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We examine the onset of turbulence in Waleffe flow – the planar shear flow between
stress-free boundaries driven by a sinusoidal body force. By truncating the wall-normal
representation to four modes, we are able to simulate system sizes an order of
magnitude larger than any previously simulated, and thereby to attack the question of
universality for a planar shear flow. We demonstrate that the equilibrium turbulence
fraction increases continuously from zero above a critical Reynolds number and that
statistics of the turbulent structures exhibit the power-law scalings of the (2 + 1)-D
directed-percolation universality class.
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1. Introduction

The transition to turbulence in wall-bounded shear flows has been studied for well
over a century, and yet only recently have experiments, numerical simulations and
theory advanced to the point of providing a comprehensive understanding of the route
to turbulence in such flows. Of late, research has focused on how turbulence first
appears and becomes sustained. The issue is that typically wall-bounded shear flows
undergo subcritical transition, meaning that as the Reynolds number is increased,
turbulence does not arise through a linear instability of laminar flow, but instead
appears directly as a highly nonlinear state. Moreover, the flow does not simply
become everywhere turbulent beyond a certain Reynolds number. Rather, turbulence
initially appears as localised patches interspersed within laminar flow. The resulting
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flow takes on a complex spatiotemporal form with competing turbulent and laminar
domains. This, in turn, greatly complicates the quantitative analysis of turbulent
transition in subcritical shear flows. See Barkley (2016) and Manneville (2016) for
recent reviews.

In the 1980s the connection was developed between spatially extended dynamical
systems and subcritical turbulent flows. This provided a broad and useful context in
which to view turbulent–laminar intermittency. Kaneko (1985) constructed minimal
models that demonstrated how dynamical systems with chaotic (‘turbulent’) and steady
(‘laminar’) phases would naturally generate complex spatiotemporal patterns. Simple
models were further studied by Chaté & Manneville (1988) amongst others. At the
same time, Pomeau (1986) observed that subcritical fluid flows have the characteristics
of non-equilibrium systems, exhibiting what is known as an absorbing state transition.
Based on this, he postulated that these flows might fall into the universality class of
directed percolation. This would imply that the turbulence fraction varies continuously
with Reynolds number, going from zero to non-zero at a critical Reynolds number,
with certain very specific power laws holding at the onset of turbulence. (These
concepts will be explained further in § 2.) Since then considerable effort has been
devoted to investigating these issues. The first experimental observation of directed
percolation was reported by Takeuchi et al. (2007, 2009) for electroconvection in
nematic liquid crystals.

The status of our understanding for prototypical subcritical shear flows is as follows.
For pipe flow, there are extensive measurements of the localised turbulent patches
(puffs) that drive the transition to turbulence and we have a good estimate of the
critical point for the onset of sustained turbulence (Avila et al. 2011). However,
currently there is no experimental or computational measurement of the scalings
from which to determine whether the flow is, or is not, in the universality class of
directed percolation, although model systems suggest that the transition is in this
class (Barkley 2011, 2016; Shih, Hsieh & Goldenfeld 2016). The scaling exponents
depend on the spatial dimension of the system. Lemoult et al. (2016) recently carried
out a study of Couette flow highly confined in two directions so that large-scale
turbulent–laminar intermittency could manifest itself only along one spatial dimension.
In both experiments and numerical simulations, they measured turbulence fraction as
a function of Reynolds number and analysed the spatial and temporal correlations
close to the critical Reynolds number. The results support a continuous variation
of the turbulence fraction, from zero to non-zero at the onset of turbulence, with
scaling laws consistent with the expectations for directed percolation in one spatial
dimension.

In systems in which the flow is free to evolve in two large spatial directions, such as
Couette and channel flow, the problem is much more difficult and the situation is less
clear. Past work has suggested that the turbulence fraction varies discontinuously in
plane Couette flow, and hence that transition in the flow is not of directed-percolation
type (Bottin & Chaté 1998; Bottin et al. 1998; Duguet, Schlatter & Henningson
2010). More recently, Avila (2013) conducted experiments in a counter-rotating
circular Couette geometry (radius ratio η = 0.98) of large aspect ratio, and observed
a variation of turbulence fraction with Reynolds number, suggesting a continuous
transition to turbulence. Further investigation would be needed to determine whether
the transition is in the universality class of directed percolation. Sano & Tamai (2016)
performed experiments on plane channel flow and concluded that this flow exhibits
a continuous transition to turbulence in the universality class of directed percolation.
However, they report a critical Reynolds number (based on the centreline velocity
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of the equivalent laminar flow) of Re= 830, whereas other researchers (Xiong et al.
2015; Paranjape et al. 2017; Kanazawa, Shimizu & Kawahara 2017; T. Tsukahara
& T. Ishida 2017, Private communication) observe sustained turbulent patches below
700. These later authors do not address the question of whether the transition is
continuous or discontinuous, and further study is needed.

The goal of the present paper is threefold. Firstly, using a coupled-map lattice, we
present the essential issues surrounding the onset of turbulence in a spatiotemporal
setting, with particular emphasis on the case of two space dimensions. Secondly, we
present a numerical study of a planar shear flow of unprecedented lateral extent and
show that the onset of turbulence in this flow is continuous and is in the universality
class of directed percolation. Finally, we discuss the issue of scales in the current and
past studies, and we offer guidance to future investigations.

2. Coupled-map lattices and directed percolation revisited

Before discussing the planar shear flow, we revisit some important issues concerning
spatiotemporal intermittency and directed percolation. The issues can most easily be
illustrated using a coupled-map-lattice (CML) model. Such discrete-space, discrete-
time models have been widely used to study the generic behaviour arising in spatially
extended chaotic dynamical systems (e.g. Kaneko 1985; Chaté & Manneville 1988;
Rolf, Bohr & Jensen 1998). Most notably they have been used as minimal models
for describing the transition to turbulence in plane Couette flow (Bottin & Chaté
1998).

The CML model is illustrated in figure 1. A state variable u is defined on a discrete
square lattice (figure 1a). Time evolution is given by discrete updates on the lattice.
Specifically, letting uij denote the state variable at point (i, j), the update rule for u is

uij← f (uij)+ d∆f uij, (2.1)

where the first term, f (uij), is the local dynamics and the second term is a nearest-
neighbour diffusive-like coupling. Lattice sites are updated asynchronously by cycling
through (i, j) in a random order for each step, as described by Rolf et al. (1998). The
control parameter is the coupling strength d.

The local dynamics are given by the map f shown in figure 1(b). It has a ‘turbulent’
tent region for 06u61 and a ‘laminar’ region u>1 surrounding the stable fixed point
at u∗. In the absence of coupling, a turbulent site evolves chaotically and eventually
makes a transition to the laminar state. Once a site becomes laminar, it will remain
so indefinitely. The laminar fixed point is referred to as an absorbing state. Hence,
the local dynamics are a simple caricature of a subcritical shear flow with coexisting
turbulent and laminar flow states. Because the model is only a slight generalisation of
those appearing in numerous past studies, we relegate the details to the appendix.

We are primarily interested in the long-time dynamics of the system. We start
from an initial condition with randomly selected values within the turbulent region.
Figure 1(c) shows the evolution as seen in a one-dimensional slice through the lattice.
The main quantity of interest is the turbulence fraction Ft, which is the fraction
of sites in the turbulent state. After some time, the system will reach a statistical
equilibrium and we can obtain the equilibrium value of Ft. If this is zero, then the
system is everywhere in the laminar (absorbing) state. If it is non-zero, then at least
some turbulence persists indefinitely.

A basic question is: how does the turbulence fraction at equilibrium depend on
the coupling strength d, and in particular, how does it go from zero to non-zero?
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FIGURE 1. Intermittent transition in a coupled-map lattice. (a) Illustration of the lattice
with nodes coloured according to whether the system is locally laminar (white) or
turbulent (black). (b) The map defining the local dynamics at each node. u∗ is a stable
fixed point. (c) Typical time evolution, seen in a slice through the lattice at constant j,
initialised with all sites in the turbulent state. (The spatial and temporal laminar gaps `x
and `t are discussed in § 4.) (d) Equilibrium turbulence fraction Ft as a function of the
coupling strength d in two cases: u∗ = 1.25 (top) and u∗ = 1.1 (bottom). In the top case
the transition to turbulence is discontinuous while in the bottom case it is continuous.
In the continuous case, close to the critical value dc, Ft increases from zero with the
universal power law for directed percolation in two space dimensions: Ft ∼ (d − dc)

β ,
where β ' 0.583. The red curves in the main plot and inset show this power law.

Figure 1(d) shows the two distinct cases: one discontinuous and one continuous.
In the discontinuous case, there is a gap in the possible values of Ft. Long-lived
transients with small turbulence fraction can be observed for values of d below dc,
the critical value of d, but the system simply cannot indefinitely maintain a small
level of turbulence, no matter how large the system size. On the other hand, in the
continuous case, Ft becomes arbitrarily small (in the limit of infinite system size) as
d approaches dc from above. In this case the system behaves in accordance with the
power laws of directed percolation. In particular, as is shown, the turbulence fraction
grows as Ft ∼ (d − dc)

β , where β ' 0.583; see Lübeck (2004). We will discuss the
other important power laws later when we analyse the planar fluid flow.

Note that on any finite lattice the minimum possible non-zero turbulence fraction is
1/K (i.e. just one turbulent site), where K is the total number of lattice points. This
means that even if the transition is continuous in principle, some discontinuity in the
turbulence fraction from finite-size effects will be present in any numerical study. It
is by investigating scaling behaviour, such as the log–log plot in figure 1(d), that one
gains confidence in the nature of the transition.
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2.1. Connection to turbulent transition and directed percolation
The difference between the continuous and discontinuous cases presented in
figure 1(d) is only the location of the laminar fixed point u∗ in the map f . Hence,
either case could in principle correspond to a shear flow and there is no way to know
a priori what type of transition could be expected. This point was well understood
by the Saclay group in their early studies on transition in plane Couette flow (e.g.
Bergé, Pomeau & Vidal 1998; Bottin & Chaté 1998; Bottin et al. 1998; Manneville
2016). Those experiments suggested a discontinuous transition to turbulence, based
not only on the turbulence fraction, but also on the nature of transients below the
critical point. Although we will argue that the physical size of those experiments was
too small to produce a continuous transition, the conclusion reached was reasonable
at the time.

More generally, directed percolation describes a stochastic process involving active
and absorbing states (or equivalently bonds between sites that are randomly open
or closed). As Manneville (2016, § 4.2) notes, deterministic iterations of continuous
variables coupled by diffusion will not necessarily behave in the same way as
the directed-percolation process. The CML model presented here demonstrates this
point. Depending on parameters, the system might, or might not, show a continuous
transition in the universality class of directed percolation. Notwithstanding Pomeau’s
conjecture, it is even less immediately evident that the full Navier–Stokes equations
will behave in the same way, owing to the global nature of the pressure field for
example. (For more technical details on absorbing state transitions, we refer the
reader to Lübeck (2004) and references therein. One can find there details of the
Janssen–Grassberger conjecture (Janssen 1981; Grassberger 1982) concerning the
ubiquity of the directed-percolation universality class.)

From hereon we shall use the notation of directed percolation and refer to the case
of two space dimensions as (2+1)-D, meaning two spatial and one temporal dimension.
In this notation, the spatial dimensions are referred to as perpendicular (⊥) and the
temporal dimension as parallel (‖).

3. Waleffe flow

Pinning down the details of transition requires very large system sizes. For example,
in the quasi-one-dimensional experiments of Lemoult et al. (2016), the long direction
was more than 2700 times the fluid gap. Our goal is to achieve something approaching
this size, but in two spatial directions and in a computational framework. To this
end, we shall study a cousin of Couette flow, commonly referred to as Waleffe flow.
This is the shear flow between parallel stress-free boundaries, driven by a sinusoidal
body force. The two related computational advantages of this flow are that it lacks
high-shear boundary layers near the walls and that the wall-normal dependence of
the flow can be accurately represented by a few trigonometric functions. As shown
in Chantry, Tuckerman & Barkley (2016), a poloidal–toroidal representation with at
most four trigonometric modes in the wall-normal direction, y, is capable of capturing
turbulent bands and spots, the building blocks of turbulent–laminar intermittency. A
Fourier representation is used for the large streamwise, x, and spanwise, z, directions.

In Chantry et al. (2016), we showed that Waleffe flow corresponds closely to the
interior of plane Couette flow, leading to a change in length scales from 2h (the
gap between walls in plane Couette flow) to 1.25h (the Couette interior region)
for Waleffe flow. Furthermore, this argument regarding the interior region leads to
a comparable velocity scale U = 1.6V , with V the maximum velocity of laminar

824 R1-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

40
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.405


M. Chantry, L. S. Tuckerman and D. Barkley

Waleffe flow. The Reynolds number of the flow is then Re = Uh/ν, where ν is the
kinematic viscosity. The sole change from Chantry et al. (2016) is the addition of
a small horizontal drag force −σ(uex + wez) to the Navier–Stokes equation. Such
a term, usually called Rayleigh or Ekman friction, is used in many hydrodynamic
modelling contexts to approximate the effect of friction due to a solid boundary that
has been omitted from the model. In geophysics (Marcus & Lee 1998; Pedlosky
2012, chap. 4) the inclusion of this term is the standard method of including the
first-order departure from geostrophic flow due to the Ekman boundary layer between
a stationary bottom and a rotating bulk. In their study of electromagnetically driven
Kolmogorov flow in an electrolyte, Suri et al. (2014) include such a term in their
depth-averaged model of an assumed Poiseuille-like profile in order to account for
the presence in their experiment of a solid boundary at the bottom of the fluid layer.

In our case, we introduce this force in order to damp flows with no curvature in y
and very little curvature in x and z, which decay extremely slowly in Waleffe flow and
which are not present at all in Couette flow. Our purpose is to use Waleffe flow to
mimic the bulk region of Couette flow, which it does very well except for this point.
The value σ = 10−2 reproduces the damping to which these modes would be subjected
in the wall regions of the corresponding Couette flow. In very large domains, without
this damping the recovery of the laminar flow after spot decay is very slow. Beyond
this, the damping has no effects on the phenomenology of Waleffe flow.

We shall present results for domains of size [1280h, 1.25h, 1280h], [2560h, 1.25h,
2560h] and [5120h, 1.25h, 1280h]. Our largest square domain is plotted in figure 2,
where we show a representative turbulent state slightly above the onset of turbulence.
See also the supplementary movie available at https://doi.org/10.1017/jfm.2017.405,
which shows the time evolution in a domain of this size. For this domain the highest
resolved wavenumber in each horizontal direction is 2047, with 3/2 dealiasing used
(leading to a grid spacing of 0.42). The same turbulence fractions are found in
simulations with twice the resolution.

For context, the experiments of Bottin et al. (1998) used a domain of size
[380h, 2h, 70h], Prigent et al. (2003) used a domain of size [770h, 2h, 340h]
and Avila (2013) used a domain of size [622h, 2h, 526h]. To date, the largest
simulations have been those of Duguet et al. (2010), who considered a domain of size
[800h, 2h, 356h]. Both Bottin et al. (1998) and Duguet et al. (2010) report evidence
of a discontinuous transition, unable to sustain turbulence fractions significantly below
0.4, while Avila (2013) observed evidence of a continuous transition, with sustained
turbulence fractions as small as 0.07.

The flow at (x, z, t) is defined as turbulent if E(x, z, t) > ET , where E(x, z, t) is
the y-integrated energy of the velocity deviation from the laminar state and ET = 0.01
is a threshold. Varying ET between 0.001 and 0.05 changes only slightly the size of
patches deemed turbulent and has no effect on any of the scaling relationships to
follow.

4. Results

In figure 3(a), we plot the time evolution of the turbulence fraction Ft for a series
of Reynolds numbers. Each run was initialised from uniform turbulence and run until
a saturated turbulence fraction was reached (quench protocol, see Bottin & Chaté
(1998)). Below a critical value Rec= 173.80 (to five significant figures), the turbulence
fraction eventually falls off to zero, while above Rec it saturates at a finite value. (Rec

for this system differs from that of plane Couette flow.)
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FIGURE 2. Intermittent turbulence typical of that found slightly above the onset of
sustained turbulence. Visualised is streamwise velocity in the midplane at Re = 173.824
after 1.2× 106 time units. Laminar flow is seen as white. The streamwise and spanwise
size of the computational domain is 2560h × 2560h. The turbulence fraction is Ft ≈ 0.1
and the reduced Reynolds number is ε = (Re− Rec)/Rec= 1.4× 10−4. The supplementary
movie shows the time evolution in a domain of the same size for ε = 5.2 × 10−4 and
ε = 5.7× 10−5, slightly above and below this value. For reference, the Couette domains
of Bottin et al. (1998), Duguet et al. (2010), Avila (2013) and Lemoult et al. (2016) are
overlaid in red, blue, orange and green respectively. The full streamwise length of the
experiment of Lemoult et al. (2016) exceeds the figure size and is not fully shown. The
spanwise width of the channel experiment of Sano & Tamai (2016) is indicated in purple
on the right.

In figure 4(a) we plot the equilibrium turbulence fraction as a function of Re. We
find clear evidence for a continuous transition in which small Ft can be sustained
given a sufficiently large domain. The saturated turbulence fraction follows a power
law Ft ∼ ε

β where ε ≡ (Re − Rec)/Rec. Rec is determined as the value of Re that
minimises the mean squared error of a linear fit of the logarithms of ε and Ft
(see figure 4b). This linear fit estimates β = 0.58 ± 0.04 with a 95% confidence
interval. This agrees with the (2+1)-D directed-percolation value β ' 0.583 (dashed
line). Figure 4(d) shows the turbulence fraction obtained from our system in a
domain whose size is that of the experiments of Bottin & Chaté (1998). (See also
figure 2.) As was observed experimentally, below a turbulence fraction of about 0.5,
turbulence appears only as a long-lived transient state, and hence the equilibrium
turbulence fraction exhibits a discontinuous transition. This strongly suggests that
the discontinuous transitions reported for plane Couette flow (Bottin & Chaté 1998;
Bottin et al. 1998; Duguet et al. 2010) are due to finite-size effects. Interestingly,
long-lived transient states in the small system have turbulence fractions close to those
for equilibrium states in our large domain; they just are not sustained states. Also
note that the critical Reynolds number is not greatly affected by system size.

To substantiate whether a system is in the directed-percolation universality class, it
is necessary to verify three independent power-law scalings close to criticality; see
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FIGURE 3. (a) Turbulence fraction as a function of time for a range of Reynolds
numbers with an initial condition of uniform turbulence. Above criticality, the turbulence
fraction saturates at a finite value, and below it falls to zero. At criticality, the turbulence
fraction decays in time as a power law Ft ∼ t−α with the (2+1)-D directed-percolation
exponent α ' 0.4505 (dashed line). Coloured lines for decreasing turbulence fractions
correspond to Reynolds numbers [173.952, 173.888, 173.840, 173.824, 173.792, 173.773,
173.696, 173.568]. The supplementary movie shows the decay of the turbulence fraction
at Reynolds numbers 173.888 and 173.808. (b) Data above and below criticality collapse
onto two scalings (black dashed curves) when the directed-percolation exponents are used
to rescale time and turbulence fraction.
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FIGURE 4. Bifurcation diagrams for the transition to turbulence. (a) Continuous transition
in a large domain: [2560h, 1.25h, 2560h]. Equilibrium turbulence fraction Ft is plotted
as a function of Re. Points and error bars denote mean and standard deviation of Ft.
The black dashed curved shows the directed-percolation power law. (b) Log–log plot
of the same data in terms of ε = (Re − Rec)/Rec, where Rec = 173.80. Near criticality
the data are consistent with Ft ∼ εβ with β ' 0.583. (c) F1/β against Re showing
linear behaviour. (d) Discontinuous transition in a domain of size [380h, 1.25h, 70h],
approximately that of the experiments by Bottin & Chaté (1998). (See figure 2.) Filled
points denote sustained turbulence, while open points denote the turbulence fraction of
long-lived transient turbulence. The dashed curve is the directed-percolation power law
from the large domain.

Takeuchi et al. (2009), whose approach we will follow closely. Having demonstrated
the scaling of Ft (exponent β), we now turn to scalings associated with temporal and
spatial correlations.

One approach to determining the correlations is via the distribution of laminar
gaps at Re ' Rec (figure 5a–c). The flow has a temporal laminar gap of length `t
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sizes at Re = 173.824 (ε = 1.4 × 10−4). N is the gap count, normalised by the shortest
gap count. The directed-percolation scalings (µ‖ ' 1.5495 and µ⊥ ' 1.204) are plotted as
dashed lines and show excellent agreement with the t- and z-gaps. For the x-gaps a power
law closer to −1 is observed. (d–f ) Exponential tails of the gap distributions for several
values of ε just above criticality. Increasing domain sizes are used for points closer to
criticality. Insets show scaling of correlation lengths ξ with ε together with the directed-
percolation exponents: ν‖'1.295 and ν⊥'0.733. (g–i) Collapse of the data using directed-
percolation power laws µ and ν (see axis labels/text).

if E(x, z, t) > ET and E(x, z, t + `t) > ET but E(x, z, t′) < ET for 0 < t′ < `t. Spatial
gaps `x and `z are defined similarly. Such gaps are illustrated for the CML model
in figure 1(c). From simulations just above Rec, we generate gap distributions
by measuring and binning the laminar gaps within the intermittent flow once the
turbulence fraction has saturated. Given the anisotropy between the streamwise and
spanwise directions, we measure gaps in these directions separately. At criticality, a
system within the directed-percolation universality class displays power-law behaviour,
N ∼ `−µ, where N is the number of gaps of length `. The temporal gaps (figure 5a)
show excellent scaling with the directed-percolation temporal exponent µ‖ ' 1.5495.
This is also true of the spanwise gaps (figure 5c) with the spatial exponent µ⊥'1.204.
However, the streamwise laminar gaps (figure 5b) do not show a clear, extended
power law, and to the extent that there is a power law, the exponent is closer to 1
than to µ⊥ ' 1.204. Indeed, Takeuchi et al. (2007) observed that the laminar gap
distribution in one direction of a liquid crystal layer had an exponent closer to 1
than to µ⊥ ' 1.204, This is also true for our simulations of a non-isotropic CML
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very slightly above the critical point, thus indicating that the issue here is that the
flow is not exactly at Rec, as it should be for the scaling to hold. Although the gap
distribution in each spatial direction should show power-law behaviour, these may
converge at different rates as Re→ Rec.

Given the poor agreement for the streamwise gaps, we use a second approach to
measure the percolation exponents, which does not rely on simulations at Rec. Away
from criticality, power-law behaviour will be seen only over a finite range of temporal
and spatial gap lengths. Beyond these lengths, exponential tails are expected of the
form N ∼ exp(−`/ξ), with correlation lengths ξ diverging as ε goes to zero: ξ ∼ ε−ν .
In figure 5(d–f ) we fit exponential tails for several values of ε. In the insets we plot ξ
as a function of ε and compare with the expected exponents for directed percolation.
The exponents µ and ν are exactly related via µ= 2− β/ν, thus giving ν‖ ' 1.295
and ν⊥' 0.733 (Lübeck 2004). Because the exponents µ and ν are linked, the power
laws in the middle row of figure 5 are not independent of the corresponding power
laws in the top row. However, they rely on different data and hence are not limited by
the same finite-size and finite-distance-from-critical effects. The power law for the x
direction is now seen to be in clear agreement with the directed-percolation exponent,
as are those in t and z.

Combining these power laws, the laminar gap distributions can be collapsed using
the relationship N`µ =G(`εν), where G is an unknown function (Henkel et al. 2008,
pp. 111–112). In figure 5(g–i) we plot our data in collapsing coordinates using the
(2+1)-D percolation exponents. This collapse is well illustrated by the temporal gap
distribution, a culmination of the excellent fits of µ‖ and ν‖. For the x-gaps, only
gaps of length 100 or greater are counted, corresponding to the start of the power
law in figure 5(b). The collapse of the z-gaps is hindered by the ν⊥ scaling seen in
figure 5( f ), but close to criticality (last three lines) the data begin to show collapse.

We have also run simulations in a quasi-1D, streamwise-oriented domain similar
in spirit to the experiments of Lemoult et al. (2016) (see the experimental domain
in figure 2). In a domain of size [1280h, 1.25h, 40h], the distribution of streamwise
laminar gaps near criticality exhibits a clear power law, in contrast to the poor power-
law behaviour found for streamwise laminar gaps in the full planar system (figure 5b).
The exponent is µ⊥' 1.748, as predicted for systems with a single spatial dimension
((1+1)-D directed percolation).

We return to the time evolution shown in figure 3(a). Between the evolution at
Re < Rec and Re > Rec is the power-law decay predicted for a directed-percolation
process at criticality: Ft ∼ t−α, where α = 2 − µ‖ ' 0.4505. Close to criticality,
we observe evidence for this power law in the data. This plot highlights a major
challenge to simulations near criticality – well over 105 time units are required to
reach even the moderately small turbulence fractions simulated here. As was noted
by Avila (2013, p. 32), these long time scales proved an issue in the work of
Duguet et al. (2010), who in 104 time units of simulation were unable to converge
turbulence fractions much below 0.4. As in the present study, Avila (2013, p. 90)
let the system evolve for O(106) advective time units close to transition. Hence both
simulation time and domain size can be limiting factors in observing the hallmarks
of percolation. Using directed-percolation scalings (Takeuchi et al. 2009), the data
above and below criticality collapse onto two curves (figure 3b), highlighting the
universality of directed percolation in the transition to turbulence.

5. Discussion

Over the years several attempts have been made to quantify the transition to
turbulence and to determine whether or not subcritical shear flows follow the
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spatiotemporal scenario of directed percolation. Such attempts have consistently
been frustrated by the large system sizes required to address the issue. Here we have
performed simulations of a planar flow of sufficient size that we have been able to
eliminate significant finite-size, finite-time effects, and thereby to examine in full
detail the onset of turbulence in a planar example. We have demonstrated both that
the equilibrium turbulence fraction increases continuously from zero above a critical
Reynolds number and that statistics of the turbulent structures exhibit the power-law
scalings of the directed-percolation universality class. Meeting such demands has
necessitated not only turning to the stress-free boundaries of Waleffe flow, but further
truncating the simulations to just four wall-normal modes. Performing a comparable
computational study directly on plane Couette flow is currently far beyond available
resources.

In light of what we now understand about the scales needed to capture sparse
turbulent structures near the onset of turbulence, we have re-examined the apparent
discontinuous transition to turbulence reported in past studies of plane Couette
flow. The conclusions of those studies were reasonable at that time, but our results
indicate that prior experimental system sizes were too small, and prior simulation
times were too short, to accurately capture sustained turbulence close to onset –
both space and time constraints can limit estimates of true equilibrium dynamics.
Apart from overall issues of scale, we have observed that the scaling relations in the
streamwise and spanwise directions may converge at different rates. Because shear
flows are non-isotropic, it is important to monitor these directions separately. These
considerations should guide the design of experiments and computations. In this
regard, it should be noted that while the Reynolds numbers in our study differ from
those of plane Couette flow, the length and time scales are closely comparable to
those of plane Couette flow. The efficiency with which our system can be simulated
offers potential for use in conjunction with future investigation.

While we cannot rule out the possibility that other subcritical shear flows follow
some different route to turbulence, we know that truncated Waleffe flow contains the
essential self-sustaining mechanism of wall-bounded turbulence and that it produces
the oblique turbulent bands that characterise transitional turbulence in plane Couette
and plane channel flow (Chantry et al. 2016). The closeness of these phenomena
suggests that all of these flows exhibit the same route to turbulence.
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Appendix A. Details of the CML

We provide here details of the CML model and simulations shown in § 2. For the
most part, these follow previous works (e.g. Bottin & Chaté 1998; Rolf et al. 1998).
The local dynamics is given by the map f :

f (u)=


ru, u 6 1/2
r(1− u), 1/2< u 6 1
k(u− u∗)+ u∗, 1< u,

(A 1)

where r, k and u∗ are parameters. Here we fix r= 3.0 and k= 0.8. The only difference
between this map and those used previously is that here u∗ is a free parameter, rather
than being set by the value of r to u∗ = (r+ 2)/4.

The spatial coupling is given by

∆f uij =
1− δ

4
( f (ui−1,j)− 2f (ui,j)+ f (ui+1,j))

+
1+ δ

4
( f (ui,j−1)− 2f (ui,j)+ f (ui,j+1)) (A 2)

subject to periodic boundary conditions. This term differs from the standard coupling
only in that the parameter δ permits different coupling strengths in the i and j
directions, to mimic the anisotropy of planar shear flows. We use δ = 0.6. This
anisotropy has no significance for the results presented in this paper since continuous
and discontinuous transitions occur also in the isotropic case δ = 0. We show results
at δ = 0.6 only for consistency with future publications.
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