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The relaminarization phenomenon in the laminar–turbulent transition process of
spherical Couette flow with the inner sphere rotating and the outer sphere fixed has
been experimentally investigated for 0.06 � β � 0.206, where β is the ratio of the
clearance to the inner-sphere radius. The relaminarization occurs for 0.13 <β < 0.17,
and is observed as a reverse Hopf bifurcation from the limit cycle to the fixed point.
The kinetic energy in the high-frequency region of the fluctuating azimuthal velocity
component continues to increase with Reynolds number Re in the case without
relaminarization, but in the case with relaminarization it first increases and then
decreases with increasing Re and finally vanishes with the onset of the relaminar-
ization. For β =0.14 with relaminarization, a small artificial disturbance introduced
externally into the spherical Couette flow has no influence on the lowest critical
Reynolds number of the first instability that can be defined universally and uniquely.
On the other hand, the external disturbance decreases the onset Reynolds numbers
of both the second instability (occurrence of spiral Taylor–Görtler (TG) vortices) and
the relaminarization, although it has no influence on the fundamental frequencies of
velocity fluctuation caused by spiral TG vortices and travelling waves on TG vortices.

1. Introduction
The equatorial regions in the spherical Couette flow (SCF) between two concentric

spheres with the inner sphere rotating and the outer sphere at rest show dynamical
behaviour similar to that in the circular Couette flow (CCF) with the inner cylinder
rotating, while the polar regions in SCF show dynamical behaviour similar to that in
the flow around a rotating disk in a container. Therefore, the transition phenomena
of SCF are strongly dependent on gap widths and more complex than those of CCF.
Most of the previous studies on SCF were restricted to cases of small and medium
gap widths in which the first instability occurs as Taylor vortices at the equator
(e.g. Munson & Menguturk 1975; Wimmer 1976; Nakabayashi 1978; Yavorskaya
et al. 1980; Krause 1980; Nakabayashi 1983; Belyaev et al. 1984; Bühler & Zierep
1984, 1987; Marcus & Tuckerman 1987a, b; Wimmer 1988; Nakabayashi &
Tsuchida 1988a, b; Bühler 1990; Dumas & Leonard 1994; Nakabayashi et al. 1994;
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Nakabayashi & Tsuchida 1995; Zikanov 1996; Nakabayashi, Morinishi & Kobayashi
1997; Nakabayashi & Sha 2000; Sha & Nakabayashi 2001; Nakabayashi, Tsuchida &
Zheng 2002a; Nakabayashi, Zheng & Tsuchida 2002b, c). Recently, some experi-
mental and theoretical studies were also conducted on wide gap widths in which
the first instability occurs in the form of non-axisymmetric spiral waves called
spiral vortices (for example, Dumas & Leonard 1994; Egbers & Rath 1995; Araki,
Mizushima & Yanase 1997; Wulf, Egbers & Rath 1999).

Thus the flow structures caused by the first instability differ with gap size. The
vortex structure occurring during the transition process also differs greatly below and
above β ≈ 0.3. Here, β is defined as (R2 − R1)/R1, where R1 and R2 are the radii
of the inner and outer spheres, respectively. Toroidal Taylor–Görtler (TG) vortices
occur for β < 0.3, but not for β > 0.3. For β < 0.3 treated in the present study, the
transition processes involving the evolution of the vortical structures with increasing
Reynolds number Re obviously differ between β < 0.1 and β > 0.2 (Nakabayashi et al.
2002a, c).

In the laminar–turbulent transition for β < 0.2, no velocity fluctuation occurs until
spiral TG vortices (note: different from the spiral vortices occurring in the wide gap)
occur in supercritical flow with increasing Re. As Re is increased further after the
occurrence of the velocity fluctuation, the velocity fluctuation increases with Re, and
finally the flow becomes turbulent. Thus, periodic, quasi-periodic, chaotic and fully
developed turbulent velocity fluctuations occur successively with increasing Re for
β < 0.2 (Nakabayashi et al. 2002a). For β =0.14, however, the velocity fluctuation
occurring with spiral TG vortices at low Reynolds numbers disappears completely
with increasing Re (the relaminarization phenomenon), although, with a further
increase of Re, the velocity fluctuation reappears and evolves to a fully developed
turbulent flow (Nakabayashi & Tsuchida 1988a). The transition scenario leading
to the relaminarization phenomenon for β = 0.14 was revealed by so-called chaos
dynamics, i.e. by investigating the attractor in a Poincaré section of the phase
space of velocity fluctuation and the evolution of the correlation dimension with
increasing Re (Nakabayashi et al. 1994). The chaos-dynamics method has been used
as a powerful method to analyse the transition process of dissipation systems. For
example, Brandstater & Swinney (1987) and Belyaev & Yavorskaya (1991) applied the
method to analysing the correlation dimension, the maximum Lyapunov exponent,
etc. to clarify the transition process of flow in Couette systems, and characterized the
behaviour of the chaotic flow. Subsequently, Nakabayashi et al. (1997) studied the
details of the transition scenario and the one-dimensional return map for β =0.14.
However, it has not yet been clarified in what ranges of β and Re the relaminarization
phenomenon (i.e. the disappearance of velocity fluctuation with increasing Re) occurs,
and what is the mechanism for the relaminarization.

On the other hand, the Taylor instability was clarified to be of the pitchfork-
bifurcation type for β < 0.3 by linear stability theory (Mamun & Tuckerman 1995).
However, the values of the critical Reynolds number differ among the results of
experiments and numerical simulations. The first critical Reynolds number seems to
change due to an external small disturbance introduced artificially. Is there a universal
value for the first critical Reynolds number? Moreover, it is interesting to explore
how the second and third instabilities are changed by this external disturbance. So,
we consider the receptivity of the transition process by introducing a sufficiently small
artificial disturbance into SCF from outside.

In the present study, in order to investigate the reason for the occurrence of
relaminarization in the case of a quasi-static increase of the rotation rate of the inner
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Inner sphere

LDV probe

North pole
(θ = 0°)

Speaker

Vinyl tube

Outer sphere

Thermosensor

Equator (θ = 90°)

Shaft

θ = 45°

Figure 1. Experimental apparatus. The speaker installed above the north pole (colatitude
θ = 0◦) is used to introduce the external disturbance into the flow.

sphere, we use an experimental method to consider in what ranges of β and Re the
relaminarization phenomenon occurs, and investigate what differences exist between
two kinds of transition processes: with and without the relaminarization. We also
compare the bifurcation diagram obtained from the probability density distribution
of the velocity fluctuation between the two kinds of transition processes. The velocity
fluctuation disappearance is revealed to be a reverse-bifurcation phenomenon. We
obtain the lowest critical Reynolds number of the first instability that can be deter-
mined universally by introducing a sufficiently small artificial disturbance into SCF
from outside.

2. Experimental apparatus and method
In the present experiment, velocity measurements were performed by a laser Doppler

velocimeter for five clearance ratios, β =0.06, 0.10, 0.14, 0.158, and 0.206. The experi-
mental apparatus shown in figure 1 is substantially the same as that used in earlier
studies (Nakabayashi 1983; Nakabayashi & Tsuchida 1988a). The inner and outer
spheres are made of aluminium alloy and transparent acrylic resin, respectively. The
Reynolds number is defined as Re= Û 0R1/ν = 2πf̂ 0R

2
1/ν, where f̂ 0 is the rotation

frequency of the inner sphere, Û0 (= 2πf̂ 0R1) is the peripheral speed at the equator of
the inner sphere, and ν is the kinematic viscosity of the working fluid. The temperature
of the working fluid was measured by two thermosensors located at the meridian
angles (colatitudes) θ = 45◦ and 90◦ (equator), and the temperature fluctuation was
controlled within ±0.1 ◦C so as to have no perceptible influence on the transition
process. The radius R1 of the inner sphere and the critical Reynolds number ReC of
the Taylor instability are tabulated in table 1 for each clearance ratio β , where the
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β R1 (mm) ReC

0.06 82.55 ± 0.04 2760
0.10 79.74 ± 0.03 1440
0.14 76.88 ± 0.03 900
0.158 75.71 ± 0.03 760
0.206 72.67 ± 0.04 554

Table 1. Radius R1 of the inner sphere and the critical Reynolds number ReC for each
clearance ratio β . The radius R2 of the outer sphere is fixed to be 87.65 ± 0.03 mm.

radius of the outer sphere is fixed at R2 = 87.65 ± 0.03 mm for all β . For each β , the
accuracies of the whip of the rotating inner sphere and the concentricity of the inner
and outer spheres were within ± 0.02 mm. Hence, the whip and concentricity were too
small to affect the laminar–turbulent transition (Nakabayashi 1983; Nakabayashi &
Tsuchida 1988a). Water and a glycerol–water solution of 50% mass-concentration
were used as the working fluids.

In order to investigate the flow state in the quasi-static transition from rest, the
acceleration of Reynolds number dR∗/dt̂ did not exceed 0.0006 s−1, where R∗ is a
reduced Reynolds number defined as Re/ReC . The values of ReC in table 1 were
obtained under the this acceleration condition by flow-visualization measurements.
The ReC values for β = 0.06 and 0.206 agree with those in Nakabayashi (1983). In the
present study, another reduced Reynolds number R∗

1 defined as Re/ReC1 is also used
for β = 0.14, where ReC1 (= 860) is the lowest critical Reynolds number defined in § 4.1.

In the present study, the frequency, time, and velocity scales are expressed in units
of the inner-sphere rotation frequency f̂ 0, the inner-sphere rotation period 1/f̂ 0, and

the peripheral speed Û0 at the equator of the inner sphere, respectively. Also, variables
with hats have dimensions, and dimensionless variables are expressed without hats.
For example, f̂ and f (= f̂ /f̂ 0) are dimensional and non-dimensional frequencies,
respectively, of a fluctuating velocity component.

Velocity measurements were made for fluctuating azimuthal and meridian velocity

components, ˆ̃V φ and ˆ̃V θ , respectively, in the centre of the gap (η =0.5) at the equator
(θ = 90◦), except in special cases defined explicitly. η, defined as (r − R1)/(R2 − R1),
is the dimensionless wall distance from the inner-sphere wall, where r is a radial
coordinate.

We obtained the correlation dimension d of the fluctuating azimuthal velocity ˆ̃V φ as
follows (Nakabayashi et al. 1997), where the correlation dimension gives a lower-limit
value of freedom induced in the dynamic system (Berge, Pomeau & Vidal 1984). First
the trajectory (attractor) in an m-dimensional phase space was calculated from the
dimensionless time series records X(t) (made up of Ṽφ) by the delay-time method:
X(t) = [X(t), X(t + τ ), . . . , X(t + (m − 1)τ )], where τ is the delay time, and m is the
embedded dimension. The probability C(r) that this data point on the attractor is
included inside a sphere with centre x(i) and radius r on the attractor was calculated
using the following equation:

C(r) = (1/M)

i=M∑
i=1

Ci(r), whereCi(r) = (1/N)

j=N∑
j=1

H (r − |x(i) − x(j )|). (1)

N is the total number of data points; M is the number of data points selected
arbitrarily on the attractor; and H is the Heaviside function. Finally, the correlation
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L′(t1) L′(t2)

L′(t3)

L(t2)

L(t1)

L(t0)

X′(t1)

X ′(t0)

X(t0)

t = t0

t = t1 t = t2
t = t3

X(t1)
Reference
trajectory

3%

Figure 2. Schematic representation of the evolution and replacement procedure to obtain
the maximum Lyapunov exponent λ.

dimension d was obtained by

d = lim
r→0

log C(r)/ log r, (2)

where d converges to a constant value with increasing m. In the present study, m =2–
17; N = 4000–20000; M = 1000; and the optimal delay time τ was determined as the
time at which the next joint information function I (τ ) first has a minimum value with
an increase in τ , following Fraser & Swinney (1986):

I (τ ) =

∫ ∫
P (y, z) log2[P (y, z)/{P (y)P (z)}] dy dz, with y = X(t), z = X(t + τ ), (3)

where P (y) and P (z) are probability density functions, and P (y, z) is their combined
probability function.

The maximum Lyapunov exponent λ was obtained using the algorithm of Wolf et al.
(1985), following Nakabayashi et al. (1997) (also see figure 2). Although n Lyapunov
exponents exist in the n-dimensional phase space, we focused only on the maximum
Lyapunov exponent in the present study, where the maximum Lyapunov exponent
quantifies the sensitivity to initial conditions and its sensitivity is characteristic of
the chaotic behaviour. First, we reconstruct the trajectory in an m-dimensional phase
space, as described previously: X(t) = [X(t), X(t + τ ), . . . , X(t + (m − 1)τ )], utilizing
values up to eight for the embedded dimension m. Secondly, at time t = t0, we select
the initial record X(t0) on the reference trajectory, and record X′(t0) that is more
than 3 % of the maximum amplitude of Ṽφ and is the nearest to X(t0), obtaining
the distance L(t0) between X(t0) and X′(t0). Thirdly, at time t1 after one period of
the attractor from time t0, for example, t1 = t0 + 1/fS in the case where the attractor
is mainly due to spiral TG vortices whose fundamental frequency is fS , we find the
distance L′(t1) between X(t1) and X′(t1), and obtain the ratio L′(t1)/L(t0). Next, at time
t1, we again select a new record X′(t1) neighbouring X(t1) on the reference trajectory,
obtaining the distance L(t1) between X(t1) and X′(t1). Then, by calculating the next
time segment (t2 = t1 + 1/fS), we obtain L′(t2)/L(t1). By repeating this procedure over
the whole reference trajectory until time tM , the maximum Lyapunov exponent λ is
derived from the following equation:

λ = {1/(tM − t0)}
k=M∑
k=1

L′(tk)/L(tk−1). (4)

From the value of λ, we see the type of attractor: limit cycle or T2 torus for λ=0,
and strange (or chaotic) attractor for λ> 0.
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Low-distortion function oscillator

DC amplifier

FFT analyser

Piston rod

Film

Figure 3. Speaker system to introduce the external disturbance into the flow.

We introduced a sufficiently small artificial external disturbance into the flow by
oscillating the piston rod connected to the speaker installed above the north pole (see
figure 1). Details of the speaker system are given in figure 3. The speaker frequency
was set as f̂ I = 1–7 Hz, high enough for fundamental frequencies, approximately 0.1–
2Hz, of spiral TG vortices and travelling waves on TG vortices that are related to
the relaminarization (Nakabayashi & Tsuchida 1988a). The amplitude of the piston
rod was kept at a small constant value so that the amplitude of the fluctuating
meridian velocity component of the external disturbance caused by the rod is less
than approximately 1/50 times that caused by spiral TG vortices, although it depends

slightly on the value of f̂ I . The external disturbance was verified to be almost
uniformly propagated over the whole spherical gap by monitoring the fluctuating
meridian velocity component at R∗ = 0.

3. Differences between transition processes with and without relaminarization
3.1. Region of occurrence of relaminarization

The evolution of the azimuthal velocity fluctuation Ṽφ with increasing R∗ is shown
for β = 0.10 in figure 4(a) as an example of a case in which relaminarization does
not occur and for β = 0.158 in figure 4(b) as a case in which it occurs. In figure 4(a),
the velocity fluctuation begins as a periodic one at R∗ = 1.06, and the amplitude and
complexity of the fluctuation gradually increase with an increase in R∗. Therefore,
relaminarization does not occur. In figure 4(b), on the other hand, the velocity
fluctuation changes from a periodic one to a complicated one, with increasing R∗,
but then the complexity decreases and finally a periodic fluctuation (R∗ =4.65)
reappears. If R∗ is further increased, the velocity fluctuation completely disappears,
i.e. relaminarization occurs. In spherical Couette flow, this interesting relaminarization
phenomenon was first observed for β = 0.14 (Nakabayashi & Tsuchida 1988), while
for circular Couette flow, so far as we know, there has been no report in the literature
about it. In the case of the Lorenz system however, Argyris, Faust & Haase (1994)
observed a periodic window within a chaotic region as in the case of the logistic map.
According to Argyris et al., the periodic window emerges as a result of an inverse
cascade of periodic halvings, and the periodic motion loses its stability at higher
Rayleigh numbers.

Figure 5 shows isograms of the correlation dimension d =1, 2 and 3 in the (Re − β)-
plane. Figure 5 also shows data for the occurrence and/or disappearance of spiral
TG vortices, travelling waves on TG vortices, and shear waves obtained by flow-
visualization measurements. The transition Reynolds numbers of the generation and
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Figure 4. Examples of the evolution of Ṽφ with increasing R∗, where t is dimensionless time.
(a) β = 0.10 without relaminarization. (b) β = 0.158 with relaminarization.

disappearance of spiral TG vortices are consistent with the isogram of d = 1, and
those of travelling waves are consistent with d = 2. From this figure, it is proven that
the range of β in which relaminarization occurs is approximately 0.13–0.17.
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104

103

0.10 0.15

Laminar basic flow

0.20

Re

β

ReC

d = 1

d = 0

d = 0
d = 1

d = 3

d = 2

d = 3

d > 3

β = 0.13–0.17

Figure 5. Isograms of the correlation dimension d , and data for the occurrence and dis-
appearance of various disturbances in the (Re − β)-plane. The region of velocity-fluctuation
disappearance is hatched. �, d =1; - -∇- -, d = 2; - -�- -, d =3; �, occurrence of shear waves
(β = 0.1779, Bühler & Zierep 1987); �, disappearance of disturbance; �, disappearance of
travelling waves (β = 0.154, Bühler 1990); �, occurrence of travelling waves; �, occurrence of
spiral TG vortices.

3.2. Evolution of correlation dimension and maximum Lyapunov exponent

Figure 6 shows the Reynolds-number dependence of the correlation dimension d and
the maximum Lyapunov exponent λ for four clearance ratios, β = 0.06, 0.14, 0.158
and 0.206. At R∗ = 1 for all β , steady toroidal TG vortices are generated. At the first
arrow on the left side of each figure, spiral TG vortices occur for β = 0.06, 0.14 and
0.158, and interior waves occur inside toroidal TG vortices for β = 0.206.

In the case of β = 0.06 in figure 6(a), for about R∗ = 1.1–1.2, λ> 0 and the value of
d is 1.5, but the dispersion of the λ value is large. These results are due to electrical
noise because, in this R∗ region, the signal level of the velocity fluctuation is very
small compared with the noise level. For R∗ = 1.22–1.30, however, the dispersion of λ
vanishes, and we can obtain the result that λ= 0 and d =1. Hence, the measurement
had been accurately carried out, and it was proven that the trajectory formed a limit
cycle in this R∗ region. For R∗ > 1.3, on the other hand, λ> 0 and d rapidly increases
to more than 3. This indicates the generation of a strange attractor.

In the case of β =0.14 in figure 6(b), λ is zero within the region 1.0 <R∗ < 1.2 and
the attractor is a fixed point in the phase space which corresponds to the toroidal TG
vortex. λ is almost zero in the R∗ ranges (1.20 <R∗ < 1.74 and 1.74 <R∗ < 1.95) show-
ing d =1 and d = 2, and their attractors are a limit cycle and T2 torus, respectively.
Afterwards, d rapidly increases to about 5 because λ has a large positive value.
Therefore, the attractor is characteristic of a strange attracter corresponding to low-
dimensional chaos. For R∗ =5.5–5.8, d decreases to about 2.5, but λ remains positive.
For R∗ =5.8–5.9 just before relaminarization occurs, d decreases to almost 1 at the
same time as λ decreases to almost zero. A limit cycle is then formed in the phase
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Figure 6. Evolution of correlation dimension d (�), and maximum Lyapunov exponent λ (�)
with increasing R∗. (a) β =0.06. (b) β =0.14 (relaminarization). (c) β = 0.158 (relaminarization).
(d) β = 0.206.

space. As R∗ increases further (R∗ =6.8), d becomes zero and the successive attractor
is a fixed point, i.e. relaminarization occurs.

Similarly to the case of β = 0.14, for the case of β = 0.158 as seen in figure 6(c) a
limit cycle is first formed for d =1 with λ� 0. With increasingR∗, d increases to about
3 with λ> 0, but d decreases to 2 with λ� 0, so that a T2 torus is formed. With a
further increase in R∗, d decreases to 1.8 with λ> 0. Finally, d becomes zero and a
fixed point is formed as relaminarization occurs.

In the case of β = 0.206 in figure 6(d), d tends to increase from near R∗ = 12.5, but
it is not as clear. For about R∗ = 13, d is a little larger than 1 with λ �=0, so that the
limit cycle cannot be formed. Then, d and λ continues to increase with R∗.

3.3. Evolution of the kinetic energy of fluctuation

The evolution of the power spectra E(f ) of the azimuthal velocity fluctuation with
increasing R∗ is shown for β = 0.06 in figure 7(a) and for β = 0.158 in figure 7(b) as
representative cases where relaminarization does not occur and occurs, respectively. In
the case of β = 0.06 without relaminarization, a peak value appears at the frequencyfS1

or fS2 due to spiral TG vortices with the number of vortex pairs SP of 2 or 1, respec-
tively, at low Reynolds numbers (R∗ < 1.31), and harmonics of fS1 or fS2 begin to
show more definite peak values with increasing R∗. Here, fS1 and fS2 were confirmed to
be fundamental frequencies of the spiral TG vortices with SP =2 and 1, respectively,
by flow-visualization measurements and simultaneous measurements of laser light
scattering (for more details see Nakabayashi et al. 2002a). At high Reynolds numbers
(R∗ � 1.31), however, peak values appear at fB due to the fluctuation of the outflow
boundary of TG vortices and at fW1, fW2 or fW3 due to travelling waves with
wavenumber m of 8, 10 or 11, respectively. Simultaneously, harmonics and integer-
linear combinations of fB and fW appear. fB was confirmed to agree with the
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Figure 7(a). For caption see facing page.

rotation frequency of spiral TG vortices with the same time-dependent vortex-pair
number at R∗ = 1.31 or 1.37 (Nakabayashi et al. 2002a). In the case of β = 0.158 with
relaminarization, on the other hand, a peak value appears at fS1 due to spiral TG
vortices with SP = 3 at low Reynolds numbers (R∗ = 1.33), and peak values appear
at fS2 due to spiral TG vortices with SP = 2 and at fW due to six travelling waves
(m =6) on TG vortices at high Reynolds numbers (R∗ = 2.31–4.65).

As seen in figure 7, the peak value due to spiral TG vortices (fS) (or fluctuation
of the vortex outflow boundary fB) appears at about f = 1, and the dominant
harmonics spread to the high-frequency side with an increase in R∗, while that due
to travelling waves on TG vortices (fW ) appears at f > 2. Hence, let f = 2 between
two fundamental frequencies fS and fW of spiral TG vortices and travelling waves,
respectively, be a threshold value fth between low- and high-frequency regions, and
let us compare the energy Elow and Ehigh in the low- and high-frequency regions,
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Figure 7. Evolution of power spectra E(f ) with increasing R∗. (a) β = 0.06 without
relaminarization. (b) β = 0.158 with relaminarization.

defined as

Elow =

∫ 2

0.1

E(f ) df , (5)

Ehigh =

∫ ∞

2

E(f ) df . (6)

Elow in (5) is the kinetic energy of disturbances in the low-frequency region f < fth

including that of spiral TG vortices, while Ehigh in (6) is the kinetic energy of
disturbances in the high-frequency region f >fth including that of travelling waves.

Elow and Ehigh are shown for β = 0.06, 0.14, and 0.158 in figures 8(a), 8(b) and 8(c),
respectively. In the case of β = 0.06 without relaminarization, Ehigh is almost zero
at low Reynolds numbers, and begins to gradually increase when the kinetic energy
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Figure 8(a, b). For caption see facing page.
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Figure 8. R∗-dependence of the kinetic energies Elow and Ehigh of disturbances in the
lower and higher frequency regions, respectively. �, Elow; �, Ehigh. (a) β =0.06. (b) β = 0.14
(relaminarization). A, C and E, decrease of Ehigh; B and D, increase of Ehigh. (c) β = 0.158
(relaminarization). A′, C′ and E′, decrease of Ehigh; B′ and D′, increase of Ehigh.

due to travelling waves on TG vortices is added, while Elow is large at low Reynolds
number, and decreases with increasing R∗. When R∗ exceeds about 3, Ehigh becomes
greater than Elow. In the case of β =0.14 with relaminarization, on the other hand,
Elow occupies most of the disturbance energy at low Reynolds numbers, while Ehigh

begins to increase with R∗ because of the occurrence of travelling waves, to become
the same as Elow at about R∗ = 2. However, Ehigh decreases from R∗ = 2.5, and then
becomes very small at R∗ = 5.5–6.4 just before relaminarization occurs. A, C, and E
in figure 8(b) show the decrease in energy, while B and D show the increase. In the
case of β = 0.158 with relaminarization, Elow and Ehigh show similar changes to those
for β =0.14 described above, although the decrease (A′, C′, E′) and increase (B′, D′)
of energy are different in magnitude from those ((A, C, E) and (B, D)) for β = 0.14.

As described above, the energy of disturbances in the high-frequency region
continues to increase in the chaotic regime in the case where relaminarization does
not occur (figure 8a), while the energy decreases to almost zero in the chaotic regime
in the case where it occurs (figure 8b, c). The relaminarization mechanism is thought
to be that travelling waves on TG vortices weaken in spite of increasing Reynolds
number and the flow returns to a steady toroidal-TG-vortex flow through the sudden
disappearance of spiral TG vortices at a particular Reynolds number. However, the
dynamics of this relaminarization phenomenon remains unclear, and requires more
study.
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Figure 9. (a) Time-series records of Ṽφ and (b) the probability density distribution P (Ṽφ)
used to make the bifurcation diagram at R∗

1 = 1.15 for β = 0.14.
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Figure 10. As in figure 9 but at R∗
1 = 1.39.

3.4. Bifurcation diagram

3.4.1. Case in which relaminarization occurs

Now, we consider the bifurcation on the onset and disappearance of disturbances.
Experimental research on the bifurcation was reported for β =0.33 and 0.5 by Wulf
et al. (1999). In the present study, bifurcation diagrams were constructed to examine
the bifurcation for β =0.14, 0.158 and 0.10, following Wulf et al.

In the case of β = 0.14 where relaminarization occurs, the first instability arises at
R∗

1 = Re/ReC1 = 1.0, so that steady toroidal TG vortices are formed near the equator.
Next, spiral TG vortices are generated by the second instability at R∗

1 ≈ 1.2. The
bifurcation for this second instability is a Hopf bifurcation (e.g. Berge et al. 1984),
because a limit cycle is formed (Nakabayashi et al. 1994). At the onset of this second
instability, the time series records of the azimuthal velocity fluctuation, Ṽφ(t), and the

probability density distribution P (Ṽφ) change from those shown in figure 9 to figure 10.
The third instability arises at R∗

1 ≈ 1.8 because the generation of travelling waves is
confirmed from the velocity power spectra. At this third instability, Ṽφ(t) and P (Ṽφ)
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Figure 11. As in figure 9 but at R∗
1 = 1.87.
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V
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*

Figure 12. Bifurcation diagram in the case of β = 0.14 (relaminarization case). A, steady
toroidal TG vortices; B, spiral TG vortices; C, spiral TG vortices and travelling waves on TG
vortices. �, �, � and � show ranges of the probability density scaled by its maximum value,
P (Ṽφ)/Pmax(Ṽφ), at each Reynolds number, as shown in figures 9–11: �, P (Ṽφ)/Pmax(Ṽφ) =
0.1–0.3; �, 0.3–0.5; �, 0.5–0.75; �, 0.75–1.0.

change from figures 10 to 11, namely the probability density distribution changes in
form from 2 to many peaks.

Figure 12 shows the bifurcation diagram for β = 0.14 obtained from P (Ṽφ) described

above. Symbols �, �, � and � in the figure present ranges of P (Ṽφ) shown in figures 9–
11. In figure 12, we can confirm the reverse bifurcation from the transition from State B
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Figure 13. As in figure 12 but for β = 0.10 (no relaminarization case).

(time-dependent toroidal and spiral TG vortex flow) to State A (time-independent
toroidal TG vortex flow) at R∗

1 ≈ 6.8 at which relaminarization arises. Thus, a limit
cycle is formed before the onset of relaminarization and a fixed point is formed
afterward (Nakabayashi et al. 1994). So, it is a reverse Hopf bifurcation because the
attractor of the transition changes from the limit cycle to the fixed point. This kind
of reverse Hopf bifurcation has been found in various fields, e.g. biology and optics
(Longtin & Hinzer 1996; Larger et al. 2001) while it has never been reported for
circular and spherical Couette flows. Although this reverse Hopf bifurcation has been
observed for the first time, to our knowledge, in spherical Couette flow, the detailed
explanation of the reverse Hopf bifurcation for this relaminarization phenomenon is
beyond the scope of this work.

Also, for β = 0.158 a reverse Hopf bifurcation similar to that for β = 0.14 is
perceived at R∗ ≈ 4.85.

3.4.2. Case in which relaminarization does not occur

Figure 13 shows the bifurcation diagram for β = 0.10 without relaminarization.
Since the variations of Ṽφ(t) and P (Ṽφ) with the onsets of the second instability (Hopf
bifurcation) and the third instability for β = 0.10 are similar to those for β = 0.14 in
figures 9–11, the bifurcation diagram for R∗ = 1.0–1.5 in figure 13 is similar to that for
R∗ = 1.0–2.0 in figure 12. However, since no relaminarization occurs for β = 0.10, no
reverse bifurcation (transition from State B to State A) occurs in figure 13. This point
is different from the cases of β =0.14 with the relaminarization described above.
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Figure 14. The condition for the time (t̂) history of Re adopted to examine the lowest critical
Reynolds number ReC1 for β = 0.14. ReF and t̂ F are the primary onset Reynolds number and
primary onset time, respectively.

4. External-disturbance effects on the transition process
4.1. External-disturbance effect on the first instability (Taylor instability)

The first instability at which toroidal TG vortices occur for β < 0.3 was revealed to
be of supercritical-pitchfork type by linear stability theory (Mamun & Tuckerman
1995). However, there is a problem in that the critical Reynolds number of the first
instability is different among numerical simulations and experiments, as mentioned
previously. For β = 0.14, for example, the critical Reynolds number was theoretically
determined to be 941 by numerical simulations (Sha & Nakabayashi 2001), while it
was experimentally shown to be 923 by torque measurements (Nakabayashi 1978),
and 880 (Nakabayashi & Tsuchida 1988a) and 900 (the present study) by flow-
visualization measurements.

In order to consider the reason for the differences in the critical Reynolds number
of the first instability, the following experiment was conducted for β = 0.14. Figure 14
shows the time history of Re taken from the experiment. First, Re is rapidly increased
from zero to 720, and then is kept constant at 720 for about five minutes. Then,
Re is increased to ReF with a constant-acceleration condition dRe/dt̂ � 0.54 s−1 that
is thought to provide quasi-static acceleration, and then is kept constant at ReF .
During the experiment, the working fluid temperature is carefully kept constant. The
critical Reynolds number of the first instability, ReC =900, for β = 0.14 in table 1
was determined as the Reynolds number at which toroidal TG vortices are formed
when Re continues to increase with the above-mentioned acceleration, not as shown
in figure 14. However, when Re is increased to ReF as shown in figure 14, toroidal TG
vortices can be formed gradually at time t̂ = t̂ F for Re =ReF even in the case with
Re < 900. Such a vortex formation can also be seen in numerical simulations (Sha &
Nakabayashi 2001). Therefore, ReF and t̂ F are termed the primary onset Reynolds
number and primary onset time, respectively.

The relationship between ReF and t̂ F for various values of ReF is shown by � for
dRe/dt̂ = 0.54 s−1, � for 0.45 s−1, � for 0.36 s−1, and 	 for 0.18 s−1 in figure 15 where
each broken line indicates a curve connected with data under an assumption that
ReF approaches a constant value as t̂ F → ∞. Solid lines with double arrows show
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Figure 15. Relationship between the primary onset Reynolds number ReF and the primary
onset time t̂ F for various ReF values for four quasi-static acceleration conditions dRe/dt̂ = 0.54
(indicated by �), 0.45 (�), 0.36 (�), and 0.18 (	) s−1 in the absence of the external disturbance,
and for a quasi-static acceleration condition dRe/dt̂ = 0.54 s−1 (�) in the presence of the
external disturbance with f̂ I = 5.0 Hz. Broken lines guide the results of (t̂ F , ReF ). Solid lines
with double arrows show the relationship between Re (regarding ReF as Re) and t̂ F during
the four quasi-static accelerations. Thick solid lines each with a single arrow (shown only for
dRe/dt̂ = 0.18 s−1 (	)) show the relationship between ReF and t̂ F at Re= ReF . ReC and ReC1

are the critical Reynolds number and the lowest one, respectively, of the first instability.

the relationship between Re (regarding the ordinate ReF as Re) and t̂ F during the
four quasi-static accelerations; and thick solid lines, each with a single arrow (shown
only for dRe/dt̂ =0.18 s−1), show the relationship between ReF and t̂ F at Re= ReF .
Although the value of ReC = 900 in table 1 is obtainable under the quasi-static
acceleration condition of dRe/dt̂ = 0.54 s−1 with ReF = 900, all the broken lines are
thought to converge to the same value (about 860) of ReF for t̂ F → ∞. Hence, this
value of 860 is defined as the lowest critical Reynolds number of the first instability,
ReC1, which is obtainable under the condition that the first instability is allowed to
take a long time to be established. This uniquely determined ReC1 is thought to give a
universal critical Reynolds number. This lowest critical Reynolds number ReC1 = 860
is 7 % smaller than the conventional critical Reynolds number 923 obtained by
torque measurements (Nakabayashi 1978), and is 9% smaller than the 941 obtained
by numerical simulations (Sha & Nakabayashi 2001), giving the lowest value of the
critical Reynolds number.

Next, we investigate whether the influence of the external disturbance described
previously affects the critical Reynolds number of the first instability, ReC , and the
lowest one, ReC1. The results (t̂ F , ReF ) indicated by � in figure 15 are those obtained
for dRe/dt̂ = 0.54 s−1 under the influence of an external disturbance at f̂ I = 5.0 Hz.
From the comparison with the results indicated by � in the absence of the external dis-
turbance, it can be seen that, although the primary onset time t̂ F for a constant primary
onset Reynolds number ReF is larger with a disturbance, i.e. for � than for �, the
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Figure 16. Influence of external disturbances with various frequencies f̂ I on the normal-
Hopf-bifurcation diagram of the second instability (occurrence of spiral TG vortices) for β =
0.14. �, f̂ I = 0 Hz (no external disturbance); �, f̂ I = 1.5 Hz; �, f̂ I = 3.0 Hz; �, f̂ I = 5.0 Hz;
�, f̂ I = 7.0 Hz. ReC and ReCS are the critical Reynolds numbers of the first and second
instabilities, respectively, and ReC1 is the lowest critical Reynolds numbers of the first instability
described in § 4.1.

lowest critical Reynolds number ReC1 in the former is almost the same as that in the
latter. Hence, the external disturbance has no substantial influence on ReC and ReC1.

4.2. External-disturbance effect on higher instabilities

Next, consideration is given to the influence of the external disturbance on the normal
and reverse Hopf bifurcations at the onsets of second instability and relaminarization
(velocity fluctuation disappearance with increasing R∗), respectively, for β = 0.14. In
the presence of the external disturbance with f̂ I =1.5 Hz, we obtained a bifurcation
diagram similar to that in figure 12 without the external disturbance. However, the
R∗

1 values of the onsets of the second and third instabilities, the disappearance of
travelling waves on TG vortices and the onset of the relaminarization shift to lower
values, with decreases of 4.8 %, 4.1 %, 7.9 % and 3.6 %, respectively. That is, these
higher instabilities are not as robust to the external disturbance as the first instability
(Taylor instability), which was uninfluenced by it.

Figure 16 shows the influence of external disturbances with various f̂ I values on
the normal-Hopf-bifurcation diagram in the (Re − Ṽφ)-plane of the second instability
(occurrence of spiral TG vortices). Each broken line is a quadratic curve fitted to
the experimental data for each f̂ I (the solid line is for f̂ I = 0 Hz). Each value of the
onset Reynolds number ReCS of the second instability for each f̂ I was determined
from the minimum of the quadratic curve. ReC is the critical Reynolds number of the
first instability, and ReC1 is the lowest one, as described previously. From figure 16, it
is clear that the bifurcation diagram (quadratic curve) and ReC change considerably
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Figure 17. Influence of external disturbances with various frequencies f̂ I on the reverse-Hopf-
bifurcation diagram of the relaminarization for β = 0.14. �, f̂ I = 0 Hz (no external distur-
bance); �, f̂ I = 1.0 Hz; �, f̂ I = 2.9 Hz; �, f̂ I = 4.5 Hz; �, f̂ I =4.8 Hz; 	, f̂ I = 5.0 Hz; �,
f̂ I = 5.7 Hz; 
, f̂ I = 7.0 Hz. RD is the onset Reynolds number of the disappearance of velocity
fluctuation with increasing Re.

with f̂ I . More specifically, ReCS with the external disturbance is smaller than that
without it, and is smallest (4.8 %) at f̂ I = 1.5 (�) and 7.0 (�) Hz.

Figure 17 shows the influence of the external disturbance on the reverse-Hopf-
bifurcation diagram (relaminarization) accompanied by no intermittency (Type II
intermittency, Berge et al. 1984). The bifurcation diagram and the onset Reynolds
number RD of the relaminarization change with f̂ I , as in figure 16. RD with the
external disturbance is smaller than that without it, and is smallest (5.4 %) at
f̂ I = 4.5 Hz (�). From a comparison of the results in figures 16 and 17, it can
be seen that the maximum decrease in RD (5.4 %) from introducing the external
disturbance is larger than that in ReCS (4.8 %). Hence, the reverse Hopf bifurcation
is more sensitive than the normal Hopf bifurcation to the external disturbance.

4.3. External-disturbance effect on r.m.s. values and fundamental frequencies
of velocity fluctuation

The influence of the external disturbance on the root-mean-square (r.m.s.) values
of velocity fluctuation is considered in the range of about 1.2 � R∗

1 � 6.6 between
the onsets of the second instability and the relaminarization for β = 0.14. Figure 18
shows the R∗

1 dependence of the r.m.s. value Vθrms of the fluctuating meridian velocity
component Ṽθ in the absence and presence of the external disturbance. Vθrms is not
influenced much by the external disturbance with f̂ I = 1.5 Hz at about 1.2 � R∗

1 < 2.1
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Figure 18. Influence of external disturbances with various frequencies f̂ I on the r.m.s. value
Vθrms of Ṽθ in the range of about 5 � R∗

1 � 6.6 for β = 0.14. �, f̂ I = 0 Hz (no external distur-
bance); �, f̂ I = 1.0 Hz; �, f̂ I =1.5 Hz; �, f̂ I = 2.9 Hz; �, f̂ I = 4.5 Hz.

at which the velocity fluctuation increases with R∗
1 , but is decreased by the external

disturbance both at 2.1 � R∗
1 < 6.3 at which the velocity fluctuation gradually decreases

with increasing R∗
1 and at 6.3 � R∗

1 � 6.6 at which it abruptly decreases with increasing
R∗

1 . More specifically, the difference in the external-disturbance effect due to the value
of f̂ I appears dominantly just before the velocity fluctuation disappearance, i.e. just
before the disappearance of spiral TG vortices.

The following result regarding the onset Reynolds number RD of the disappearance
of fluctuations under the influence of the external disturbance should be noted.
The value of RD determined from the fluctuating meridian velocity component Ṽ θ

(figure 18) is not equal to that obtained from the fluctuating azimuthal velocity
component Ṽφ (figure 17). The former is slightly larger than the latter. The reason
for this is thought to be as follows. Figure 19 shows time series records of fluctuating
azimuthal and meridian velocity components, Ṽφ and Ṽθ , respectively, for time
t1 + 150 � t � t1 + 170 in the case where R∗

1 was first set to be 6.59 at t = 0 and then
the external disturbance was introduced into the flow at time t = t1. Here, t1 = 488
(t̂1 = 10 minutes). Ṽφ changes its waveform instantaneously at t ≈ t1 + 163, while Ṽθ

has not yet changed. As described previously, the external disturbance is given to
the meridian velocity component, but the influence of the external disturbance on
Ṽθ occurs surprisingly slower than on Ṽφ as described above. Although the value of
RD was determined at the quasi-static acceleration condition in figure 18, the delay
time until the external disturbance influences Ṽθ is thought to be larger than that
until it influences Ṽφ . Therefore, the RD value determined from Ṽθ is larger than that

determined from Ṽφ , as described above.
We also considered the influence of external disturbances with various frequencies

on the fundamental frequencies of velocity fluctuations caused by spiral TG vortices
and travelling waves on TG vortices. It was found that the fundamental frequencies
are not influenced by the external disturbance.
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Figure 19. Time series records of the fluctuating azimuthal and meridian velocity components
for time t1 + 150 � t � t1 + 170 for β = 0.14 in the case where R∗

1 was first set to be 6.59 at
t = 0 and then the external disturbance with f̂ I = 1.0 Hz was introduced into the flow at t = t1.
Here, t1 = 488 (t̂1 = 10 minutes).

5. Concluding remarks
In this paper, we have grappled with two important issues regarding spherical

Couette flow with the inner sphere rotating and the outer sphere fixed, i.e. the disap-
pearance of velocity fluctuation with increasing Reynolds number Re in the laminar–
turbulent transition process (referred to as relaminarization) and the receptivity to a
sufficiently small artificial external disturbance introduced into spherical Couette flow.

In order to study relaminarization, we measured velocity fluctuation and investig-
ated the evolution with increasing Re of the velocity power spectra, the kinetic energy,
the correlation dimension, the maximum Lyapunov exponent and the probability
density distribution of the fluctuating azimuthal velocity component for five clearance
ratios: β = 0.06, 0.10, 0.14, 0.158 and 0.206. For 0.13 < β < 0.17 we found that the
relaminarization phenomenon is caused by a reverse Hopf bifurcation with no inter-
mittency, corresponding to the phenomenon that travelling waves on TG vortices de-
generate with increasing Reynolds number and finally the flow returns to a completely
steady toroidal-TG-vortex flow. In the case with relaminarization, the correlation di-
mension first increases to 4–5 and then decreases to zero with increasing Re before the
occurrence of the relaminarization; it then increases again with Re. In the case without
relaminarization, on the other hand, the correlation dimension continues to increase
with Re without a decrease. Also, the kinetic energy in the high-frequency components
of the fluctuating azimuthal velocity component first increases and later decreases to
almost zero with increasing Re in the case with relaminarization, while it continues to
increase with Re in the case without relaminarization. Hence, we have obtained new
experimental results concerning the phenomenon of velocity fluctuation disappearance
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in the present study. However, the dynamics of the relaminarization phenomenon
remain unclear, and more theoretical and/or numerical studies are necessary.

Next, in order to study receptivity of the transition process to a sufficiently
small artificial external disturbance introduced into the spherical Couette flow, we
experimentally examined, with the introduction of an external disturbance, the critical
Reynolds numbers of the first and higher instabilities, and the root-mean-square
(r.m.s.) values and fundamental frequencies of fluctuating azimuthal and meridian
velocity components for β = 0.14 with relaminarization. We revealed that the lowest
critical Reynolds number ReC1 of the first instability (Taylor instability) obtained
under the condition that the first instability is allowed to take a long time to occur is
not influenced by sufficiently small external disturbance. On the other hand, the critical
Reynolds numbers of the second instability (occurrence of spiral TG vortices) and the
velocity fluctuation disappearance are decreased by the external disturbance. Also,
the turbulence intensity can be decreased by the external disturbance at Re values
before the velocity fluctuation disappearance. However, fundamental frequencies of
spiral TG vortices and travelling waves on TG vortices are not be varied by the
external disturbance. Hence, we have experimentally revealed the effects of a small
external disturbance on the transition process. The clarification of the mechanism
causing these effects requires more theoretical and numerical studies.

This work was supported by a Grant-in-Aid for Scientific Research (C2) in 1996–
1997 and 1998–1999 from the Japan Ministry of Education, Science, Sports and
Culture.
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Krause, E. 1980 Taylor-Görtler vortices in spherical gaps. Comput. Fluid Dyn. 2, 81.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

05
00

46
59

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112005004659


350 K. Nakabayashi, W. Sha and Y. Tsuchida

Larger, L., Lee, M. W., Goedgebuer, J. P. & Elflein, W. 2001 Chaos in coherence modulation:
bifurcation of an oscillator generating optical delay fluctuations. J. Opt. Soc. Am. B-Opt. Phys.
18, 1063–1068.

Longtin, A. & Hinzer, K. 1996 Encoding with bursting, subthreshold oscillations, and noise in
mammalian cold receptors. Neural Computation 8, 215–255.

Mamun, C. K. & Tuckerman, L. S. 1995 Asymmetry and Hopf bifurcation in spherical Couette
flow. Phys. Fluids 7, 80–91.

Marcus, P. & Tuckerman, L. S. 1987a Simulation of flow between concentric rotating spheres.
Part 1. Steady states. J. Fluid Mech. 185, 1–30.

Marcus, P. S. & Tuckerman, L. S. 1987b Simulation of flow between concentric rotating spheres.
Part 2. Transitions. J. Fluid Mech. 185, 31–65.

Munson, B. R. & Menguturk, M. 1975 Viscous incompressible flow between concentric rotating
spheres, Part 3. Linear stability and experiments. J. Fluid Mech. 69, 705–719.

Nakabayashi, K. 1978 Frictional moment of flow between two concentric spheres, one of which
rotates. Trans. ASME I: J. Fluids Engng 100, 97–106.
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