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Acoustic microstreaming is a nonlinear response of a fluid that undergoes high-amplitude
acoustic stimulation and tends to viscously absorb it. The present experimental study
investigates the generation of acoustic microstreaming induced by an oscillating
wall-attached bubble undergoing nonspherical shape modes. From a microscope top view,
the formation of particular flow signatures is explored for the main classes of spherical
harmonics Ynm(θ, φ): zonal (m = 0 < n), sectoral (n = m > 0) and tesseral (0 < m < n)
oscillation. The microstreaming induced by a bubble animated by a sectoral mode alone
reveals a pattern characterized by a 4n-lobe flower shape. Tesseral modes give rise to
4m-lobe flower-shaped patterns. Finally, when sectoral and zonal modes coexist, two
kinds of pattern stand out: 2n-lobe flower shape and n-pointed star shape. The preferential
emergence of one or another streaming pattern is discussed on the basis of the amplitude
and phase shift between both shape modes.

Key words: bubble dynamics

1. Introduction

When an ultrasound-driven microbubble oscillates in a volume of fluid, it creates a
periodic oscillatory displacement of the fluid particles. In addition, the fast bubble
oscillations may lead to a relatively slow mean flow, called acoustic streaming. Its origin
lies in the nonlinear second-order effects in the fluid mechanics equations. The nonlinear
term u · ∇u is large in the oscillatory boundary layer of the oscillating bubble, and is
non-zero when time-averaged over the acoustic time scale. Thence, microstreaming can
be generated by a source sinusoidal in time, such as even a purely translating body may
generate a mean flow. Due to the time-averaging process, microstreaming results from the
interaction of two components of the bubble interface oscillation occurring at the same
frequency. If a gas bubble experiences a translation – or spherical – oscillation only at a
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given frequency, then some fluid flow can originate in the interaction of this oscillation
with itself. If two oscillatory components coexist (amongst the translation, spherical or
any nonspherical oscillations) at the same frequency, then steady flows arise from the
interaction between these two oscillations. We must go back to 1831 in order to find
the early beginnings of experimental work on acoustic streaming, when Faraday (1831)
observed and reported for the first time air streaming that resulted from a vibrating plate,
and then wait 50 years for the first theoretical work accomplished by Rayleigh (1884)
with his study on steady air flows between parallel walls. He explained their existence in
resonant pipes as a time-independent second-order flow driven by the viscous stresses
of the fluid, and justified their specific patterns by the presence of the parallel solid
boundaries. The association of this phenomenon to a gas bubble is first attributed to Kolb
& Nyborg (1956), who discovered the generation of microstreaming when the bubble
is tethered to a vibrating metal cone, and to Elder (1959), who observed the acoustic
streaming of a bubble visualized from a side view, as a function of the fluid viscosity
and the acoustic pressure. At that time, Elder stated for the first time that the direction of
the flow in a low-viscosity medium ‘is such as to move the liquid away from the nodes
and towards the anti-nodes’. In these works, nonspherical instabilities of a tethered bubble
were reported above certain pressure values, as well as changes in the microstreaming
behaviour associated with changes in the bubble modal deformations.

Since then, microstreaming induced by a single bubble has been investigated through
several scenarios, either when undergoing a rigid-body translation motion only (Davidson
& Riley 1971; Longuet-Higgins 1998; Collis et al. 2010), or when accompanied by
a radial oscillation (Gormley & Wu 1998; Longuet-Higgins 1998; Marmottant et al.
2006; Bolañs-Jimenez et al. 2017), when animated by either axisymmetric shape modes
(Spelman & Lauga 2017; Cleve et al. 2019) or asymmetric ones (Tho, Manasseh & Ooi
2007). These shape modes are generated through the process of parametric instability
when the bubble radial oscillation is driven above some pressure threshold (Brenner,
Lohse & Dupont 1995; Feng & Leal 1997; Shaw 2017). For an initially spherical bubble,
shape modes are usually decomposed over the set of orthonormal spherical harmonics
Ynm(θ, φ) of degree n and order m. They are called zonal when m = 0 < n, sectoral when
n = m > 0, and tesseral when n > m > 0. Zonal harmonics correspond to axisymmetric
deformations that preferentially develop for bubbles free of any constraint. Such a case
occurs when bubbles are acoustically trapped in a standing-wave levitation system (Cleve
et al. 2019) or stabilized close to the vortex core of a propagating beam (Baresch &
Garbin 2020). Investigation of bubble interface motion and induced streaming in an
unbounded fluid presents the advantage of allowing comparison to mathematical models
that are based on the assumption of axisymmetric bubble oscillation. Bubble-induced
microstreaming generated by the combination of radial, translation or any arbitrary
axisymmetric oscillation is now well documented (Longuet-Higgins 1998; Spelman &
Lauga 2017; Doinikov et al. 2019a,b; Inserra et al. 2020a,b).

Sectoral and tesseral harmonics correspond to asymmetric deformation whose
triggering is facilitated when a bubble is close to or in contact with a wall. The
mathematical description of bubble asymmetric oscillation is complex and brings a bunch
of new difficulties when resolving the bubble interface dynamics. As a result, experimental
works about microstreaming induced by asymmetric shape modes are very scarce. When
deriving the equation of motion of the bubble surface oscillation at the first order of the
ratio between modal displacement amplitudes and the bubble radius at rest εn = an/R0,
it appears that asymmetric modes m of a same degree n are degenerate. The associated
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Lamb spectrum describing the instability regions of any surface mode is therefore limited
to the spectrum of the zonal, axisymmetric modes. The splitting of the natural frequencies
of the whole set of asymmetric oscillation has been evidenced recently, experimentally
for a substrate-attached bubble (Fauconnier, Béra & Inserra 2020) and theoretically for
a bubble oscillating near a wall (Maksimov 2020). The study of an oscillating bubble
close to or in contact with a wall takes an interest in the capacity for microstreaming to
generate shear stresses in close boundary, which is widely reported in literature, whether it
focuses on medical applications (Doinikov & Bouakaz 2010; Yu & Chen 2014; Pommella
et al. 2015) or for purposes of industrial cleaning (Chahine et al. 2016; Reuter & Mettin
2016). In this latter application, the emphasis is rather on jetting bubbles and bubbly flows
induced by cavitating and collapsing bubbles, given that huge stresses are required for
efficiently cleaning textiles (Choi, Kim & Kim 2016), sterilizing pharmaceutical materials
(Verhaagen & Rivas 2016) or treating waste water (Dular et al. 2016).

The present article focuses on the microstreaming induced by a wall-attached
microbubble undergoing asymmetric shape modes. Section 2 describes the experimental
set-up that allows the capture of high-resolved temporal dynamics of an ultrasound-driven
wall-attached bubble. Section 3 gives a short overview on the decomposition of the
bubble interface motion over the set of spherical harmonics. Finally, § 4 is dedicated to
the experimental investigation of the diverse forms of microstreaming patterns and their
correlation to the bubble interface modal content. Throughout this section we also briefly
discuss our method for quantitatively describing the bubble nonspherical dynamics. All
main classes of spherical harmonics are explored, from the zonal mode, which is widely
documented in the literature, to its interaction with a sectoral mode, passing by sectoral
modes only and tesseral modes only.

2. Methodology

Figure 1(a) depicts a schematic of the experimental set-up, which barely differs from
the one described by Fauconnier et al. (2020) concerning the study of the interface
dynamics of an ultrasound-driven wall-attached bubble. A dihydrogen microbubble is
nucleated by electrolysis by means of a signal generator (Agilent 33210A, squared
signal, peak-to-peak amplitude 4 Vpp, offset 2 Vpp, 50 % duty cycle). This is performed
within a polymethyl methacrylate tank of inner size Lx × Ly × Lz = 44 × 260 × 50 mm3

filled with pure water (Milli-Q® IQ 7000) with additional NaCl (concentration 24 ±
1 mg l−1). A three-axis hydraulic micromanipulator (Narishige MMO-203) allows a fine
displacement of the electrolysis actuator, and hence the tethering of the microbubble at
the desired location at the bottom of the tank. Once the bubble is released, the electrolysis
wire is moved away so that it does not interfere with the oscillation of the attached
bubble. Positioned in the optical path of an inverted Nikon Eclipse-Ti microscope, the
bubble visualization from the top view is done through a 10× magnification optical lens.
Once it has been created, the microbubble, with equilibrium radius sizing in the range
60–140 μm, is acoustically excited by a Langevin transducer (SinapTec, 30.5 kHz nominal
frequency, high-voltage gain amplifier Trek50/750) supplied by a signal generator (Agilent
33220A) delivering a sine wave signal of frequency f0 = 30.5 kHz. The transducer is
acoustically coupled to the tank by means of ultrasound transmission gel (Aquasonic,
Thermo Fisher Scientific). The bubble dynamics and the surrounding fluid motion are
captured by a high-frame-rate camera (Vision Research, Phantom V12.1) with an image
scaling of 2 μm pixel−1. The monitoring of the bubble-induced fluid motion was enabled
by appending tracking particles (Fluoro-max red beads 3 μm, Thermo Fisher Scientific)
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Figure 1. Schematic representation of the experimental set-up illustrating a bubble attached to the bottom
of a water-filled tank (a) and geometry of the system under study: three-dimensional (b) and top view (c)
representations of a numerical bubble exhibiting the nonspherical deformation of a sectoral mode n = m = 4.
The bubble interface is characterized using spherical coordinates (r, θ, φ).

Frame size Frame rate Exposure time

Microstreaming 512 × 512 pixels 2000 images s−1 2 μs
Bubble dynamics 256 × 256 pixels 67 065 images s−1 2 μs

Table 1. Acquisition parameters (frame size, frame rate and exposure time) as set in the software Phantom
Camera Control (PCC).

in the water. Since the bubble interface displacement and the fluid motion occur at
different time scales, the camera records alternatively two video sequences with different
acquisition parameters (frame size, frame rate and exposure time), summarized in table 1.
This allows us not only to associate the microstreaming patterns to its bubble dynamics,
but also to ensure that bubble oscillations are stable. The capture of the streaming lasts a
few seconds, which is a sufficient duration to fully resolve the trajectory of the particles.
Microstreaming patterns are then obtained by retaining for each pixel the minimum value
among the whole stack of images. In addition, in order to obtain information about the
velocity field, a particle tracking velocimetry (PTV) analysis has been performed using the
Fiji software (Schindelin et al. 2012) and the plugin Trackmate (Tinevez et al. 2017) with
the linear motion tracker. While the tracking particles are fluorescent and thus originally
built for being lit by a laser source, we were here visualizing them with the microscope
white light, which turned out to be a functional configuration. In addition, we are confident
in the ability of these tracking particles to follow with closeness and fidelity the global fluid
motion, since their Stokes number (Tropea, Yarin & Foss 2007) St is much smaller than 1:

St ∝ dp|ρp − ρf |vmax

μ
� 6.2 × 10−3 � 1, (2.1)

where ρf � 0.998 × 103 kg m−3 is the density of pure water (at 20 ◦C), ρp � 1.05 ×
103 kg m−3 is the density of particles, dp � 3 μm is their equivalent mean diameter,
μ � 1 mPa s is the dynamic viscosity of water and vmax � 40 mm s−1 is the approximated
maximal velocity of streaming.

Before closing this section, the matter of the tethering and how the bubble stands
on the wall has to be addressed, given that it can play a decisive role on the bubble
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Figure 2. Investigation of the bubble contact angle α = sin−1(L/2R0), allowed by the optical measurement
from a side view of the bubble radius R0 and the contact diameter L (a). The angle α is displayed as a frequency
distribution (b) and as a function of the bubble equilibrium radius R0 (c).

modal behaviour. Geometrically, the contact angle α of the bubble is defined by the angle
formed by the tangent to the bubble surface at the contact point and the substrate plane.
Measurements have been performed before ultrasound activation for a large number of
single wall-attached bubbles, in an occasional side-view configuration. The angle α =
sin−1(L/2R0) is obtained from the optical measurement (figure 2a) of the bubble radius
R0 and the diameter of the bubble base L via the Fiji software (Schindelin et al. 2012). It
came out that it lies in a broad range 40–60 ◦ (figure 2b) and shows no dependency with
the bubble radius (figure 2c). The large dispersion in the measured contact angles comes
from the fact that they are highly dependent on the way the bubble has been deposited
on the surface (Noblin, Buguin & Brochard-Wyart 2009). We have also noticed that after
ultrasound activation, as long as the bubble does not shift from its original location, the
contact angle at rest does not change significantly for the same bubble.

3. Nonspherical shape modes

Nonspherical modes are three-dimensional spatial functions that develop in elevation
and azimuth at the bubble interface following spherical harmonics Ynm(θ, φ), which are
eigenmodes of a sphere. The general expression of the bubble interface animated by
nonspherical shape modes is

r(θ, φ, t) = R0 + R(t) +
∑
n,m

anm(t) Ynm(θ, φ), (3.1)

where θ ∈ [0 π] and φ ∈ [0 2π] are spherical coordinates, R(t) is the radial (volumetric)
oscillation occurring at the driving frequency, Ynm(θ, φ) = fnmPnm(cos θ) eimφ are the
spherical harmonics of degree n and order m (n ≥ 1, −n ≤ m ≤ n), Pnm is the associated
Legendre polynomial,

fnm = (−1)m

√
(2n + 1)

4π

(n − |m|)!
(n + |m|)! (3.2)

is a normalization coefficient and anm(t) are the time-varying amplitudes of the surface
modes. The bubble equilibrium radius R0 is obtained experimentally from a snapshot
captured at rest, right after the two video sequences. As a reminder, spherical harmonics
Ynm are called zonal when m = 0 < n, sectoral when n = m > 0 or tesseral when n >

m > 0. A numerical example of a bubble exhibiting a sectoral harmonic deformation of
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Figure 3. Theoretical instability threshold curves of the axisymmetric (zonal) modes of a free bubble,
according to Francescutto & Nabergoj (1978), for modal degrees n = 3 to n = 6, joined with their respective
resonant radius Rn

res. The resonant radius associated with the radial (volumetric) oscillation equals 108.3 μm.

degree n = 4, displayed in figures 1(b) and 1(c), illustrates the geometry of the system
under study.

For the bubbles investigated here with equilibrium radius in the range 60–140 μm and
acoustically driven at 30.5 kHz, modes of degrees n = 3 to n = 6 are observable, as
expected from the theoretical predictions on free bubbles (Francescutto & Nabergoj 1978)
and recent experiments on wall-attached bubbles (Fauconnier et al. 2020). This range of
bubble radii includes the resonant radius of the radial (volumetric) oscillation, given that,
according to Minnaert’s theory (Minnaert 1933), it corresponds to 108.3 μm for the chosen
forcing frequency. On the other hand, the spectrum of the resonant radii Rn

res of bubble
shape modes was derived by Lamb (1916) and is given by

Rn
res = 3

√
(n − 1)(n + 1)(n + 2)σ

ρω2
0/4

, (3.3)

where σ is the surface tension, ρ is the liquid density and ω0 = 2πf0 is the angular
frequency of acoustic driving. It should be highlighted that (3.3) does not contain the
index m: all n + 1 shape modes associated with the same degree n are defined by the same
resonant radius, and are thus said to be degenerate. Moreover, the studied shape modes are
parametrically excited by the radial oscillation on their first resonance and therefore behave
subharmonically. As a consequence, no streaming can result from the interaction between
a nonspherical shape mode and the radial oscillation occurring at the driving frequency
(Cleve et al. 2019). The pressure thresholds for their onset are predicted by Francescutto
& Nabergoj (1978). In accordance with our experimental parameters, their computation
leads to the graphic representation displayed in figure 3, joined with the associated modal
natural frequencies issued from (3.3).

Generally speaking, a nonspherical mode of degree n and order m has n − m parallel
nodal lines and 2m meridian nodal lines. With a single experimental top view, the
characterization of nonspherical modes can therefore struggle as soon as the bubble
interface contains any mode such as n /= m and nodal parallels appear. The top-view
bubble’s silhouette s(φ, t) is the interface global maximum r(θ, φ, t) sin θ . Since there
exists no analytic solution for this projection, the quantification of the amplitudes of
any arbitrary asymmetric oscillation from a single top view becomes challenging. As a
reminder, in Fauconnier et al. (2020), the modal amplitudes were qualitatively evaluated
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through a projection of the bubble top-view contour on the azimuthal component
eimφ of spherical harmonics. We suggest here alternative methods for approaching the
time-resolved amplitudes of nonspherical modes, associated to each of these experimental
cases: zonal mode only, sectoral mode only, tesseral mode only and a sectoral–zonal modes
combination. These four cases represent the majority of cases encountered experimentally
in the present work. Because quantitative information is required to assess the modal
interaction responsible for streaming, the modal analysis differs from Fauconnier et al.
(2020) by the addition of a weighting factor applied to modal amplitudes and specific to
each modal degree n and order m. It especially allows us to compensate for the information
loss in elevation due to the single visualization from a top view. Otherwise, both methods
are based on the same azimuthal decomposition.

In Fauconnier et al. (2020), the spectral splitting of nonspherical modes of a tethered
bubble was evidenced and resulted in a recurrent coexistence of sectoral and zonal
modes around the resonant radius, while the appearance of tesseral modes was privileged
elsewhere. This modal behaviour is recovered in the observation of microstreaming in
§ 4. Also, for the sake of clarity, it should be pointed out that, unlike many works
on bubble-induced streaming reporting translation bubble oscillations, each bubble
encountered in this work experiences only radial oscillations and shape modes. No
solid-body translation bubble motion is reported here, although we will occasionally refer
to it for comparison with the literature. When oscillating on a tesseral mode m = 1,
for instance, the bubble contour exhibits a seemingly time-dependent centroid that may
indicate the presence of a translation oscillation. Such a translation motion can be induced
by the lateral symmetry-breaking induced by having the transducer on one side of the
water tank, in addition to the tethering of the bubble on the surface, as already observed
by Tho et al. (2007). However, we believe that this oscillatory motion of the centroid,
as experienced in this work, has its origin in the bias induced by the projection of
the three-dimensional tesseral mode on a plane, as already discussed in the case of
axisymmetric modes in Cleve et al. (2019). Moreover, tesseral modes are triggered at
pressure close to the instability threshold of shape modes, and their top-view appearance
displays shades of light that closely resemble the one we could expect numerically.
All these arguments make us confident in the fact that translation motions are not
predominantly triggered in our experiments.

4. Experimental microstreaming patterns

For all the investigated bubbles animated only by a spherical oscillation, no mean flow has
ever been observed in our experiments (not shown). We recall that this radial oscillation
occurs at the driving frequency, while all the nonspherical oscillations triggered at
the bubble interface occur at the subharmonic of the driving frequency. Therefore, no
interaction between the radial and any nonspherical oscillations can lead to streaming.
Accordingly, we consider that the fluid flows investigated in the following are never, even
partially, generated by the radial oscillation, and thus the radial mode is systematically
excluded from our interpretations.

4.1. The ‘zonal mode only’ case
Zonal modes are widely studied in the literature because of the ease of triggering them
experimentally for the case of free bubbles, and because of their comfortable axisymmetric
shape that facilitates their mathematical study (Spelman & Lauga 2017; Doinikov et al.
2019a,b; Inserra et al. 2020a,b). The experimental visualization of their axisymmetric
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Figure 4. Modal analysis and associated microstreaming pattern of a microbubble of equilibrium radius
84.3 μm oscillating on a zonal mode of degree n = 4. The information is structured as follows. (a) Snapshot
series of the top-view contour display the microbubble at different instants along a complete subharmonic
period of duration 2/f0. The red contour is a numerical reconstruction issued from the processed modal
amplitudes displayed in (b). (b) Left: spectrum of the excited modes n = 4, ‘R’ standing for the amplitude of
the radial (volumetric) oscillation R(t) as defined in (3.1). Right: temporal evolution of the normalized (norm.)
amplitudes of the predominant radial and zonal oscillations. (c) The associated microstreaming pattern. (d)
Theoretical prediction of the side-view microstreaming induced by the self-interaction of a zonal axisymmetric
mode of degree n = 4, issued by Inserra et al. (2020a).

dynamics and associated streaming is usually performed from a side view in a plane
containing the bubble symmetry axis z. The orientation of a free bubble axisymmetric
deformation is strongly influenced by the geometry of the system under study, the presence
or not of a boundary, or even the existence of an asymmetric forcing on the bubble
interface. In the absence of a wall, the assurance of the positioning of the symmetry axis
within the imaging focal plane can be ensured experimentally by controlling the direction
of impact of two coalescing bubbles (Cleve et al. 2019). In that configuration of a free
axisymmetric bubble, the theoretical predictions of streaming are solved (Inserra et al.
2020a), and an example for the case of a self-interacting zonal mode of degree n = 4
is given in figure 4(d). This microstreaming pattern is characterized by 2n vortices that
develop in (r, θ) and show no dependency in azimuth.

When the bubble is attached to a wall, the orientation of the nonspherical bubble
is also governed by the system geometry and gives a preference for the zonal mode
deformation to develop following the symmetry axis z directed along the normal to the
wall surface. The z-axis selection for shape mode triggering is similar to the case of free
(far from boundaries) bubbles submitted to propagating ultrasound waves that define the
symmetry axis of nonspherical oscillations (Versluis 2010). In the present study, whatever
the investigated asymmetric modes are, the triggering of surface modes always appears to
be dictated by the normal to the wall. The contrary would result in a seemingly asymmetric
bubble interface from a top-view contour, even in the case of zonal harmonics. Such an
observation was not experienced for all the investigated bubbles. This is consistent with
previous experimental works dedicated to the dynamics of bubble asymmetric oscillations
(Fauconnier et al. 2020). As a consequence, from a top-view perspective, the silhouette
of a bubble undergoing an axisymmetric (zonal) mode oscillates with a misleading
spherical appearance and the microstreaming looks exclusively radial, since there exists
no azimuthal dependence and the axisymmetric vortices are imperceptible, as illustrated
in figures 4(a) and 4(c).

In a general way, differentiating several microstreaming scenarios and characterizing
their interaction strength require a good approach to the bubble modal content, especially
when more than one nonspherical mode exists. In the framework of this study, the
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Figure 5. Side views of a numerical bubble of equilibrium radius R0 = 90 μm oscillating on a zonal mode
Y40 of amplitude a40 = 30 μm (a), a sectoral mode Y44 of amplitude a44 = 30 μm (b) and the combination of
both modes (c). The represented angle θm is the longitudinal angle for which the bubble contour projection in
the (x, y) plane is maximal. (d) The temporal evolution of θm is observed along a complete subharmonic period
for a zonal mode of degrees n = 3 to n = 6, with zonal amplitude an0 = 0.3R0.

amplitude of zonal modes is determined as follows. As a reminder, a bubble animated by a
zonal mode only (m = 0 < n) presents an oscillating shape devoid of nodal meridian. As a
result, the top-view bubble silhouette is circular at any time, and measuring its amplitude
is not straightforward. In addition, the longitudinal angle θ that maximizes the bubble
silhouette s(φ, t) = r(θ, φ, t) sin θ is not constant with time. In this study, we refer to this
particular angle as θm. When observing the numerical side view of a bubble oscillating on a
zonal mode of degree n = 4 (figure 5a), θm varies in elevation along a subharmonic period.
Moreover, this oscillation in elevation also depends on the modal degree n, as shown in
figure 5(d) for cases of zonal modes of degrees n = 3 to n = 6. It oscillates around the
equilibrium value π/2 with a signature that is specific to the modal degree and especially
its parity. Given that, the amplitude an0(t) of the zonal mode can be approximated by
decomposing the top-view bubble silhouette s(φ, t) on the spherical harmonic Yn0:

an0(t) = γn0

2π

∫ 2π

0
s(φ, t) dφ, (4.1)

where

γn0 =
(

fn0P∗
n0 sin θ∗

m
s∗(φ, t)

R0 + ãn0fn0P∗
n0

)−1

, (4.2)

with θ∗
m = max(θm), P∗

n0 the local maximum of the associated Legendre polynomial
Pn0(cos θ) that is the nearest to θm,

ãn0 = 1
2T

∫ 2T

0

1
2π

∫ 2π

0
s(φ, t) e−iπf0t dφ dt, (4.3)

and s∗(φ, t) the maximal value reached by the bubble silhouette s(φ, t). This allows us to
approach the amplitude of the zonal mode. In the experimental case illustrated in figure 4,
the amplitude of the zonal mode is of the same order of magnitude as the amplitude of the
radial oscillation, as detailed by the spectrum of the excited modes of figure 4(b). It goes
along with the temporal evolution of the predominant radial and zonal oscillations refolded
over two acoustic periods and expressed in normalized amplitudes. A numerical bubble
is implemented from the experimental data issued by this modal decomposition, and its
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top-view contour is drawn in dashed red lines on the experimental snapshots of figure 4(a).
This experimental bubble corresponds to a modal configuration of zonal harmonic n = 4
similar to the theoretical case displayed in figure 4(d). Even if we cannot observe the
axisymmetric recirculation loops in our top-view configuration, we can discern in the
experimental video sequence that particles get regularly blurry as they move around the
bubble, which confirms that particles come out of and into the focal plane, and that there
does exist a dependence in elevation, such as figure 4(d) demonstrates. Remember that
the comparison of the experimental streaming pattern with the theoretical one (figure 4d)
is only meant to clarify the axisymmetry of the streaming pattern as observed from a
top view. At this stage of the investigation, the wall-induced alteration of the streaming
pattern cannot be assessed as it would require a double view (simultaneous top and
side perspectives, by using a prism mirror for instance) in order to observe the bubble
contour and induced flow. Such an investigation is beyond the scope of this work aiming
at characterizing for the first time the streaming patterns induced by bubble asymmetric
modes, as described in the next subsection.

4.2. The ‘sectoral mode only’ case
Sectoral modes have as many azimuthal deformation lobes as the modal degree n to
which they belong. Because the number of nodal parallels of any spherical harmonic
equals n − m, sectoral modes (n = m) are devoid of nodal parallels and have their only
longitudinal displacement anti-node at the equator, as illustrated in figure 5(b), where they
exhibit an azimuthal shape that corresponds to a cos(mφ). This azimuthal shape is easily
recognizable from a top-view observation, as shown in figures 6(a) and 6(d) for bubbles
oscillating on a sectoral mode n = 3 and n = 4, respectively. The bubble’s silhouette
s(φ, t) from a top view exactly equals the bubble interface r(θ, φ, t) at θ = π/2:

s(φ, t) = r
(π

2
, φ, t

)
= R0 + a00(t) + ann(t)fnn Pnn(0) einφ. (4.4)

By decomposing the top-view bubble silhouette s(φ, t) on the spherical harmonic Ynn,
the amplitude ann(t) of the sectoral mode is calculated as

ann(t) = γnn

2π

∫ 2π

0
s(φ, t) e−inφ dφ, (4.5)

where γnn = (fnn Pnn(0))−1. When performing this modal decomposition on an
experimental bubble animated by a sectoral mode n = 3, it results in what is depicted
in figure 6(b). The sectoral oscillation is three times greater than the radial one and
reaches an amplitude of 15 μm. It is worth noting that in the case of odd-order modes,
an important misleading non-zero amplitude associated with a mode of order m = 1
usually appears. This has been numerically confirmed to be an artefact issued from our
calculation method of the biased bubble two-dimensional projection. It is demonstrated in
figure 7, following a three-step procedure of analysis. First, figure 7(a) presents the result
of our bubble contour modal analysis, revealing a sectoral mode of amplitude 30 μm, but
also a presumed artefact (a tesseral mode m = 1) of amplitude 15 μm. In a second stage,
the exact same algorithm employed for the experimental bubble analysis is applied to an
equivalent numerical bubble implemented without the presumed artefact. It turns out that
an artefact (still a tesseral mode m = 1) of same amplitude reappears (figure 7b). In a
third stage of confirmation, the light shades of the top-view bubble are observed: in the
absence of a tesseral mode, it is uniform (figure 7b), while in the presence of a tesseral
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Figure 6. Modal analysis and associated microstreaming pattern of a microbubble of equilibrium radius
73.8 μm oscillating on a sectoral mode n = 3 (a–c) and a microbubble of equilibrium radius 88 μm oscillating
on a sectoral mode n = 4 (d–f ). The information is structured similarly to that in figure 4.

mode, asymmetric shades of light appear (figure 7c). This therefore demonstrates that this
misleading non-zero amplitude was indeed an artefact issued from our calculation method
of the biased bubble two-dimensional projection.

When a bubble is animated by a sectoral mode only, the single azimuthal streaming
contribution that may exist in our configuration is due to the interaction of the sectoral
mode with itself. It generates a streaming pattern that has a 4n-lobe flower shape, where
lobes are assembled by pair. The same streaming signature is obtained in figure 6( f ) in
the case of a sectoral mode n = 4. The pattern displays 16 lobes that are also arranged by
pair. It should also be mentioned that in both cases, the rotational direction of the flow is
such as to propel the particles away from the anti-nodes and to attract them back towards
the nodes of displacement of the bubble interface. Each pair of recirculation loops is thus
surrounded by areas of particles propelled with a positive radial velocity. This motion
behaviour is outlined with red arrows in figure 6(c). Similar streaming signatures were
also obtained for cases of sectoral modes of degrees n = 5 and n = 6.

According to our knowledge of microstreaming patterns induced by axisymmetric
modes, these general observations can be interpreted as follows. The bubble interface
motion of a sectoral mode from a top view is reminiscent of the interface motion of an
axisymmetric mode of same degree visualized from a side view: they both present the
same number of nodal lines, in elevation for axisymmetric modes, and in azimuth for
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Figure 7. Demonstration of the appearance of an unwanted artefact in the modal analysis, here applied to
a bubble of radius 107.7 μm, oscillating on a sectoral mode of degree n = 5. The information is structured
as follows. (a1) Appearance of an m = 1 modal component (presumed artefact) in the spectrum. (a2)

Normalized dynamics of the predominant oscillatory components, the sectoral and radial oscillations. (a3) The
experimental snapshots match the top-view contour (in dashed red lines) of a numerical bubble implemented
without the artefact. (b) The modal analysis with the exact same algorithm of an equivalent numerical bubble
implemented without the presumed artefact makes the m = 1 modal component reappear, confirming its
existence as an artefact only. (c) Numerical snapshots (top and side views) of a bubble implemented with
the artefact.
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Nonspherical dynamics and streaming of a microbubble

Sectoral 4

3-D view

Top view

(b)(a)

Figure 8. Artist’s view of the microstreaming induced by a bubble oscillating on a sectoral mode of degree
n = 4, represented from a three-dimensional (3-D) perspective (a) and from a top view (b). The colour map
relates to the derivative of the fluid displacement with respect to the radial coordinate, from dark to light shades
for streamlines having negative to positive radial velocities.

sectoral modes. In conclusion, it could be argued that, just as the self-interaction of an
axisymmetric mode of degree n presents 4n lobes of streaming around the bubble (Inserra
et al. 2020a), a bubble exclusively animated by a sectoral mode generates a streaming
signature as a 4n-lobe flower shape.

In elevation, sectoral modes are characterized by displacement nodes at the poles and
displacement anti-nodes at the equator. From a side view, it resembles a dipole mode,
an experimental case often reported in works investigating acoustic streaming, whether it
concerns a free bubble (Davidson & Riley 1971; Longuet-Higgins 1998; Doinikov et al.
2019b) or a tethered one (Tho et al. 2007; Collis et al. 2010). The associated streaming
pattern is characterized by the presence of four lobes of recirculation around the bubble.
As qualitatively sketched in figure 8, such a streaming pattern could be expected in
elevation around a bubble animated by a sectoral mode, though probably marked by a
symmetry break in the lower hemisphere due to the presence of the wall. Above the
bubble, the particles follow an anti-fountain-like motion. It seems reasonable to believe
that the longitudinal components of streaming would be more influenced by the presence
of the wall than the azimuthal ones, especially in the area located between the wall and the
bubble equatorial plane. Also, in the case of a weakly mobile contact line, the literature
reports the appearance of a vertical translation motion of the bubble, which may bring a
new axisymmetric contribution to the global fluid flow (Marmottant & Hilgenfeldt 2003).
Lacking a comparable reference from the literature where bubble asymmetric modes
inducing streaming are experienced in the absence of a wall, making a conclusion about
the wall effect on the microstreaming is not straightforward. Anyway, important fluid flows
are expected to develop in both azimuth and elevation dimensions, even though only the
azimuthal part of the motion of particles located at the equator can be quantified from our
experimental top view.

At last, because of a greater modal density of higher degree modes, the occurrence
of sectoral modes only becomes scarcer when the bubble equilibrium radius and the
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Figure 9. Repartition of the experimental occurrences of nonspherical modes for bubbles whose equilibrium
radius R0 is located around the resonant radius associated with the modal degrees n = 4 (a) and n = 5 (b),
given by the red dashed vertical lines.

associated modal degree increase. As a consequence, experimental occurrences of stable
sectoral modes alone were less obvious for modal degrees higher than n = 6.

4.3. The ‘tesseral mode only’ case
Tesseral modes particularly appear preferentially for bubbles whose radii are far from
the resonant radius, while zonal and sectoral modes give a preference to emerge close
to the resonant radius, as displayed in figure 9 for modal degrees n = 4 and n = 5. This
gives a possibility for zonal and sectoral modes to exist simultaneously. In contrast, the
coexistence of two different tesseral modes, or any other modes combination involving
tesseral modes, was scarcely observed. Within the scope of this study, only the streaming
patterns resulting from a self-interacting tesseral mode are analysed. The calculation of
the modal amplitude of a tesseral mode Ynm is given by

anm(t) = γnm

2π

∫ 2π

0
s(φ, t) e−imφ dφ, (4.6)

where

γnm =
(

fnmP∗
nm sin θ∗

m
s∗(φ, t)

R0 + ãnmfnmP∗
nm

)−1

. (4.7)

Tesseral modes also differ from zonal and sectoral modes by the presence in their
modal deformations of nodal lines in both elevation and azimuth. For instance, each
tesseral mode of order m = 1 (m < n) has two nodal meridians, regardless of the modal
degree n to which it belongs, but a number of n − m nodal parallels that differ with its
degree. In a microscope top-view configuration, the observation of the bubble and the
induced particles motion is performed in a horizontal focal plane of finite thickness.
From that perspective, at a given angle θ , the bubble contour of any tesseral mode 1
possesses two nodes and two anti-nodes of displacement. As a direct consequence all
the self-interacting tesseral modes m = 1 ever experienced in this work for n = 3 to n = 6
have always developed, from a top view, a microstreaming characterized by a 4-lobe shape,
as illustrated in figure 10(c). This is in line with the previous logic related to sectoral
modes, where the number of lobes equals two times the number of nodal meridians.
The particles are thus animated by a flow motion going away from the displacement
anti-nodes and towards the displacement nodes of the bubble interface. An analogy can
be drawn between such a tesseral mode m = 1 observed in a horizontal focal plane and
a solid-body translation oscillation without shape deformation. Such bubble translation
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Figure 10. Modal analysis of the dynamics and associated microstreaming pattern of a microbubble of
equilibrium radius 86.4 μm oscillating on a tesseral mode of order m = 1 (a–c) and a microbubble of
equilibrium radius 102.6 μm oscillating on a tesseral mode of order m = 2 (d–f ). Both are generating a 4m-lobe
flower-shaped pattern. The information is structured similarly to that in figure 4.

motion is widely investigated in the literature and generally associated to quadrupole
shape patterns (Longuet-Higgins 1998; Collis et al. 2010; Doinikov et al. 2019b). The
resemblance of the induced microstreaming patterns is obvious. It should be noted that
the high dispersion in the bubble dynamics in figure 10(b) results from the biased bubble
projection in the (x, y) plane. In particular, tesseral modes m = 1 are susceptible to having
their amplitude distorted by our analysis method, given that their top-view silhouette,
barely deviating from sphericity, does not efficiently transcribe the modal deformation
mostly developing in elevation. As a consequence, the smallness of this nonspherical
oscillation (as given by the modal spectrum in figure 10b) results in an amplitude of the
m = 1 modal component that is overwhelmed by noise.

Similarly, tesseral modes of order m = 2 possess four nodal meridians. It is expected that
such a bubble oscillation would also generate a microstreaming characterized by 4m lobes,
and this is exactly what is shown in figure 10( f ), where eight lobes are clearly visible.
Similarly to the tesseral mode m = 1, the 4m recirculation loops are assembled two by
two, each pair being located between two displacement nodes of the bubble interface and
surrounded by region of dense streamlines associated with a fluid motion going towards
the bubble interface. The bubble nonspherical mode here represented belongs to the modal
degree n = 4. We believe that as the presence of the wall facilitates the triggering of some
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Figure 11. Modal analysis of the dynamics and associated microstreaming pattern of a microbubble of
equilibrium radius 101.5 μm oscillating on a tesseral mode of order m = 3 (a–c) and a microbubble of
equilibrium radius 118.8 μm oscillating on a tesseral mode of order m = 4 (d–f ). Both are generating a 4m-lobe
flower-shaped pattern. The information is structured similarly to that in figure 4.

asymmetric modes, it might in the same way inhibit others. This might be the reason why
we have not experienced a self-interacting tesseral mode m = 2 for all modal degrees n
that were investigated in this work.

As illustrated in figure 11, the microstreaming induced by tesseral modes of orders
m = 3 and m = 4 exhibits a similar signature: 4m lobes assembled by pair, with a great
density of particles in the equatorial plane coming towards the bubble interface and more
particularly towards the displacement nodes of the bubble interface. In addition, it appears
that the recirculation loops become smaller as the modal order m increases.

4.4. The ‘sectoral and zonal modes combination’ case
By investigating the shape modes dynamics of a wall-attached bubble, Fauconnier et al.
(2020) have evidenced the recurrent coexistence of sectoral and zonal modes around the
resonant radius. The emergence of nonspherical bubble modes was investigated along
an increasing pressure ramp, and the triggering of zonal and sectoral modes oscillating
simultaneously was highlighted. In the present study, bubbles are driven at constant
acoustic pressure, but the coexistence of zonal and sectoral modes is still frequently
observed. As a reminder, microstreaming results from the interaction between two modes
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Nonspherical dynamics and streaming of a microbubble

oscillating at the same frequency (Doinikov et al. 2019a), as well as the self-interaction of
a shape mode (Inserra et al. 2020a). The microstreaming induced by a bubble oscillating
predominantly on two parametrically excited shape modes (here the zonal and sectoral
ones), in addition to the spherical oscillation (oscillating at the driving frequency), will
lead to the second-order velocity field

v(2) � v
(2)
z−s + v

(2)
z−z + v

(2)
s−s, (4.8)

where v
(2)
z−s refers to the second-order velocity induced by the interaction of zonal and

sectoral modes, and v
(2)
z−z (respectively v

(2)
s−s) refers to the second-order velocity induced by

the self-interacting zonal mode (respectively sectoral mode). The interaction between two
modes would be the largest when they are in phase quadrature (Marmottant & Hilgenfeldt
2003). As a result, depending on the phase and amplitude relations between zonal and
sectoral modes, one or another contribution is likely to prevail on others. Capturing
and measuring with accuracy the modal variables then becomes critical. When sectoral
and zonal modes coexist, the calculation of the amplitude an0(t) of the zonal mode is
performed as in § 4.1, but the calculation of the amplitude ann(t) of the sectoral mode
requires some adjustments. The reason for that is the shift of the longitudinal position
of the maximal displacement of the sectoral mode, as it does in the fourth and fifth
schematics of figure 5(c). The amplitude ann(t) is then normalized no longer by the
associated Legendre polynomial at θ = π/2, but by the general expression

ann(t) = γnn

2π

∫ 2π

0
s(φ, t) e−inφ dφ, (4.9)

where

γnn =
(

fn0P∗
n0 sin θ∗

m
s∗(φ, t)

R0 + ãnnfnnP∗
nn

)−1

. (4.10)

Figure 12 demonstrates the ability of our method for approaching the amplitudes of
zonal and sectoral modes. The top-view observation of an experimental microbubble’s
silhouette of equilibrium radius 88.1 μm allows not only the detection of the presence of
radial, zonal and sectoral oscillations, but also an accurate quantification of their respective
amplitude and relation of phase. In order to validate our method, a similar modal analysis
has been performed on a numerical bubble’s silhouette implemented from the obtained
experimental parameters (a00, a40, a44 and the relative phase shifts). Figure 12 shows that
the modal amplitudes are accurately recovered (maximal error of 2 μm), as it is the case
for the phase shift.

Above the instability pressure threshold of a given degree n, the occurrence of sectoral
modes alone is scarcer than the simultaneous occurrence of coexisting sectoral and zonal
modes, as demonstrated in figure 9. Fauconnier et al. (2020) demonstrated that sectoral
and zonal modes of even degrees n = 4 and n = 6 have a preference to oscillate essentially
in-phase, unlike modes of odd degrees n = 3 and n = 5, for which the phase shift is greater
and may vary in a broader range. This behaviour is summed up in figure 13 for the whole
set of experimental data employed in this work, each dot being a different microbubble
simultaneously animated by a zonal and a sectoral mode. While the phase shift in the
case of odd-degree modes is contained in the broad range [0.1π 0.5π], it is recurrently
constrained below 0.1π in the case of even-degree modes. Remember that the magnitude of
the microstreaming interaction is governed by the phase shift between the two interacting
modes (Longuet-Higgins 1998; Marmottant & Hilgenfeldt 2003). Following the work
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Figure 12. Example of the result obtained with our modal analysis method, here applied to a bubble of
radius 88.1 μm oscillating simultaneously on a sectoral and a zonal mode of degree n = 4. The information is
structured as follows. (a) Snapshot series of the top-view contour displays the microbubble at different instants
along a complete subharmonic period of duration 2/f0. The red contour is a numerical reconstruction issued
from the processed modal amplitudes displayed in (b). (b) Snapshots of a numerical bubble, implemented
with the parameters obtained from the modal analysis of the experimental bubble. (c) Spectrum of the excited
modes n = 4 of the experimental bubble (solid lines) and the numerical bubble (dashed lines), as a function of
the modal order m, ‘R’ standing for the radial oscillation (m = n = 0). Temporal evolution of the normalized
amplitudes of the predominant radial, zonal and sectoral oscillations refolded over two acoustic periods for the
experimental bubble (d) and the numerical bubble (e).
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Figure 13. Distribution of the phase shift 
Φ between zonal and sectoral modes as a function of the bubble’s
equilibrium radius R0, for degrees n = 3 to n = 6.

of Longuet-Higgins (1998), when a radial oscillation (of amplitude ε0) interacts with a
translation oscillation (of amplitude ε1), the magnitude of the resulting flow is given by
the so-called dipole strength d2 = ε0ε1R2

0 sin 
Φ, where 
Φ is the phase shift between
the radial and translation oscillations. Accordingly, we can therefore expect the interaction
of zonal and sectoral modes of even degrees to be weaker in comparison to that induced
by odd degrees.
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Figure 14. Modal analysis of the dynamics and associated microstreaming pattern of a microbubble of
equilibrium radius 80.2 μm oscillating on a sectoral mode and a zonal mode of degree n = 3, generating a
2n-lobe flower-shaped streaming pattern (a–c) and of a microbubble of equilibrium radius 75.4 μm oscillating
on a sectoral mode and a zonal mode of degree n = 3, generating an n-pointed star-shaped streaming pattern
(d–f ). The information is structured similarly to that in figure 4.

When a bubble oscillates simultaneously on a zonal and a sectoral mode of degree
n = 3, two different scenarios of microstreaming stand out, as illustrated in figure 14. Both
scenarios clearly differentiate themselves in the ability of the streaming flow to present or
not recirculation loops in the visualized equatorial plane. In figure 14(c), a 2n-lobe flower
shape characterized by a fluid flow moving away from a displacement anti-node of the
bubble interface and coming back towards another is observed. Actually, it is very likely
that the particles are actually heading towards zonal-related nodes of displacement that
are hidden at a different position in elevation. The progression from a sharp to a blurry
appearance of particles throughout their looping circulation reinforces this hypothesis.
This 2n-lobe flower-shaped pattern contrasts with the one shown in figure 14( f ), where
particles are propelled from the bubble interface with an outward one-way motion. For
degree n = 3, this pattern resembles a star with three branches, and we refer to it as an
n-pointed star shape. These two patterns result from a bubble exhibiting both a zonal and
a sectoral oscillation, as shown in the modal analysis displayed in figures 14(b) and 14(e).
Clearly, both the amplitudes of the nonspherical modes and their phase shifts differ, and
so do the relative strengths of the interactions underlying the two presented patterns, as
indicated in (4.8). For the bubble exhibiting a 2n-lobe shape in figure 14(c), the pattern
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Figure 15. The preferential appearance of flower-shaped (•) or star-shaped (�) patterns induced by a
combination of sectoral and zonal modes of degree n = 3 is investigated as a function of their phase shift 
Φ

and amplitudes a33 and a30 (a) as well as a function of their tripole strength = a30a33R2
0 sin 
Φ correlated by

the maximal velocity of propelled particles Vrmax measured at a distance r = 2R0 from the bubble barycentre,
for which a linear regression is drawn in grey (b). Two particular red open markers represent the two selected
cases of figure 14 and their positions in this tripole strength map. In each panel, a grey area delimits the region
of appearance of star shapes.

probably results from the threefold interaction described in (4.8), without predominance
of one on another. However, due to the greater phase shift between zonal and sectoral
modes in the case of the n-pointed star shape, the interaction between these two modes on
the resulting pattern is probably predominant. It is worth noticing that this pattern looks
like a zonal-induced microstreaming pattern (figure 4c, for instance), but here regularly
interrupted with a spatial period 2π/n.

In order to explain how these two scenarios differ, figure 15(a) gives an overview of the
experimental data where there is coexistence between a zonal mode and a sectoral mode
of degree n = 3. The preferential occurrence of flower-shaped or star-shaped patterns is
investigated as a function of the amplitudes of sectoral mode a33, zonal mode a30 and their
phase shift 
Φ. At first glance, a preferential generation of flower shapes occurs when the
sectoral amplitude is weak, regardless of the zonal amplitude. On the other hand, when the
sectoral mode amplitudes become stronger, star-shaped patterns become predominant. For
these patterns, the tracking particles are propelled with such a velocity that they are never
steered back to the bubble interface and thus do not experience any recirculation loops.
This observation is asserted by figure 15(b), where the propelling velocity of the particles
measured at a distance 2R0 from the bubble centre is plotted as a function of the tripole
strength d3 = a30a33R2

0 sin 
Φ. This expression was inspired from the dipole strength as
defined by Longuet-Higgins (1998) in the case of a translation bubble motion. Clearly,
the generation of star-shaped patterns is associated with the highest magnitudes of tripole
strength, while flower-shaped patterns are globally restricted to the lowest magnitudes.
For the sake of transparency, it is worth mentioning that, due to some inadequate sets of
data (lack of particles or slightly out of focus) for quantitatively measuring the velocity
field, the number of experimental occurrences in figure 15(b) is reduced compared to the
number contained in figure 15(a).

Finally, based on the observation of figure 15(a), a correlation between phase shift and
modal amplitudes, which highlights the modal competition of sectoral and zonal modes of
degree n = 3 mentioned before, also deserves to be noted. As a matter of fact, the modal
coexistence does not happen unconditionally – quite the contrary. The progressive rise in
power of the sectoral mode conditions the zonal mode, provided that a phase shift operates
and that the zonal mode suffers a reduction in its amplitude.
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Figure 16. Modal analysis of the dynamics and associated microstreaming pattern of a microbubble of
equilibrium radius 112.1 μm oscillating on a sectoral mode and a zonal mode of degree n = 5, generating a
2n-lobe flower-shaped streaming pattern (a–c) and of a microbubble of equilibrium radius 110.2 μm oscillating
on a sectoral mode and a zonal mode of degree n = 5, generating an n-pointed star-shaped streaming pattern
(d–f ). The information is structured similarly to that in figure 4.

When n = 5, similar results come out. The same 2n-lobe and n-pointed star-shaped
patterns are observed predominantly. For the results presented here, identical magnitudes
of the zonal oscillations are obtained for both cases. A stronger sectoral amplitude is,
however, associated with the n-pointed star shape (figure 16f ) in comparison to the
lobe-type pattern (figure 16c). The global trend still goes in the direction of a preferential
generation of star-shaped patterns when the sectoral mode dominates, regardless of the
zonal amplitude. On the other hand, at weaker zonal and sectoral amplitudes, star-shaped
patterns can arise only when the phase shift is sufficiently large. Similarly to the odd
degree n = 3, the occurrence of n-pointed star shapes and the associated maximal velocity
of propelled particles is related to the amplitude of the quinquepole strength (not shown).

Sectoral and zonal modes of even degree n = 4 show an ease to coexist. They emerge
and exist together without inhibiting each other (Fauconnier et al. 2020). As a result,
their phase shift is not as variable as it was for odd-degree modes (figure 13), and the
microstreaming patterns are then less different and exclusively limited to 2n-lobe flower
shapes (figure 17). Despite this, we will see in figure 18 that we have yet to experience a
great variability in the magnitudes of fluid velocity.
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Figure 17. Modal analysis of the dynamics and associated microstreaming pattern of a microbubble of
equilibrium radius 87.4 μm oscillating on a sectoral and a zonal mode of degree n = 4 generating a 2n-lobe
flower-shaped streaming pattern (a–c) and of a microbubble of equilibrium radius 87.7 μm oscillating on a
sectoral and a zonal mode of degree n = 4 generating a 2n-lobe flower-shaped streaming pattern accompanied
by the early stages of a star shape (d–f ). The information is structured similarly to that in figure 4.
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Figure 18. The preferential appearance of flower shapes (•) or flower shapes with early stages of star shapes
(�) induced by a combination of sectoral and zonal modes of degree n = 4 is investigated as a function of
their quadrupole strength = a40a44R2

0 sin 
Φ correlated by the maximal velocity of propelled particles Vrmax
measured at a distance r = 2R0 from the bubble barycentre, for which a linear regression is drawn in grey. Two
particular red open markers represent the two cases selected in figure 17 and their positions in this quadrupole
strength map.
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Figure 19. Modal analysis of the dynamics and associated microstreaming pattern of a microbubble of
equilibrium radius 135.8 μm oscillating on a sectoral mode and a zonal mode of degree n = 6, generating
a 2n-lobe flower-shaped pattern. The information is structured similarly to that in figure 4.

The two different scenarios illustrated in figure 17 are related to closely similar
asymmetric modal amplitudes and phase shift between zonal and sectoral oscillations,
and yet they display the two most opposite microstreaming patterns that we experienced
for the case of degree n = 4. Since the interaction strength of even-degree zonal and
sectoral modes is generally less than that of largely phase-shifted odd-degree modes,
it results in flower-shaped patterns with early stages of star shapes instead of fully
developed star-shaped patterns. When measuring the velocity of particles propelled by
the bubble anti-nodes at a distance 2R0, clear differentiation occurs between the lobe-only
patterns and the seemingly 4-pointed star shapes (figure 18). This differentiation occurs
along the amplitude of the quadrupole strength d4 = a40a44R2

0 sin 
Φ. Again, confined
flower-shaped patterns are clearly restricted at the lowest magnitudes of quadrupole
strength (figure 17c). On the other hand, higher magnitudes of quadrupole strength seem
to force the fluid flow to adopt more of an outward one-way motion (figure 17f ).

Concerning sectoral and zonal modes of degree n = 6, the coexistence is also facilitated.
Figure 13 evidenced a phase shift between modes always confined below 0.05π. This
translates into even less diversified streaming signatures than in the case of degree n = 4.
Not helped by a higher modal density, only a few rare cases of coexistence between zonal
and sectoral modes absent from any other tesseral mode were experienced, an example of
which is given in figure 19. This streaming pattern with 12 lobes summarizes all cases of
interacting sectoral and zonal modes of degree n = 6.

Finally, we performed a particle tracking velocimetry analysis on every data set in which
a zonal and a sectoral mode were coexisting and interacting, from n = 3 to n = 6. This
investigation arises from the desire to find the best ways of generating intense flows and
reaching high streaming velocities. The result is mapped in figure 20, in which the flowing
velocity of propelled particles is displayed as a function of their associated dimensionless
n-pole strength dn = annan0R−2

0 sin 
Φ. This overview demonstrates that interactions of
zonal and sectoral modes of odd degree (n = 3 and n = 5) are more strongly excited than
those of even degree (n = 4 and n = 6). As a consequence, important streaming velocities
are facilitated for odd-degree modes, especially when the degree n is small (n = 3).

Basically, it appeared that the streaming resulting from the interaction of zonal and
sectoral modes has a wider area of action and higher flow velocities than the streaming
resulting from each mode taken separately, zonal only or sectoral only. This must be
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Figure 20. Overview of the streaming velocity of propelled particles, measured at a distance 2R0 from the
bubble barycentre, as a function of the dimensionless n-pole strength of interaction between zonal and sectoral
modes, for modal degrees n = 3 to n = 6.
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Figure 21. Schematics of the complete variety of microstreaming patterns as we experienced them, from a top
view. The given values of n are the degrees for which we experienced the microstreaming patterns as described.

Movie Related figure Recording frame rate Bubble modal content

Movie 1 Figure 4(a) 67 065 images s−1 Zonal n = 4
Movie 2 Figure 4(c) 2000 images s−1 Zonal n = 4
Movie 3 Figure 6(d) 67 065 images s−1 Sectoral n = 4
Movie 4 Figure 6( f ) 2000 images s−1 Sectoral n = 4
Movie 5 Figure 10(a) 67 065 images s−1 Tesseral m = 1
Movie 6 Figure 10(c) 2000 images s−1 Tesseral m = 1
Movie 7 Figure 14(a) 67 065 images s−1 Sectoral + zonal n = 3
Movie 8 Figure 14(c) 2000 images s−1 Sectoral + zonal n = 3
Movie 9 Figure 17(a) 67 065 images s−1 Sectoral + zonal n = 4
Movie 10 Figure 17(c) 2000 images s−1 Sectoral + zonal n = 4

Table 2. Summary of the supplementary material. Each movie contains 400 images visualized at a frame rate
of 20 images s−1.

moderated since it is highly dependent on the modal degree and the strength of interaction
of both modes, as demonstrated in figure 20. Besides, when regarding tesseral modes
(§ 4.3), the area of action is also very dependent on the modal number m, high values
being associated with more confined recirculation loops, and conversely.
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Nonspherical dynamics and streaming of a microbubble

To be clear, if an objective is to achieve high intensity of streaming, then one may want
to generate low-number modes: low-order tesseral modes or low-odd-degree combinations
of sectoral and zonal modes. These configurations of bubble asymmetric modes induce
the formation of high streaming velocities with privileged directivity, what could not be
achieved by axisymmetric modes. We expect that asymmetric bubble oscillations may be
beneficial to applications where enhanced intensity and directivity of microstreaming are
required, such as ultrasound-mediated targeted drug delivery, for instance.

To sum up the results on streaming patterns, figure 21 gives an overview of the complete
variety and classification of the microstreaming patterns induced by nonspherical modes
of an ultrasound-driven wall-attached bubble, as they were experienced in this work.
The four experimental cases are summarized here: self-interacting zonal, self-interacting
sectoral, self-interacting tesseral and zonal–sectoral interacting combination. Although
a self-interacting sectoral mode and a self-interacting tesseral mode of a same order
m generate similar top-view streaming signatures and are represented in figure 21 with
similar 4m-lobe symbols, they can be differentiated by considering the sign of the fluid
velocity at the equator, as represented with red arrows in figure 6(c) (for sectoral modes)
and in figure 10( f ) (for tesseral modes). In the case of sectoral modes, recirculation
loops are assembled by pair with an inward motion, while in the case of tesseral modes,
recirculation loops are assembled by pair with an outward motion. This feature is recurrent
regardless of the modal degree to which each sectoral or tesseral mode is related. In
addition, we observed that sectoral modes of a wall-attached bubble give rise to an
anti-fountain-like behaviour of the surrounding fluid above the bubble, characterized with
a negative radial velocity along the normal to the top wall surface (figure 8), which may
differ in the case of tesseral modes.

5. Conclusion

The formation of specific microstreaming patterns induced by a wall-attached microbubble
undergoing asymmetric shape modes is analysed with respect to the resolved dynamics.
In our experimental set-up, each main class of spherical harmonics Ynm(θ, φ)

experiences zonal (m = 0 < n), sectoral (n = m > 0) and tesseral (0 < m < n) modes.
The microstreaming induced by a bubble animated by a sectoral mode reveals a streaming
signature characterized by a 4n-lobe flower shape. Very similarly, self-interacting tesseral
modes give rise to 4m-lobe flower-shaped patterns. On the other hand, in a scenario staging
the coexistence of sectoral and zonal modes, the microstreaming induced by the interaction
of these two modes presents two kinds of patterns: 2n-lobe flower shapes and n-pointed star
shapes. The preferential emergence of one or another pattern of streaming is discussed on
the basis of the modal amplitudes and phase shift between both shape modes. For modes of
odd degrees n = 3 and n = 5, an important modal competition induces greater phase shifts
and thus stronger modal interaction and more diverse shapes of streaming patterns than in
the case of even degrees n = 4 and n = 6, where the modal coexistence is more facilitated.
Globally, the amplitude of the sectoral mode, encouraged with a decisive phase shift,
appears to have an important responsibility in the generation of a microstreaming signature
characterized by a flower-shaped (weak a33) or star-shaped (strong a33) pattern around the
bubble. Despite zonal and sectoral modes of even degree behaving less competitively and
presenting weaker phase shift and thus modal interaction, the level of flow spreading of
the always recurrent 2n-lobe flower shape seems to be governed by the streaming strength
and its capacity to reach high magnitudes of velocity and to propel particles located in
the equatorial plane with an outward one-way motion. Both scenarios, the flower-shaped
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pattern and the star-shaped pattern, seem to have different areas of high-velocity activity,
confined near the bubble or away from the bubble in front of the anti-nodes of the bubble
interface displacement, respectively. Controlling the bubble’s size and dynamics could
make it possible to promote the generation of one or another sort of streaming pattern,
hence the regulated generation of shear stresses on a nearby wall.

Supplementary movies. Supplementary movies are summarized in table 2 and available online at https://
doi.org/10.1017/jfm.2021.1089.
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