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Abstract

Adults of Hysteromorpha triloba (Rudolpi, 1819), Lutz, 1931 inhabit primarily the intestine of
cormorants across the globe, whereas metacercariae have been found in the body cavity of
freshwater fishes of the families Cyprinidae, Ictaluridae, Ariidae, Pimelodidae and
Catostomidae. In this study, adults and metacercariae identified as H. triloba were collected
from the Neotropical cormorant (Nannopterum brasilianus) and from the Mexican tetra
fish (Astyanax mexicanus) from the Gulf of Mexico and Pacific Ocean slopes in the
Neotropical region. Partial DNA sequences of the mitochondrial gene cytochrome ¢ oxidase
subunit I (cox 1) and the internal transcribed spacers (ITS1, 5.8S and ITS2) of nuclear ribo-
somal DNA were generated for both developmental stages, and were compared with available
sequences of H. triloba from the Nearctic region. The genetic divergence between metacercar-
iae and adults of H. triloba from the Neotropical and Nearctic region (Canada) associated
with the double-crested cormorant (Nannopterum auritus), ranged from 0 to 5.5% for cox
1 and from 0 to 0.2% for ITS. Phylogenetic analyses inferred with both molecular markers
using maximum likelihood and Bayesian inference placed the adults and metacercariae in a
single clade, confirming that both stages are conspecific. Our data confirmed that H. triloba
is a widely distributed species across the Americas, parasitizing both the Neotropical and
Nearctic cormorants in Argentina, Brazil, Venezuela, Mexico, USA and Canada.

Introduction

Members of the family Diplostomidae Poirier 1886, are endoparasites with a worldwide dis-
tribution. Recent morphological and molecular studies have contributed to our understanding
of the diversity, evolution and host-parasite interactions of this enigmatic group of diplosto-
matids (see references in Blasco-Costa & Locke, 2017). However, these studies were focused
mainly in the Palaearctic region, leaving gaps in the knowledge of this group of parasites in
other biogeographical regions, such as in the Neotropics.

The genus Hysteromorpha Lutz, 1931 currently contains two species, the type species
Hysteromorpha triloba (Rudolphi 1819) Lutz, 1931 and H. plataleae Dubinin et Dubinina,
1940 from Russia (see Dubois, 1970). As in other diplostomids, the species H. triloba parasi-
tizes the intestines of fish-eating birds of the genera Phalacrocorax Brisson, Ardea L. and
Nyctanassa L. across the globe (Hugghins, 1954; Dubois, 1970). In the Americas, metacercariae
have been reported primarily in cyprinid fishes, but they have also been reported in four other
fish families: Ictaluridae, Catostomidae, Ariidae and Pimelodidae (see Pérez-Ponce de Le6n
et al., 2007; Drago et al., 2011; Locke et al., 2011; Monteiro et al., 2011), and the planorbid
snail Gyralus hirsutus Gould has been reported as the first intermediate host of H. triloba
(Hugghins, 1954).

In Mexico, in the Neotropical region, adults and metacercariae of H. triloba were recorded
at two localities from Pacific Ocean slopes. However, vouchers of those specimens were not
deposited in any collection and the report could not be verified (see Pérez-Ponce de Ledn
et al., 2007). In the current study, specimen adults and metacercariae identified as H. triloba
from the Neotropical cormorant (Nannopterum brasilianus Gmelin) and Mexican tetra fish
(Astyanax mexicanus De Filippi) were collected from the Gulf of Mexico and Pacific Ocean
slopes. The aims of this study were: (1) to characterize molecularly the adults and metacercar-
iae of H. triloba; (2) to link the adult and metacercariae using sequences of both internal tran-
scribed spacers plus 5.8S from nuclear ribosomal DNA, and cytochrome ¢ oxidase subunit 1
from mitochondrial DNA; (3) to examine the ultrastructure of the body surface of adults and
metacercariae using scanning electron microscopy; and (4) to provide a morphological
description of both stages.
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Materials and methods
Specimen collection

A total of 61 birds, including 47 Neotropical cormorants (N. bra-
silianus), and 14 double-crested cormorants (Nannopterum
auritus Lesson) were collected between June 2005 and March
2015 in 25 localities across Mexico. However, in only two
localities, one in the Gulf of Mexico (Tlacotalpan, Veracruz,
18°36'0"N, 95°39'0"W) and the other from Pacific Ocean
slopes (La Angostura, Chiapas, 16°11’31"N, 92°59'52"W), two
Neotropical cormorants were infected with five and 15 mature
adults of H. triloba respectively. The intestines were placed in sep-
arate Petri dishes with 0.75% saline solution and examined under
a dissecting microscope. Avian definitive hosts were identified
using the field guides of Howell & Webb (1995) and the
American Ornithologists’ Union (1998). Freshwater fishes from
eight families (Atherinopsidae, Cichlidae, Eleotridae, Gobiidae,
Heptapteridae, Mugilidae, Godeidae and Poeciliidae) were exam-
ined in search of metacercariae of H. triloba. However, only the
Mexican tetra fish (A. mexicanus) from San Luis Potosi (100°
17'24"N, 99°43'12"W), at a tributary from the Panuco River in
the Gulf of Mexico, was positive for the infection. Fish were cap-
tured by electrofishing, maintained alive and transported to the
laboratory, pith sacrificed and examined immediately. Collected
digeneans were fixed, by sudden immersion in hot (steaming)
4% formalin, for morphological comparisons. The fish were iden-
tified following Miller et al. (2005).

Morphological study

Unflattened digeneans preserved in formalin were stained with
Mayer’s paracarmine, dehydrated in a graded ethanol series,
cleared with methyl salicylate and mounted as permanent slides
in Canada balsam. Drawings were made with the aid of a drawing
tube. Measurements are given in micrometres (um) followed by
the range.

The following measurements were taken from the specimens
studied: body total length, forebody length, forebody width, hind-
body length, hindbody width, oral sucker length, oral sucker
width, ventral sucker length, ventral sucker width, left pseudo-
sucker length, left pseudosucker width, right pseudosucker length,
right pseudosucker width, pharynx length, pharynx width,
oesophagus length, oesophagus width, holdfast organ length,
holdfast organ width, proteolytic gland length, proteolytic gland
width, ovary length, ovary width, anterior testis length, anterior
testis width, posterior testis length, posterior testis width, egg
length and egg width.

Specimen (paragenophore sensu Pleijel et al., 2008) adults and
metacercariae were deposited in the Coleccion Nacional de
Helmintos (CNHE), Instituto de Biologia, Universidad Nacional
Auténoma de México (UNAM), Ciudad de México, México,
under numbers: 10631 for the adults and 10632 for the metacer-
cariae. A subsample from these isolates was also fixed in 100%
ethanol for molecular work.

Amplification, sequencing of DNA, alignments and
phylogenetic analyses

A total of 15 specimens identified as H. triloba, 5 metacercariae
and 10 adults (5 from the Gulf of Mexico and 5 from the
Pacific Ocean slopes), were placed individually in tubes and
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digested overnight at 56°C in a solution containing 10 mm Tris—
HCI (pH 7.6), 20 mm NaCl, 100 mm Na, EDTA (pH 8.0), 1%
Sarkosyl and 0.1 mg/ml proteinase K. Following digestion, DNA
was extracted from the supernatant using the DNAzol reagent
(Molecular Research Center, Cincinnati, Ohio, USA) according
to the manufacturer’s instructions. The cytochrome ¢ oxidase sub-
unit 1 (cox 1) of the mitochondrial DNA and the internal tran-
scribed spacers (ITS1 and ITS2 plus 5.8S) from nuclear
ribosomal DNA were amplified using the polymerase chain reac-
tion (PCR). A fragment of cox 1 was amplified using the forward
primer Plat-diploCOX1F, 5-CGTTTRAATTATACGGATCC-3'
and the reverse primer Plat-diploCOXIR, 5-AGCATAG
TAATMGCAGCAGC-3' (Moszczynska et al., 2009). The ITS
region was amplified using the forward primer DI, 5-GTCG
TAACAAGGTTTCCGTA-3' and the reverse primer D2,
5'-ATCTAGACCGGACTAGGCTGTG-3" (Bowles & McManus,
1993). PCR reactions (25 ul) consisted of 2 ul of genomic DNA,
1ul of each primer (10 pmol), 2.5ul of 10x buffer, 1.5l 2 mm
MgCl,, 0.5ul of a mix of 10 mM deoxyribonucleoside triphos-
phates (ANTPs) and 1U of Tag DNA polymerase (Platinum
Taq, Invitrogen Corporation, Sdo Paulo, Brazil). PCR cycling
parameters consisted of denaturation at 94°C for 1 min; followed
by 35 cycles of 94°C for 1 min, annealing at 50°C for 1 min and
extension at 72°C for 1min; followed by a post-amplification
incubation at 72°C for 10 min. Sequencing reactions were per-
formed using two initial and two internal primers for ITS, BD3
5'-GAACATCGACATCTTGAACG-3' and BD4 5-ATAAGCC
GACCCTCGGC-3, and two initial primers for cox 1 with ABI
Big Dye (Applied Biosystems, Boston, Massachusetts, USA)
terminator sequencing chemistry, and reaction products were
separated and detected using an ABI 3730 capillary DNA sequen-
cer. Contigs were assembled and base-calling differences resolved
using Codoncode Aligner version 5.1.5 (Codoncode Corporation,
Dedham, Massachusetts, USA). Sequences were deposited in the
GenBank database under numbers MG649464-MG649478 for
cox1 and MG649479-MG649493 for ITS. Cox1 and ITS
sequences obtained in the current research were aligned with
sequences available in GenBank of H. triloba and of other genera
of diplostomids: Posthodiplostomum Dubois 1936, Mesoophorodi-
plostomum Dubois 1936, Ornithodiplostomum Dubois 1936,
Diplostomum von Nordmann 1832, Austrodiplostomum Szidat
& Nani, 1951 and Tylodelphys Diesing, 1850; in addition,
sequences of the strigeids Cardiocephaloides Sudarikov 1959,
Australapatemom burti Miller 1923, Parastrigea diovadena
Dubois & Macko, 1972, Apharyngostrigea cornu Ciurea 1927
and Ichthyocotylurus, Odening 1969 were used as outgroups,
because this family is considered as the sister group of
Diplostomidae (see Olson et al, 2003; Hernandez-Mena et al.,
2017). Sequences were aligned using Clustal W (Thompson
et al., 1997). Maximum likelihood (ML) and Bayesian inference
analyses (BI) were performed for each dataset. The ML tree was
inferred using RAXML 7.0.4. (Stamatakis, 2006). The best-fit
nucleotide substitution models inferred with jModeltest
(Posada, 2008) were TIM3 +1+ G for the cox 1 alignment and
TVM + G for the ITS alignment. Tree searches were performed
using 1000 (ML) random taxon addition heuristic searches.
Clade support was assessed by bootstrap resampling with
10,000 replicates. Bayesian analyses were performed with
MrBayes version 3.1.2 (Huelsenbeck & Ronquist, 2001). Settings
were two simultaneous Markov chain Monte Carlo (MCMC)
runs for 10 million generations, sampling every 1000 generations,
a heating parameter value of 0.2 and a ‘burn-in’ of 25%. Trees
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were drawn using FigTree version 1.3.1 (Rambaut, 2006). The
genetic divergence among taxa was estimated using uncorrected
‘p’ distances with the program MEGA version 6 (Tamura et al,
2013).

Results

Morphological study of adults and metacercariae of
Hysteromorpha triloba

Eight adult worms identified as H. triloba obtained from N. bra-
silianus from La Angostura, Chiapas, were measured and mor-
phologically characterized as follows. Body distinctly bipartite
with spatulate shape. Total body length 1068-1333 (1220).
Forebody trilobated, concave, 441-616 (558) long by 566-754
(665) wide (figs 1a, 2a). Hindbody subtriangular, 534-731 (657)
long by 407-540 (465) wide. Oral sucker small, fairly muscular,
subterminal, 72-88 (80) long by 77-95 (86) wide; two well-
developed lateral pseudosuckers on each side of oral sucker. Left
pseudosucker, 82-127 (105) long by 90-142 (120) wide. Right
pseudosucker, 88-108 (98) long by 98-168 (128) wide. Ventral
sucker oval, 80-100 (90) long by 90-109 (98) wide, situated
immediately anterior to holdfast organ and sometimes covered
by it (figs 1a, 2a). Prepharynx absent. Pharynx 47-70 (56) long
by 40-51 (45) wide, elongate-oval, muscular. Intestinal bifurca-
tion in anterior quarter of forebody. Caeca long, extending to
the posterior end of hindbody. Holdfast organ elongate—oval, cov-
ered with numerous tiny spines (fig. 2b), 184-376 (286) long by
248-490 (337) wide. Proteolytic gland typically with bipartite
appearance, situated at posterior margin of holdfast organ
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dorsally, 158-235 (207) long by 162-250 (183) wide. Testes in
tandem, located in the anterior region of hindbody. Anterior testis
ovoid, 130-194 (172) long by 134-227 (194) wide; posterior testis
bilobulated, transversally elongated, 136-369 (201) long by 179-
455 (366) wide. Ovary pretesticular, subspherical, 104-179
(140) long by 75-156 (105) wide, contiguous with anterior testis.
Vitellarium in fore- and hindbody, beginning from anterior mar-
gin of holdfast. Vitelline reservoir intertesticular. Uterus distribu-
ted from posterior end of holdfast organ to anterior to the genital
pore, which is subterminal. Eggs 77-98 (85) long by 46-63 (55)
wide. Genital cone absent.

The following characterization is based on five metacercariae
obtained from the Mexican tetra fish, A. mexicanus, from San
Luis Potosi, Mexico. Body distinctly bipartite (figs 1b, 2c-e).
Total body length 641-836 (732). Forebody elongate with ventral
concavity, covered with numerous tiny papillae, 453-586 (547)
long by 498-532 (517) wide (fig. 2d). Hindbody reduced to
small conical prominence, 136-251 (188) long by 209-349
(289) wide. Oral sucker small, subterminal, 56-65 (61) long by
43-56 (52) wide. Two well-developed lateral pseudosuckers on
each side of oral sucker (figs 1b, 2e). Left pseudosucker 59-90
(71) long by 45-60 (53) wide. Right pseudosucker 57-88 (70)
long by 46-66 (55) wide. Ventral sucker oval, fairly muscular,
47-54 (50) long by 69-76 (72) wide; situated immediately anter-
ior to holdfast organ. Prepharynx absent. Pharynx 42-53 (48)
long by 24-35 (55) wide, elongate-oval, muscular. Intestinal
bifurcation in anterior quarter of forebody. Caeca long, terminat-
ing at posterior level of primordial of testes. Holdfast organ 143-
195 (179) long by 134-158 (146) wide, elongate—oval, opening
longitudinally, lobulated, located near to posterior margin of

(b)

Fig. 1. Hysteromorpha triloba (Rudolpi, 1819), Lutz, 1931. (a) Adult obtained from the intestine of Nannopterum brasilianus. (b) Metacercaria obtained from the body

cavity of Astyanax mexicanus. Scale bars: 200 um.
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Fig. 2. Scanning electron micrographs of Hysteromorpha triloba (Rudolpi, 1819), Lutz, 1931. (a) Adult obtained from the intestine of Nannopterum brasilianus; (b)
forebody region showing holdfast with spines, shown with black arrows. (c) Metacercaria from the body cavity of Astyanax mexicanus; (d) forebody showing the oral
sucker recovered with papillae, shown with black arrows; (e) oral sucker and pseudosucker. Scale bars: (a) 400 um; (b, e) 100 um; (c) 300 um; (d) 30 um.

forebody. Proteolytic gland typically with bipartite appearance,
situated at posterior margin of holdfast organ dorsally, 48-71
(54) long by 106-136 (118) wide. Reproductive system poorly
developed, with primordia of two oval testes. Anterior testis 27-
74 (43) long by 36-75 (59) wide; posterior testis 22-38 (29)
long by 32-67 (54) wide. Primordial ovary 29-48 (40) long by
69-86 (77) wide, placed at same level of anterior testis, elong-
ate—oval. Genital pore subterminal, dorsal.

Remarks

Following the original description of Lutz (1931) and subsequent
descriptions (Ciurea, 1930; Goss, 1940; Gupta, 1963; Ostrowski de

https://doi.org/10.1017/50022149X17001237 Published online by Cambridge University Press

Nuiiez, 1970; Dubois, 1970), our specimens collected in two cor-
morants (N. brasilianus) from Mexico possess features that are
consistent with the diagnosis of H. triloba: a distinctly bipartite
body; forebody concave, trilobated; hindbody subtriangular; oral
sucker with lateral lobes separated by two pseudosuckers; pre-
pharynx absent; pharynx small; ventral sucker small; holdfast
organ lobulated and covered with tiny spines; proteolytic gland
bipartite; testes in tandem, anterior testis ovoid, smaller than pos-
terior testis, which is bilobulated and transversally elongated;
ovary pretesticular. However, our specimens show some level of
morphological intraspecific variation. For instance, some meristic
data of newly collected material had lower limits with respect to
previous descriptions for the following characters: proteolytic
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gland width (162-250 vs. 180-270), anterior testis length (130-
194 vs. 130-385), posterior testis width (179-455 vs. 280-630),
ovary width (75-156 vs. 91-250) and egg width (46-63 vs. 48-
78). Likewise, the newly collected material had higher limits for
posterior testis length (136-369 vs. 80-299). In addition, we pro-
vided new measurements for each pseudosucker (see table 1).

Molecular characterization

In this study, cox1 sequences of 15 individuals of H. triloba
(5 metacercariae and 10 adults) from the Neotropical region
were generated and aligned with a cox 1 dataset that contained
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24 isolates of H. triloba from the Nearctic region plus sequences
of the following genera of diplostomids: Posthodiplostomum,
Ornithodiplostomum, Diplostomum, Austrodiplostomum and
Tylodelphys. The strigeids Cardiocephaloides, Australapatemon,
Parastrigea, Apharyngostrigea and Ichthyocotylurus were used as
outgroups. The alignment consisted of 97 sequences with 466
nucleotides. The genetic divergence among the genera of
Diplostomatidae  Posthodiplostomum,  Ornithodiplostomum,
Diplostomum, Tylodelphys and Austrodiplostomum ranged from
11 to 23%, and among species of the same genus ranged from
10 to 15%. The genetic divergence among 15 individuals of H. tri-
loba (5 metacercariae and 10 adults) from the Neotropical region

Table 1. Comparative morphometrics (in microns) of adult worms of Hysteromorpha triloba (Rudolphi 1819) Lutz, 1931.

Source Ciurea, 1930 Goss, 1940 Gupta, 1963 Ostwowsky de Nufiez, 1970 Dubois, 1970 This study
La Angostura,
Locality Romania Australia India Argentina Chiapas, Mexico
Host Phalacrocorax carbo P. sulcirostris P. carbo Nannopterum brasilianus N. auritus N. brasilianus
Body total (L) 780-1910 1230 = 851-1739 2170 1068-1333
Forebody (L) 390-1050 600 876-1170 - 360-1250 441-616
Forebody (W) = 610 774-1096 = 350-1090 566-754
Hindbody (L) 340-620 630 651-755 - 250-1400 534-731
Hindbody (W) = 380 581-866 = 220-860 407-540
Oral sucker (L) 77-130 86 66-83 52-104 34-130 72-88
Oral sucker (W) = 94-117 65-117 42-130 77-95
Ventral sucker (L) 111-117 80 81-92 52-117 60-167 80-100
Ventral sucker (W) - 125-199 84-156 67-199 90-109
Pseudosucker (L) 55-170 - - - - -
Left pseudosucker (L) - - - - - 82-127
Left pseudosucker (W) - - - - - 90-142
Right pseudosucker - - - - - 88-108
(L)
Right pseudosucker - - - - - 98-168
(W)
Pharynx (L) 55-88 43-55 58-61 39-65 - 47-70
Pharynx (W) 37-57 = 58-64 26-65 = 40-51
Holdfast organ (L) 220-340 - 290-418 260-585 180-418 184-376
Holdfast organ (W) 170-380 = 351-651 208-325 170-651 248-490
Proteolytic gland (L) 150-300 - - 150-300 158-235
Proteolytic gland (W) 210-270 - - - 180-270 162-250
Anterior testis (L) - 210-160 246-385 130-260 120-300 130-194
Anterior testis (W) - - 213-250 156-338 120-450 134-227
Posterior testis (L) 80-240 340-170 190-241 117-299 80-330 136-369
Posterior testis (W) 280-490 - 432-617 299-520 280-630 179-455
Ovary (L) 40-120 160 81-102 65-130 40-176 104-179
Ovary (W) 100-240 100 149-215 91-208 100-250 75-156
Eggs (L) 97-99 86 79-96 91-104 75-99 77-98
Eggs (W) 55-62 85 60-71 52-78 48-75 46-63

L, Length; W, width.
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Fig. 3. Maximum likelihood tree inferred with the cox 1 dataset; numbers near internal nodes show ML bootstrap clade frequencies and posterior probabilities (BI).
The GenBank accession numbers in bold were generated in this study.

ranged from 0 to 2.5%, whereas the genetic divergence among the
24 isolates of H. triloba from the Nearctic region ranged from 0 to
4.7%. Finally, the genetic divergence among 39 individual of H.
triloba ranged from 0 to 5.5%. Maximum likelihood (ML) analysis
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yielded a single tree that was identical in topology to the Bayesian
inference (BI) consensus tree (fig. 3). The ML and Bayesian con-
sensus trees showed that all the sequences of H. triloba generated
in this study (10 adults and 5 metacercariae) are nested within a
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Fig. 4. Maximum likelihood tree inferred with the ITS1, 5.8S and ITS2 dataset; numbers near internal nodes show ML bootstrap clade frequencies and posterior
probabilities (BI). The GenBank accession numbers in bold were generated in this study.

monophyletic clade, with strong bootstrap support and Bayesian
posterior probability values (100/1.0). This clade also included
the sequence of H. triloba from the double-crested cormorant
from the Nearctic region (fig. 3).

The ITS sequences of H. triloba (10 adults and 5 metacercar-
iae) were aligned with four isolates of H. triloba from the Nearctic
region and with sequences of other genera of Diplostomatidae.
The alignment consisted of 44 sequences with 1138 nucleotides.
The genetic divergence among the genera Posthodiplostomum,
Ornithodiplostomum,  Diplostomum,  Hysteromorpha  and
Tylodelphys ranged from 14 to 18%, and among congeneric spe-
cies of Diplostomum and Tylodelphys from 3 to 11%. In compari-
son, the genetic divergence among the 19 isolates of H. triloba was
very low, from 0 to 0.2%. Maximum likelihood (ML) analysis
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yielded a single tree that was identical in topology to the
Bayesian inference (BI) consensus tree (fig. 4). The ML and
Bayesian consensus trees showed that all the sequences of
H. triloba generated in this study (10 adults and 5 metacercariae)
are nested within a clade, with strong bootstrap support and
Bayesian posterior probability values (100/1.0). This clade also
included four sequences (JF769486, HM064925-927) of H. triloba
from the double-crested cormorant from the Nearctic region
(fig. 4).

Discussion

The phylogenetic trees obtained with both molecular markers
placed the metacercariae found in the body cavity from the
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Mexican tetra fish and the adults from the Neotropical cormorant
in a single clade, confirming that both stages of the life cycle are
conspecific. The genetic divergence estimated among 15 indivi-
duals of H. triloba from the Neotropical region (10 adults and 5
metacercariae) with the cox1 dataset was very low, ranging
from 0 to 2.5%, and among specimens of H. triloba from the
Nearctic region ranging from 0 to 5.5%. These values of genetic
divergence are higher than those found at the intraspecific level
in other diplostomatid species. For instance, the genetic diver-
gence among isolates of Tylodelphys sp., T. mashonense,
T. excavata, T. aztecae and T. scheuringi ranged from 0 to 1.4%
(Chibwana et al., 2013, 2015; Otachi et al., 2015; Garcia-Varela
et al., 2016; Blasco-Costa et al., 2017), and among isolates of
Diplostomum mergi, D. pseudospathaceum and D. baeri from 0
to 1.01% (Georgieva et al., 2013; Selback et al., 2015). Finally, gen-
etic divergence among isolates of Uvulifer spinatus ranged from 0
to 1.8% (Lopez-Jimenez et al., 2017). With respect to ITS1, 5.8S
and ITS2, the genetic divergence estimated among the 19 isolates
(5 metacercariae, 10 adults from the Neotropical region plus 4 iso-
lates from the Nearctic region) of H. triloba was very low, ranging
from 0 to 0.2%. This range of genetic divergence is similar to
those described previously for congeneric diplostomatids. For
example, genetic divergence ranged from 0 to 1.4% between
Tylodelphys sp. and T. mashonense (see Chibwana et al., 2013,
2015), from 0 to 0.03% among specimens of T. aztecae
(Garcia-Varela et al., 2016), from 0.2 to 1.2% among isolates of
Tylodelphys spp. (Blasco-Costa et al., 2017) and from 0 to 0.4%
among isolates of D. baeri (see Blasco-Costa et al, 2014).
Finally, among isolates of Uvulifer spinatus genetic divergence
ranged from 0 to 1.4% (Lopez-Jimenez et al., 2017).

Currently, Hysteromorpha is a genus distributed across the
globe as parasite of fish-eating birds (see Hugghins, 1954;
Dubois, 1970; Ostrowski de Nuiiez, 1970). The taxonomic history
of the type species (H. triloba) has been unstable since its erection.
For instance, it was described as Distomum trilobum, and was
later transferred to the genera Hemistomum and Proalaria (see
Dubois, 1970). Finally, Lutz (1931) evaluated morphological char-
acters based on its life cycle and transferred it to the new genus
Hysteromorpha. Since then, H. triloba has been recorded in sev-
eral countries, such as Argentina, Brazil, Venezuela, Mexico,
USA and Canada in the Americas, associated with the
Neotropical cormorant N. brasilianus and the double-crested cor-
morant N. auritus, suggesting that H. triloba can be regarded as a
member of the ‘core’ helminth fauna of these two fish-eating bird
species (Fedynich et al., 1997; Drago et al, 2011; Locke et al,
2011; Monteiro et al., 2011; O 'Hear et al., 2014; Sheehan et al,
2016). In contrast, the metacercaria of H. triloba exhibits low
host specificity, since it has been recorded in at least eight species
of freshwater fishes from unrelated families, such as Cyprinidae,
Characidae, Catostomidae, Ictaluridae, Ariidae and Pimelodidae
(see Pérez-Ponce de Ledn et al.,, 2007; Locke et al., 2011).

Blasco-Costa & Locke (2017) pointed out the great progress
that has been made in recent years in the understanding of the
diversity and evolution of diplostomatids, mainly in the
Palaearctic region. This progress has left a big gap in the knowl-
edge of this enigmatic group of parasites in the Neotropical
region. Therefore, the current study contributes to our under-
standing of the genetic diversity, host-parasite interactions and
life cycle of H. triloba in this biogeographical region.
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