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Abstract
We show that for an n× n random symmetric matrix An, whose entries on and above the diagonal are
independent copies of a sub-Gaussian random variable ξ with mean 0 and variance 1,

P[sn(An)≤ ε/√n]≤Oξ (ε1/8 + exp (−�ξ (n1/2))) for all ε ≥ 0.

This improves a result of Vershynin, who obtained such a bound with n1/2 replaced by nc for a small
constant c, and 1/8 replaced by (1/8)− η (with implicit constants also depending on η > 0). Furthermore,
when ξ is a Rademacher random variable, we prove that

P[sn(An)≤ ε/√n]≤O(ε1/8 + exp (−�((log n)1/4n1/2))) for all ε ≥ 0.

The special case ε = 0 improves a recent result of Campos, Mattos, Morris, and Morrison, which showed
that P[sn(An)= 0]≤O( exp (−�(n1/2))). Notably, in a departure from the previous two best bounds on the
probability of singularity of symmetric matrices, which had relied on somewhat specialized and involved
combinatorial techniques, our methods fall squarely within the broad geometric framework pioneered
by Rudelson and Vershynin, and suggest the possibility of a principled geometric approach to the study
of the singular spectrum of symmetric random matrices. The main innovations in our work are new
notions of arithmetic structure – the Median Regularized Least Common Denominator (MRLCD) and
the Median Threshold, which are natural refinements of the Regularized Least Common Denominator
(RLCD)introduced by Vershynin, and should be more generally useful in contexts where one needs to
combine anticoncentration information of different parts of a vector.
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1. Introduction
Let Mn denote an n× n random matrix, each of whose entries is an independent copy of a
sub-Gaussian random variable ξ with mean 0 and variance 1. Prominent well-studied exam-
ples include the Ginibre ensemble (corresponding to ξ =N (0, 1)) and i.i.d. Rademacher matrices
(corresponding to the Rademacher random variable ξ = ±1 with probability 1/2 each).

A landmark result of Rudelson and Vershynin [26] shows that there are absolute constants
C, c> 0, depending only on the sub-Gaussian norm of ξ , for which

P[sn(Mn)≤ ε/√n]≤ Cε + 2e−cn for all ε ≥ 0, (1)
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where sn(Mn)= infv∈Sn−1‖Mv2‖ denotes the smallest singular value of Mn. Up to the constants
C, c> 0, the above result is optimal, as can be seen by considering the two examples mentioned
above. In particular, this result shows that the probability that an i.i.d. Rademacher matrix is sin-
gular is at most 2 exp (−cn) (for some c> 0), thereby recovering (and substantially generalising) a
well-known result of Kahn, Komlós, and Szemerédi [13]. We remark that after a series of interme-
diate works [2, 27, 28], a breakthrough result of Tikhomirov [29] established that the probability
of singularity of an i.i.d. Rademacher matrix is at most (1/2+ on(1))n, which is optimal up to the
on(1) term.

In this paper, we will be concerned with n× n symmetric random matrices An i.e. (An)ij =
(An)ji, each of whose entries on and above the diagonal is an independent copy of a sub-Gaussian
random variable ξ withmean 0 and variance 1.We note that the identical distribution assumption
may be significantly relaxed (in particular, allowing for the diagonal entries to have a different
distribution), although for the sake of simplicity, we do not deal with this modification here; the
interested reader is referred to [16, 30].

While symmetric matrices are especially convenient to work with linear algebraically, the lack
of independence between the entries of An makes the non-asymptotic study of its smallest singu-
lar value considerably more challenging than that of Mn. In the early 1990s, it was conjectured
by Weiss that An(Rad) (i.e. An where ξ is a Rademacher random variable) is invertible with
probability 1− on(1). This was only resolved in 2005 by Costello, Tao, and Vu [6], despite the
corresponding statement for Mn (due to Komlós [14]) having been established almost 40 years
prior (see also [8] for a recent simple proof).

Vershynin [30] showed that for any sub-Gaussian random variable ξ with mean 0 and variance
1, there are constants c, Cη depending only on the sub-Gaussian norm of ξ such that

P[sn(An)≤ ε/√n]≤ Cηε1/8−η + 2e−nc . (2)

This improves (and generalizes) the nearly concurrent estimate of OC(n−C) on the singularity
probability of An(Rad) obtained by Nguyen [21] using a novel quadratic variant of the inverse
Littlewood–Offord theory. We note that in a subsequent work [22], Nguyen obtained estimates
on the lower tail of sn(An) for a large class of random variables ξ , including those not covered by
[30], although the quantitative bounds in this work are much weaker than (2).

Recently, the upper bound on the singularity probability of An(Rad) has been improved in
a couple of works. Building on novel combinatorial techniques in [10], it was shown by Ferber
and Jain [9] that this probability is at most exp (−�(n1/4

√
log n)). Subsequently, using a differ-

ent combinatorial method inspired by the method of hypergraph containers [1], Campos, Mattos,
Morris, and Morrison improved the bound to exp (−�(

√
n)). We note that both of these works

deal only with An(Rad), and only with the singularity probability as opposed to quantitative
estimates on sn(An(Rad)).

The first main result of this paper is a strengthening of (2); the quantitative bounds are suf-
ficiently powerful to generalize the aforementioned result of Campos et al. to all sub-Gaussian
random variables.

Theorem1.1 Let An denote an n× n random symmetric matrix, each of whose entries on and above
the diagonal is an independent copy of a sub-Gaussian random variable ξ with mean 0 and variance
1. Then, there are constants C1.1, c1.1 depending only on the sub-Gaussian norm of ξ such that, for
all ε ≥ 0,

P[sn(An)≤ ε/√n]≤ C1.1ε1/8 + 2e−c1.1n1/2 .

Next, we consider the particularly well-studied case ξ = Rad; setting ε = 0 in the theorem
below improves the result of Campos et al. (see (3) in the Remark below).
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Theorem1.2 Let An denote an n× n random symmetric matrix, each of whose entries on and above
the diagonal is an independent Rademacher random variable. Then, there are absolute constants
C1.2, c1.2 such that, for all ε ≥ 0,

P[sn(An)≤ ε/√n]≤ C1.2ε1/8 + 2e−c1.2n1/2(log n)1/4 .

Remark

1. We note that Theorem 1.2 can be extended to the setting of discrete random vari-
ables covered in recent work of the authors [11]. We leave the details to an interested
reader.

2. The ε1/8 term on the right-hand side in Theorem 1.1 improves on the ε1/8+η in [30]. It is
believed that the correct dependence on ε is O(ε), which would be optimal in light of the
Gaussian example.

3. The term exp (−�(n1/2)) on the right-hand side in Theorem 1.1 extends the result
of Campos, Mattos, Morris, and Morrison to general sub-Gaussian random variables,
whereas Theorem 1.2 improves this result by a factor of (log n)1/4 in the exponent, in the
special case when ξ = Rad. A well-known conjecture is that one should be able to replace
this with exp (−�(n)), although this will likely require significant new ideas.

Our proof follows the geometric framework for studying the smallest singular value of random
matrices, pioneered by Rudelson and Vershynin [26] for random matrices with i.i.d. entries (see
the notes [25] for a highly readable introduction) and adapted for random symmetric matrices
by Vershynin [30]. For the purpose of studying the singularity probability, the key ingredient in
this framework is to identify an appropriate quantitative notion of arithmetic structure of vec-
tors on the unit sphere, which on the one hand controls the anti-concentration properties of the
vector and on the other hand permits the construction of sufficiently small epsilon-nets for its sub-
level sets. In the seminal work of Rudelson and Vershynin [26], the (essential) Least Common
Denominator (LCD) plays this role, crucially relying on the independence of the rows of the
matrix in order to ‘tensorize’ the corresponding anti-concentration estimates. For the study of ran-
dom symmetric matrices, where the rows are highly dependent, the LCD proves to be insufficient.
Consequently, Vershynin [30] introduced the notion of the RLCD, which allows a limited amount
of tensorization of the corresponding anti-concentration estimates, but at the cost of being able to
take advantage of only a very small amount of randomness in the matrix.

The main innovation in our work are new notions of arithmetic structure of vectors, which
we call the MRLCD (see Section 3) and the Median Threshold (see Section 4). Compared to the
RLCD and its natural threshold analogue, the MRLCD and median threshold are able to exploit
the information that many different coordinate projections (i.e. subvectors) of a vector are arith-
metically unstructured in a simple and transparent manner, thereby allowing us to take advantage
of substantially more randomness in the matrix compared to [30]. Moreover, we are able to show
that level sets of the MRLCD and median threshold admit sufficiently small nets at the appro-
priate scale – for the MRLCD, this follows by suitably adapting by-now standard bounds due to
Rudelson and Vershynin [26], whereas for the median threshold, we adapt work of Tikhomirov
[29] on the singularity of i.i.d Bernoulli randommatrices. As the details are anyway short, we defer
further discussion to Sections 3 and 4.

We note that since its first appearance in [30], the RLCD has been used inmany works (see, e.g.,
[17, 18, 20, 23, 31]); the MRLCD (and median threshold, for discrete distributions) can replace
these applications in a black-box manner, and likely lead to improved quantitative estimates. We
also note that a related use of combinatorially incorporating arithmetic unstructure of different
projections of a vector appeared in recent work of the authors [12] on the probability of singularity
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of the adjacency matrix of random regular digraphs; however, the interaction with both the net
and anticoncentration estimates is more delicate here.

1.1 Notation
We will drop the dimension in the subscript, henceforth denoting An by A, and denoting its rows
by A1, . . . ,An. For an integer N, SN−1 denotes the set of unit vectors in R

N , and B
N
2 denotes the

unit ball in R
N (i.e., the set of vectors of Euclidean norm at most 1). ‖·2‖ denotes the standard

Euclidean norm of a vector, and for a matrix A= (aij), ‖A‖ is its spectral norm (i.e., �2 → �2

operator norm), and ‖AHS‖ is its Hilbert-Schmidt norm, defined by ‖A2
HS‖ = ∑

i,j a2ij.
We will let [N] denote the interval {1, . . . ,N},S[N] denote the set of permutations of [N], and([N]

k
)
denote the set of subsets of [N] of size exactly k. We will denote multisets by {{}}, so that

{{a1, . . . , an}}, with the ai’s possibly repeated, is a multi-set of size n. For a vector v ∈R
N and

T ⊆ [N], v|T denotes the |T|-dimensional vector obtained by only retaining the coordinates of v
in T. We write u ‖ v for u, v ∈R

N if there is t ∈R such that u= tv or tu= v.
We will also make use of asymptotic notation. For functions f ,g, f =Oα(g) (or f �α g means

that f ≤ Cαg, where Cα is some constant depending on α; f =�α(g) (or f �α g) means that f ≥
cαg, where cα > 0 is some constant depending on α, and f =�α(g) means that both f =Oα(g)
and f =�α(g) hold.

All logarithms are natural, unless indicated otherwise, and floors and ceilings are omitted when
they make no essential difference.

1.2 Concurrent work
After uploading the first version of this manuscript, we learned of concurrent and independent
work of Campos et al. [3] which, building on the techniques of [5], proved a singularity bound of
exp (−�(

√
n log n)) for symmetric Bernoulli matrices, a slightly improved bound over the ε = 0

case of Theorem 1.2. However, the combinatorial methods used there do not provide quantitative
information on the least singular value, and their results do not apply in as general a setting.

1.3 Subsequent work
Several months after the appearance of this article on the arXiv, a remarkable breakthrough work
of Campos et al. [4] obtained an upper bound of the form O( exp (−cn)) on the probability of
singularity of n× n symmetric Rademacher matrices, also using geometric techniques.

2. Preliminaries
We will need the decomposition of the unit sphere into compressible and incompressible vectors,
as formalized by Rudelson and Vershynin [26].

Definition 2.1 (Compressible and incompressible vectors) For c0, c1 ∈ (0, 1), Comp (c0, c1) con-
sists of all vectors v ∈ S

n−1 which are within Euclidean distance c1 of some vectorw ∈R
n satisfying

| Supp (w)| ≤ c0n. Moreover, Incomp (c0, c1) := S
n−1 \Comp (c0, c1).

In order to prove Theorem 1.1, it suffices to analyze infx∈Incomp(c0,c1)‖Ax2‖ due to the following.
Lemma 2.2 There exist c0, c1, c ∈ (0, 1) depending only on the sub-Gaussian moment of ξ so that
for any vector u ∈R

n, we have

P

[
inf

v∈Comp (c0,c1)
‖Av− u2‖< c

√
n
]

≤ 2 exp (−cn).
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Proof. This follows immediately by combining [30, Proposition 4.2] with the concentration of
the operator norm of randommatrices with independent, uniformly sub-Gaussian centred entries
(cf. [30, Lemma 2.3]). �
Lemma 2.3 (Incompressible vectors are spread, cf. [30, Lemma 3.8]) For every c0, c1 ∈ (0, 1), we
can choose c2.3 := c2.3(c0, c1) ∈ (0, 1/5) depending only on c0, c1 such that the following holds. For
every v ∈ Incomp (c0, c1), there are at least 2�c2.3n� indices k ∈ [n] such that

c1√
2n

≤ |vk| ≤ 1√c0n
.

Definition 2.4 (Spread set) For every c0, c1 ∈ (0, 1), and for every v ∈ Incomp (c0, c1), we assign a
subset Spread (v)⊆ [n] such that

| Spread (v)| = �c2.3n�, and
c1√
2n

≤ |vk| ≤ 1√c0n
for all k ∈ Spread (v).

Definition 2.5 For every c0, c1 ∈ (0, 1) and for λ ∈ (0, c2.3/2), let c2.5(λ)n be the largest multiple
of �λn� less than or equal to �c2.3n�. Note that c2.5(λ)≥ c2.3

2 .

To every v ∈ Incomp (c0, c1), we assign Spreadλ (v)⊆ Spread (v) such that

| Spreadλ (v)| = c2.5(λ)n,

and choose a partition

Spreadλ (v)=
k⊔

j=1
Spreadjλ (v)

into k= c2.3(λ)n/
λn� disjoint subsets of size 
λn�. We further assume that the choice of
Spreadλ (v) and Spreadjλ (v) is uniform for a given choice of λ and Spread (v) (in particular, these
choices do not depend directly on v).

In the above definition, we will ultimately choose λ=�(1/
√
n) for Theorem 1.1 and λ=

�((log n)1/4/
√
n) for Theorem 1.2. We recall the definition of the Lévy concentration function.

Definition 2.6 For a random variable X and ε ≥ 0, the Lévy concentration of X of width ε is

L(X, ε)= sup
x∈R

P[|X − x| ≤ ε].

We will also need a slight variant of the standard tensorization lemma, whose proof follows
from the usual argument (cf. [26, Lemma 2.2]). We include the details for completeness.

Lemma 2.7 (Tensorization) Let X = (X1, . . . , XN) be a random vector in R
N with independent

coordinates. Suppose that for all k ∈ [N], there exist ak, bk ≥ 0 such that

sup
X1,...,Xk−1

L(Xk|X1, . . . , Xk−1, ε)≤ akε + bk for all ε ≥ 0.

Then

L(X, ε
√
N)≤ eN

N∏
k=1

(akε + bk).
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Proof.We have

P[|X| ≤ ε√N]= P

[ N∑
j=1

X2
j ≤ ε2N

]
= P

[
N − 1

ε2

N∑
j=1

X2
j ≥ 0

]

≤E exp

⎛⎝N − 1
ε2

N∑
j=1

X2
j

⎞⎠
≤ eN

N∏
j=1

sup
X1,...,Xj−1

E exp (− X2
j /ε

2|X1, . . . , Xj−1).

We finish by noting that for any realization of X1, . . . , Xj−1,

E exp (− X2
j /ε

2|X1, . . . , Xj−1)=
∫ ∞

0
2ue−u2

P[|Xk|< εu|X1, . . . , Xj−1] du

≤
∫ ∞

0
2ue−u2 (ajεu+ bj) du≤ ajε + bj. �

We also recall the definition of essential least common denominator (LCD). We use a log-
normalized version due to Rudelson (unpublished), which also appears in [30].

Definition 2.8 (LCD). For L≥ 1 and v ∈ S
N−1, the least common denominator (LCD) DL(v) is

defined as

DL(v)= inf
{
θ > 0 : dist (θv,ZN)< L

√
log+ (θ/L)

}
.

Finally we will require the following anticoncentration inequality of Miroshnikov and Rogozin
[19]; this generalizes a well-known inequality of Lévy-Kolmogorov-Rogozin [24], which is itself
an extension of Erdös’s solution [7] to the Littlewood-Offord problem.

Lemma 2.9 ([19, Corollary 1]). Let ξ1, . . . , ξN be independent random variables. Then, for any real
numbers r1, . . . , rN > 0 and any real r ≥maxi∈[N] rN, we have

L
( N∑

i=1
ξi, r

)
≤ C2.9r

( N∑
i=1

r2i (1−L(ξi, ri))
L(ξi, ri)2

)−1/2

,

where C2.9 > 0 is an absolute constant.

3. Median regularized LCD (MRLCD)
In this section, we introduce the median regularized LCD (MRLCD), which is the notion of arith-
metic structure that we will use in the proof of Theorem 1.1. As opposed to the regularized LCD
(RLCD) (introduced in [30]) which guarantees only one arithmetically unstructured projection of
the vector, a large MRLCD guarantees many arithmetically unstructured projections of the vector.
This simple change allows the MRLCD to piece together various unstructured parts of the vector
to obtain significantly better small-ball probability estimates (Proposition 3.5), while at the same
time not significantly impacting the size of nets of level sets (Proposition 3.3).

Definition 3.1 (Median Regularized LCD). For v ∈ Incomp (c0, c1), λ ∈ (0, c2.3), and L≥ 1, the
median regularized LCD, denoted M̂DL(v, λ), is defined as

M̂DL(v, λ)=median{{DL(vI/‖vI‖2):I = Spreadjλ (v) for some j}}.
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Here, the median of an even number of elements is not an average, but instead the value of the
upper half. We denote by IM(v) the set Spreadjλ (v) achieving the median (arbitrarily chosen from
among all such sets), and IM(v) the collection of sets attaining values at least that of the median.
We let JM(v) be the collection of sets attaining values at most that of the median.

We will consider level sets obtained by dyadically chopping the range of the MRLCD.

Definition 3.2 (Level sets of MRLCD) For λ ∈ (0, c2.3), L≥ 1, and D≥ 1, we define the set

SD = {v ∈ Incomp (c0, c1) : M̂DL(v, λ) ∈ [D, 2D]}.

3.1 Nets for level sets of MRLCD
The main result of this subsection is the following.

Proposition 3.3 Let c0, c1 ∈ (0, 1). There exists C3.3 = C3.3(c0, c1)> 0 for which the following holds.
Let λ ∈ (C3.3/n, c2.3/2) and L≥ 1. For every D≥ 1, SD has a β-netN such that

β = L
√
log (2D)
D

, |N | ≤D1/λ

(
C3.3D√
log (2D)

)n

·
(√

log (2D)√
λn

)c2.3n/8

.

Remark By changing C3.3 by a constant factor, we can further assume that N ⊆ SD. Also, the
L dependence here is not optimal – one can save a factor of Ln(1−c2.3/8) by being more careful,
although this does not affect the overall bounds if L is of constant order as in our application.

The proof of Proposition 3.3 relies on a bound on the size of nets for level sets of the LCD.

Lemma 3.4 (Corollary of Lemma 7.8 in [30]) Let m ∈N, D≥ 1, and c ∈ (0, 1) be such that D>
c
√
m≥ 2. There exists a constant C depending only on c for which the following holds. Let χ > 1,

L≥ 1, and λ> 0. Then the set

{x ∈ √
χλBm

2 : c
√
m<DL(x/‖x2‖)≤D}

has a β
√
χλ-netN such that

β = 4L
√
log (2D)
D

, |N | ≤
(
CD√
m

)m
D2.

Now we conclude the result.

Proof of Proposition 3.3. Let r = �λn� and k= c2.5(λ)n, so that r|k by definition.
Let v ∈ SD. By paying a factor of at most 2n in the size of our net, we may fix a realization

of Spread (v), which determines Spreadλ (v) and Spreadjλ (v) for 1≤ j≤ k/r. We pay an addi-
tional factor of at most 2n to reveal which sets Spreadjλ (v) are in JM(v). Let J ⊆ [k/r] be the
collection of corresponding indices j. We see that t := |J| ≥ k/(2r) by definition of median. Write
J = {j1, . . . , jt} and let Ii = Spreadjiλ (v).

Note that, given I1, . . . , It , we know that DL(vIi/‖vIi2‖)≤ 2D for all 1≤ i≤ t. Moreover, since
Ii ⊆ Spreadλ (v), it follows that ‖vIi2‖ ≤ √

χλ for some χ depending only on c0. Further, by [30,
Lemma 6.2], it follows (again, since Ii ⊆ Spreadλ (v)) that DL(vIi/‖vIi‖2)≥ c

√�λn� for some c
depending only on c0, c1. Hence, by Lemma 3.4, we have a β

√
χλ-net for {vIi}v∈SD where

β = 2L
√
log (4D)
D
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of size at most (
CD√�λn�

)�λn�
D2.

Finally, we take a product of these nets over 1≤ i≤ t, along with a standard β-net of BI0
2 (this

net has size at most (1+ 3/β)|I0|), where we let I0 = [n] \ (I1 ∪ · · · ∪ It), to obtain the desired
conclusion upon adjusting the value of β by standard arguments. �

3.2 Anticoncentration via MRLCD
We derive anticoncentration for a fixed vector with respect to MRLCD; the key idea is to patch
together anticoncentration estimates on different segments of the vector through the use of
Lemma 2.9.

Proposition 3.5 (Anticoncentration via the MRLCD). Let ξ1, . . . , ξn be i.i.d. random variables.
Suppose that there exist ε0, p0,M0 > 0 such that L(ξk, ε0)≤ 1− p0 and E[|ξk|]≤M0 for all k.
Finally, let c0, c1 ∈ (0, 1). Then, there exist C3.5, depending only on ε0, p0,M0 and C′

3.5 depending
on ε0, p0,M0, c0, c1 such that the following holds.

Let L≥ p−1/2
0 , λ ∈ (C′

3.5L
2/n, c2.3), v ∈ Incomp (c0, c1), J ⊆ Spreadλ (v), and SJ = ∑

k∈J vkξk.
Suppose that J is a union of sets in IM(v). Then for every ε ≥ 0, we have for sufficiently large
n (depending on ε0, p0,M0, c0, c1) that

L(SJ , ε)≤ C3.5L
(

ε√|J|/n +
√
λn/|J|

M̂DL(v, λ)

)
.

Remark The above proposition should be compared with [30, Proposition 6.9], which bounds
the Lévy concentration function in terms of the regularized LCD. The key difference is that the
term

√|J|/n in the denominator of our bound is replaced by
√
λ, which is always smaller. In

fact, in the application considered here, λmust be chosen to be O(1/
√
n), which makes the above

proposition significantly more efficient than the corresponding proposition in [30] for most of the
matrix row-vector products (which satisfy |J|/n=�(1)).

Proof. Since v ∈ Incomp (c0, c1), we have M̂DL(v, λ)≥ c
√�λn� for some c depending only on

c0, c1 ([30, Lemma 6.2]).
First, assume that ε ≤ 1/(c

√
n). Let r = �λn� and k= c2.5(λ)n, so that r|k by definition. For

i ∈ [k/r], let

Si =
∑

k∈Spreadiλ (v)
vkξk.

Let I be such that J = ∪i∈I Spreadiλ (v). Since J is a union of sets in IM(v), and DL(vI/‖vI‖2)≥
M̂DL(v, λ) for each I ∈ IM(v), it follows by standard anticoncentration estimates based on the
LCD (see [30, Proposition 6.9] for the logarithmic version), that there exists an absolute constant
C> 0 such that

L(Si, ε)≤ CL
(
ε√
λ

+ 1
M̂DL(v, λ)

)
<

1
2

for all i ∈ I, where the latter inequality follows from the assumption that ε ≤ 1/(c
√
n), along with

the lower bound on λ (by taking C′
3.5 sufficiently large depending on various parameters).
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Now note that
SJ =

∑
i∈I

Si

and that the Si are independent. Also, note that |I| = |J|/�λn�. Therefore, by Lemma 2.9, we have

L(SJ , ε)≤ C2.9ε

(∑
i∈I

ε2(1−L(Si, ε))
L(Si, ε)2

)−1/2

≤ C2.9
√
2√|I| max

i∈I L(Si, ε)≤ 2C2.9√|J|/n · CL
(
ε +

√
λ

M̂DL(v, λ)

)
,

which proves the desired conclusion for ε ≤ 1/c
√
n.

Finally, for ε > 1/(c
√
n), we note that any interval of length 2ε can be tiled by at most 2ε/ε0

intervals of length 2ε0, where ε0 = 1/(2c
√
n). Moreover, for such ε0, we have

ε0 +
√
λ

M̂DL(v, λ)
≤ 4ε0.

Hence, we have that for all ε > 1/(c
√
n),

L(SJ , ε)≤ 2ε
ε0

·L(SJ , ε0)

≤ 2ε
ε0

· 2C2.9CL√|J|/n · 4ε0 ≤ 16C2.9CL · ε√
λ
,

as desired. �
Next, we derive a small-ball result for (symmetric) matrix-vector products.

Lemma 3.6 Fix K ≥ 1, c0, c1 ∈ (0, 1) and v ∈ Incomp (c0, c1). There exists L depending only on the
sub-Gaussian norm of ξ , and c3.6, C3.6 depending on the sub-Gaussian norm of ξ and on c0, c1 such
that the following holds.

Let λ ∈ (C3.6/n, c3.6) and suppose that v ∈ SD (withMRLCDdefinedwith respect to λ, L). Then,
for any u ∈R

n, we have

P[‖Av− u‖2 ≤Kβ
√
n]≤

(
C3.6L2

√
log (2D)
D

)n−�λn�
,

where

β = L
√
log (2D)
D

.

Proof. Fix u ∈R
n and v ∈ SD. Note that for any permutation matrix P, ‖Av− u‖2 ≤Kβ

√
n

occurs if and only if

‖(PAP−1)Pv− Pu‖ ≤Kβ
√
n.

Furthermore, PAP−1 = PAPᵀ has the same distribution asA. Therefore, we will be able to permute
the indices of [n] at our convenience (depending on v).

In particular, we may assume that Spreadλ (v)= [c2.5(λ)n]. Let At = {k ∈ [n] : t�λn�< k≤ (t +
1)�λn�} (defined for 0≤ t ≤ T − 1), where

T = c2.5(λ)n
�λn� .

https://doi.org/10.1017/S0963548321000511 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548321000511


Combinatorics, Probability and Computing 671

We may also assume that At ∈ IM(v) for all t ≤ �T/2� − 1. Then, for all �λn� ≤ j≤ c2.5(λ)n, the
set J = [j] has a subset of at least half the size which satisfies the assumptions of Proposition 3.5
(namely, the union of the first 
j/�λn�� sets At).

Therefore, Proposition 3.5 implies that for all L sufficiently large depending on the sub-
Gaussian norm of ξ , if j≥ �λn� and ε ≥ 0, then

L((Av− u)j|(Av− u)j+1,...,n, ε)≤ CC3.5L

(
ε√
j/n

+
√
λn/j
D

)
,

where C depends only on c0, c1. Here, we have used that the first j elements of the jth row are
independent of rows j+ 1, . . . , n, and that the Lévy concentration is monotone under removing
independent random variables from a sum.

Let j′ =min (j, c2.5(λ)n). Then, by Lemma 2.7, we deduce

P[‖Av− u‖2 ≤Kβ
√
n]≤ P

⎡⎣ n∑
j=�λn�

(Av− u)2j ≤K2β2n

⎤⎦
≤ (CL)n

n∏
j=�λn�

(
Kβ

√
n/(n− �λn�)√

j′/n
+

√
λn/j′

D

)

≤ (CL)n
n∏

j=�λn�

(
KL

√
n log (2D)
D

√
j′

)

≤
(
CL2

√
log (2D)
D

)n−�λn�
,

where the last inequality uses
∏n

j=1 (n/j)≤ en. �

3.3 Structure theorem
We will need the following structure theorem, which shows that, except with exponentially small
probability, the preimage under A of any fixed vector is highly unstructured. This is our replace-
ment for the key [30, Theorem 7.1]. As usual, A denotes a random n× n symmetric matrix with
independent ξ entries on and above the diagonal.

Theorem 3.7 Fix K ≥ 1. Depending on the sub-Gaussian norm of ξ , we can choose L, c, C so that
the following holds. For all λ ∈ (C/n, 1/

√
n), we have for any u ∈R

n that

P[∃v ∈ S
n−1 : (Av ‖ u)∧ (v ∈Comp (c0, c1)∨ M̂DL(v, λ)≤ 2λn/C)∧ (‖A‖ ≤K

√
n)]≤ 2e−cn.

Proof. This is an immediate consequence of Proposition 3.3, Lemmas 3.2 and 3.6. Note that
if Av= tu for t ∈R, then ‖A‖ ≤K

√
n implies ‖tu‖2 ≤K

√
n. For compressible vectors v, we use

Lemma 2.2 on a constant amount of target vectors parallel to u so as to cover the full range. For
the rest, if the MRLCD is between D and 2D (for some D≤ 2λn/C), we take a net constructed in
Lemma 3.4 along with a 1/D-net for {tu : ‖tu‖2 ≤K

√
n}, which adds an additional (unimportant)

factor of KD
√
n to the size of our nets. Since
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KD
√
n ·D1/λ

(
C3.3D√
log (2D)

)n

·
(√

log (2D)√
λn

)c2.3n/8

×
(
C3.6L2

√
log (2D)
D

)n−�λn�

=KD
√
n ·D1/λ

(
C′D√
log (2D)

)�λn� (√
log (2D)√
λn

)c2.3n/8

≤ C′n · 2λ2n2/C · (1/C)c2.3n/16
≤ C′n2n/C(1/C)c2.3n/16,

the result follows by a union bound upon taking C sufficiently large. We omit the standard details,
referring the reader to the proof of [30, Theorem 7.1] for a more detailed calculation. �

4. Median threshold
We begin by defining an alternate notion of structure, based on the so-called threshold function
(Definition 4.1), which will allow us to use results of Tikhomirov [29] to obtain a stronger bound
for the probability of singularity Rademacher random symmetric matrices.We note that, although
we have chosen to focus on the Rademacher case, our analysis can be extended to general real
discrete distributions using recent results of the authors [11].

For a technical reason that will become clear later, we fix a sufficiently small absolute constant
p ∈ (0, 1/2] throughout this section; for the case of Rademacher random variables, which is our
focus, one can take p= 1/10.

Definition 4.1 For p ∈ (0, 1), L≥ 1, and v ∈ S
N−1, the threshold Tp,L(v) is defined as

Tp,L(v)= sup
{
t ∈ (0, 1) :L

( N∑
i=1

bi′vi, t
)
> Lt

}
,

where the bi′ are i.i.d. random variables distributed as Ber (p)− Ber ′(p).
Definition 4.2 For p ∈ (0, 1), v ∈ Incomp (c0, c1), λ ∈ (0, c2.3), and L≥ 1, the median threshold,
denoted T̂p,L(v, λ), is defined as

T̂p,L(v, λ)=median{{Tp,L(vI/‖vI‖2) : I = Spreadjλ (v) for some j}}.

4.1. Threshold of random lattice points
We next recall the key technical result of Tikhomirov [29], which upper bounds the number of
vectors with “large” threshold within a lattice of appropriate size. The important fact is that the
number of such vectors is superexponentially small compared to the size of the lattice, which is the
key difference with the results coming from the MRLCD. First, we must establish some notation.

Definition 4.3 ChooseN, n≥ 1 and δ ∈ (0, 1], as well asK ≥ 1.We say thatA⊆Z
n is (N, n,K, δ)-

admissible if the following hold:

• A=A1 × · · · ×An, where each Ai is an origin-symmetric subset of Z∩ (− nN, nN),
• Ai is an integer interval of size at least 2N + 1 for all i> δn,
• Ai is a union of two integer intervals of total size at least 2N and Ai ∩ [−N,N]= ∅ for all
i≤ δn, and

• |A| ≤ (KN)n.
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Theorem 4.4 (From [29, Corollary 4.3]). Let δ, ε ∈ (0, 1], p ∈ (0, 1/2], and K,M ≥ 1. There exist
n4.4 = n4.4(δ, ε,K,M)≥ 1 and L4.4 = L4.4(δ, ε,K)> 0 such that the following holds. If n≥ n4.4,
1≤N ≤ (1− p+ ε)−n, andA is (N, n,K, δ)-admissible, then∣∣∣∣{x ∈A :L

( n∑
i=1

bixi,
√
n

)
≥ L4.4N−1

}∣∣∣∣ ≤ exp (−Mn)|A|,

where the bi are i.i.d. Ber (p) random variables. Furthermore, n4.4 = exp (C4.4(δ, ε,K)M2) is
allowable.

Remark. This is the same as [29, Corollary 4.3], except that we have claimed an explicit
dependence between n andM, namely that one can take M growing as (log n)1/2 (all other param-
eters fixed). This is an immediate consequence of unraveling the parameter dependencies in [29,
Theorem 4.2]. We give a brief sketch, using the notation of [29, Theorem 4.2]. In the proof of [29,
Theorem 4.2], one sets L= L4.5(2M, p, δ, ε/2), which can be checked to grow exponentially in M
by examining the last line of the proof of [29, Proposition 4.5]. This shows that the parameter q
in the proof of [29, Theorem 4.2] is chosen to be linear in M, and hence, the parameter ε̃ grows
as M−1. Next, it is required that n≥ n4.10(p, ε̃, max (16R̃, L), R̃, 2M) and n≥ n4.5(2M, p, δ, ε/2).
The more restrictive condition comes from [29, Proposition 4.10], and indeed, an examination
of the first few lines of the proof of this proposition reveals that it suffices to have n growing as
exp (�(M2)). One also sees that η4.2 = η4.10(p, ε̃, max (16R̃, L), R̃, 2M) decays as exp (−�(M2)).
Finally, the deduction of [29, Corollary 4.3] from [29, Theorem 4.2] requires n−1/2 ≤ η, for which
n growing as exp (�(M2)) is sufficient in light of the decay of η discussed above.

4.2. Replacement
In order to relate the anticoncentration of a vector with respect to Rademacher random vari-
ables to Definition 4.1 and 4.2, we will require the following inequality. This is closely related to
the replacement trick employed by Kahn et al. [13] and later by Tao and Vu [28] (although the
application here is substantially simpler).

Lemma 4.5 There exists an absolute constant C4.5 for which the following holds. Let v ∈R
n and

r> 0. Then, for any 0< p≤ (2− √
2)/4,

L
( n∑

i=1
bivi, r

)
≤ C4.5L

( n∑
i=1

bi′vi, r
)
,

where bi are independent Rademacher random variables and bi′ are distributed as Ber (p)−
Ber ′(p).

Proof. Note that by scaling v, we may assume without loss of generality that r = 1. Let X =∑n
i=1 bi′vi. By Esseen’s inequality and | cos t| ≤ (3+ cos (2t))/4, we find

L
( n∑

i=1
bivi, 1

)
≤ C

∫ 2

−2

n∏
i=1

| cos (viθ)|dθ ≤ C
∫ 2

−2

n∏
i=1

(
3
4

+ 1
4
cos (2viθ)

)
dθ

≤ C
∫ 2

−2

n∏
i=1

E exp
(
iθ · 2bi′vi

)
dθ ≤ 2C

∫
R

1[−2,2] ∗ 1[−2,2](θ)E exp (iθ(2X))dθ
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= 4CE
(
sin (4X)

2X

)2

≤ 4CE
(
sin (4X)

2X
· 1X∈[−1,1]

)2
+

∞∑
k=1

4CE
(
sin (4X)

2X
· 1±X∈[2k−1,2k+1]

)2

≤ 16CL(X, 1)+ C
∞∑
k=1

L(X, 1)
(2k− 1)2

≤ C′L(X, 1).

The third inequality uses p≤ (2− √
2)/4, and the penultimate inequality uses sin (4x)/(2x)≤ 2

for x ∈ [− 1, 1]. �

4.3 Randomized rounding
We will make use of a slight modification of [29, Lemma 5.3], proved using randomized rounding
(cf. [15]). As the proof is identical we omit the details.

Lemma 4.6 Let y= (y1, . . . , yn) ∈R
n be a vector, � be a fixed distribution supported in [− 1, 1]n,

and let μ> 0, ψ ∈R be fixed. There exist absolute constants c4.6 and C4.6 for which the following
holds.

Suppose that for all t ≥ √
n,

P

[∣∣∣∣ n∑
i=1

biyi −ψ

∣∣∣∣ ≤ t
]

≤μt,

where (b1, . . . , bn) are independent and distributed as �. Then, there exists a vector y′ ∈Z
n

satisfying
(R1) ‖y− y′‖∞ ≤ 1,
(R2) P[| ∑n

i=1 biyi′ −ψ | ≤ t]≤ C4.6μt for all t ≥ √
n, and

(R3) L(
∑n

i=1 biyi′,
√
n)≥ c4.6L(

∑n
i=1 biyi,

√
n).

Next, we prove a version of the above proposition for the case when�= Ber (p)− Ber ′(p) with
p sufficiently small. The main difference is that the left hand side in (R2) above can be replaced
by the Lévy concentration at width t; this can be done since for a distribution with non-negative
characteristic function, the maximum concentration of given width is essentially obtained around
ψ = 0.

Lemma 4.7 Let y= (y1, . . . , yn) ∈R
n be a vector, p ∈ (0, 1), and let μ> 0, ψ ∈R be fixed. There

exist absolute constants c4.7 and C4.7 for which the following holds.

Suppose that for all t ≥ √
n,

L
( n∑

i=1
bi′yi, t

)
≤μt,

where the bi′ are independent and distributed as Ber (p)− Ber ′(p). Then, there exists a vector
y′ = (y1′, . . . , yn′) ∈Z

n satisfying
(R1) ‖y− y′‖∞ ≤ 1,
(R2) L(

∑n
i=1 bi′yi′, t)≤ C4.7μt for all t ≥ √

n, and
(R3) L(

∑n
i=1 bi′yi′,

√
n)≥ c4.7L(

∑n
i=1 bi′yi,

√
n).
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Proof.We apply Lemma 4.6 to the distribution�= Ber (p)− Ber ′(p) and ψ = 0. From (R2),

P

[∣∣∣∣ n∑
i=1

bi′yi
∣∣∣∣ ≤ t

]
≤ C4.6μt

for all t ≥ √
n. Now let t ≥ √

n and X = (
∑n

i=1 bi′yi′)/t, and note that X has nonnegative
characteristic function since bi′ does. Thus, for all ψ ∈R,

P[|X −ψ | ≤ 1]=E[1[−1,1](X −ψ)]≤E[1[−1,1] ∗ 1[−1,1](X −ψ)]

=
∫
R

(
2 sin θ
θ

)2
E exp (iθ(X −ψ))dθ

≤
∫
R

(
2 sin θ
θ

)2
|E exp (iθX)|dθ

=
∫
R

(
2 sin θ
θ

)2
E exp (iθX)dθ

=E[1[−1,1] ∗ 1[−1,1](X)]≤ 2P[|X| ≤ 2]≤ 4C4.6μt. �

4.4 Threshold structure theorem
We now prove the following improved version of Theorem 3.7.

Theorem 4.8 Fix K ≥ 1 and 0< p≤ (2− √
2)/4. We can choose L, c> 0 and c′ = c′(p) so that the

following holds for sufficiently large n. For all λ ∈ (n−2/3, c(log n)1/4n−1/2), we have for any u ∈R
n

that

P[∃v ∈ S
n−1 : (Av ‖ u)∧ (v ∈Comp (c0, c1)∨ T̂p,L(v, λ)≥ 2−c′λn)∧ (‖A‖ ≤K

√
n)]≤ 2e−cn,

where A is a symmetric matrix with entries on and above the diagonal i.i.d. and distributed as the
sum of a Rademacher random variable, and a Gaussian random variable of mean 0 and variance
n−2n.

Remark The Gaussian perturbation of the entries of A is not important here and will only
be used later, where it will be convenient to assume that various sub-matrices of A are invert-
ible almost surely. Moreover, the variance of the Gaussian is chosen sufficiently small so that all
anticoncentration claims that we need are essentially unaffected by this perturbation.

Proof. As in the proof of Theorem 3.7, we can deal with compressible vectors using Lemma 2.2.
Therefore, it remains to deal with incompressible vectors with ‘large’ median threshold.

By standard small-ball estimates for incompressible vectors using a quantitative central limit
theorem (see [29, Lemma 5.1]), for v ∈ Incomp (c0, c1), there is C0 = C0(p, c0, c1) such that
T̂p,L(v, λ)≤ C0(λn)−1/2. We let r = �λn� and k= c2.5(λ)n, so that r|k by definition, and let m=

k/(2r)�.

Step 1: Randomized rounding. We consider the case T̂p,L(v, λ) ∈ [1/T, 2/T], where T ∈
[C−1

0
√
λn, 2c

′
λn]. Then, by definition, there exist intervals I1, . . . , Im of the form Spreadjλ (v) with

Tp,L(vIi/‖vIi‖2)≤ 2/T

for all i ∈ [m].
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LetD= C1
√
nT, where C1 = C1(p, c0, c1)≥ 1 will be an integer chosen later. Let y=Dv. By the

definition of the threshold, for all t ≥ √�λn� we have

L

⎛⎝∑
j∈Ii

bj′yj, t

⎞⎠ =L

⎛⎝∑
j∈Ii

bj′vj,
t
D

⎞⎠ =L

⎛⎝∑
j∈Ii

bj′
vj

‖vIi‖2
,

t
D‖vIi‖2

⎞⎠
≤L

⎛⎝∑
j∈Ii

bj′
vj

‖vIi‖2
,

√
2t

c1C1
√�λn�T

⎞⎠ ≤ L
T

· 2t√�λn� ,

as long as we chose C1 >
√
2/c1, where the bi′ are independent random variables distributed as

Ber (p)− Ber ′(p). Applying Lemma 4.7 to the �λn�-dimension vector yIi , we see that there is y′
Ii ∈

Z
�λn� satisfying the conclusions of Lemma 4.7 (with n replaced by �λn�). In particular, by (R3),

we see that

L

⎛⎝∑
j∈Ii

b′
jy

′
j,

√�λn�
⎞⎠ ≥ c4.7L

⎛⎝∑
j∈Ii

b′
jvj,

√
λ/(C1T)

⎞⎠
≥ c4.7L

⎛⎝∑
j∈Ii

b′
j

vj
‖vIi‖2

,
2
√
λ

C1T · √λ/c0

⎞⎠
≥ C−1

1
√
c0 · c4.7L

⎛⎝∑
j∈Ii

b′
j

vj
‖vIi‖2

, 2/T

⎞⎠
≥ C−1

1
√
c0 · c4.7 · 2LT−1. (3)

Let I0 = [n] \ (I1 ∪ · · · ∪ Im). Then, by approximating each coordinate of yI0 by the nearest integer,
and combining with the above integer approximations of yI1 , . . . , yIm , we obtain an integer vector
y′ ∈Z

n such that for all 1≤ i≤m, the �λn�-dimensional integer vector y′
Ii satisfies ‖yIi − y′

Ii‖∞ ≤
1, (3), and

L

⎛⎝∑
j∈Ii

b′
jy

′
j, t

⎞⎠ ≤ C4.7
2L

T
√�λn� t, for all t ≥ √�λn�.

Step 2: Size of nets of level sets.We now estimate the number of possible realizations y’. This
is the analogue of Proposition 3.3 in the present context. By paying an overall factor of at most
6n, we may fix Spread (v) (hence all the Spreadjλ (v)), as well as which Spreadjλ (v) are in IM(v)
and JM(v). As above, let us denote the intervals Spreadjλ (v) in IM(v) by I1, . . . , Im, and let I0 =
[n] \ (I1 ∪ · · · ∪ Im).

First, note that the number of choices for y′
I0 is at most (CD/

√
n)|I0| for an absolute constant

C – this follows since y′
I0 is an integer point in a ball of radius D≥ √

n≥ √|I0| (provided that
C1 is chosen sufficiently large), at which point, we can use a standard volumetric estimate for the
number of integer points in R

I0 in a ball of radius R≥ √|I0|, together with the bound |I0| ≥ n/2.
Next, we fix i ∈ [m], and bound the number of choices for y′

Ii . Note that for any r ≥ 0,

L

⎛⎝∑
j∈Ii

bjy′
j, r

⎞⎠ ≥L

⎛⎝∑
j∈Ii

(bj − b̃j)y′
j, r

⎞⎠ ,
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where bi, b̃i are independent copies of Ber (p). Since b′
j is distributed as bj − b̃j, it follows from (3)

that

L

⎛⎝∑
j∈Ii

bjy′
j,

√�λn�
⎞⎠ ≥ c2LN−1,

where bj are i.i.d. Ber (p) random variables. From the definition of Spreadλ (v) and (R1), we see
that y′

Ii lies within a (D/(C2
√
n), �λn�,K ′, 1)-admissible set A for C2 and K’ sufficiently large

depending on c0, c1. Then, for L sufficiently large depending on c0, c1, p, by Theorem 4.4 (not-
ing that D is bounded by n2c

′
λn for all sufficiently large n, and that we can take c’ to be sufficiently

small depending on p), we deduce that the number of potential y′
Ii ∈Z

Ii is bounded by

exp (−M|Ii|)(CD/√n)|Ii|,
where C depends on c0, c1, and M grows as

√
log�λn�, hence as √

log n. Explicitly, we can pick
M ≥ c3

√
log n for some small c3 > 0 depending only on c0, c1, p. Multiplying the total num-

ber of possibilities for y′
0, y

′
1, . . . , y′

m, we see that the total number of possibilities for y′ ∈Z
n is

at most

exp (−c2.3Mn/8)(CD/
√
n)n,

for C depending on c0, c1 andM ≥ c3
√
log n with c3 depending on c0, c1, p.

Step 3: Small-ball probability for net points. Fix y′ ∈Z
n resulting from the randomized

rounding process and u ∈R
n. Our goal is to boundP[‖Ay′ − u‖2 ≤Kn]. As in the proof of Lemma

3.6, we can without loss of generality permute the coordinates of y’ so that I1, . . . , Im are the first
m blocks of size �λn� within [n]. Then, for all �λn� ≤ j≤ c2.5(λ)n, we have for all ε ≥ 0 that

L((Ay′ − u)j|(Ay′ − u)j+1,...,n,Dε)≤ CL

(
ε√
j/n

+
√
λn/j
T

)
,

where C is an absolute constant. To deduce this, we use that the first j elements of row j are
independent of rows j+ 1, . . . , n, then use Lemma 4.5 to replace the Rademacher entries of A
(plus the small Gaussian perturbation, which has variance so small that it can be disregarded) by
Ber (p)− Ber ′(p), and finally use Lemma 2.9 (as in the proof of Proposition 3.5) to stitch together
the Lévy concentration properties of each y′

Ii (guaranteed by (R3) of Lemma 4.7). Combining this
with Lemma 2.7, we see that for y’, u as above,

P[‖Ay′ − u‖2 ≤Kn]≤
(
C′′L

√
n

D

)n−�λn�
,

where C′′ depends only on c0, c1, p.

Step 4: Union bound. On the event ‖A‖ ≤K
√
n, Av= tu with ‖tu‖2 ≤K

√
n. By splitting the

range {tu} into (4D/√n)2 intervals, and rounding v as in Step 2, we see that the probability of the
event in question is bounded above by

exp (−c2.3Mn/8)
(
CD√
n

)n+2
sup
y′,u

P[‖Ay′ − u‖2 ≤Kn],

where the supremum is over u ∈R
n and y′ ∈Z

n such that each y′
Ii for i ∈ [m] satisfies the conclu-

sions of Lemma 4.7 (with n replaced by �λn�). Controlling the final factor by Step 3, we see that
the probability is bounded above by

exp (−c2.3Mn/8)CnD�λn�+2,
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where C depends on c0, c1, p. Finally, since D≤ 22c
′
λn for all n sufficiently large (depending on

c0, c1, p), we obtain an overall upper bound of

exp (−c2.3Mn/8+ n log C + 2c′λ2n2 + 6c′λn).
Since M ≥ c3

√
log n, for c3 depending on c0, c1, p, the desired result follows by choosing λ<

c(log n)1/4n−1/2 for c sufficiently small depending on c0, c1, p, so that the quantity above is
bounded by exp (−�(n(log n)1/2)). �

5. Proof of Theorem 1.1
In this section (along with Appendix A), we complete the proof of Theorem 1.1 by closely follow-
ing [30] with appropriate modifications. Since the smallest singular value is a continuous function
of the entries of the matrix, by perturbing each entry of the randommatrix by a Gaussian variable
with arbitrarily small variance, one may assume that ξ is absolutely continuous with respect to
the Lebesgue measure; in particular, one may freely assume that various square matrices whose
entries are independent copies of ξ are invertible.

5.1 Quadratic small-ball probabilities
To prove Theorem 1.1 and 1.2, we need the following small-ball inequalities for quadratic forms.
The derivation is almost identical to the approach in [30, Theorem 8.1], with improvements com-
ing from Theorem 3.7 and Proposition 3.5 (respectively Theorem 4.8). We include details in the
appendix for the reader’s convenience.

Theorem 5.1 Let A be an n× n symmetric random matrix whose independent entries are identical
copies of a sub-Gaussian random variable ξ with variance 1. Suppose X is a random vector (inde-
pendent of A) whose entries are independent copies of ξ . Then, for every ε ≥ 0 and u ∈R, we have

P

[ |〈A−1X, X〉 − u|√
1+ ‖A−1X‖22

≤ ε ∧ ‖A‖ ≤K
√
n
]

≤ C5.1ε1/8 + 2 exp (−c5.1n1/2).

We similarly derive the following strengthening for Rademacher entries.

Theorem 5.2 Let A be an n× n symmetric random matrix whose independent entries are dis-
tributed as the sum of a Rademacher random variable and a centred Gaussian with variance n−2n.
Suppose X is a random vector (independent of A) whose entries are independent Rademachers. Then,
for all sufficiently large n, and for every ε ≥ 0 and u ∈R, we have

P

[ |〈A−1X, X〉 − u|√
1+ ‖A−1X‖22

≤ ε ∧ ‖A‖ ≤K
√
n
]

≤ C5.1ε1/8 + 2 exp (−c5.1n1/2(log n)1/4).

5.2 Putting it together
Given the above, the proofs of Theorems 1.1 and 1.2 follows from a modification (due to
Vershynin) of the invertibility-via-distance paradigm due to Rudelson and Vershynin. We
reproduce the details from [30] for the reader’s convenience

Proof of Theorems 1.1 and 1.2. Fix c0, c1, c ∈ (0, 1), as guaranteed by Lemma 2.2. We can clearly
assume that ε ≤ c. Then, by the union bound and Lemma 2.2, we have
P[sn(A)≤ ε/√n]≤ P[∃v ∈Comp (c0, c1) : ‖Av‖2 ≤ c

√
n]+ P[∃v ∈ Incomp (c0, c1) : ‖Av‖2 ≤ ε/√n]

≤ 2 exp (−cn)+ P[∃v ∈ Incomp (c0, c1) : ‖Av‖2 ≤ ε/√n].
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Let A1, . . . ,An denote the rows of A, and note that, by symmetry,

Av=
n∑
i=1

viAT
i .

In particular,

‖Av‖2 ≥ |vi| dist (Ai,Hi),

where Hi is the span of the rows Aj for j �= i. Since |vi| ≥ c1/2
√
n for all i ∈ Spread (v), it follows

that if ‖Av‖2 ≤ ε/√n for some v ∈ Incomp (c0, c1), then we must necessarily have

dist (Ai,Hi)≤ ε
√
2

c1
for at least c2.3n indices i ∈ [n]. Thus, we see that the probability that sn(A)≤ ε/√n is at most

2 exp (−cn)+ 1
c2.3n

n∑
i=1

P

[
dist (Ai,Hi)≤ ε

√
2

c1

]
.

Therefore, for Theorem 1.1 it suffices to show that

P[ dist (A1,H1)≤ ε]≤ Cε1/8 + 2 exp (−cn1/2).

A direct computation ([30, Proposition 5.1]) shows that

dist (A1,H1)= |〈(A′)−1X, X〉 − a11|√
1+ ‖(A′)−1X‖22

,

where A′ is the bottom right (n− 1)× (n− 1) block of A, and X is the first column of A with the
top element removed. At this point, we can apply Theorem 5.1 to conclude. If A has Rademacher
entries, by continuity we can transfer the singular value estimate to the model where the dis-
tribution is perturbed by a centred Gaussian with sufficiently small variance, at which point, an
application of Theorem 5.2 allows us to conclude. �
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Appendix A: Quadratic small-ball probabilities
The purpose of this appendix is to prove Theorem 5.1 for completeness. We will also briefly note
the necessary modifications to deduce Theorem 5.2.

We essentially replicate the argument in [30, Section 8] with the obvious modifications.
In brief, our improved anticoncentration estimate Proposition 3.5 will allow us to replace the
ε1/8+η dependence in [30] with ε1/8, and the improved range of arithmetic structure derived in
Theorem 3.7 will allow us to achieve an error term of exp (−�(

√
n)). For the sake of simplicity,

we define the event

EK := {‖A‖ ≤K
√
n}.

Proposition A.1 (Analogue of [30, Proposition 8.2]) Let A be a symmetric random matrix whose
independent entries are identical copies of a sub-Gaussian random variable with mean 0 and vari-
ance 1. Let X be a random vector (independent of A) whose coordinates are i.i.d. copies of ξ . There
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exist constants C, c> 0 depending only on the sub-Gaussian moment of ξ for which the following
holds.

For λ ∈ (C/n, 1/
√
n), A satisfies the following with probability at least 1− 2e−cn: if EK holds,

then for every ε > 0:

• ‖A−1X‖2 ≥ c with probability at least 1− e−cn in the randomness of X.
• ‖A−1X‖2 ≤ ε−1/2‖A−1‖HS with probability at least 1− ε in the randomness of X.
• ‖A−1X‖2 ≥ ε‖A−1‖HS with probability at least 1− Cε − 2e−cλn in the randomness of X.

Proof. The first two parts have the same proof as in [30, Proposition 8.2]. The last part also has
essentially the same proof, except that we use Proposition 3.5 in place of [30, Proposition 6.9] and
use Theorem 3.7 in place of [30, Theorem 7.1]. �

Remark For Theorem 5.2, we note that if A has entries that are Rademacher plus a centred
Gaussian with sufficiently small variance, we can prove the same statement with n−2/3 <λ<
c(log n)1/4n−1/2. We use Theorem 4.8 instead of Theorem 3.7 and the analogue of Proposition
3.5 for the threshold. The remaining part of the proof is exactly the same.

Next, we require the following decoupling lemma from [30]; this use of decoupling to establish
singularity for symmetric random matrices originates in work of Costello et al. [6] and has been
used in essentially all follow-up works.

Lemma A.2 ([30, Lemma 8.4]) Let G be an arbitrary symmetric n× n matrix, and let X,X′ be
independent samples of a random vector in R

n with independent coordinates. Let J ⊆ [n]. Then, for
every ε ≥ 0 we have

L(〈GX, X〉, ε)2 ≤ PX,X′[|〈GPJc(X − X′), PJX〉 − v| ≤ ε]
for some random variable v determined by G|Jc×Jc and PJcX, PJcX′.

We can now prove Theorem 5.1; we refer the reader to [30] for a more detailed exposition.

Proof of Theorem 5.1. We randomly choose J ⊆ [n] by sampling elements independently with
probability 1− c2.3/2. We trivially see by the Chernoff bound that if EJ = {|Jc| ≤ c2.3n}, then

P[EJ]≥ 1− 2e−cn.

For J satisfying EJ , let us assign the set Spread (v) for v ∈ Incomp (c0, c1) in a way such that
Spread (x)⊆ |J|. We can do this since, in Lemma 2.3, we chose c2.3 so as to have at least 2c2.3n
spread coordinates. We will then use this assignment to obtain the median regularized LCDs that
are used.

Next, consider the event ED given by

ε
1/2
0

√
1+ ‖A−1X‖22 ≤ ‖A−1‖HS ≤ 1

ε0
‖A−1PJc(X − X′)‖2.

Applying Proposition A.1 to X and Yi = δi(Xi − Xi′), where δi is the indicator of i ∈ Jc, and
adjusting constants appropriately, we find that

PJ,A,X,X′[ED ∨ E c
K]≥ 1− Cε0 − 2e−cλn − 2e−cn,

where the constants depend only on the sub-Gaussian norm of ξ . Now define

x0 = A−1PJc(X − X′)
‖A−1PJc(X − X′)‖2 ,
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which is a random vector. If the denominator is 0, we can use an arbitrary fixed vector. Let EU be
the event (analogue of [30, Equation 8.11]) that

x0 ∈ Incomp (c0, c1), M̂DL(x0, λ)≥ 2λn/C,

where we choose L as in Theorem 3.7.
Now condition on some J satisfying EJ and some X,X’. By Theorem 3.7, we deduce that

PA[EU ∨ E c
K |X, X′, J]≥ 1− 2e−cn.

Thus (analogue of [30, Equation 8.12])

PJ,A,X,X′[(EJ ∧ ED ∧ EU)∨ E c
K]≥ 1− p0,

where p0 = Cmax (ε0, 2−λn/C). Hence, there is a realization of J such that EJ holds and
PA,X,X′[(ED ∧ EU)∨ E c

K]≥ 1− p0.

We fix this choice of J for the remainder of the proof. Now let EA be the event, dependent only on
A, that simultaneously EK and

PX,X′[ED ∧ EU |A]≥ 1− p1/20 .

By Fubini’s theorem, Markov’s inequality, and the fact that EK depends only on A, we see from
the above that (analogue of [30, Equation 8.13])

PA[EA ∨ E c
K]≥ 1− p1/20 .

Now, if E is the desired event
|〈A−1X, X〉 − u|√
1+ ‖A−1X‖22

≤ ε,

then

PA,X[E]≤ P[E c
K]+ p1/20 + sup

A∈EA
PX[E |A].

Fix some A ∈ EA for the remainder of the proof. We need to bound

PX[E |A]≤ PX,X′[E ∧ ED|A]+ p1/20 .

Using ED along with E , we see that

PX,X′[E ∧ ED|A]≤ PX,X′[|〈A−1X, X〉 − u| ≤ εε−1/2
0 ‖A−1‖HS|A]=: p1.

Then by Lemma A.2, we find that this satisfies

p21 ≤ PX,X′[|〈A−1PJc(X − X′), PJX〉 − v| ≤ εε−1/2
0 ‖A−1‖HS|A],

where v= v(A−1, PJcX, PJcX′) is some random variable depending on these parameters only. This
last probability is at most

p1/20 + PX,X′[|〈A−1PJc(X − X′), PJX〉 − v| ≤ εε−1/2
0 ‖A−1‖HS ∧ ED ∧ EU |A].

Now by using ED again, and dividing the inequality in question by ‖A−1PJc(X − X′)‖2, we see that
(analogue of [30, Equation 8.15])

p21 ≤ p1/20 + PX,X′[|〈x0, PJX〉 −w| ≤ ε−3/2
0 ε ∧ EU |A].
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Finally, we can apply Proposition 3.5 to this random variable. Note that x0,w do not depend on
PJX. Also, we know from EU that M̂DL(x0, λ)≥ 2λn/C. It suffices to check that Spreadλ (x0)⊆ J by
the definitions chosen at the beginning; hence, we can drop the randomness in PJX of all coordi-
nates except for those in the spread set and apply the result. We again technically need to check
that Spreadλ (x0) satisfies the conditions on Proposition 3.5, which we have already implicitly
verified before. Overall, we deduce

PX,X′[|〈x0, PJX〉 −w| ≤ ε−3/2
0 ε ∧ EU |A]≤ Cε−3/2

0 ε + 2−λn/C.

Finally, tracing it all back, we have

P[E]≤ P[E c
K]+ 2p1/20 + p1 ≤ 2e−cn + Cε1/20 + Cε1/40 + Cε−3/4

0 ε1/2 + 2−λn/C

by sub-Gaussian concentration of the operator norm of A ([30, Lemma 2.3]). Now choosing ε0 =
ε1/2 and λ= 1/

√
n, which is the biggest permitted by Theorem 3.7, we are done. �
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