ln1za1z)
2 + (

l2n1xa2
1y + l2n1ya2

1z − l2n1za
2
1z

))

Ccd1zz = 2p

|l|2
l2n1z

1 − l2n1z

(
ln1ya1x − ln1xa1y

)2

ρ̃cd1 =
⎡
⎣ 0 −ρcd1z 0

ρcd1z 0 0
0 0 0

⎤
⎦ , and ρcd1z = − p

|l|2 ln1z

(
ln1xa1x + ln1ya1y + ln1za1z

)

Bcd2 = Bcd2Ccd2 = Bcd2

[
diag([Ccd2x Ccd2y 0]T) ρ̃cd2

−ρ̃cd2 diag([Ccd2xx Ccd2yy Ccd2zz]T)

]
,

(B2)
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where Bcd2 = ∑2p

i=1 (Bcdi2JT
di2,xJdi2,x) is the damping matrix in the direction of the lower universal

joint axes rni,2.

Ccd2x = Ccd2y = p

|l|2 , Ccd2xx = Ccd2yy = p

|l|2 a2
1z

Ccd2zz = 2p

|l|2
1

1 − l2n1z

(
ln1xa1x + ln1ya1y

)2

ρ̃cd2 =
⎡
⎣ 0 −ρcd2z 0

ρcd2z 0 0
0 0 0

⎤
⎦ , and ρcd2z = − p

|l|2 a1z

Bcu1 = Bcu1Ccu1 = Bcu1

[
diag([Ccu1x Ccu1y Ccu1z]T) ρ̃cu1

−ρ̃cu1 diag([Ccu1xx Ccu1yy Ccu1zz]T)

]
,

(B3)

where Bcu1 = ∑2p

i=1 (Bcui1JT
ui1,xJui1,x) is the damping matrix in the direction of the upper universal

joint axes rni,3.

Ccu1x = Ccu1y = p

|l|2 l2n1z, Ccu1z = 2p

|l|2
(
1 − l2n1z

)

Ccu1xx = Ccu1yy = p

|l|2
( |l|2 − 2 |l| (ln1xa1x + ln1ya1y + ln1za1z) + (ln1xa1x + ln1za1z)2

+(ln1ya1y + ln1za1z)2 +
(

l2n1xa2
1y + l2n1ya2

x − l2n1za
2
1z

) )

Ccu1zz = 2p

|l|2
l2n1z

1 − l2n1z

(
ln1ya1x − ln1xa1y

)2

ρ̃cu1 =
⎡
⎣ 0 −ρcu1z 0

ρcu1z 0 0
0 0 0

⎤
⎦ , and ρcu1z = − p

|l|2 ln1z

(|l| − (
ln1xa1x + ln1ya1y + ln1za1z

))

Bcu2 = Bcu2Ccu2 = Bcu2

[
diag([Ccu2x Ccu2y 0]T) ρ̃cu2

−ρ̃cu2 diag([Ccu2xx Ccu2yy Ccu2zz]T)

]
,

(B4)

where Bcu2 =
2p∑
i=1

(Bcui2JT
ui2,xJui2,x) is the damping matrix in the direction of the upper universal joint

axes rni,4.

Ccu2x = Ccu2y = p

|l|2 , Ccu2xx = Ccu2yy = p

|l|2 (a1z − |l| ln1z)
2

Ccu2zz = 2p

|l|2
1

1 − l2n1z

(
(ln1xa1x + ln1ya1y) − |l| (1 − l2n1z

))2

ρ̃cu2 =
⎡
⎣ 0 −ρcu2z 0

ρcu2z 0 0
0 0 0

⎤
⎦ , and ρcu2z = − p

|l|2 (a1z − |l| ln1z)

Bcr = BcrCcr = Bcr

[
0̄3×3 0̄3×3

0̄3×3 diag([Ccrxx Ccryy Ccrzz]T)

]
, (B5)
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where Bcr = ∑2p

i=1 (BcriJT
r,iJr,i) is the damping matrix in the revolute direction of the actuator.

Ccrxx = Ccryy = p
(
1 − l2n1z

)
, Ccrzz = 2pl2n1z.

Combining Eqs. (B1–B5), Bt is expressed as

Bt =
[

diag([Btx Bty Btz]T) ρ̃ t

−ρ̃ t diag([Btxx Btyy Btzz]T)

]
, (B6)

where:

Btx = Bcd1Ccd1x + Bcd2Ccd2x + Bcu1Ccu1x + Bcu2Ccu2x

Bty = Bcd1Ccd1y + Bcd2Ccd2y + Bcu1Ccu1y + Bcu2Ccu2y

Btz = Bcd1Ccd1z + Bcd2Ccd2z

Btxx = Bcd1Ccd1xx + Bcd2Ccd2xx + Bcu1Ccu1xx + Bcu2Ccu2xx + BcrCcrxx

Btyy = Bcd1Ccd1yy + Bcd2Ccd2yy + Bcu1Ccu1yy + Bcu2Ccu2yy + BcrCcryy

Btzz = Bcd1Ccd1zz + Bcd2Ccd2zz + Bcu1Ccu1zz + Bcu2Ccu2zz + BcrCcrzz

ρ̃ t =
⎡
⎣ 0 −ρtz 0

ρtz 0 0
0 0 0

⎤
⎦ , and ρtz = Bcd1ρcd1z + Bcd2ρcd2z + Bcu1ρcu1z + Bcu2ρcu2z
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