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Abstract
This paper investigates the benefits of incorporating diversification effects into the pricing process of insur-
ance policies from two different business lines. The paper shows that, for the same risk reduction, insurers
pricing policies jointly can have a competitive advantage over those pricing them separately. However, the
choice of competitiveness constrains the underwriting flexibility of joint pricers. The paper goes a step
further by modelling explicitly the relationship between premiums and the number of customers in each
line. Using the total collected premiums as a criterion to compare the competing strategies, the paper pro-
vides conditions for the optimal pricing decision based on policyholders’ sensitivity to price discounts.
The results are illustrated for a portfolio of annuities and assurances. Further, using non-life data from the
Brazilian insurance market, an empirical exploration shows that most pairs satisfy the condition for being
priced jointly, even when pairwise correlations are high.
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1. Introduction
1.1 Motivation
The mechanism of interest to the present paper is how diversification across different insurance
business lines can be exploited to reduce prices in some of them. Offsetting relationships between
different product lines are often studied in the aim of reducing the risk of the combined portfolio.
In the insurance industry, the combination of business lines is commonly known as natural hedg-
ing and consists in determining optimal product mixes (Kahane 1977; Cummins and Nye 1981;
Gründl et al. 2006; Tsai et al. 2010; Wang et al. 2010; Wang et al. 2013; Li and Haberman 2015;
Luciano et al. 2017).

Natural hedging is an ex post exercise performed after the products have been launched.
Exploiting the offsetting relationship between cash flows from different business lines can serve
another purpose, which is price reduction. In particular, by incorporating the diversification effect
ex ante in the price, joint pricers (i.e. insurers exploiting the interaction between future liabilities of
the policies in the pricing) could gain a competitive advantage over stand-alone pricers (i.e. insur-
ers relying only on individual characteristics of the policies). Specifically, offsetting effects can be
anticipated by reducing the safety loadings that reflect the insurer’s risk. Cox and Lin (2007) find
empirically that firms providing both annuities and life assurance policies tend to charge lower
premiums, which supports this intuition for longevity andmortality risks. The questions that arise
are (i) what are the implications of incorporating information on offsetting relationships between
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two policies into the pricing process? and (ii) what market conditions are most propitious for the
implementation of joint pricing strategies?

1.2 Main findings
This paper studies joint and stand-alone pricing of insurance policies underwritten in exchange
for a premium determined from an actuarial premium principle. On top of the expected present
value of future payouts, a safety loading, or risk premium, is charged to reflect the insurer’s risk.
It is assumed that the loading is proportional to the pure premium, and that it satisfies a risk
reduction constraint at portfolio level. Under this constraint, the insurer’s risk reductions are
equal under the two competing pricing strategies.

As a first step, the paper analyses the required safety loading conditionally on the proportion of
policies in each business line. It is shown that there exists a competitiveness region for joint pricers
where the actual premium can be set, and that the liabilities need not be negatively correlated
for this region to exist. It is also shown that there exists a critical threshold in the proportion of
the business line with the highest standard deviation per unit of expected payout (henceforth, the
most risky business line), beyond which joint pricing might lead to a competitive disadvantage
on the least risky business line. Additionally, it is shown that the choice of competitiveness comes
with the burden of portfolio monitoring; for a given price in the competitiveness region, a joint
pricer has to maintain the proportion of policies within a specific interval in order for the actual
loading to be at least equal to the required one.

In line with earlier studies on product mix but from an ex ante perspective, the first part of
the analysis draws attention to the importance of the numbers of contracts in each business line.
The knowledge about these numbers is crucial in the pricing process, because they are influenced
by the potential competitive advantage of the joint pricer, which is itself influenced by portfolio
composition. Three elements are essential determinants of the relationship between premiums
and the number of customers. The first determinant is the total market demand in each business
line, which provides information on how many customers in the market are willing to buy each
type of contract. The second determinant is the number of competitors in each business line,
with whom the joint pricer would share the total market demand. The third determinant is the
sensitivity of potential customers to the premium discount offered by the joint pricer.

Taking into account these factors, the paper goes a step further by analysing the total collected
premiums at portfolio level under each setting. It is found that the decision on the pricing strategy
can be inferred from the reaction factors of policyholders, or on a related conceptual ground,
from the price elasticity of demand of the joint pricer. In particular, in order for joint pricing to
be rewarding in terms of total collected premiums, the riskier line has to be relatively elastic. The
least risky line has to be either relatively elastic if the corresponding demand is lower than that
of the riskier line, or relatively inelastic if demand is higher. The proportion of demand beyond
which conditions change is related to the critical threshold found in the conditional analysis and
is also influenced by the number of competitors.

The theoretical modelling is illustrated for a portfolio of term annuities and term assurances.
The results show that, as is expected, the competitiveness region exists for these two business
lines, and that it is influenced by the ratio between the survival and death benefits. The results also
illustrate the impact of the reaction factors on the total collected premiums.

The analysis is substantiated using loss data from the Brazilian non-life insurance market.
The empirical exploration of losses from different business lines suggests that a high number of
pairs satisfy the condition for being priced jointly. The importance of both individual risks and
the correlation between the losses is further highlighted, thereby complementing Leland (2007)’s
argument on the importance of riskiness and correlation of cash flows in the context of combin-
ing financial activities. More specifically, it is found that a competitiveness region can exist even if
the correlation is high. This is the case of optional auto liability and auto property damage which
exhibit a correlation of 0.86, and yet, have a positive competitiveness region.
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1.3 Contribution
The present paper adds to the literature on combining financial activities and natural hedging
(Gründl et al. 2006; Leland 2007; Tsai et al. 2010; Wang et al. 2013; Li and Haberman 2015;
Luciano et al. 2017; Boonen et al. 2017). In contrast with these studies where the offsetting effect is
exploited ex post, the goal here is to investigate how this effect can be incorporated ex ante in the
pricing. A related work in Bayraktar and Young (2007) suggests that the sum of pure endowment
and term assurance prices are lower when their offsetting relationship is exploited. The present
paper provides further insights into the mechanisms that lead to lower premiums, and studies
when such pricing strategies are favourable, as well as what challenges insurers could face if they
implement them. Unlike in Bayraktar and Young (2007), the safety loading depends on portfo-
lio composition, which provides a richer understanding of joint pricing. In particular, the results
show that joint pricing leads to more favourably priced policies only under some conditions, and
that factors influencing the underwriting volume must be taken into account. Further, echoing
arguments on the importance of monitoring requirements and agency costs in firms’ decisions to
diversify (Acharya et al. 2006; de Figueiredo and Rawley 2011), this paper shows that the compet-
itive advantage offered by offsetting relationships has a cost in terms of underwriting flexibility
and portfolio balancing.

A related strand of the literature has focused on developing pricing models for multiple busi-
ness lines under the option-pricing framework of Doherty and Garven (1986), which incorporates
the company’s default risk through an insolvency put option. Contributions in this direction
include the model of Phillips et al. (1998) that inspired a number of subsequent papers. Myers
and Read (2001) study surplus allocation rules across different business lines; see Dhaene et al.
(2012) for a review on capital allocations. Myers and Read argued that these allocation rules can
be used to determine prices, and the approach was further investigated in, e.g., Zanjani (2002)
and Sherris and van der Hoek (2006). Gründl and Schmeiser (2007a) argue against this claim
by showing that capital allocations are not required for pricing, and that they may even lead to
inappropriate prices; see also Meyers (2003) and Gründl and Schmeiser (2007b).

Ibragimov et al. (2018) used the capital allocation model based on option-pricing to compare
multi-line structures (or joint pricing in the present terminology) to their mono-line counterparts
(or stand-alone pricing in the present terminology). Their model suggests that multi-line risk-
neutral firms would proliferate in markets with a large number of independent risks. Mono-line
companies would still operate, mostly serving lines of business with asymmetric or heavy-tailed
distributions, or specialising in those exhibiting high correlation with other lines. The intuition
behind the results of the present paper does not conflict with those of Ibragimov et al. (2018).
Nevertheless, the present paper adopts a different setting and adds to their insights at several lev-
els. One difference with their study is that the central quantity of interest here is the price, and not
the capital allocation. Besides the debate raised against pricing based on capital allocation (Phillips
et al. 1998; Meyers 2003; Gründl and Schmeiser 2007a; Gründl and Schmeiser 2007b) in which
the present work does not intend to participate, focusing on price is also relevant if firms pur-
sue growth. Recent survey studies show that the purchasing decision in some business lines, and
especially in retail insurance, is influenced by prices rather than default levels (Suter et al. 2017).
Another difference is that the focus here is put on the effect of contract features, portfolio com-
position, and market characteristics. Additionally, the analysis of the effect of demand is based on
the total collected premiums, which is an important indicator of growth that shapes business deci-
sions (Zweifel and Eisen 2012). One of the additions of the present paper to their findings consists
in revealing that contract features and portfolio composition are two distinct dimensions in the
joint pricing decision. For instance, the diversification effect induced by negative correlation may
be undermined if the overall portfolio is unbalanced with more high-risk policies. Analogously,
diversification may still be beneficial even under positive correlation depending on the individual
risks (as it is found for optional auto liability and auto property damage in the Brazilian market),
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especially if the overall portfolio is unbalanced with more low-risk policies. Another insight is
that even in the absence of diversification effects, insurers may still be better off with joint pricing
when their price elasticity of demand is low on the subsidising line.

Other studies on the impact of demand and supply on the competitive advantage of insurers
can be found in Taylor (1986), Emms (2011), Pantelous and Passalidou (2017), and references
therein. These studies aim at deriving optimal expressions for premiums in the case of a single
business line. Under comparable settings, Emms (2012), Dutang et al. (2013), and Asmussen et al.
(2019) investigate properties of insurance market equilibria. The goal of the present contribution
is neither to derive expressions for optimal premiums nor to study market equilibria. Instead, the
aim is to provide results which support insurance companies active on two business lines in the
decision of pricing them jointly or separately.

1.4 Structure of the paper
The remainder of the paper is organised as follows. Section 2 contains some preliminary nota-
tions and the expressions of the premiums. The analysis of the required proportional loading
under joint pricing is performed in section 3, conditionally on the proportion of policyholders
in each business line. The section also discusses the competitiveness region, the critical thresh-
old, and the burden of portfolio monitoring. Section 4 is devoted to the unconditional analysis,
under a functional assumption linking policyholders’ behaviour and market structure to the num-
ber of policies underwritten in each business line. Section 5 illustrates the theoretical results for
a portfolio of term annuities and term assurances. An empirical exploration of non-life business
lines is performed in section 6 using data from the Brazilian insurance market. This section stud-
ies the competitiveness region for the top 10 non-life business lines in terms of gross premiums.
It is found that a majority of 75.55% among the total number of candidate pairs can be priced
jointly. Section 7 summarises the paper and discusses possible future research. The closing sec-
tion also reviews some legal limitations preventing insurers from operating in some business
lines simultaneously and discusses the particular case of bundling. All proofs are relegated to the
appendix.

2. Pricing Models
2.1 Preliminaries
Consider an insurance market with two types of policies, A and B. These policies are from two
different business lines, and it is assumed that there is a single risk profile of policyholders in each
business line. The per-policy present values of future payments to policyholders in each business
line are denoted by VA and VB, respectively. The positive and finite expected values of VA and VB
are denoted by πA and πB, respectively. The corresponding positive and finite standard deviations
are denoted by σA and σB. Without loss of generality, the ratio b= σBπA

σAπB
is assumed to satisfy

b≥ 1, i.e. σB
πB

≥ σA
πA

, which means that business line B has a higher standard deviation per unit of
average benefit. Business line B is sometimes said to be riskier than business lineA. The correlation
coefficient between VA and VB is denoted by ρ, with −1≤ ρ < 1; the liabilities VA and VB are not
perfectly positively correlated.

The policies are underwritten in exchange for single premiums paid at policy issue. The pre-
miums are composed of a pure premium derived from the actuarial equivalence principle, and
a safety loading, or risk premium. This loading allows the insurer to compensate for the un-
diversifiable part of the risk and takes into account the fact that the actual realisations of VA and
VB are likely to depart from their expected values; more on premium principles can be found in
Kaas et al. (2008) and Zweifel and Eisen (2012), among others. Here, the loading is assumed to be
proportional to the expected value.
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Two actuarial pricing strategies are considered. The first one is when the loadings are deter-
mined separately based on the features of each contract, and this approach is referred to as
stand-alone pricing. The second one is when an insurer active on both business lines exploits
their offsetting relationship by charging the same loading for both contracts, and this approach is
referred to as joint pricing. The two approaches are described in the remainder of this section.

2.2 Stand-alone pricing
The pure premiums correspond to the expected present values of the contracts, i.e. πA and πB.
Charging a loading allows the insurance company to reduce its exposure to a certain level. In case
of stand-alone pricing, the loadings are set according to the specific risk of each contract. The
loss random variables without loadings are given by VA − πA and VB − πB. It is assumed that the
insurer determines the loaded premiums such that the loss, measured by some appropriate risk
measure, for each contract separately is reduced by a certain factor chosen by the insurer. This
implies that the insurance company charges policyholders for (part of) the risk in the form of a
safety loading.

The stand-alone loaded premiums for contracts A and B are denoted by PsaA and PsaB ,
respectively, with:

PsaA = (1+ψA) πA, and PsaB = (1+ψB) πB,
where ψA and ψB are the loadings for each contract. Denoting by ζ ∈ (0, 1) the risk reduction
factor set by the insurer, and by ϕ the risk measure, the risk reduction equations of PsaA and PsaB are
written as follows:

ϕ
[
VA − PsaA

]= (1− ζ ) ϕ [VA − πA] ,
and

ϕ
[
VB − PsaB

]= (1− ζ ) ϕ [VB − πB] .
These equations mean that the insurer’s risk with the loading (i.e. ϕ [V − Psa]) is reduced by a
factor ζ compared to the case where there is no loading (i.e. ϕ [V − π]).

Different risk measures can be used in practice. For instance, the value-at-risk would allow
to reduce the insurer’s risk for some specific quantile level. This measure is used in practice to
determine regulatory capital for financial institutions in many countries. It is however also subject
to some criticisms, for instance because it is not sub-additive, i.e. the quantile of the sum is not
necessarily less than the sum of the quantiles. The conditional value-at-risk, prescribed in, e.g.,
the Swiss Solvency Test, is sub-additive. However, the conditional value-at-risk would not allow
to derive explicit closed-form expressions, especially in the first part of the present analysis.

This paper uses the mean-standard deviation (MSD) risk measure, defined for some random
variable V as follows:

ϕ[V]= π + γ σ , for γ > 0,
where π and σ are the expectation and standard deviation of V , respectively. The choice of this
risk measure is justified by four arguments. First, it satisfies positive homogeneity (i.e. ϕ[aV]=
aϕ[V] for a> 0), translation invariance (i.e. ϕ[V + a]= ϕ[V]+ a), as well as sub-additivity.
Second, it is convenient to manipulate and provides deeper insights into the dynamics of the
offsetting relationship between the contracts. Third, taking into account that it is sometimes used
as a premium principle, the standard deviation is meaningful in the context of pricing, as in Chen
et al. (2020); see also Asimit and Boonen (2018) for a recent applications. Fourth, as illustrated
in section 5 and depending on the marginal distributions of VA and VB, the coefficient γ can be
tuned to match with great precision the results from other risk measures, such as the (conditional)
value-at-risk. Nevertheless, this later property does not hold for all marginal distributions of VA
and VB.
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Solving the risk reduction equations using the MSD risk measure leads to:

PsaA =
(
1+ ζγ

σA
πA

)
πA, and PsaB =

(
1+ ζγ

σB
πB

)
πB,

and the notations ψA = ζγ σA
πA

and ψB = ζγ σB
πB

are introduced. Note that since b≥ 1, it immedi-
ately follows that ψB ≥ψA.

2.3 Joint pricing
Consider now the case where the insurer exploits the offsetting relationship between the two busi-
ness lines. The notations NA and NB, with NA,NB > 0, are used for the number of underwritten
policies in business lines A and B, respectively. The proportion of policies sold in business line B
is denoted by n= NB

NA+NB
. Note that there are two possible assumptions regarding the set to which

NA andNB belong. Namely,NA,NB ∈N
∗, orNA,NB ∈R

∗+. The analysis in section 3 focuses essen-
tially on the proportion n, and hence, specifying the choice of the assumption is not necessary. On
the other hand, in section 4, the model used for the numbers NA andNB assumes that they belong
to R∗+.

Determining the loaded premiums when the contracts are priced jointly requires some knowl-
edge about the numbers NA and NB. However, these quantities are unknown when the loaded
premiums are set, and are likely to be impacted by the prices. Therefore, the loaded premiums
in the present and following sections shall be interpreted as the conditional premiums associ-
ated with some values of NA and NB. These conditional premiums may as well be interpreted as
the required premiums associated with the value of n as it unfolds. Section 4 introduces further
assumptions on these numbers.

Let PjpA (n) and P
jp
B (n) be the required loaded premiums when the insurer prices the two business

lines jointly, such that:

PjpA (n)= (1+ψ(n)) πA, and PjpB (n)= (1+ψ(n)) πB,

whereψ(n) is the required loading proportion associated with n and is the same for both contracts.
The required loaded premiums PjpA (n) and PjpB (n) can be determined analogously to the stand-

alone case, implying that the insurer has the same risk reduction regardless of the pricing method.
In particular, the loading for the combined portfolio is such that the overall loss is reduced by the
same factor ζ . Thus, ψ(n) satisfies:

ϕ
[
NA

(
VA − PjpA (n)

)
+NB

(
VB − PjpB (n)

)]
= (1− ζ )ϕ [NA (VA − πA)+NB (VB − πB)] .

Using the MSD risk measure, the required conditional risk premium is given by:

ψ(n)=ψA
(
λ1ñ2 − 2λ2ñ+ 1

) 1
2 , (2.1)

where ñ= nπB
(1−n)πA+nπB , and

λ1 = 1+ b2 − 2bρ, and λ2 = 1− bρ.

The overall risk of the joint pricer is also reduced under the present setting. In particular, the
difference between the overall portfolio risk when the contracts are priced separately and the
overall portfolio risk when the contracts are priced jointly is:

(1− ζ )γ
(
NAσA +NBσB − σptf

)
,

where σptf is the standard deviation of NAVA +NBVB. Since the standard deviation is sub-
additive, this difference is always positive. Thus, on top of the potential competitive advantage
that the insurer could achieve with the joint loading ψ(n), there is also a reduction in the level
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of risk. In an alternative setting, it is possible to include this difference in the joint pricing, which
would accentuate the potential competitive advantage of the joint pricer. Note that depending on
the marginal distributions of VA and VB, this observation may not hold if the MSD risk measure
is replaced by the value-at-risk.

3. Conditional Analysis of Joint Pricing
This section investigates joint pricing in a conditional setting. Namely, it compares the premiums
Psa and Pjp(n) as a function of the proportion n, and hence, implicitly assumes that n is given.

3.1 Competitiveness region
The joint pricer is said to have a competitive advantage over stand-alone pricers if the policies can
be more favorably priced using the offsetting relationship between their liabilities. This would be
the case if there exist values of n ∈ (0, 1) such that ψ(n)<ψA and ψ(n)<ψB. Since ψ(0)=ψA,
ψ(1)=ψB and b≥ 1, a competitiveness region exists if the minimum value ofψ(n) is less thanψA.

The first question investigated in this section is whether such a competitiveness region exists.
Namely, whether there exists a range of values of the proportion n such that the joint loadingψ(n)
is smaller than the smallest stand-alone loadingψA. The following lemma provides a condition on
the contracts’ features such that a competitiveness region always exists, i.e. such that there exists
n satisfying ψ(n)<ψA. A proof can be found in Appendix A.1.
Lemma 3.1. A competitiveness region exists for the joint pricer if and only if:

bρ < 1. (3.1)

Under Condition (3.1), the minimum loading proportion ψmin is given by:

ψmin =ψ(nmin)=ψA

√
λ1 − λ22
λ1

<ψA, (3.2)

where nmin = λ2πA
λ2πA+(λ1−λ2)πB ∈ (0, 1), with nmin = 0 for bρ = 1 and nmin = 1 for b= ρ = 1,

whereas the maximum loading proportion is given by ψmax =ψ(1)=ψB.

Along the lines of previous research on optimal product mix, Lemma 3.1 states that there exists
a unique proportion of underwritten businesses which minimises the value of the required loaded
premium. Through the lens of pricing, this result implies the existence of a competitiveness region
for the joint pricer. More specifically, in order for the premium to be sufficient and for the joint
pricer to gain a competitive advantage over stand-alone pricers, the actual premium for each busi-
ness line should be at least equal to the minimum required loaded premium, and at most equal
to the stand-alone premium. Note that for πA = πB and σA = σB, it follows that nmin = 1

2 . This
means that when the contracts have identical expected values and standard deviations, the min-
imum required loading is reached when the portfolio is equally balanced. If in addition, the two
business lines exhibit an extreme negative correlation ρ = −1, then it follows from the expressions
of λ1 and λ2 thatψmin = 0, i.e. the minimum loaded premiums correspond to the pure premiums.

A sufficient condition for the existence of the competitiveness region is a negative correlation
between the liabilities of the business lines. Indeed, Condition (3.1) is always satisfied for ρ ≤ 0. A
prime example is when one business line pays a survival benefit and the other pays a death benefit.
This is the typical case on which most of the literature on natural hedging has focused. Lemma
3.1, however, states that the existence of the competitiveness region is not limited to contracts
with negatively correlated liabilities. Joint pricing can be implemented when there is a positive
correlation as well, as long as Condition (3.1) is satisfied.
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Recall that by definition, b= σBπA
σAπB

with b≥ 1, i.e. σB
πB

≥ σA
πA

. Condition (3.1) gives σB
πB
ρ < σA

πA
.

Thus, Condition (3.1) can be interpreted as a requirement that the diversification effect between
the business lines, which is captured in the correlation ρ, should decrease the risk of the riskiest
business line B relatively to business line A in order to limit the effect of subsidisation across
the two lines. An example where this cannot occur is when the liabilities VA and VB are highly
positively correlated. In which case, the diversification effect would be too small to reduce the gap
of riskiness between the two business lines. For instance, the competitiveness region does not exist
for ρ = 1.

Let P 
A and P
B be the actual loaded premiums set by the joint pricer for the respective contracts,
such that P
A = (1+ψ
)πA and P 
B = (1+ψ
)πB, with ψ
 ∈ [ψmin,ψmax]. In particular, ψ
 is a
loading under joint pricing, which may be set within the competitiveness region, i.e. [ψmin,ψA),
or outside of that region, i.e. [ψA,ψB]. Suppose that the condition bρ < 1 is satisfied. Despite the
potential competitive advantage of the joint pricer, setting a portfolio loading ψ
 within the com-
petitiveness region raises two issues, to which the remainder of this section is devoted. The first
one is portfolio monitoring, which originates from the convexity of the function ψ(n). The sec-
ond one is the existence of a critical threshold beyond which the joint pricer loses its competitive
advantage on business line A, and this arises when ψA �=ψB as well.

3.2 Portfolio monitoring
One implication of the convexity of ψ(n) for joint pricers is that the choice of competitiveness
comes with the burden of portfolio monitoring. More specifically, in order for the required pre-
mium to be lower than or equal to the actual premium (i.e. P 
A or P
B), the proportion n has to be
maintained within the interval [n
l , n



u], where n
l and n
u are solutions of the equation:

ψ (n)=ψ
.

Solving the second-order equation ψ(ñ)2 = (ψ
)2 for ñ, and then determining the corresponding
solution for n, leads to:

n
l = ñ
l πA
ñ
l πA + (1− ñ
l )πB

and n
u = ñ
uπA
ñ
uπA + (1− ñ
u)πB

,

with

ñ
l = λ2
λ1

−
√√√√λ22
λ21

− 1
λ1

(
1−

(
ψ


ψA

)2
)
, (3.3)

and

ñ
u = λ2
λ1

+
√√√√λ22
λ21

− 1
λ1

(
1−

(
ψ


ψA

)2
)
. (3.4)

In case the proportion n remains within the interval [n
l , n


u], the actual loaded premiums P 
A and

P
B would be higher than their required counterparts PjpA (n) and P
jp
B (n). Otherwise, the joint pricer

would be underwriting at a loss for a given risk reduction factor ζ .
The flexibility of the insurer in terms of portfolio monitoring can be measured by the length

of the interval [n
l , n


u], i.e. n
u − n
l . Suppose that the joint pricer sets the actual premiums equal

to the lowest possible ones given by the competitiveness region, i.e. ψ
 =ψmin. In this case, ñ
u =
ñ
l = λ2

λ1
, and in particular, n
u = n
l = nmin. Hence, the length of this interval is 0. This means that

setting the premium equal to the lower bound of the competitiveness region, as this may arise
from an analogy with previous studies on optimal product mix, is in fact the most risky choice for
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the insurer. More precisely, setting ψ
 =ψmin implies that there is only a single proportion n for
which the conditional loaded premium matches the actual one.

3.3 Critical threshold
Forψ
 ∈ [ψmin,ψA), the joint pricer has a competitive advantage over stand-alone pricers on both
business lines. For ψ
 ∈ (ψA,ψB), the joint pricer has a competitive advantage on business line B,
and a competitive disadvantage on business line A. Therefore, the required loaded premium for
the contract with the highest standard deviation per unit of average benefit will always be lower
under joint pricing compared to its stand-alone counterpart. In contrast, for the contract with the
lowest risk per unit of average benefit, there always exists a critical threshold in the proportion
n beyond which the required loaded premium under joint pricing is higher than its stand-alone
counterpart. In other words, beyond the critical threshold, the safer business line subsidises the
riskier one. This is formally stated in the following lemma; see Appendix A.2 for a proof.
Lemma 3.2. For b> 1, there always exists nct ∈ (0, 1) given by:

nct = 2λ2πA
2λ2πA + (λ1 − 2λ2)πB

, (3.5)

such that: {
ψ(n)<ψA, for n< nct,
ψ(n)>ψA, for n> nct,

with ψ(nct)=ψA.

The existence of the critical threshold is all the more pertinent given that the competitive
advantage of the joint pricer is higher on business B than on business line A. Indeed, denoting
again by P
A and P
B the actual loaded premiums set by the joint pricer for the respective contracts,
an immediate consequence of b> 1 is that:

P
A − PsaA
PsaA

>
P
B − PsaB

PsaB
.

This implies that the joint pricer could attract more policyholders on business B than on business
line A. Thus, the actual proportion nmay turn out to be close to 1, and hence, beyond the critical
threshold.

A practical solution for the joint pricer to cope with the issues raised by the critical thresh-
old consists in constraining some contract features (e.g. the benefit amounts) such that b= 1,
or equivalently, ψA =ψB. In this case, the joint pricer has the same competitive advantage on
both business lines, leading to nct = 1, which means that there is no critical threshold. In prac-
tice, it may not always be possible to control all contract features. Nevertheless, insurers could
still identify pairs of business lines satisfying ψA ≈ψB and bρ < 1 without constraining contract
features.

4. Unconditional Analysis of Joint Pricing
So far, the main conclusion of the conditional analysis is that joint pricers can gain a competitive
advantage over stand-alone pricers on both business lines, but this competitive advantage costs
insurers their flexibility in terms of portfolio monitoring. Therefore, the number of underwritten
contracts is crucial to determine the required premiums for the joint pricer.

This section seeks further insights into the pricing decision bymodelling explicitly the relation-
ship between the number of policyholders attracted in each business line and the corresponding
competitive advantage. Unlike in section 3, the analysis here is not in function of the proportion n.
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In particular, the comparison between the competing strategies is performed by assuming a model
for the number of policyholders. The goal is to identify conditions onmarket characteristics under
which insurers active on both business lines can benefit from joint pricing.

4.1 Market model
Consider a market with NT

A and NT
B policyholders willing to buy contracts A and B, respectively.

The proportionwd = NT
B

NT
A+NT

B
represents the market proportion of demand for business line B. The

market is composed of kA providers of contract A and kB providers of contract B, with 2≤ kA <
NT
A and 2≤ kB <NT

B . Among these insurers, it is assumed that there is a single insurer considering
the joint pricing strategy. Thus, there are kA − 1 insurers providing contract A at its stand-alone
price PsaA , and kB − 1 insurers providing contract B at its stand-alone price PsaB .

The joint pricer sets the premiums P
A and P 
B for the respective business line, such that:

P
A = (
1+ψ


)
πA, and P
B = (

1+ψ

)
πB,

whereψ
 ∈ [ψmin,ψB
]
is derived according to the risk reduction constraint introduced in section

2. The quantities c
A and c
B are defined as follows:

c
A = P 
A
PsaA

− 1, and c
B = P
B
PsaB

− 1.

The joint pricer is said to have a competitive advantage over stand-alone pricers on one of the
business lines if the corresponding c
 is negative. The lower the values of c
A or c
B, the higher the
competitive advantage on the corresponding business line.

LetN
A andN
B be the numbers of policyholders attracted by the joint pricer for the loadingψ
.
Using the MSD risk measure, and following the reasoning that leads to (2.1), the portfolio loading
proportion ψ
 solves the equation:

ψ
 =ψA
(
λ1ñ
2 − 2λ2ñ
 + 1

) 1
2 , (4.1)

with ñ
 = n
πB
(1−n
)πA+n
πB , and n
 = N
B

N
A+N
B
is the proportion of policies B underwritten by the

insurance company active on both business lines.
The loading proportion ψ
 depends on the numbers of policyholders who buy each contract,

which in turn depend on ψ
. In particular, the loading ψ
 appears in both sides of Equation (4.1).
Different functions could be applied to model this relationship. It is assumed that for c
A = c
B = 0,
the total number of policyholders is shared equally among all insurance companies. This means
that in case the insurance company active on both business lines prices the contracts separately,
then all companies active on A underwrite NT

A
kA contracts, and all those active on B underwrite NT

B
kBcontracts.

A candidate function satisfying this property is the logistic function, such that the numbers N
A
and N
B of contracts A and B sold by the joint pricer are given by:

N
A =NT
A

(
1− kA−1

kA−1+exp(−qAc
A)

)
,

N
B =NT
B

(
1− kB−1

kB−1+exp(−qBc
B)

)
.

where qA > 0 and qB > 0 are the reaction factors of policyholders in each business line. These
reaction factors are related to the joint pricer’s price elasticity of demand, such that a 1% change
in the price of a given contract is perceived by policyholders willing to buy the corresponding
contract from the joint pricer as a q% change.
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The logistic function is bounded from below by 0, and from above by the total market demand.
In other words, the number of policyholders attracted by the joint pricer is at least 0 for ψ
 →
+∞, and at most equal to NT

A and NT
B for ψ
 → −∞. However, these bounds are unlikely to be

reached. Indeed, under the present setting, and provided the insurer does not underwrite at a loss,
realistic values of ψ
 lie within the interval

[
ψmin,ψB

]
, which is expected to be relatively narrow.

Thus, for sufficiently small values of c
A and c
B, the cumbersomeness of the logistic function can
be circumvented by applying a Taylor expansion, which leads to the following conveniently linear
demand functions:

N
A = NT
A

kA

(
1− kA − 1

kA
qAc
A

)
, and N
B = NT

B
kB

(
1− kB − 1

kB
qBc
B

)
.

4.2 Pricing decision
The decision criterion used to determine the optimal pricing strategy is the total collected premi-
ums. In case the insurer prices the contracts jointly, the total premiums collected in each business
line are N
AP
A and N
BP
B. In case the insurer prices the contracts separately, the total market
demand is shared equally among all insurers, and hence, the total premiums collected in each
business line by each of the kA and kB insurers are NT

A
kA P

sa
A and NT

B
kB P

sa
B , respectively. Therefore, the

difference between the total collected premiums with and without joint pricing is given by:

Dptf =
(
N
AP



A − NT

A
kA

PsaA

)
+
(
N
BP



B − NT

B
kB

PsaB

)
.

Consider the proportion η defined as follows:

η= NT
B

1
kBπB(ψB −ψmin)

NT
A

1
kAπA(ψA −ψmin)+NT

B
1
kBπB(ψB −ψmin)

. (4.2)

Consider as well the critical threshold wct in the proportion of market demand for contracts B:

wct = nct
nct + (1− nct)

(
1+ kB−1

kB
ψB−ψA
1+ψB

qB
)

kA
kB

, (4.3)

where nct is the critical threshold derived from the conditional analysis in (3.5). In particular, wct
corresponds to the proportion of market demand for contracts B (i.e. wd) such that ψ
 =ψA. It
follows that ψ
 <ψA for wd <wct, and ψ
 >ψA for wd >wct.

The following theorem provides sufficient conditions on policyholders’ reaction factors to sup-
port the decision on the pricing strategy. These conditions involve information on the market
demand and supply, as well as on the contracts’ features. A proof is given in Appendix A.3, which
also contains the derivations for η and wct.
Theorem 4.1. An insurer active on both business lines A and B collects more premiums at portfolio
level by pricing them jointly rather than separately, if the following conditions are satisfied:

qB >
kB

kB − 1
1+ψB
1+ψA

, (4.4)

and {
(1− η)qA kA−1

kA
1+ψmin

1+ψA
+ ηqB kB−1

kB
1+ψmin

1+ψB
> 1, for wd <wct,

qA < kA
kA−1

1+ψA
1+ψB

, for wd >wct,
(4.5)

and inequality (4.4) is sufficient for wd =wct.
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An insurer active on both business lines A and B collects more premiums at portfolio level by
pricing them separately rather than jointly, if the following conditions are satisfied:

qB <
kB

kB − 1
, (4.6)

and {
qA < kA

kA−1 , for wd <wct,
qA > kA

kA−1 , for wd >wct,
(4.7)

and inequality (4.6) is sufficient for wd =wct.

Theorem 4.1 states that the choice of the pricing strategy can be inferred from the values of
the reaction factors qA and qB. In general, it is possible to determine the values of the contract
features, the number of competitors kA and kB, and the proportion of market demand wd. Thus,
the remaining task of the insurer is to estimate qA and qB based on its own experience.

These conditions imply that the insurer should reduce (resp. increase) its premiums only if the
reaction of policyholders is high (resp. low) enough in order for the premium reduction (resp.
increase) to result in an increase of the total premiums. In case the joint pricer does not expect to
attract a sufficient number of policyholders in business line B, then joint pricing is not necessarily
desirable. Another important implication of Theorem 4.1 is that even if business line A subsidises
B (i.e. beyond the critical threshold), joint pricing may still be rewarding for the insurer in terms
of total collected premiums.

The following corollary, whose proof can be found in Appendix A.4, provides simpler rules to
support the decision on the pricing strategy.
Corollary 1. An insurer active on both business lines collects more premiums at portfolio level by
pricing both contracts jointly rather than separately, if the following conditions are satisfied:

qB > 2
1+ψB
1+ψmin ,

and {
qA > 2 1+ψA

1+ψmin , for wd <wct,
qA < 1+ψA

1+ψB
, for wd >wct.

An insurer active on both business lines collects more premiums at portfolio level by pricing
both contracts separately rather than jointly, if the following conditions are satisfied:

qB < 1,

and {
qA < 1, for wd <wct,
qA > 2, for wd >wct.

From Corollary 1, the results of this section can be summarised as follows. Consider an insur-
ance company active on business lines A and B, such that ψA ≤ψB. Suppose that this insurance
company aims at increasing its total collected premiums by pricing business lines A and B jointly.
The company could do so if:

• business line B is relatively elastic, and
• business line A is relatively elastic if it has a lower demand than B, or is relatively inelastic if it

has a higher demand than B.
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5. Numerical Illustration for Annuities and Life Assurances
This section illustrates the theoretical results for term annuities (business line A) and term assur-
ances (business line B). These two business lines received substantial interest in the context of
natural hedging. Early contributions include Cox and Lin (2007) and Gründl et al. (2006). A num-
ber of papers provided further insights into the natural hedging opportunities of life contingent
liabilities, such as Tsai et al. (2010); Wang et al. (2010); Wang et al. (2013); Zhu and Bauer (2014),
and Boonen et al. (2017).

In what follows, the first subsection describes the random present values and the mortality
model used to obtain the distribution ofVA andVB. The second subsection illustrates the compet-
itiveness region under the conditional setting. The third subsection illustrates the total collected
premiums and the effect of policyholders’ reaction factors.

5.1 Business lines, simulationmodels, and data
The random variables VA and VB are the per-policy random present values at policy issue of the
annuity and assurance business lines, respectively, such that:

VA = CA

TA∑
k=1

kp(A)x v(0, k),

and

VB = CB

TB∑
k=1

k−1p(B)y

(
1− p(B)y+k−1

)
v(0, k),

where TA and TB are the terms of the annuity and the assurance, respectively, CA is the yearly
annuity benefit payable at the end of the year, and CB is the death benefit payable at the end of the
year of death. The probability kp

(A)
x is the k-year survival probability in the term annuity business

line, where all policyholders are aged x. The probabilities k−1p(B)y and p(B)y+k−1 are the (k− 1)-year
and 1-year survival probabilities, respectively, in the term assurance business line. In order to take
into account longevity and mortality risks, all probabilities are assumed to be random variables.
Market risk is not included in this analysis, and the discounting factor v(0,k) is assumed to be
constant, with v(0, k)= vk.

The group of policyholders in the annuity business line (i.e. business line A) are all aged x= 60,
whereas the group of policyholders in the assurance business line (i.e. business line B) are all aged
y= 30. All contracts are assumed to expire after 30 years, i.e. TA = TB = 30.

The distributions of VA and VB are obtained by simulating the survival probabilities p(A) and
p(B) from the Li-Lee two-population model (Li and Lee 2005), which allows to take into account
the dependence between the mortality in the two business lines. Specifically, under the Li-Lee
model, the central death date μ(i)

x,t at age x and time t in population i is given by:

μ
(i)
x,t = exp

(
α(i)x + β(i)x κ

(i)
t + βxκt

)
, (5.1)

where βxκt represents the common mortality improvement for a given age x, and β(i)x κ (i)t repre-
sents the population-specific mortality improvement for that age. The processes κ (A)t , κ (B)t , and κt
are simulated from correlated random walks.

The English and Welsh population data are used for the annuity business line, and the US
population data are used for the term assurance business line. Using data from two different
populations allows to incorporate in the analysis the fact that mortality experience in annuity
and assurance businesses tend to be different. The data sets cover the period 1950–2018 and ages
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Table 1. Values of the pure premiums per unit of benefits (i.e. πA and πB for CA = CB = 1), the
corresponding standard deviations, the ratio of the pure premiums and standard deviations
(i.e.ψ for ζγ = 1), and the correlation coefficient ρ.

Business line A Term annuities Business line B Term assurances

π 19.84 0.06091786
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

σ 0.1821759 0.004535378
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ψ 0.009180161 0.07445072

ρ −0.8282

30–90 and were obtained from the Human Mortality Database (www.mortality.org). The models
are estimated using singular value decomposition.

5.2 Competitiveness region
Table 1 reports the values of the pure premiums per unit of benefits (i.e. πA and πB for CA =
CB = 1), the corresponding standard deviations, the ratio of the pure premiums and standard
deviations (i.e. ψ for ζγ = 1), and the correlation coefficient ρ. The table shows that the business
lines satisfy the conditionψA <ψB, i.e. b> 1. Further, since the correlation coefficient is negative,
the condition bρ < 1 from (3.1) is satisfied, meaning that the competitiveness region exists.

Figure 1 displays the premium loadings under joint pricing ψ(n) in function of the proportion
of term assurances n for four combinations of the benefits CA and CB and the reduction factor
ζ . The coefficient γ is equal to 1.686, such that the loading ψ(n) from the MSD risk measure
(black curve) is approximately equal to the loading obtained numerically from the value-at-risk
at the confidence level 0.95 (blue circles). Note that the black curve and the blue circles are very
close, which shows the flexibility of the MSD risk measure under the present assumptions. The
horizontal dashed lines are the stand-alone loadings ψA and ψB, with ψA <ψB.

The results from Figure 1 show how the competitiveness region is influenced by the relative
levels of the benefits CA and CB. In particular, the minimum loading ψmin as well as the critical
threshold changes depending on the benefits. For instance, in case CB = 100CA (i.e. bottom-left
panel), the critical threshold is lower than 0.5, which limits the flexibility of the joint pricer. On
the other hand, for CB = 10CA (i.e. top- and bottom-right panels), the critical threshold is closer
to 1, which means that setting the actual loading within the competitiveness region in this case
requires less monitoring. Regarding the effect of the risk reduction factor ζ , the figure shows
that it is essentially a scaling factor. For instance, comparing the top- and bottom-right panels
where CB = 10CA for both, the critical threshold remains unchanged. Section 6 contains another
illustration of the competitiveness region with further discussion.

5.3 Total collected premiums
Figure 2 displays the relative difference of the total collected premiums with and without joint
pricing in function of the proportion wd of market demand for term assurances (business line B)
for different combinations of the reaction factors qA and qB, whereCB = 10CA, ζ = 0.5, γ = 1.686,
and kA = kB = 10. Positive (resp. negative) values indicate that joint pricing leads to higher (resp.
lower) total collected premiums compared to stand-alone pricing.

For qA = qB = 0.5 (black curve with circles), the total collected premiums are higher under
stand-alone pricing when qB < 1 and qA < 1 for wd <wct , which is formally stated as a sufficient
condition in Corollary 1. The figure also shows that stand-alone pricing remains the preferred
strategy when qA < 1 forwd ≥wct , although it is not formally stated as a sufficient condition in the
corollary. For qA = qB = 3 (blue curve with squares), the opposite holds. Note that 2 1+ψB

1+ψmin ≈ 2.12
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Figure 1. Premium loadings under joint pricingψ(n) in function of the proportion of term assurances n for four combinations
of the benefits CA and CB and the reduction factor ζ . The coefficient γ is equal to 1.686, such that the loading ψ(n) from the
MSD riskmeasure (black curve) is approximately equal to the loading from the value-at-risk at the confidence level 0.95 (blue
circles). The horizontal dashed lines are the stand-alone loadingsψA andψB, withψA <ψB.

and 2 1+ψA
1+ψmin = 2.01, which means that the conditions of Corollary 1 under which joint pricing is

more favourable are satisfied forwd <wct . Again, even though 1+ψA
1+ψB

≈ 0.95, and hence qA > 1+ψA
1+ψB

forwd >wct , joint pricing still leads to higher total collected premiums. A similar conclusion holds
for qA = 0.5 and qB = 3 (red curve with triangles), where joint pricing leads to higher collected
premiums for all wd. The case where qA = 3 and qB = 0.5 (magenta curve with stars) is the only
one in Figure 2 where the choice of the pricing strategy depends on the critical threshold. In
particular, for low proportions of market demand for term assurances, qA = 3 and qB = 0.5 leads
to higher total collected premiums under joint pricing, whereas for high proportions of market
demand for term assurances, stand-alone pricing leads to higher total collected premiums. Note
that the latter case is stated as a sufficient condition in Corollary 1.
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Figure 2. Relative difference of the total collected premiums with and without joint pricing in function of the proportion wd
of market demand for term assurances (business line B) for different combinations of the reaction factors qA and qB, where
CB = 10CA, ζ = 0.5, γ = 1.686, and kA = kB = 10. Positive (resp. negative) values indicate that joint pricing leads to higher
(resp. lower) total collected premiums compared to stand-alone pricing.

6. Empirical Exploration of the Competitiveness Region for Non-Life Business Lines
This section explores the existence of the competitiveness region for pairs of non-life business
lines using a real insurance data set from the Brazilian insurance market. The first part describes
the data set. The second part explores different business lines in order to identify candidates for
joint pricing. The fourth part illustrates the competitiveness region.

6.1 Data description
The Superintendence of Private Insurers (SUSEP), which is the executive arm of the national
Brazilian insurance regulator, provides the Sistema de Estatísticas da SUSEP, or SUSEP Statistics
System (SES) data set freely accessible online (see www.susep.gov.br). It consists in aggregate
losses for different business lines obtained from SES at different frequencies. The frequency used
in this analysis is bi-annual. The data cover the period from July/December 2006 to July/December
2019, with 27 observations per business line.

The raw data contain information for up to 154 business lines depending on the time period.
Only non-life lines are studied. Further, business lines that were introduced or removed during
the observation period were discarded. Among the remaining lines, only the top 10 business lines
in terms of total collected premiums were selected. Table 2 lists the selected lines, together with
their rank in terms of total collected premiums. The advantage of working with this relatively
small subset of business lines is that it allows for an easier reporting. Indeed, the total number of
possible pairs of business lines is 45.

All time series were de-trended, after which all passed the KPSS test of stationarity
(Kwiatkowski et al. 1992)1. For each pair of business lines, Condition (3.1) is assessed to determine

1All calculations were performed using R software (R Core Team 2020), and using the packages tseries for times
series processing and tikzDevice for the graphical output (Trapletti and Hornik 2019; Sharpsteen and Bracken 2020).
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Table 2. Business lines ordered based on the ratioψ = σ/π , where the business
line on the first row has the highest ψ . The first column corresponds to the iden-
tification code attributed by SUSEP. The second column contains the name of the
business line translated to English from SUSEP website. The third column con-
tains the rank of the business line in terms of total collected premiums at market
level, where “1” is the highest.

Id. Business line Rank

0588 Motor third party liability 4
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0114 Comprehensive residential 6
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0982 Private passengers auto 5
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0977 Lender (except home and rural) 2
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0621 National transport 8
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1068 Mortgage (excluding housing finance system) 10
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0118 Commercial multiple peril 7
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0654 Carrier 9
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0553 Optional auto liability (in excess of mandatory cover) 3
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0531 Auto property damage 1

whether a competitiveness region exists. The random variable V stands for the aggregate losses,
from which the expected values (i.e. π) and the standard deviations (i.e. σ ) of the individual series
are calculated to obtain the ratios ψ = σ

π
. The pairwise correlations ρ are also calculated. For A

and B such that ψA ≤ψB, if bρ < 1, where b= ψB
ψA

, the competitiveness region of these two con-
tracts is said to exist, indicating that insurers active on these two business lines can potentially
gain a competitive advantage by pricing them jointly.

6.2 Analysis of business lines
The evolution of the aggregate losses over time is displayed in Figure 3, and the corresponding
ratios ψ are displayed in Figure 4. The minimum value of pairwise correlations is −0.34 and
is found between comprehensive residential insurance (0114) and carrier insurance (0654). The
maximum correlation is 0.86 between optional auto liability (0553) and auto property damage
(0531). The high positive correlation for the latter pair complies with the intuition.

Table 3 contains the output of the analysis. Among the 45 possible pairs, 34 pairs satisfy the
condition bρ < 1. This means that a large majority of 75.55% of the possible pairs have a posi-
tive competitiveness region, and hence, can be priced jointly. Two business lines can be priced
jointly with any of the other business lines included in the analysis, namely insurance for com-
prehensive residential insurance (0114) and lender insurance (0977). Commercial multiple peril
insurance (0118) can be priced jointly with any other business line, except motor third party lia-
bility (0588). The latter has the lowest number of matches, where it can be priced jointly with only
three among the nine business lines. Specifically, motor third party liability (0588) can be priced
jointly only with comprehensive residential insurance (0114), passenger private auto (0982), or
lender insurance (0977).

The four non-commercial auto insurance business lines are all in the top five lines in terms
of total collected premiums. The top two business lines from this category are auto property
damage (0531) and optional auto liability (0553), and they are also the least risky ones. These
two lines have a positive competitiveness region, which is rather surprising given that they also
exhibit the highest pairwise correlation of 0.86. The other two lines are motor third party liability
(0588) and private passengers auto (0982), and are the most risky ones. These two lines have a
positive competitiveness region with a relatively low pairwise correlation of 0.18. Other combina-
tions involving these four lines do not have a competitiveness region. This means that besides the
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Figure 3. Evolution of the aggregate losses over time for different business lines using the SES data set, expressed in million
Brazilian Reals, where the business lines are identified by their SUSEP code (see Table 2).

Figure 4. Ratio ψ = σ
π
, i.e. the standard deviation per unit of expected loss, for all business lines, where the business lines

are identified by their SUSEP code (see Table 2).

two pairs reported above, one line would necessarily subsidise the other if they were to be priced
jointly.

The conclusion from this analysis is that there is room for insurance companies to price many
business lines jointly, even when the pairwise correlation is high. Some pairs of business lines
in related market segments, especially in auto insurance, do not have a competitiveness region.
Nevertheless, candidate business lines for joint pricing do not necessarily need to be from the
same market segment. In fact, it may be argued that unrelated lines are more likely to have a low
correlation. But even for related lines with strong positive correlation, the competitiveness region
may still exist, which is the case of auto property damage (0531) and optional auto liability (0553).
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Table 3. Assessment of the condition bρ < 1 for all pairs of business lines, iden-
tified by their SUSEP code (see Table 2). The symbol (+) indicates that there exists
a competitiveness region for the corresponding pair (i.e. the condition bρ < 1 is
satisfied). The symbol (–) indicates that there is no competitiveness region for the
corresponding pair (i.e. the condition bρ < 1 is not satisfied).

0588 0114 0982 0977 0621 1068 0118 0654 0553 0531

0588 • + + + – – – – – –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0114 + • + + + + + + + +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0982 + + • + + + + + – –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0977 + + + • + + + + + +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0621 – + + + • + + + – –
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1068 – + + + + • + – + +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0118 – + + + + + • + + +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0654 – + + + + – + • + +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0553 – + – + – + + + • +
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0531 – + – + – + + + + •

Another relevant point to recall is that the decision on the pricing strategy should be supple-
mented by information about the price elasticity of demand in each line. To illustrate, consider the
case of compulsory motor third party liability (0588) and optional auto liability (0553). The latter
pays a benefit in excess of the cover provided by the former. Insurers are likely to be active on
both of these business lines, but the analysis suggests that there exists no competitiveness region
between them. As a consequence, pricing them jointly implies that the least risky business line
(i.e. optional auto liability) would subsidise the riskier one (i.e. compulsory auto liability). In this
case, and based on the analysis from Section 4, the insurer could still price them jointly if two
conditions are satisfied. The first condition is that the compulsory line should be relatively elastic.
The second condition is on the reaction of policyholders on the optional line, and this condition
is revealed from the relative demand of this line compared to the compulsory cover. Note that it
is not unrealistic to infer that the compulsory cover is likely to have the highest demand among
the two, and hence, that the demand for the compulsory cover may be such that wd <wct . If this
is the case, then on top of the high elasticity on the compulsory business line, joint pricing would
also require a high elasticity on the optional one.

6.3 Illustration of the competitiveness region
Two pairs of business lines with ψA ≤ψB from the SES data set are used to illustrate the com-
petitiveness region. For the first pair, business line A corresponds to optional auto liability (0553)
and business line B corresponds to motor third party liability (1198). This pair is chosen because
it has the highest value of bρ, with bρ ≈ 0.49. For the second pair, business line A corresponds to
mortgage insurance (1068) and business line B corresponds to commercial multiple peril insur-
ance (0118). This pair is selected because it has the lowest difference ψB −ψA ≈ 0.0069, and in
addition, satisfies bρ < 1, with bρ ≈ 0.31.

For each pair, the function ψ(n) from (2.1) is determined. Recall that this function corre-
sponds to the required joint loading conditionally on the proportion of contracts in business line
B. Figure 5 displays the loaded premiums under joint pricing per unit of expected benefit, i.e.
1+ψ(n). The dashed horizontal lines are the stand-alone prices 1+ψA and 1+ψB.

The left panel of Figure 5 corresponds to the case where the competitiveness region does not
exist. Moreover, due to the fact that condition bρ < 1 is not satisfied and that ψA <ψB, busi-
ness line A subsidises business line B. Indeed, the lowest possible price for business line A is its
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Figure 5. Loaded premiums under joint pricing per unit of expected benefit in function of the proportion of contracts in
business line B, i.e. 1+ψ(n), for two selected pairs of business lines. The dashed horizontal lines are the stand-alone prices
1+ψA and 1+ψB. The dashed vertical line on the right panel is the critical threshold.

stand-alone price, whereas any proportion n leads to a lower premium for business line B under
joint pricing.

The right panel of Figure 5 illustrates a favourable situation for two business lines to be priced
jointly. The existence of the competitiveness region is ensured by bρ < 1, whereas the critical
threshold nct ≈ 1 is ensured by the fact thatψA ≈ψB. The remaining task for the insurer is to con-
trol the proportion n in order for the actual loading to be above the required one. Alternatively,
the insurer can gain more flexibility in terms of portfolio monitoring if the commercial pre-
miums under joint pricing are set by taking into account information on market structure and
policyholders’ behaviour in an appropriate way.

7. Concluding Remarks
This paper investigates how diversification effects can be incorporated into prices of insurance
policies. The central question is whether insurers active on two business lines with offsetting lia-
bilities should price them jointly or separately. The paper analyses the required risk premiums and
shows that a joint pricer has a potential for competitiveness, but this potential comes with the bur-
den of portfolio monitoring. Further, the number of underwritten policies is modelled in function
of market structure and policyholders’ behaviour. This allows to obtain conditions on the reaction
factors of policyholders ensuring the optimality of joint pricing over stand-alone pricing, where
the decision criterion is the total collected premiums. The analysis is illustrated for a portfolio of
term annuities and term assurances and is supplemented by an empirical exploration of aggregate
losses using data of non-life business lines from the Brazilian insurance market.

This work allows to answer some questions related to joint pricing and paves the path for
potential future research topics. A particularly interesting research endeavour would consist in
studying joint pricing in a multivariate framework, which would allow insurers to select and price
a larger number of business lines jointly. Further, a natural step forward would consist in extend-
ing the present analysis to a dynamic setting, as in Taylor (1986); Emms (2011), or Pantelous and
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Passalidou (2017). On the one hand, this would allow to take into account offsetting effects over
time within and across business lines. On the other hand, a dynamic setting would also allow to
incorporate some features of the property-casualty insurance industry such as the underwriting
cycle (Venezian 1985; Cummins et al. 1991; Meier and Outreville 2006).

Another relevant issue that could be investigated is whether the main conclusions of the paper
would change by taking into account some distributional features beyond the second moments
and linear correlations. For instance, this could be necessary for some long-tail business lines
exhibiting skewness, and pairs of business lines exhibiting asymmetric dependence structures.
Nevertheless, it is worth noting that in the present paper, the analysis in section 5 shows that
the MSD can be a good substitute for the value-at-risk in applications involving annuities and
assurances. Unreported tests show that it can also be a good substitute for the conditional value-
at-risk in the same context. Therefore, the main conclusions of the paper remain valid for this type
of contracts under mortality models such as the Li-Lee model, which are also used in industry.

It should be noted that despite the potential benefits of diversification across business lines in
the pricing, regulators can restrict firms from operating on some specific business lines simultane-
ously. For instance, unlike in other Latin American countries, Brazilian insurers providing health
or credit export insurance must be specialized. Further, it is not allowed for a Brazilian life insur-
ance company providing open pension funds to sell non-life policies (OECD 2004). One rationale
behind these restrictions is that some lines are deemed too risky, and the insurer’s default on one of
those lines would impact customers’ welfare from other lines (Jaffee 2006; Ibragimov et al. 2018).
Another typical such restriction requires separating life and non-life insurance activities; see e.g.
EIOPA Single Rulebook for European insurers, and OECD (2004) for Latin American countries.
Nevertheless, firms are allowed to operate simultaneously on a substantial number of lines, and
the analysis in the present paper remains relevant in many cases.

Joint pricing may also refer to bundling; see e.g. Bhargava (2013) and Gökgür and Karabati
(2019). In the insurance industry, bundling is also subject to legal constraints in some countries.
For instance, Brazil, Chile, and Latvia have strong restrictions on bundled insurance products in
general, and in the USA, home and auto insurance cannot be bundled (OECD 2020). Joint pricing
is however not confined to bundling. Bundling consists in selling multiple items with a related
function to a single customer, whereas in the present context, joint pricing is implemented at
portfolio level for potentially two different types of customers. For instance, annuities would be
purchased by elderly seeking income protection, whereas assurances would be purchased by active
policyholders in order to protect their dependents from a loss of income in case of death.
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A Proofs
A.1 Proof of Lemma 3.1
The Chain rule leads to ∂�(n)

∂n = ∂�(n)
∂ ñ

∂ ñ
∂n . Since

∂ ñ
∂n > 0, an optimum ofψ(n) is such that ∂�(n)

∂ ñ = 0.
The derivative of ψ(n) with respect to ñ is given by:

∂ψ(n)
∂ ñ

=ψA
λ1ñ− λ2(

λ1ñ2 − 2λ2ñ+ 1
) 1
2
,

which is equal to 0 for ñ= λ2
λ1
, or equivalently, for n= nopt = λ2πA

λ2πA+(λ1−λ2)πB .
Recall that b= 1. The argument nopt of this optimum is unique. For λ2 = 0 (i.e. bρ = 1), this

argument is equal to 1, whereas for λ2 = λ1 (i.e. b= ρ, and hence, for b= ρ = 1), it is equal to 1.
Evaluated at the optimum nopt, the function ψ(n) is equal to:

ψ(nopt)=ψA

√
λ1 − λ22
λ1

,

where λ22 = 1+ b2ρ2 − 2bρ, which leads to λ1 − λ22 = b2(1− ρ2)≥ 0. Since λ22 > 0, it follows that
λ1−λ22
λ1

> 1, and henceψ(nopt)<ψA. This implies that nopt leads to aminimum, where the notation
nopt = nmin is used.

The remaining task is to determine conditions under which the argument nmin is within the
interval (0,1). From the discussion above, it follows that λ2 = 0 is equivalent with bρ = 1, and
hence nmin = 0 /∈ (0, 1). For λ2 �= 0, it follows that nmin ∈ (0, 1) provided 1+ πB

πA

(
λ1
λ2

− 1
)
> 0 and

λ1
λ2
> 1. Note that the former condition is always satisfied when the latter condition is satisfied.

Thus, nmin ∈ (0, 1) if and only if λ1
λ2
> 1, where λ1 > 0 always holds. For λ2 < 0, this condition

is never satisfied. For λ2 > 0, the condition is satisfied for λ1 >λ2, which is always the case for
ρ < 1≤ b. Since λ2 > 0 is equivalent with bρ < 1, it follows that nmin ∈ (0, 1) if and only if bρ < 1.
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A.2 Proof of Lemma 3.2
The proof consists in solving the equation PjpA (n)= PsaA . By setting ψ
 =ψA in (3.3) and (3.4), it
directly follows that n
l = ñ
l = 0 and ñ
u = 2λ2

λ1
, where the latter can be transformed to find the

expression of nct. Using the convexity of ψ(n) ends the proof.

A.3 Proof of Theorem 4.1
The difference Dptf can be expressed in two forms, namely as a quadratic function of 1+ψ
:

Dptf = −θ1
(
1+ψ


)2 + θ2
(
1+ψ


)− θ3, (A.1)

where

θ1 = qA
NT
A

kA
πA

kA − 1
kA

1
1+ψA

+ qB
NT
B

kB
πB

kB − 1
kB

1
1+ψB

,

θ2 =
(
qA

NT
A

kA
πA

kA − 1
kA

+ qB
NT
B

kB
πB

kB − 1
kB

)
+
(
NT
A

kA
πA + NT

B
kB
πB

)
,

θ3 = NT
A

kA
πA(1+ψA)+ NT

B
kB
πB(1+ψB),

or, equivalently, as a linear combination of the reaction factors qA and qB:
Dptf

NA
kA
πA+NB

kB
πB

= qA kA−1
kA

1+ψ

1+ψA

(1− n̄)(ψA −ψ
)+ qB kB−1
kB

1+ψ

1+ψB

n̄(ψB −ψ
)

− ((1− n̄) (ψA −ψ
)+ n̄(ψB −ψ
)) ,
(A.2)

where

n̄=
NB
kB πB

NA
kA πA + NB

kB πB
.

The proof uses the results of Lemma 3.2 on the critical threshold. In particular,ψ
 ∈ [ψmin,ψA)
for n
 ∈ (0, nct), ψ
 ∈ (ψA,ψB) for n
 ∈ (nct, 1) and ψ
 =ψA for n
 = nct, where ψmin is given in
(3.2), and nct has the following expression:

nct = 2λ2πA
2λ2πA + (λ1 − 2λ2)πB

.

The critical threshold nct in the proportion of underwritten contracts B is equivalent to a critical
threshold wct in the proportion of market demand for contract B, such that:

nct =
wct

1
kB

(
1+ kB−1

kB
ψB−ψA
1+ψB

qB
)

(1−wct) 1
kA +wct

1
kB

(
1+ kB−1

kB
ψB−ψA
1+ψB

qB
) .

Hence, wct is given by:

wct = nct
nct + (1− nct) kAkB

(
1+ kB−1

kB
ψB−ψA
1+ψB

qB
) .

Note that wd = 0 and wd =wct are the only proportions of demand such thatψ
 =ψA. Moreover,
n
 = 1 for wd = 1, and hence ψ
 =ψB. This confirms that ψ
 ∈ [ψmin,ψA) for wd <wct, ψ
 ∈
(ψA,ψB) for wd >wct, and ψ
 =ψA for wd =wct.
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A.3.1 Part 1:Dptf>0
The proof begins with the first part of the theorem and the conditions such that Dptf > 0, which
means that it is more advantageous to price the contracts jointly. The proof of this first part treats
the cases b> 1 and b= 1 separately.


 Case 1: b> 1

First, suppose that b> 1, which is equivalent withψB >ψA. Since θ1 > 0, the differenceDptf is a
concave function ofψ
, with lim

ψ
→±∞Dptf(ψ
)= −∞. Further,ψ
 ∈ [ψmin,ψA) forwd <wct, and

ψ
 ∈ (ψA,ψB) forwd >wct, as well asψ
 =ψA forwd =wct. In the first two cases, it is sufficient to
show that the concave function ψ �→ −θ1(1+ψ)2 + θ2(1+ψ)− θ3, evaluated at the end points
of the domain of ψ
, is positive.

Thus, for wd <wct, the difference Dptf is always positive if the inequalities:

θ1(1+ψmin)2 − θ2(1+ψmin)+ θ3 < 0,
θ1(1+ψA)2 − θ2(1+ψA)+ θ3 < 0,

are both satisfied. On the other hand, for wd >wct, the difference Dptf is always positive if the
inequalities:

θ1(1+ψA)2 − θ2(1+ψA)+ θ3 < 0,
θ1(1+ψB)2 − θ2(1+ψB)+ θ3 < 0,

are both satisfied. This means that Dptf > 0 if

θ1(1+ψA)2 − θ2(1+ψA)+ θ3 < 0,
and: {

θ1(1+ψmin)2 − θ2(1+ψmin)+ θ3 < 0 for wd <wct,
θ1(1+ψB)2 − θ2(1+ψB)+ θ3 < 0 for wd >wct.

Inequality θ1(1+ψA)2 − θ2(1+ψA)+ θ3 < 0 is equivalent with:

qB >
kB

kB − 1
1+ψB
1+ψA

.

Inequality θ1(1+ψB)2 − θ2(1+ψB)+ θ3 < 0 is equivalent with:

qA <
kA

kA − 1
1+ψA
1+ψB

.

Inequality θ1(1+ψmin)2 − θ2(1+ψmin)+ θ3 < 0 is equivalent with:

(1− η)qA
kA − 1
kA

1+ψmin

1+ψA
+ ηqB

kB − 1
kB

1+ψmin

1+ψB
> 1, (A.3)

where

η=
NT
B

kB πB(ψB −ψmin)
NT
A

kA πA(ψA −ψmin)+ NT
B

kB πB(ψB −ψmin)
.

Consider now the case where wd =wct, which is equivalent with ψ
 =ψA. From (A.2),Dptf > 0 is
equivalent with:

qA
kA − 1
kA

1+ψ


1+ψA
(1− n̄)(ψA −ψ
)+ qB

kB − 1
kB

1+ψ


1+ψB
n̄(ψB −ψ
)> (1− n̄)

(
ψA −ψ


)
+ n̄(ψB −ψ
), (A.4)
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and hence, for ψ
 =ψA, it follows that inequality (A.4) reduces to:

qB >
kB

kB − 1
1+ψB
1+ψA

,

which ends the proof for the case where b> 1.


 Case 2: b= 1

For b= 1, which means that ψA =ψB, inequality (A.4) becomes:

qA
kA − 1
kA

1+ψ


1+ψA
(1− n̄)+ qB

kB − 1
kB

1+ψ


1+ψB
n̄> 1.

Moreover, since ψ
 ≥ψmin, then a sufficient condition for Dptf > 0 is given by:

qA
kA − 1
kA

(1− n̄)+ qB
kB − 1
kB

n̄>
1+ψB
1+ψmin ,

which is, by noting that η= n̄ for ψA =ψB, a simplified version of inequality (A.3).

A.3.2 Part 2:Dptf>0
The second part of the proof consists in deriving sufficient conditions such thatDptf < 0, i.e. when
the insurer is better off with stand-alone pricing. From inequality (A.4),Dptf is always negative for:

qB
kB − 1
kB

1+ψ


1+ψB
< 1, (A.5)

and

qA
kA − 1
kA

1+ψ


1+ψA
(ψA −ψ
)<ψA −ψ
, (A.6)

where only one of the two inequalities needs to be strict.
Recall that ψ
 ∈ [ψmin,ψA) for wd <wct, that ψ
 ∈ (ψA,ψB) for wd >wct, and that ψ
 =ψA

for wd =wct. Thus, inequality (A.5) is satisfied when:{
qB < kB

kB−1
1+ψB
1+ψA

, for wd <wct,
qB < kB

kB−1 , for wd ≥wct,

or, simply for qB < kB
kB−1 . Moreover, inequality (A.6) is satisfied when:{

qA < kA
kA−1 , for wd <wct,

qA > kA
kA−1 , for wd >wct.

Note that only inequality (A.5) is sufficient for wd =wct, and that these conditions are valid for
b= 1.

A.4 Proof of Corollary 1
Since kB and kA are at least equal to 2, it is straightforward that kA

kA−1 and kB
kB−1 are both in [1,2).

Moreover, since ψA >ψmin, which implies that as sufficient condition for inequality (4.4) to be
satisfied is given by:

qB > 2
1+ψB
1+ψmin .
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Provided this latter inequality is satisfied, then for wd <wct, inequality

qA > 2
1+ψA
1+ψmin

ensures that (1− η)qA kA−1
kA

1+ψmin

1+ψA
+ ηqB kB−1

kB
1+ψmin

1+ψB
> 1. The remaining inequalities can be

derived by investigating the limits of kA
kA−1 and

kB
kB−1 for either k= 2 or k→ ∞.
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