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We consider the decay to rest of initially laminar flow within the end region of a
suddenly blocked pipe. Here the flow is dominated by two temporally developing
boundary layers, one on the pipe wall and one located at the blockage. The evolution
and interaction of these boundary layers contributes to the creation and annihilation
of toroidal vortices in the end-region flow, the number and extent growing with
increasing Reynolds numbers. For larger Reynolds numbers, these nonlinear vortices
delay the decay process within the end region, decaying at a slower rate than flow
far downstream of the blockage. Our numerical simulations for pre-blockage Reynolds
numbers up to 3000 indicate that the flow in this end region is stable to axisymmetric
disturbances.

Key words: boundary layers, boundary layer structure, pipe flow boundary layer

1. Introduction
Fluid flows which are suddenly decelerated arise in many areas of fluid mechanics.

Flows in which that sudden deceleration is due to the imposition of a blockage have
important applications across a wide range of disciplines. Although there are many
such examples, two of particular interest are the flow which occurs when a valve is
suddenly closed in a pipe, or pipe network, and that of the rhythmic opening and
closing of valves in the human body. The latter example is most readily seen in the
behaviour of the aortic valve and the pulmonic valve in the heart during ventricular
ejection. Both of these applications have as their hallmark the fact that the unsteady
flow that develops as a result of the sudden change to the flow state exhibits a
transient turbulent state; the physiological applications are well represented by the
works of Seed & Wood (1971), Nerem & Seed (1972) and Sugawara (1987) and the
pipe flow applications by the work of Das & Arakeri (1998).

In the case of a simple pipe flow which is suddenly blocked by a valve, the flow
downstream of the blockage can be described by a simple diffusion equation with
a source term that represents the unsteady (decaying) streamwise pressure gradient
within the flow. Weinbaum & Parker (1975) were the first to consider this problem,
giving it its correct mathematical formulation and providing solutions for the decaying
flow based upon the Pohlhausen method, used extensively in the early days of
boundary-layer research (Schlichting 1979). Their analysis of the decaying streamwise
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(or axial) flow demonstrated that the flow develops points of inflection, thus suggesting
that the flow may be susceptible to wave-like instabilities. Subsequent work by Hall
& Parker (1976) on the stability of the flow in a suddenly blocked channel, who
employed a WKBJ-style approximation based upon the assumption of large flow
Reynolds number to derive a quasi-steady Orr–Sommerfeld equation, suggested a
minimal critical Reynolds number of 148.2 at the non-dimensional time t = 0.023.

The result that the decelerating flow in a suddenly blocked channel (or pipe)
is unstable to wave-like disturbances is in qualitative agreement with in vivo
measurements of turbulence levels in the ascending aorta (Seed & Wood 1971; Nerem
& Seed 1972; Sugawara 1987). Hall & Parker (1976) demonstrated that the decaying
flow within a suddenly blocked channel is unstable, as a result of the development the
inflection points in the streamwise velocity, for Reynolds numbers as low as O(102).
Of course, some care must be taken in interpreting these results, since the quasi-steady
approximation requires the mathematically mutually exclusive requirements on the
Reynolds number to be both sufficiently large (indeed, asymptotically large) for the
asymptotic approximation to be valid and finite in order to justify retaining viscous
terms in the resulting Orr–Sommerfeld equation.

A major driver in the renewed interest in the behaviour of the suddenly blocked
pipe flows comes from the water utility industry, where considerable attention has
been directed at developing non-invasive techniques to detect leaks in pipeline systems;
one such collection of techniques are the so-called inverse transients: see Liggett &
Chen (1994) for details. For this technique to be fully implemented it is necessary
to be able to differentiate between damping due to leaks and damping due to the
typically turbulent flow within the pipe (or most often, pipeline). Existing models of
unsteady friction, such as those of Brunone, Golia & Greco (1991) and Vardy &
Brown (1995), are empirical, typically under-predicting both the amplitude and speed
of the resulting pressure wave when the pipe (or pipeline) is subjected to a short-time
transient event. There is a considerable body of literature reporting on experiments,
conducted largely within copper pipes, which have produced significant data on the
pressure at points within the flow. The results presented by Lambert et al. (2001)
support the conjecture that the observed discrepancy between experiments and the
results predicted by theory is largely due to the empirical nature of the friction models.
Their experiments were conducted in a copper pipe with the result that their data, used
for comparison with steady friction models, was restricted to pressure measurements
at the location of the blockage. Lambert et al. (2001) suggested a new model for one-
dimensional turbulent unsteady friction based upon the growth of the wall boundary
layer during the transient events. Their results, derived assuming steady boundary-layer
growth, showed some improvements over the classical empirical models in predicting
the decay in amplitude of the pressure, and provided a better match for pressure wave
speed. Further experiments may, of course, provide improvements in such prediction
but a coherent theory based upon flow physics remains elusive. Furthermore, there
seems to be little compelling evidence to suggest that the flow is in a fully developed
turbulent state throughout the transient event.

This realization has led to a number of studies on the stability of unsteady decaying
flows in pipe, ranging from those which exploit a quasi-steady approximation (Hall
& Parker 1976; Das & Arakeri 1998; Ghidaoui & Kolyshkin 2001, 2002) to those
exploiting a transient growth analysis (Jewell & Denier 2006; Jewell 2009). These
works, which provide some qualitative agreement with available experiments (see Das
& Arakeri (1998) for example and the more recent experiments of Nishihara et al.
(2009, 2010) and Sengi et al. (2011)) fail to take into account the important region of
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Decaying flow in a blocked pipe 535

the flow in the vicinity of the blockage. Experiments reported by Toophanpour-Rami
et al. (2007) suggest that a complicated unsteady flow develops in the vicinity of the
blockage and that this region may become unstable before the region away from the
blockage. Peixinho (private communication) has shown that for moderate Reynolds
numbers the instability appears to be related to that described in the transient analysis
of Jewell & Denier (2006), whereas for higher Reynolds number the instability may
possibly propagate along the pipe from the blockage region.

The end region is also important if we are to develop a fuller understanding of the
multiple-wave reflection events that occur in suddenly blocked flows. It may well be
that the vorticity within the flow prior to the reflection of the pressure wave that arises
from the sudden blockage can be approximated by that due to the decaying streamwise
flow u(r,T) of § 2. If this is the case then the analysis of Weinbaum & Parker (1975)
and Jewell & Denier (2006) can be repeated to determine the subsequent sequence
of wave reflections and the decaying friction within pipelines. This appears to be
the procedure adopted by Ghidaoui & Mansour (2002), who present results for the
streamwise velocity profile after the first passage of the reflected pressure wave (their
figure 3); see also Nishihara et al. (2009, 2010) and Sengi et al. (2011). However, this
procedure ignores the presence of the blockage region, focusing solely upon the flow
downstream of the blockage.

Our understanding of this blockage region, how it develops, its stability and how
ultimately it decays, is lacking. This paper is a first step towards understanding the
dynamics of this region of the flow. After some preliminary formulation in § 2, we
describe the salient features of our numerical treatment of the problem in § 3; a
small-time solution to the full (axisymmetric) Navier–Stokes equations which provides
the initial condition for our numerical integration is detailed in an Appendix. The
results of our calculations are presented in § 4, and finally in § 5 we present some
conclusions and directions for future work.

2. Formulation

Consider the fully developed uni-directional flow of a viscous incompressible fluid
of density ρ and kinematic viscosity ν flowing in a cylindrical pipe of radius R = R∗.
Let (u, v,w) denote the dimensionless velocity, non-dimensionalized with respect
to the centreline axial velocity, in non-dimensionalized cylindrical polar coordinates
(x, r, θ). The fully developed flow is then Hagen–Poiseuille flow, in which

(u, v,w)= (1− r2, 0, 0), (2.1)

where r = 1 denotes the non-dimensionalized pipe radius. Now suppose that at time
t = 0 the flow is suddenly blocked at some streamwise location, which we will take to
be x = 0. The net flow ū through the pipe is reduced impulsively to zero, but the fluid
itself takes an appreciable time to come to rest. The resulting transient laminar flow
u(r, x> 0, t > 0) constitutes the subject of this paper.

Some progress on this problem was made by Weinbaum & Parker (1975). They
demonstrated that the flow vorticity is effectively frozen during the passage of
the initial, impulsive pressure wave. Thus, provided the Mach number of the flow
is small (as it is in most pipeline applications involving liquids), the vorticity
distribution immediately following the blockage event (t = 0+) is given by ω = 2r. By
solving the vorticity equation, Weinbaum & Parker (1975) derived the instantaneous
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FIGURE 1. The flow field at time t = 0+, immediately following the blockage event but
before the flow has had time to adjust to the no-slip boundary conditions. (a) Full-diameter
quiver plot (−1 6 r 6 1) of the t = 0+ flow. (b) Semi-diameter contour plot (0 6 r 6 1) of the
streamwise velocity u. (c) Semi-diameter contour plot of radial velocity v.

velocity u(r, x, 0+) in the form

ψ0(r, x)= 1
4

r2(1− r2)− 4
∞∑

n=1

[
λ−3

n

J2(λn)

]
rJ1(λnr) exp(−λn|x|), (2.2)

where

u= 1
r

∂ψ0

∂r
and v =−1

r

∂ψ0

∂x
, (2.3)

J1 and J2 are the Bessel functions of the first and second kind respectively, and
{λn, n= 1, 2, . . .} are the zeros of J1(x) (see Abramowitz & Stegun 1965). This profile
comprises a core forward flow (u > 0 for 0 6 r < 0.707) balanced by reversed flow
near the pipe sidewall (u < 0 for 0.707 < r 6 1). This instantaneous (t = 0+) velocity
field is plotted in figure 1. Note that free-slip conditions apply on the walls (u=−1/2
at r = 1 for x > 00; v < 0 at x = 0 for 0 < r < 1), since insufficient time has elapsed
for the development of viscous boundary layers. It follows from (2.2) that the flow at
t = 0+ approaches its upstream limit exponentially in the streamwise coordinate:

(u0, v0)= ( 1
2 − r2, 0)+ O(e−λx) for x & 1, (2.4)

where λ= λ1 ≈ 3.83.
We now consider how the flow subsequently decays to rest for t > 0 (as it must

in the absence of an imposed pressure gradient). We first note that the diffusion time
scale is T = Re−1t. The early-decay phase (T � 1) is characterized by the development
of viscous boundary layers at r = 1 and x = 0, which allow the flow to adjust to
the full no-slip conditions on the pipe wall and at the blockage. We assume that
the flow remains laminar and axisymmetric throughout the decay process, and thus
may be represented by a single unsteady streamfunction ψ(r, x,T). The Navier–Stokes

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.360


Decaying flow in a blocked pipe 537

equations then reduce to

∂

∂T
(∇̃2ψ)+ Re(r−1ψr∇̃2(ψx)− r−1ψx∇̃3ψ)= ∇̃4ψ, (2.5a)

where the following differential operators have been introduced:

∇̃3 ≡ ∂3

∂r3
+
(
∂

∂r
− 2

r

)
∂2

∂x2
− 3

r

(
∂2

∂r2
− 1

r

∂

∂r

)
, (2.5b)

∇̃4 ≡ ∂4

∂x4
+ 2

(
∂2

∂r2
− 1

r

∂

∂r

)
∂2

∂x2
+ D4

r , (2.5c)

D4
r ≡

∂4

∂r4
− 2

r

∂3

∂r3
+ 3

r2

(
∂2

∂r2
− 1

r

∂

∂r

)
. (2.5d)

The boundary conditions on the streamfunction are

ψ = 0 and ψn = 0 at x= 0 and r = 1, (2.6)

together with suitable far-field x-wise boundary conditions; here a subscript n denotes
differentiation in the direction normal to the solid boundary. We will return to a
discussion of these shortly when we come to discuss the numerical scheme that will be
used to solve (2.5).

Well downstream of the blockage location, the decaying flow is unidirectional and
takes the form

u(r, x,T)= (u(r,T), 0, 0) for x� 1. (2.7)

This problem was first considered by Weinbaum & Parker (1975) and revisited by
Jewell & Denier (2006). Accordingly, our primary interest here is with the decay of
the flow in the immediate vicinity of the blockage, corresponding to x = O(1). It is
nevertheless instructive to review the upstream flow u(r,T), since it exhibits salient
features of the full blockage-region flow and will be incorporated into our numerical
scheme.

Weinbaum & Parker (1975) demonstrated that the upstream flow is planar and
governed by the diffusion equation

∂u

∂T
= φ′(T)+ ∂

2u

∂r2
+ 1

r

∂u

∂r
, (2.8a)

where T = Re−1t and φ′(T) denotes the (temporally) decaying streamwise pressure
gradient due to a secondary pressure wave. This equation must be solved subject to the
initial and boundary conditions

u(r)= 1
2 − r2, at T = 0, (2.8b)

u(1)= 0 for T > 0, (2.8c)

and a zero-net-flux condition across the pipe:∫ 1

0
u(r,T)r dr = 0. (2.8d)

The impulsive nature of this flow is reflected in the development of a boundary layer
at r = 1 of non-dimensional thickness δ = O(

√
T). This, coupled with the constraint

of zero net flow, induces a square-root singularity φ′ = O(T−1/2) as T → 0+ in
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FIGURE 2. Plot of streamwise velocity u(r,T) versus r for times T as indicated. The dashed
curve shows the inviscid T = 0 solution.

the decaying streamwise pressure gradient. To address this computational challenge,
Weinbaum & Parker (1975) employed an approximate Pohlhausen method to develop
solutions to (2.8). Recently, in the context of a study of the linear stability of the flow
downstream of the blockage, Jewell & Denier (2006) solved (2.8) by first developing
a uniformly valid small-T solution. Their semi-analytic expression remains accurate
until T ≈ 0.05 (at which time the axisymmetric boundary layer nearly fills the pipe);
this approach furnished initial conditions at time T0 = O(10−2) for a Crank–Nicolson
scheme which evolved the solution forward until the flow became vanishingly small
(Tmax ≈ 0.2). The important feature of this flow, first identified by Weinbaum & Parker
(1975), is the presence of an appreciable region of reversed flow (u < 0) at the pipe
wall: see figure 2.

In the region adjacent to the blockage, the flow is governed by the full
Navier–Stokes equations (2.5) with which little analytical progress can be made, and
so a numerical treatment is required. As was the case for the flow downstream of the
blockage, considered in Jewell & Denier (2006), we must supply appropriate initial
conditions at some small, but non-zero, time T0 in order to overcome the singularity
at T = 0 which arises due to the impulsive nature of the blockage flow. The details of
the small-time structure of the flow are presented in the Appendix; we will discuss the
salient details of this small-time solution as it applies to the initial condition to be used
in our full simulations.

3. The numerical scheme
We now turn our attention to the numerical scheme used to solve the governing

equations (2.5) for the unsteady axisymmetric flow in the vicinity of the blockage. The
computational domain is defined by

D = {(x, r) : 0 6 x 6 xmax, 0 6 r 6 1}, (3.1)
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where x= 0 corresponds to the position of the blockage (see figure 15) and xmax ≈ 5 is
a computational parameter chosen suitably large so as to ensure appropriate matching
with the far field. The streamfunction formulation (2.5) is fourth-order and nonlinear;
nonetheless, it is computationally attractive in as much as it is self-contained and
yields straightforward boundary conditions on the pipe walls and blockage, namely

ψ = 0 and ψn = 0 at x= 0, r = 1, (3.2)

where n indicates the derivative in the direction normal to the surface.

3.1. Spatial discretization
It is expedient to represent the streamfunction ψ in the form

ψ(r, x,T)= r2(1− r2)Ψ (r, x,T), (3.3)

subject to the single radial boundary condition Ψ = 0 at r = 1. The local component
ψ̃ of the streamfunction is discretized over the rectangular domain D of (3.1) using a
hybrid Chebyshev–Laguerre pseudospectral scheme. Following Fornberg (1996) and
Trefethen (2000), we first extend the radial domain to −1 6 r 6 1 and apply a
Chebyshev pseudospectral scheme of polynomial order ≈2M, before exploiting radial
symmetry to halve the number of flow unknowns to ≈M per x-station. Following
Shen (1997, 2000), we discretize the streamwise coordinate x using a pseudospectral
scheme constructed from scaled Laguerre functions {Ln(kx)}Nn=0 with k � 1. Each
(unscaled) Laguerre function Ln(x) is defined over the domain [0,∞) and decays
to zero exponentially as x→∞, but takes order-one values throughout the interval
0 < x 6 O(n). Thus, the natural collocation points {x̃n} of the scaled Laguerre scheme
are all finite and non-negative, the largest being x̃N = O(N/k). We therefore choose
k = O(N/xmax) so that x̃N coincides with a suitable value of xmax . Typically we
found xmax = 5 adequate to yield domain-independent results, even at the highest
Reynolds numbers considered here. Note that this Chebyshev–Laguerre discretization
automatically satisfies the asymptotic boundary condition ψ̃ → 0 as x→∞, and no
explicit boundary conditions are required at the far-field boundary x = xmax (which
is treated as an ordinary x-wise station). Compared with an all-Chebyshev scheme,
our scheme avoids any (computationally wasteful) clustering of collocation points near
the artificial far-field boundary x = xmax while preserving (desirable) mesh-clustering
within the boundary layers on the sidewall r = 1 and end-wall x= 0.

Our Chebyshev–Laguerre discretization is employed not only for the simulation
per se, but also for implementation of the small-T initialization routine of § 3.4. The
Chebyshev–Laguerre scheme as described above, however, is scarcely adequate for
resolving the thin boundary layers observed at T0 = O(10−4). For T0 6 T . 0.01,
therefore, we implement the Chebyshev–Laguerre scheme in (ρ, ξ) space, where
(r, x)⇒ (ρ, ξ) is a coordinate bijection of the form

0 6 ρ(r)6 r 6 1 with equality iff r = 0 or r = 1, (3.4a)
0 6 x 6 ξ(x)6 xmax with equality iff x= 0 or x= xmax . (3.4b)

For this purpose we use the mapping functions

ξ(x)

xmax
= log[1+ a(x/xmax)]

log(1+ a)
, (3.5a)

ρ(r)= log[1+ b(1+ r)] − log[1+ b(1− r)]
log(1+ 2b)

, (3.5b)
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where the stretch parameters a > 0 and b > 0 are reduced gradually to zero across
the early phase of simulation (T0 6 T . 0.01). Conversely, for T & 0.01 the standard
Chebyshev–Laguerre scheme provides sufficient resolution of both boundary layer and
internal features of the flow.

3.2. Temporal discretization
The streamfunction is initialized at time T0 = O(10−4) from the semi-analytic small-T
expansion derived in the Appendix. Time-stepping is performed using the (second-
order accurate in time) predictor–corrector method, treating the linear terms implicitly
and the advection terms explicitly. Each time step entails two matrix inversions of the
form

A ψ̂n+1 =B1ψ
n +B2ψ

n, (3.6a)

A ψn+1 =B1ψ
n + 1

2(B2ψ
n +B2ψ̂

n+1), (3.6b)

where

A = Har− 1T

2
Bih, B1 = Har+ 1T

2
Bih, B2 = (Re)(1T)Adv, (3.7)

and Har, Bih and Adv denote harmonic, biharmonic (diffusion) and nonlinear
(advective) operators respectively. The resulting matrix equation is solved at each
time step using standard Gaussian elimination, at a computational cost of O(M3N3).
Full details of the numerical scheme can be found in Jewell (2009, chapter 9).

3.3. Initial conditions: the small-time solution
The small-time structure of the flow, presented in the Appendix, demonstrates the
singular nature of the flow at time t = 0. It also demonstrates that the flow domain
can be resolved into four separation subregions; a wall boundary layer (see § A.1),
a blockage boundary layer (see § A.2), a corner boundary layer (see § A.3) and the
inviscid core-flow, discussed earlier (see figure 15). Although the equations governing
the flow within the two wall boundary layers admit analytical solutions, the corner
region governed by (A 10) does not, and so must be solved numerically. This in turn
poses special challenges in matching the sub-zone solutions. Therefore, instead of
solving for all four asymptotic regions separately and then attempting to match the
respective solutions, we choose to develop a composite numerical solution, informed
by the asymptotic structure detailed in the Appendix, for the small-time structure of
the streamfunction ψ .

Accordingly, we now reformulate the full problem in terms of the streamfunction
ψ . The analysis will be accurate only to leading order at T = o(Re−1), and we
will not attempt to derive explicit intermediate expressions for the overlap regions
in figure 15. We note, however, that the leading-order error-function solution in
the wall boundary layer (A 4) for η = O(1) decays exponentially into the core-flow;
consequently, an intermediate expansion is superfluous, and the edge of the boundary
layer can be adequately approximated by η∗ ≈ 2 for computational purposes. Similarly,
for computational purposes the edge of the blockage boundary layer can be adequately
approximated by ξ ∗ ≈ 2. Here

η = (1− r)

2
√

T
and ξ = x

2
√

T
(3.8)

are the wall boundary layer and blockage boundary layer variables respectively (see
the Appendix for full details). We note that the values of η∗ and ξ ∗ were chosen
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after some experimentation; our results are independent of these choices of η∗ > 2 and
ξ ∗ > 2.

For our computational purposes, it also proves convenient to subtract the upstream
flow component (2.7) from the end-region flow. We therefore rewrite ψ in the form

ψ(r, x,T)= ψ̃(r, x,T)+ ψ∞(r,T), (3.9)

where, by definition, the tilde quantity satisfies

ψ̃(r, x,T)→ 0 as x→∞, (3.10)

and ψ∞ corresponds to the upstream component analysed in Jewell & Denier (2006).
Led by the analysis presented in the Appendix, we are now in a position to write
down the equations that collectively govern the structure of the small-time solution of
the flow. It is these equations that must be solved so as to provide the necessary small
(but non-zero) initial condition for our full calculations.

3.3.1. The core region in which r, x= O(1)
The core-region flow is effectively inviscid. The modified streamfunction ψ̃ satisfies

∂2ψ̃

∂x2
+ ∂

2ψ̃

∂r2
− 1

r

∂ψ̃

∂r
= 0 for (η, ξ) > (η∗, ξ ∗), (3.11a)

and its natural boundary conditions are the free-slip, no-penetration conditions

ψ̃r = 0 on x= 0, ψ̃x = 0 on r = 1, (3.12)

together with the asymptotic condition ψ̃ → 0 as x→∞. In practice, however, the
boundary conditions will be replaced by boundary-layer matching conditions, while the
asymptotic condition will be satisfied automatically by our numerical scheme.

3.3.2. The blockage boundary layer
Within the blockage boundary layer for ξ = O(1), the modified streamfunction is

governed by the fourth-order linear equation

∂4ψ̃

∂ξ 4
+ 2ξ

∂3ψ̃

∂ξ 3
= 0 for 0< ξ < ξ ∗(η > η∗), (3.11b)

subject to boundary conditions

ψ̃ =−ψ∞, ψ̃ξ = 0 on ξ = 0. (3.11c)

The remaining two boundary conditions are specified and solved implicitly, by
matching with the core-flow solution obtained from (3.11a). Thus, the entire end-
region flow is scaled by the inhomogeneous boundary condition in (3.11c), together
with those of (3.11f ) and (3.11g) given below for the corner boundary layer.

3.3.3. The wall boundary layer
The wall-layer streamfunction for η = O(1) is governed by the fourth-order equation

∂4ψ̃

∂η4
+ 2η

∂3ψ̃

∂η3
= 0 for 0< η < η∗(ξ > ξ ∗), (3.11d)

subject to the homogeneous boundary conditions

ψ̃ = 0, ψ̃η = 0 on η = 0, (3.13)

and matching with the core-flow solution obtained from (3.11a).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.360


542 N. Jewell and J. P. Denier

x

0.25

0.50

0.75

r

1.00

0 1.0 2.0 3.00.5 1.5 2.5

FIGURE 3. Plot of the velocity field within the pipe at time T = 1.0× 10−3.

3.3.4. The corner boundary layer
The final region is the corner boundary layer, in which the modified streamfunction

satisfies (
∂2

∂η2
+ ∂2

∂ξ 2

)2

ψ̃ + 2η
(
∂2

∂η2
+ ∂2

∂ξ 2

)
∂ψ̃

∂η
+ 2ξ

(
∂2

∂η2
+ ∂2

∂ξ 2

)
∂ψ̃

∂ξ

=
[
∂4ψ∞
∂η4

+ 2η
∂3ψ∞
∂η3

]
, (3.11e)

subject to the following homogeneous and inhomogeneous boundary conditions:

ψ̃ =−ψ∞, ψ̃ξ = 0 on ξ = 0, (3.11f )

ψ̃ =−ψ∞, ψ̃η = 0 on η = 0. (3.11g)

3.4. Boundary layer matching
The end-region flow is fully specified by the system (3.11) of four partial differential
equations. Each equation is linear and depends on the Reynolds number only
implicitly, through the boundary-layer variables η and ξ . We first re-express the four
boundary-layer equations in terms of the original coordinates (r, x) at some fixed time
T taken here to be T = T0 = O(10−4). The equations are then solved simultaneously
on a single grid of spectral collocation points in (r, x) space. The various matching
conditions between the core-flow, the wall boundary layer and the blockage boundary
layer are explicitly satisfied at the ‘overlap’ region defined by η ≈ η∗ and ξ ≈ ξ ∗
(where η∗ and ξ ∗ must be chosen suitably large to ensure convergence of the boundary
layer solutions). After some considerable experimentation we found that the choice

η ≈ η∗ = 2.0 and/or ξ ≈ ξ ∗ = 2 (3.14)

delivered converged results. The spectral scheme and computational domain used for
this purpose are identical to that described above and used for our full nonlinear
calculations, importantly ensuring that the computed initial (small-time) flow state
is fully compatible with the spatial discretization employed in the fully nonlinear
problem. Note that the collocation points of this scheme are strongly clustered near
the physical domain boundaries, to the extent that each boundary layer is resolved
by O(10) collocation points in the wall-normal coordinate. Notwithstanding the low
analytical accuracy of (3.11), our numerical scheme proved robust both to the
initialization time T0 and to the boundary layer parameters η∗ and ξ ∗. A typical
small-time solution is shown in figure 3.
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FIGURE 4. Plot of the maximum value of the streamfunction, at time T = 0.05, versus the
number of scaled Laguerre functions used in our computations for a fixed Reynolds number
Re = 1000 and M = 22 (M being the order of the pseudospectral discretization in the radial
coordinate.

3.5. Code validation and convergence
We validated our code against a spin-up problem, namely the (regularized) lid-driven
flow in an enclosed square cavity. The results from our Chebyshev-spectral test code
are converged to six significant figures and compared well with those of Peyret &
Taylor (1983). We also undertook extensive grid convergence tests to ensure that
the results to be presented here are accurate. A typical result is shown in figure 4,
where we present a plot of the maximum value of the streamfunction versus the
number of scaled Laguerre functions Nx: convergence is rapid. A subsequent test of
the radial decomposition demonstrates that fewer radial nodes are required to achieve
high accuracy: for the Reynolds number Re= 1000 of figure 4, a value of M as small
as 10 was able to reproduce the results to four significant figures. All the results
presented here are for Nx = 30 and Nr = 22, and the results can be taken to have
converged to within graphical accuracy.

4. Results and discussion
Turning now to a discussion of our results, we present, in figure 5, contours of

the instantaneous streamfunction ψ = ψ̃ + ψ∞ in the decaying end-region flow for a
relatively low pre-blockage Reynolds number of Re = 500 at various times. Since the
pre-blockage flow is directed from left to right, the post-blockage flow comprises a
rightward core-flow (0 6 r . 0.6) balanced by a return flow down the blockage wall
(x = 0) and a right-to-left reversed flow along the sidewall (r = 1). Since the flow is
(highly) unsteady, the indicated contour-levels are not strictly guaranteed to coincide
with physical streamlines; nevertheless, we have verified that the correspondence is
very close. In an effort to track the decay process as closely as possible, figure 5
presents flow snapshots at T = 0.001 (i.e. almost immediately following the blockage
event), T = 0.005, T = 0.01, and thereafter at intervals of 1T = 0.01 up to a
maximum of T = 0.10. Although it is not immediately obvious from this figure,
the overall flow field decays in magnitude relatively slowly during the first half of this
period (characterized by expansion of the sidewall boundary layer to fill the pipe) and
rapidly thereafter; indeed, at the end-point T = 0.10 the overall flow field has decayed
by approximately one order of magnitude relative to its immediate post-blockage state.
This behaviour is in full accord with that reported by Jewell & Denier (2006) for
the flow ψ∞(r,T) well upstream of the blockage. The most prominent feature of this
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FIGURE 5. Contours of the streamfunction ψ(r, x) for Reynolds number Re = 500 at times
T = 0.001, 0.005, . . . , 0.10 as indicated. Calculations were performed out to a streamwise
distance of five pipe radii, although the flow domain is truncated here to xmax = 4 for display
purposes. The flow is oriented leftward near the pipe wall (u < 0 for 0.6 . r < 1), downward
along the blockage wall (v < 0 for 0 < x . 0.5), and rightward in the pipe interior (u > 0 for
0 6 r . 0.6). At the junction of these three domains, flow reversal results in a weak vortex for
T & 0.01.

end-region flow is the development of a weak internal vortex approximately one-third
of a pipe diameter upstream of the blockage (x≈ 0.7) on the stagnation line (r ≈ 0.65).
Thus, the principal internal vortex is located near the junction between the four
subregions of the end region identified in the Appendix, namely the core-flow, sidewall
boundary layer, end-wall layer, and the corner boundary layer proper. This vortex
is most prominent during the middle phase of the decay process (0.02 . T . 0.07),
but shows no sign of subsiding completely. Moreover, a very weak secondary vortex
appears briefly (T ≈ 0.05) on the stagnation line at x ≈ 1.7, whereas for x & 2 all
streamlines are essentially parallel. Thus, end-effects at Re = 500 are confined to a
region approximately one diameter from the blockage.

We now consider the Reynolds number dependence of the decay process. Recall
that the upstream laminar flow ψ∞(r,T) is independent of the pre-blockage Reynolds
number Re except through the rescaling T = Re−1t of the advective time t. The
end-region decay process is illustrated in figures 6–8 for Re = 1000, Re = 2000
and Re = 3000 respectively. As in figure 5 for the case Re = 500, we plot pseudo-
streamlines of the flow at time intervals of 1T = 0.01. With increasing Reynolds
number the primary internal vortex develops more rapidly, becomes substantially
more vigorous, and is more constricted in a geometric sense. It is unmistakable
for T > 0.02 at Re = 500, for T > 0.01 at Re = 1000 (figure 6), and for T > 0.005
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FIGURE 6. Contours of the streamfunction ψ(r, x) for Reynolds number Re= 1000.

at Re = 2000 (figure 7); nonetheless, its temporal evolution is qualitatively similar
throughout. Likewise, the secondary internal vortex is well developed by T = 0.05,
T = 0.03 and T = 0.02 at Re = 500, Re = 1000 and Re = 2000 respectively. A
tertiary stagnation-line vortex (x ≈ 3.0) appears embryonically at Re = 2000 and is
well developed at Re = 3000 (figure 8) for 0.03 . T . 0.05. Thus, the streamwise
extent of the end region increases significantly as a function of Reynolds number, from
approximately one diameter at Re= 500 to two diameters at Re= 3000.

Though useful for identifying internal vortices, the streamfunction plots of
figures 5–8 have some inherent deficiencies. In particular, they gloss over the boundary
layers and give no clear indication of the velocity magnitude on and near the
centreline r = 0. Both weaknesses reflect the mathematical property that ψ → 0
quadratically in each of the limits r→ 1, x→ 0 and r→ 0. To complement the
streamline plots, therefore, we present quiver-plots and (u, v) contour-plots of the
flows for Re = 500 (figure 9), Re = 1000 (figure 10) and Re = 2000 (figure 11).
To conserve space, only five snapshots are presented for each flow (versus twelve
in figures 5–8) out to a streamwise distance of x = 2. Throughout, the stagnation
line u = 0 is highlighted and the velocity arrows are scaled lengthwise with respect
to velocity magnitude; the absolute velocities, meanwhile, may be gauged via the
indicated contour spacings 1u and 1v. For example, in figure 10 for Re = 1000
the absolute velocity range varies from {−0.344 < u < 0.463,−0.269 < v < 0.001}
in the initial snapshot (T = 0.001) to {−0.028 < u < 0.077,−0.040 < v < 0.009}
in the final snapshot (T = 0.08). The composite diagrams of figures 9–11 clearly
illustrate the boundary layers, the primary internal vortex, and a small corner vortex at
(x, r) = (0, 1). The mid-phase flow at Re = 2000 (figure 11) also exhibits a prominent
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FIGURE 7. Contours of the streamfunction ψ(r, x) for Reynolds number Re= 2000.

secondary internal vortex and, midway between these two vortices (x ≈ 1.1), a weak
recirculation bubble of forward flow on the sidewall r = 1. All non-trivial flow features
in figures 9–11 are most vigorous during the mid-phase of decay, as suggested by
the streamline plots. The streamfunction plots of wall and corner vortices register as
blank spots in figures 5–8, albeit noticeably deflecting the neighbouring streamlines.
We return to this point shortly.

Figures 9–11 also highlight the dynamics of forward and reverse flow, which by
definition have equal flux. In the large-x upstream limit, the core region contracts
significantly in size over the decay cycle, occupying 50 % of the pipe cross-section at
T = 0+ (0 6 r < 0.707) but only 27 % at T = 0.10. This shrinkage is offset by a rapid
weakening of the outer-region reversed flow relative to the forward flow, from 1:1 at
T = 0+ (−1/2 6 u 6 +1/2) to approximately 4:1 at T = 0.10 (−0.012 < u < 0.047).
The stagnation-line vortices, however, induce an outward radial bulging of the core
region, which serves to change the respective size of the regions of forward and
reversed flow. The competing trends of core contraction and bulging of the end region,
due to the stagnation-line vortices, are readily discernible in figure 11. Unsurprisingly,
the rebalancing effect increases as a function of Reynolds number. At T = 0.02,
for example, the ratio of maximum forward to reverse flow changes from 2.66:1 at
Re = 100 to 1.93 at Re = 500, 1.54 at Re = 1000, 1.41 at Re = 1500, and 1.33 at
Re= 2000.

Returning to the wall and corner vortices identified in figure 11, we present in
figure 12 an enhanced contour plot of the streamfunction over times from T = 0.015
to T = 0.06 at pre-blockage flow Reynolds number of Re = 3000. From this figure
we can clearly observe the expansion of the tertiary wall vortex at small times and
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FIGURE 8. Contours of the streamfunction ψ(r, x) for Reynolds number Re= 3000.

the presence of a small corner vortex. This wall vortex grows, and in doing so
distorts the flow within the corner, thus generating the smaller-scale corner vortex.
This corner vortex grows as the larger wall vortex decays. This wall vortex now
grows, again distorting the corner streamlines until the corner vortex disappears. At
time T = 0.04 (figure 12f ) the wall vortex begins to decay again, allowing the growth
of a smaller vortex in the corner which persists within the corner boundary layer at
(r, x) = (1, 0). The overall behaviour of the smaller wall vortices is largely controlled
by the dynamics of the decaying primary and secondary vortices within the body of
the flow.

This primary wall vortex is also discernible in the cross-sectional plots of the axial
velocity presented in figure 13, manifesting as a thin outer ring of forward flow
(u > 0, heavy shading) for T = 0.02 and T = 0.05 at the streamwise station x = 1.
The observed generation of small toroidal wall vortices is reminiscent of the behaviour
of the flow in a driven cylinder considered by Mullin et al. (2000). In that problem
(see also Jahnke & Valentine 1996), the creation of the stagnation points can be
attributed to the generation of an adverse pressure gradient due to the differential
rotation on the cylinder, which in turn induces separation of the boundary layer on
the surface of the cylinder. In the current problem the adverse pressure gradient which
drives the boundary layer separation, giving rise to the wall vortex, arises as a result
of the change of the unsteady (decaying) core-flow. Some preliminary experimental
validation of these results, and clear evidence for the wall vortices, can be found in
Toophanpour-Rami et al. (2007). Qualitatively similar vortices were also observed by
Das & Arakeri (1998), who considered the unsteady flow generated by a piston in a
pipe (as a model of the suddenly blocked flow considered here).
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FIGURE 9. (a) Quiver plots of the flow at Re = 500, shown for x 6 2 at times T = 0.001,
0.01, 0.03, 0.05 and 0.08. (b) Contours of streamwise velocity u, with contour spacing 1u as
indicated; the heavy contour corresponds to the stagnation line u = 0. (c) Contours of radial
velocity v, with spacing 1v as indicated (zero contour not shown).

The generation of the primary vortex (and subsequent generation of second, and
tertiary, vortices) occurs as a result of the formation of the corner boundary layer.
This boundary layer develops in order to allow the initially inviscid flow to adjust to
the full no-slip conditions on the pipe wall and at the blockage. Its presence in the
flow serves to decelerate the flow within the wall boundary layer (the axial pressure
gradient becoming adverse as a result of the blocking effect of this corner boundary
layer). When the axial pressure gradient becomes sufficiently adverse it forces the
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FIGURE 10. Quiver and contour plots of the flow at Re= 1000, shown for x 6 2 at times
T = 0.001, 0.01, 0.03, 0.05 and 0.08 as indicated.

boundary layer on the pipe wall to detach, resulting in the small wall vortex (the
attached recirculation region seen most clearly in the Re = 3000 results presented
in figure 12). The time and location at which this boundary-layer separation occurs
depends strongly upon the Reynolds number, with the onset time decreasing and the
position of separation moving closer towards the blockage region with increasing Re.

The first separation of the pipe-wall boundary layer serves to deflect the adjacent
streamlines (figures 5–8). The stagnation line seen in the small-time solution (figure 2)
is then deflected within the vicinity of the axial location of the separation point,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

36
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.360


550 N. Jewell and J. P. Denier

r

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0.001

r

0 1 2

0.5

1.0
0.01

r

0 1 2

0.5

1.0
0.03

r

0 1 2

0.5

1.0
0.05

r

0 1 2

0.5

1.0
0.08

x x

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0 1 2

0.5

1.0

0 1 2

0.5

1.0

x

(a) (b) (c)

FIGURE 11. Quiver and contour plots of the flow at Re= 2000, shown for x 6 2 at times
T = 0.001, 0.01, 0.03, 0.05 and 0.08 as indicated.

thus serving to generate the first primary vortex in the end region. This process of
boundary-layer separation continues, generating the further vortices observed within
the end region.

The intensity of vortices in the end region, and their impact upon the flows decay
time, is illustrated in figure 14 where we plot the global absolute maximum magnitude
of the streamfunction as a function of T and Re. Geometrically, this maximum is
attained in the upstream limit x→∞ for moderate Re or small T . In this region the
flow intensity exhibits a rapid (exponential) decay; observe the rapid exponential-like
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FIGURE 12. Contour plots of the streamfunction ψ(r, x) for Reynolds number Re = 3000,
shown for x 6 2 and 0.015 6 T 6 0.60 in steps of 1T = 0.05 (figures a–j respectively). The
corner vortex and principal wall vortex are highlighted by heavy contours at ψ = −0.0125
and ψ = 0.00125 × 2i (i = 1, . . . , 4). The equispaced light contours correspond to ψ = −0.9
to −0.1 (in steps of 0.2).

decay for the case Re = 250 compared to the slower decay for higher Re. This
change is manifest in figure 14, with the small Re flows exhibiting an exponential-like
decay governed by the linear dynamics of the downstream flow. For higher Re the
flow decay is governed by the dynamics of the near-blockage region, the maximum
now coinciding with the centre of the primary internal vortex, which can clearly be
identified in figures 3–8.

5. Conclusions
We have considered the behaviour of the flow that arises when classical

Hagen–Poiseuille flow in a pipe is inhibited by the imposition of a sudden complete
blockage. Our primary concern has been to elucidate the behaviour of the flow in the
vicinity of the blockage, thus allowing us to build upon the early work of Weinbaum
& Parker (1975) and provide a complete description of the laminar decay of the
flow. Under the assumption of axisymmetric flow we have demonstrated that the post-
blockage flow develops a series of vortices which impact significantly upon the decay
time of the flow. Our results uncover a complicated process of vorticity generation and
unsteady boundary-layer separation at the pipe walls.
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FIGURE 13. Cross-sectional contour plots of axial velocity for Re = 3000 at selected times
and streamwise stations. The dark shaded region corresponds to forward flow (u > 0) and the
light shaded region corresponds to reversed flow (u< 0). For T = 0.02 and T = 0.05, the thin
outer ring of forward flow at x = 1 corresponds to the principal wall vortex highlighted in the
previous figure.

The physical mechanism leading to the generation of these end-region vortices can
be attributed to the behaviour of the boundary layers that develop after the imposition
of the blockage. The sudden blockage of the pipe results in the development of
viscous boundary layers at both the pipe wall and the blockage connected via a
corner boundary layer structure. The development of this corner boundary layer acts
to decelerate the streamwise flow near the pipe-wall–blockage junction (as the flow
must necessarily slow in order to negotiate the corner region). This deceleration of the
flow then renders the unsteady axial pressure gradient, which controls the development
of the unsteady wall boundary layer, adverse when compared to the wall boundary
layer far upstream of the blockage. This blockage effect on the, now, adverse pressure
gradient becomes sufficient large (at some particular time and axial location, both of
which are dependent upon the Reynolds number) to allow the unsteady boundary layer
to separate. The separation serves to deflect the flow streamlines, with the consequence
that the streamline closes near the blockage and consequently a vortex forms in that
region. This process continues as the flow decays, resulting in further boundary layer
separations and subsequent vortex generation in the ‘core’ region of the flow, the
strength of these vortices increasing with increasing Reynolds number.

Having described the full details of the laminar post-blockage flow, it is now
feasible to consider the related question of the behaviour of the flow when the
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FIGURE 14. Global maximum of |ψ(r, x)|, plotted as a function of T for Reynolds numbers
of Re= 250, 500, 1000, 1500, 2000, 2500 and 3000.

blockage is removed (or further, when a blockage is applied periodically, as occurs
in the aortic valve and the pulmonic valve during ventricular ejection). Of course,
our constraint of axisymmetric flow precludes the development of instabilities in the
region away from the blockage (as it is only non-axisymmetric disturbances that
grow there) and thus any subsequent analysis would necessarily be restricted to the
dynamics of the laminar flow. Putting aside the question of flow stability for the
moment, we can make some tentative comments on the possible flow after removal of
the blockage. Just as with the sudden imposition of the blockage, the sudden removal
of the blockage will result in an instantaneous flow in which the vorticity is frozen in
its blocked state. This vorticity, consisting of the vortices generated during the blocked
phase (on both sides of the blockage), will now be advected downstream. It is not
clear whether these vortices would decay or persist but we would expect them to play
an important (but as yet undetermined) role in the subsequent flow dynamics.

Of course, the question still remains as to how (and indeed where) the flow
first becomes unstable and undergoes a transition to a turbulent state and at what
Reynolds number this first occurs. We cannot answer this question fully here but
it is useful to make some general comments. Upon reviewing the results of Jewell
& Denier (2006) we find that a linear (quasi-steady) analysis of the unidirectional
upstream flow ψ∞(r,T) shows the flow to be stable to axisymmetric disturbances
and weakly unstable to non-axisymmetric disturbances during the mid-decay phase for
Reynolds numbers as low as Re = 500. Upon relaxing the quasi-steady assumption,
however, Jewell & Denier (2006) postulated a lower limit of Rec ≈ 1000 for
complete breakdown of the laminar structure. This latter figure is still well below
the experimental result of Rec ≈ 2000 reported by Weinbaum & Parker (1975), but in
good qualitative agreement with the findings of Das & Arakeri (1998) for impulsive
flow in a small piston. Moreover, the ‘asymmetric’ nature of breakdown reported by
Das & Arakeri (1998) is consistent with the predicted instability mode of azimuthal
wavenumber k = 1. One could conjecture that the axisymmetric flow postulated in the
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present work is unlikely to persist much above Re = 1000 and furthermore, given the
presence of the vortex structure(s) within the end region, that this region may well
provide the dominant contribution to the full transition in this flow. We hope to present
an answer to this question in a future paper.
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Appendix. The small-time structure of the flow
In order to develop a small-T asymptotic solution for the flow in the vicinity of

the blockage we allow ourselves to be led by the analysis of Jewell & Denier (2006),
who demonstrated that, for x � 1 and 0 < T � 1, the flow develops a boundary
layer of thickness O(

√
T) on the pipe wall. This boundary layer structure will persist

into the end region x = O(1) before breaking down in the immediate vicinity, i.e.
within an x = O(

√
T) distance from the end-wall (at which point there is a balance

between streamwise and radial diffusion). A similar argument indicates the existence
of a boundary layer of thickness O(

√
T) for 1 − r = O(1) on the blockage wall

x = 0, wherein the radial velocity v adjusts to the no-slip condition before breaking
down at 1 − r = O(

√
T). The sidewall and end-wall boundary layers will intersect

for x = O(
√

T) and 1 − r = O(
√

T) in a locally square corner boundary layer.
Binding these three regions together will be an inviscid core-flow for x = O(1) and
1− r = O(1).

These four subregions of the blockage region are shown schematically in figure 15.
In this figure – and throughout the remainder of this paper – we orient the pre-
blockage flow from left to right, so that the streamwise coordinate x is positive
throughout the region of interest. In other words, the end region is defined by
0 6 x 6 O(1); the pre-blockage Poiseuille flow is given by u(r, t < 0) = 1 − r2; and
the post-blockage upstream flow for x� 1 comprises a right-directed core-flow (u> 0)
balanced by a left-directed return flow (u< 0) along the sidewall r = 1.

To obtain a small-T starting solution, we must develop a solution to the governing
equations in each of the four regions illustrated in figure 15. We consider each region
in turn.

A.1. The wall boundary layer in which r ≈ 1

The wall boundary layer is defined by 1 − r = O(
√

T) with x = O(1). Within this
layer the axial velocity u adjusts to the no-slip boundary conditions on the pipe
wall. To determine the flow herein, we first note that u = O(1) and v = O(

√
T),

while their respective wall-normal gradients are O(T−1/2) and O(1). Thus, the axial
momentum equation possesses viscous and advective terms of orders O(T−1) and
O(Re), compared with O(T−1/2) and O(Re

√
T) respectively for the radial momentum

equation. It follows that for T � Re−1 the flow is effectively driven by viscosity (and
consequently weakly nonlinear), whereas for T > Re−1 it is advective and strongly
nonlinear. This observation allows us to make some progress in obtaining the small-T
solution for the full Navier–Stokes equations.
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FIGURE 15. Schematic of the small-time asymptotic structure of the near-blockage flow.

Following Jewell & Denier (2006), we begin by defining the boundary layer
coordinate η via

1− r = 2
√

Tη, (A 1)

where the factor of 2 is included purely for analytic convenience. In the region defined
by η = O(1), the flow can be written as

u(r, x, t)= Ru(η)Xu(x)+ O(
√

T,TRe), (A 2a)

v(r, x, t)= Rv(η)Xv(x)+ O(T,T3/2Re). (A 2b)

Substituting the u-expression (A 2a) into the Navier–Stokes equations and retaining
leading-order terms, we obtain the following ordinary differential equation for the
η-dependent component of the solution

d2Ru

dη2
+ 2η

dRu

dη
= 0. (A 3)

Solving this subject to the boundary conditions Ru(0) = 0 and Ru(η)→ 1 as η→∞
yields the familiar error-function boundary layer profile

Ru(η)= erf(η). (A 4)

The x-dependence of the axial velocity is then found by matching with the core-flow
in the limit η→∞. To leading order, this is the velocity u0(r = 1, x) at time T = 0+

from (2.2) and (2.3):

Xu(x)=−1
2
− 4

∞∑
k=1

λ−2
k

[
J0(λk)

J2(λk)

]
exp(−λkx), (x> 0). (A 5)
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We can now determine the leading-order component of the radial velocity by
integrating the continuity equation with respect to x, to yield

Rv(η)=
∫ η

0
erf(s) ds and Xv(x)=−2

√
T

[
∂v0

∂r
(r = 1, x)

]
. (A 6)

A.2. The blockage boundary layer for which 0< x� 1

The wall boundary layer is defined by x = O(
√

T) with 1 − r = O(1) and η � 1.
Within this layer the radial velocity v along the end-wall x = 0 adjusts to the no-slip
condition. The analysis of the flow in this region follows that given above for the wall
boundary layer with the roles of u and v reversed. In particular, we find that v = O(1)
and u = O(

√
T), with the viscous and advective terms dominating for T � Re−1 and

T > Re−1 respectively. We define a new axial boundary layer variable ξ by

x= 2
√

Tξ, (A 7)

analogous with the definition of η in (A 1). For 0 < T � Re−1 and ξ = O(1), we find
that

u= 2
√

T

[
∂u0

∂x
(r, 0)

] ∫ ξ

0
erf(s) ds+ O(T,T3/2Re), (A 8a)

v = v0(r, 0)erf(ξ)+ O(
√

T,TRe). (A 8b)

A.3. The corner region for which r ≈ 1 and 0< x� 1
The corner boundary layer region is defined by η = O(1) and ξ = O(1), i.e.
x= O(

√
T) with 1− r = O(

√
T). In this region u and v adjust to the no-slip boundary

condition on η = 0 and ξ = 0 respectively. Consideration of the limit x→ 0 in (A 2)
and (A 6) (or alternatively, the limit r→ 1 in (A 8)) shows that both u and v are
O(
√

T) within the corner region. Thus we seek a solution of the form

(u, v)=√T(U(η, ξ),V(η, ξ))+ O(T,TRe). (A 9)

Substitution into the full Navier–Stokes equations yields, at leading order (assuming
that ReT � 1),

2
(

U − η∂U

∂η
− ξ ∂U

∂ξ

)
= ∂P

∂ξ
+ ∂

2U

∂η2
+ ∂

2U

∂ξ 2
, (A 10a)

2
(

V − η∂V

∂η
− ξ ∂V

∂ξ

)
= ∂P

∂η
+ ∂

2V

∂η2
+ ∂

2V

∂ξ 2
, (A 10b)

together with the equation of continuity

∂U

∂ξ
+ ∂V

∂η
= 0. (A 11)

Introducing a streamfunction ψ in the usual way, we may eliminate U, V and P from
(A 10) to give(

∂2

∂η2
+ ∂2

∂ξ 2

)2

ψ + 2η
(
∂2

∂η2
+ ∂2

∂ξ 2

)
∂ψ

∂η
+ 2ξ

(
∂2

∂η2
+ ∂2

∂ξ 2

)
∂ψ

∂ξ
= 0. (A 12)

This equation must be solved subject to no-slip boundary conditions on the pipe wall
(η = 0) and at the blockage (ξ = 0), together with conditions ensuring matching with
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the pipe-wall boundary layer, the blockage boundary layer solution and the inviscid
core-flow solution.
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