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Drag force on a liquid domain moving inside a
membrane sheet surrounded by aqueous medium
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We compute the drag on a circular and liquid microdomain diffusing in a two-
dimensional fluid lipid bilayer membrane surrounded by a fluid above and below.
Under the assumptions that the liquids are incompressible and the flow is of low
Reynolds number, Stokes’ equations describe the flow in the two-dimensional
membrane as well as in the surrounding three-dimensional fluid. The expression
for the drag force on the liquid domain involves Fredholm integral equations of the
second kind, which we numerically solve using discrete collocation method based
on Chebyshev polynomials. We observe that when the domain is more viscous
than the surrounding membrane (including the rigid domain case), the drag force is
almost independent of the viscosity contrast between the domain and the surrounding
membrane, as also observed earlier in experiments by other researchers. The mobility
also varies logarithmically with Boussinesq number β for large β. On the other
hand, for a less viscous domain the dimensionless drag force reduces with increasing
viscosity contrast, and a significant change in the drag force, from that when there
is no viscosity contrast or when the domain is rigid, has been observed. Further, the
logarithmic behaviour of the mobility no longer holds for less viscous domains. Our
method of computing the drag force and diffusion coefficient is valid for arbitrary
viscosity contrast between the domain and membrane and any domain size (subject
to β > 5).

Key words: biological fluid dynamics, low-Reynolds-number flows, membranes

1. Introduction
Cell membranes consist of different lipid molecules and proteins and they form

a heterogeneous two-dimensional surface (Singer et al. 1972; Engelman 2005).
Sphingolipid and cholesterol-rich microdomains of the membrane, sometimes called
rafts, diffuse on the membrane surface (Simons & Ikonen 1997). The important
roles played by rafts in different cell biological processes have been the focus of
many studies on membrane biology and biophysics in the past (Brown & London
1998; Ikonen 2001). Recent studies put the proposed mechanisms of emergence of raft
domains under scrutiny; however, the fact that there are cholesterol-rich microdomains
that play a crucial role in cell functions is still valid. Furthermore, the motion or
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Drag on a liquid membrane domain 469

diffusion of these heterogeneous submicrometre size domains in the surrounding
membrane surface is crucial for the cell functionality.

The size of the microdomains in cell membranes is of the order of a tenth of a
micrometre, which makes it difficult to observe them under the optical microscope
in live conditions. On the other hand, giant unilamellar vesicles (GUVs) consisting
of phase-separated liquid-ordered and disordered domains are simpler model systems
for cell membranes (Dietrich et al. 2001). These GUVs have domains that are rich in
saturated lipids and cholesterol, have sizes in micrometre range (so that they can be
observed via optical microscope) and move in the membrane surface.

In his pioneering work, Saffman (1976) employed a hydrodynamic model to obtain
the drag on a protein molecule moving in an incompressible lipid membrane sheet
of viscosity η and thickness h. The protein was considered to be a rigid cylinder of
height h. The space above and below the membrane was filled up with a liquid of
viscosity µs that is less than the membrane viscosity η. For the case when the cylinder
radius a is much smaller than the ratio ηh/µs the translational diffusion coefficient of
the cylinder obtained by Saffman (1976) is

DSDt = kBT
4πηh

[
log
(
ηh
µsa

)
− γ

]
, (1.1)

where kB is Boltzmann’s constant, T is absolute temperature and γ is Euler’s constant.
Later the diffusion coefficient for a rigid cylindrical particle of an arbitrary size was
computed by Hughes, Pailthorpe & White (1981) and Petrov & Schwille (2008).
Evans & Sackmann (1988) obtained the diffusion constant of a rigid disk moving
along a supported lipid bilayer. They considered the effect of the supporting fluid on
the lipid bilayer with a momentum dissipation term proportional to the membrane
fluid velocity in the momentum equation. In contrast, Stone & Ajdari (1998) obtained
the diffusion coefficient for a rigid circular domain of the same thickness as that of
a supported lipid bilayer by considering the viscous force of the supporting fluid on
the lipid bilayer with a body force term in the corresponding momentum equation.

When the domain is rigid and its size is small compared to the hydrodynamic
length scale (a � ηh/µs), the domain diffusion constant depends on the domain
radius as ln(1/a) (Saffman & Delbrück 1975; Saffman 1976). This has been validated
experimentally (Hughes et al. 1982; Peters & Cherry 1982; Lee & Petersen 2003;
Cicuta, Keller & Veatch 2007). However, the experiments by Gambin et al. (2006)
show that for a large range of protiens and protien clusters, the diffusion constant
varies as 1/a, in contrast to ln(1/a) as predicted by the theoretical results of Saffman
& Delbrück (1975) and Saffman (1976). In support of the experimental results of
Gambin et al. (2006), Naji, Levine & Pincus (2007) reported that the membrane
deformation in the neighbourhood of the particle reduces the diffusion constant.
By using mesoscopic simulations Guigas & Weiss (2006) reported that the domain
diffusion varies as ln(1/a) for the smaller domains, and when the domain size is
larger than the hydrodynamic length scale the domain diffusion constant depends on
the domain size as 1/a2. However, the experimental results of Klingler & McConnell
(1993) and Cicuta et al. (2007) support the prediction of Hughes et al. (1981) that
the diffusion constant varies as 1/a when the domain radius is large compared to the
hydrodynamic length scale.

In general, the liquid-ordered domains in vesicles or protein-rich microdomains in a
cell membrane are large compared to the size of proteins; they are not rigid but rather
fluid-like and their viscosity differs from the viscosity of the surrounding membrane.
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Towards this Ramachandran et al. (2010) modelled the microdomain as a circular
liquid domain with zero thickness moving in a 2D liquid membrane sheet. They
obtained the finite diffusion coefficient of the liquid domain by considering the effect
of surrounding fluid above and below the membrane plane through a momentum decay
term in the momentum equation. Also recently, Seki, Ramachandran & Komura (2011)
obtained the diffusion coefficient of a liquid disk moving on a supported membrane
sheet when the viscosities of the liquid disk and the membrane are the same. Seki,
Mogre & Komura (2014) studied the diffusion of a circular liquid domain moving
along one of the monolayers with viscosity identical to the domain viscosity while
considering the frictional resistance between the monolayers of the lipid bilayer. When
the viscosity contrast, defined as the ratio of the difference between the viscosities of
the domain and the surrounding membrane and the domain viscosity, is either zero
or small, Fujitani (2011, 2012, 2013) derived approximate analytical expressions for
the drag force on the liquid domain and thus the diffusion coefficient. To compute
values of the drag force, certain integrals had to be evaluated numerically or further
approximations had to be made.

All the above studies suffer from the limitation that either the domains are rigid, or
they are too small in comparison to the hydrodynamic length scale, or they have very
little viscosity contrast with the surrounding membrane. In the actual experimental
scenario of the domains moving in a vesicle, none of these holds. For example,
the domains have sizes in the µm range, their viscosity is approximately five times
that of the surrounding disordered membrane and certainly the domains are not
rigid. Recently, Aliaskarisohi et al. (2010), have studied the diffusion of domains
in a spherical vesicle surface and obtained an approximate series solution for the
diffusion coefficient for a liquid domain. The authors observe that the diffusion
of the domains is suppressed due to the confinement to the vesicle surface and
the diffusion is dominated by the dissipation into the bulk fluid. The authors also
mention the difficulty in applying their analysis to the case of a flat membrane
as a large number of terms need to be retained in the series solution, leading to
difficulty in numerical inversion of a matrix of extremely large size. The works of
Aliaskarisohi et al. (2010), Fujitani (2011, 2012, 2013) and Seki et al. (2011, 2014)
assumed the no-slip boundary condition at the membrane-surrounding fluid and the
domain–membrane interfaces.

To understand the effect of different fluid viscosity on the domain diffusion in a
lipid bilayer, Cicuta et al. (2007) recorded the diffusion of circular liquid domains on
the surface of GUVs. They reported that the diffusion coefficient of the circular liquid
domain varies with the domain size and it is independent of the membrane viscosity
when the membrane viscosity is less than the domain viscosity. In contrast, when the
domain viscosity is less than the membrane viscosity, they observed that the domain
diffusion depends on the membrane viscosity and the domain size. The experimental
and theoretical observations of Cicuta et al. (2007) and Aliaskarisohi et al. (2010)
motivated us to study the motion of a circular liquid domain moving in a flat liquid
membrane sheet of different viscosity.

In our study, the membrane sheet spans to infinity, and the domain and the
membrane are assumed to have the same thickness, remain flat and be surrounded by
liquid of a different viscosity that spans to infinity above and below the membrane
sheet. All the liquids are incompressible and subject to low-Reynolds-number flow
such that the motion is governed by Stokes’ equation. The drag on the domain is
obtained by solving Stokes’ equation for the two-dimensional membrane as well
as the surrounding three-dimensional fluid. The resulting expressions for the drag
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force involve a set of dual integral equations, of Fredholm second kind. We employ a
discrete collocation method (Atkinson 1997) with approximations based on Chebyshev
polynomials to numerically solve the dual integral equations.

Our computation of the drag coefficient (and mobility) is valid for arbitrary viscosity
contrast between the domain and membrane as well as the membrane and fluid
subject to the condition that the surrounding membrane curvature can be neglected.
The numerical solution procedure is valid for arbitrary size, in principle. However,
in practice, we obtain high accuracy when the Boussinesq number is larger than five.
Our computation agrees with the experimental observation that when the domains are
more viscous than their surrounding, the diffusion coefficient is almost independent
of the viscosity contrast. However, for negative viscosity contrast, the dimensionless
mobility (or equivalently the diffusion constant) is larger than the mobility when
the domains are more viscous, it is sensitive to the viscosity contrast, and it does
not vary logarithmically with the Boussinesq number. In fact, the mobility varies
non-monotonically with the Boussinesq number when the viscosity contrast is large
and negative. This is unlike the behaviour observed when the domains are more
viscous or rigid. To our knowledge, this is a new observation and experiments need
to be conducted to demonstrate the behaviour observed here for negative viscosity
contrast. Upon choosing a suitable composition from the ternary phase diagram
of a saturated lipid, an unsaturated lipid and cholesterol, we can prepare GUVs
with coexisting liquid-ordered and disordered phases in which domains consisting of
ordered phase are embedded in the disordered surrounding (Veatch & Keller 2005). In
this case the viscosity contrast is positive. Further, by selecting different compositions
along the tie-line of the ternary phase diagram of Veatch & Keller (2005), we can
make domains enriched with disordered phase in a surrounding consisting of ordered
phase. In this scenario the viscosity contrast becomes negative and it is possible to
prepare experimental systems in which the viscosity contrast is less than −5 (i.e. large
in magnitude).

2. Problem formulation
A circular liquid domain of size a and viscosity ηd moves with velocity U along

X-axis in a flat fluid membrane sheet of viscosity ηm. The space above and below
the domain and membrane sheet is occupied by a liquid with viscosity µs. A
schematic diagram of the system is shown in figure 1. All the fluids considered are
incompressible and undergo low-Reynolds-number flow.

The governing equations for various domains are as follows. For the 3D fluid above
(z> 0) and below (z< h) the membrane sheet, including the domain, we have

µs1v =∇p and ∇ · v = 0, (2.1a,b)

where v(r, θ, z) = (vr, vθ , vz) and p(r, θ, z) are the velocity and pressure fields
in the surrounding fluid, respectively. The ∆ and ∇ are the Laplacian and the
gradient operators, respectively. For the membrane and domain liquid (−h 6 z 6 0),
the variation of the quantities across the thickness direction is precluded due to
its molecular structure. Further, because of the symmetry about the mid-plane of
the membrane we assume that the velocity in the z direction is zero. Thus for the
in-plane motion in the domain and the surrounding membrane we have (Saffman
1976)

ηd1u+2σ/h=∇Π (for r<a), ηm1u+2σ/h=∇Π (for r>a) and ∇ ·u=0,
(2.2a−c)
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FIGURE 1. (Colour online) Schematic diagram of a circular liquid domain of size a and
thickness h moving with velocity U along the X-axis in a membrane sheet of the same
thickness. The viscosities of the domain, the surrounding membrane and the surrounding
fluid are ηd, ηm and µs, respectively. The schematic diagram on the right is the sectional
view in the x–z plane. Both the membrane and the surrounding fluid span to infinity in
their respective directions.

where u(r, θ) = (ur, uθ , 0) and Π(r, θ) are the velocity and pressure fields,
respectively, and σ is the traction (or drag) applied on the top and bottom surfaces
of the membrane and domain by the surrounding fluid. No-slip boundary conditions
at the membrane-surrounding liquid and domain–membrane interfaces are applied and
the velocity decays to zero at infinity for both the membrane and the surrounding
fluid. Note that the no-slip boundary condition at the membrane-surrounding liquid
interface leads to the following relations between the velocity fields in the surrounding
fluid and the domain/membrane:

ur(r, θ)= vr(r, θ, z= 0) and uθ(r, θ)= vθ(r, θ, z= 0). (2.3a,b)

The incompressibility conditions for the surrounding and membrane fluids are
separately imposed (see equation (2.8) of Saffman (1976) and equation (2.22) of
Fujitani (2011)). However, it is worth mentioning that as both the domain and its
surrounding are assumed to be incompressible fluids, the in-plane flow field must be
divergence-free at the domain boundary. This condition has not been imposed in the
present study.

Equations (2.1) and (2.2), along with the boundary conditions, can be solved
analytically for the pressure and velocity fields by exploiting the rotational symmetry
about the z-axis and use of Fourier and Hankel transforms (Saffman 1976; Fujitani
2011). The contributions to the drag force on the circular liquid domain moving with
a steady velocity U come from the tangential components of the tractions applied to
the domain by the surrounding membrane at the cylindrical interface (at r = a) and
by the surrounding fluid at the top and bottom circular interfaces of radius a. The
expression for the magnitude of the drag force is given by the integral

F= lim
r̃→1+

π

a

∫ ∞
0

dz zA(z)J2(zr̃), (2.4)

where r̃ = r/a dimensionless radial distance and A(z) is an as yet undetermined
function. The details of the derivation of (2.4) have been omitted here to avoid
repetition. They are available in Fujitani (2011). The quantity A(z) is obtained, in
principle, by solving the following two integral equations:

A(z)= 2acU
πz

J1(z)+ ε
∫ ∞

0
dt

t
1+ βt

[zJ0(t)J1(z)− tJ0(z)J1(t)] A(t)
z2 − t2

(2.5)
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and

2µsUa2 =
∫ ∞

0
dt

A(t)J1(t)
t(1+ βt)

, (2.6)

where c is an unknown constant, β=ηm/(2µsa) is the Boussinesq number representing
the ratio between the membrane drag and surrounding fluid drag, ε = (ηd − ηm)/ηd

denotes the relative viscosity contrast between the domain and the surrounding
membrane, and Ji(z) is the Bessel function of ith order and first kind. Note that,
typically, 0 6 ε 6 1, and ε = 0 indicates that the domain and membrane have same
viscosity while ε = 1 implies that the domain is rigid or the membrane viscosity is
very small in comparison to the domain viscosity. Further, for ε < 0 the surrounding
membrane has higher viscosity than the domain, which is not the case in general.
However, it is possible to make two-phase lipid bilayer vesicles in the laboratory
with appropriately chosen lipid composition such that the domain viscosity is smaller
than the surrounding. A typical value of ε is 4/5 and 0.2<β < 1000 (considering
10−9 <ηm < 10−6 N s m−1 and 0.5 < a < 2.5 µm (Brooks et al. 1999; Cicuta et al.
2007; Aliaskarisohi et al. 2010; Stanich et al. 2013)).

Equations (2.4)–(2.6) complete the description to obtain the drag force on the
domain, and subsequently the diffusion coefficient or mobility of the domain.
However, the main difficulty lies in solving the dual integral equations (2.5) and
(2.6), particularly when the viscosity contrast is neither zero nor unity. For ε = 0, the
solution to the integral equation (2.5) is exact and is given by A(z)= 2acU J1(z)/πz,
and through the subsequent use of (2.6) the constant c can be evaluated. For ε� 1,
Fujitani (2011) obtained a semi-analytical solution to (2.5). However, when ε is
not very small, the dual integral equations (2.5) and (2.6) are not analytically
tractable. To our knowledge, no numerical solution is available either. We develop a
simple algorithm to obtain a numerical solution to (2.5) and (2.6) using the discrete
collocation method (Atkinson 1997) and Chebyshev polynomials. We first introduce
a new variable B(z)= zA(z) and rewrite (2.5) and (2.6) as

B(z)= 2acU
π

J1(z)+ ε
∫ ∞

0
dt M(z, t)B(t) (2.7)

and

2µsUa2 =
∫ ∞

0
dt

B(t)J1(t)
t2(1+ βt)

, (2.8)

where

M(z, t)= z
(1+ βt)

[zJ0(t)J1(z)− tJ0(z)J1(t)]
(z2 − t2)

. (2.9)

Equation (2.7) is in the form of a Fredholm equation of second kind. The drag force
in terms of the new variable B(z) is

F= lim
r̃→1+

π

a

∫ ∞
0

dz B(z)J2(zr̃). (2.10)

The expression (2.10) for the drag force in terms of the new variable B(z) eliminates
the possibility of the integrand taking prohibitively large values when z is large,
making the numerical computation of the integral easier. In the following, we describe
the numerical solution procedure for (2.7) and (2.8).
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3. Numerical solution of Fredholm integral equation

To solve (2.7), we need to map the infinite domain [0,∞) to a finite domain (see
Collocation Theorem 2.6.2 of Zemyan (2012)). To achieve this, we define the change
of variable z= tan[(X + 1)π/4], and rewrite (2.7) and (2.8) as

B(X)= 2acU
π

J1(z(X))+ επ

4

∫ 1

−1
dY sec2[(Y + 1)π/4]M(X, Y)B(Y) (3.1)

and

2µsUa2 = π

4

∫ 1

−1
dY

sec2[(Y + 1)π/4]B(Y)J1(t(Y))
t(Y)2(1+ βt(Y))

, (3.2)

respectively. In the above t(Y)= tan[(Y + 1)π/4] and the values of X and Y lie in the
finite domain [−1, 1].

Now we can approximate B(X) using a set of n linearly independent functions that
are continuous in [−1, 1] (Zemyan 2012). We choose Chebyshev polynomials for this
purpose:

B(X)≈
n∑

i=1

BiTi−1(X), (3.3)

where Ti(X) is the Chebyshev polynomial of first kind with degree i. Note that the
number of collocation points is same as the number of Chebyshev polynomials used
to approximate B(X). By substituting (3.3) into (3.1), we obtain

n∑
i=1

Bi

[
Ti−1(X)− επ

4

∫ 1

−1
dYsec2

[
(Y + 1)π/4

]
M(X, Y)Ti−1(Y)

]
= 2acU

π
J1(z). (3.4)

The most convenient choice of the collocation points for (3.4) are the zeros of the
nth degree Chebyshev polynomial, and with this choice we obtain a system of n linear
equations with n unknown Chebyshev coefficients:[

T̄ − επ

4
V̄
]

b= R, (3.5)

where V̄ and T̄ are n× n matrices with elements vi,j=
∫ 1
−1 dY sec2[(Y + 1)π/4]M(zj, t)

× Ti−1(Y) and ti,j = Ti−1(Xj), respectively, and Xj are the collocation points. The
elements of the n × 1 array b of Chebyshev coefficients are bi = Biπ/2acU, and
rj = J1(zj) are the elements of the n× 1 array R.

We use the Gauss–Chebyshev quadrature method (Mason & Handscomb 2010) to
compute the elements vi,j:

vi,j ≈ π

n

n∑
k=1

[√
1− Y2

k sec2
[
(Yk + 1)

π

4

]
M(zj, tk)Ti−1(Yk)

]
, (3.6)

where the Yk are the zeros of the nth degree Chebyshev polynomial. Substituting
the expression vi,j obtained from (3.6) into (3.5) and solving for b, we obtain the
Chebyshev coefficients Bi in terms of the unknown constant c. To calculate c, we
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substitute the Chebyshev polynomial approximation of function B(X), given by (3.3),
into (3.2) and obtain

c= 4µsa

/π

n

n∑
i=1

n∑
k=1


√

1− Y2
k sec2

[
(Yk + 1)

π

4

]
biTi−1(Yk)J1(Yk)

t2
k(1+ βtk)


 . (3.7)

Note that we use the Gauss–Chebyshev quadrature method to compute the integral
appearing in (3.2). Using the results of (3.5) and (3.7), and substituting (3.3) into
(2.10), we obtain the approximation to the drag force F on the circular liquid domain
of radius a as

F≈ lim
r̃→1+

π

a

n∑
i=1

∫ ∞
0

dz BiTi−1(X)J2(zr̃). (3.8)

We decompose the domain of integration appearing in (3.8) into two parts:

F≈ lim
r̃→1+

π

a

n∑
i=1

[∫ UL

0
dz BiTi−1(X)J2(zr̃)+

∫ ∞
UL

dz BiTi−1(X)J2(zr̃)
]
. (3.9)

Exploiting the boundedness of Ti(·) and the exponentially decaying behaviour J2(zr̃)
for large z, we choose a UL <∞ such that the second integral in (3.9) is small and
can be neglected in comparison with the first integral. Finally, the expression for the
drag force becomes

F≈ lim
r̃→1+

π

a

n∑
i=1

∫ UL

0
dz BiTi−1(X)J2(zr̃). (3.10)

The above integral is evaluated using Simpson’s rule.

4. Results and discussion
To compute the drag force F using (3.10), we need to choose the number of

Chebyshev polynomials (or collocation points) n, the upper limit of integration UL,
and the step size h in Simpson’s rule. Furthermore, we need to choose an appropriate
value of r̃ larger than but close to unity to replace the limit r̃→ 1+. We carry out
convergence studies for the drag force F with respect to the parameters. Further, we
compute the error in the drag force for two limiting cases in which the analytical
solution is available. They are ε = 0 (viscosity of domain and membrane are the
same (Fujitani 2011)) and ε = 1 (the domain is rigid (Hughes et al. 1981; Petrov &
Schwille 2008)).

4.1. Validation of the numerical method for a domain with the same viscosity as the
surrounding membrane (ε = 0) and a rigid domain (ε = 1)

For ε = 0 the viscosities of the domain and the surrounding membrane are the same.
In this case, from (2.7) we obtain B(X) = 2acU J1(X)/π and the drag force on the
liquid domain given by (Fujitani 2011)

F= 2cU lim
r̃→1+

∫ ∞
0

dz J1(z)J2(r̃z)= 2cU, (4.1)
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FIGURE 2. (Colour online) Variation of F/2cU for ε = 0 (a) with UL for r̃ = 1.009,
n = 4000, h = 0.05, (b) with 1/h for r̃ = 1.009, n = 4000, UL = 6000, (c) with r̃ for
n= 4000,UL = 6000, h= 0.05 and (d) with n for r̃= 1.009,UL = 6000, h= 0.05.

where
c= πµsa∫ ∞

0
dz

J2
1(z)

(z2 + βz3)

. (4.2)

In figure 2 we present the variation in the ratio F/2cU computed numerically
using (3.10) with respect to the parameters UL, 1/h, r̃ and n. Note that the
integral limr̃→1+

∫∞
0 dz J1(z)J2(r̃z) = 1, and consequently the ratio F/2cU is unity

and independent of β. Upon observing the convergence and the closeness of
the ratio to unity we find the following parameter values: n = 12 000, r̃ = 1.009,
UL = 6000, h= 0.05. However, we also find from figure 2(d) that the ratio is closest
to unity for n = 4000 as well. Thus to save computational time we finally choose
n= 4000, r̃= 1.009,UL = 6000 and h= 0.05 for calculating the drag force.

After fixing these parameters, we compute the constant c using (3.7) and compare
it with the exact solution (4.2) for different β. The integral in (4.2) is evaluated using
the software Mathematica. In figure 3(a,b), we present the variation in the error in
c and percentage error in F/µsaU with β. We observe that up to β = 107 the error
in c is small and the percentage error in F is below 0.05 %. Thus we claim that our
method can approximate the drag force on the liquid domain accurately.

For the case of a rigid domain, Petrov & Schwille (2008) derived a simple analytical
expression for the drag force for the solution developed by Hughes et al. (1981).
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FIGURE 3. (Colour online) Error in calculation of constant c versus log β for ε = 0. The
parameters are n= 4000, UL = 6000 and h= 0.05.

In figure 4 we present the variation of the error in dimensionless drag force (F/µsaU)
for β = 10 calculated using (3.10) with respect to the parameters UL, 1/h, r̃ and
n. The drag force computed by Petrov & Schwille (2008) has been taken as the
benchmark. We observe that the error is minimum when r̃= 1.014, n= 4000, h= 0.06
and UL= 6000 and we choose these parameter values for computing the drag force on
the domain. The variation of the error and the percentage error in the dimensionless
drag force F/µsaU with respect to β have been presented in figure 5(a,b), respectively.
The error initially decreases with β and then increases almost linearly. However, the
percentage error asymptotically reaches a constant value of around 2.5 % (see inset
of figure 5b). Further, the percentage error is large for β less than 5, and is around
5 % or below for β larger than 5. Thus we say that our method is accurate for larger
values of β when ε is unity.

For ε other than zero or unity, we do not have any analytical or existing results
to compare. We carry out convergence studies for the drag force with respect to the
parameters UL, h, r̃ and n for a few values of ε and β and obtain the same parameter
values at convergence. The values of ε and β selected for convergence studies lie in
a large range. Thus for subsequent studies we select n= 4000, r̃= 1.014,UL = 6000,
h= 0.06.

4.2. Drag on the domain for arbitrary ε
In figure 6(a,b) we present the variation of the dimensionless drag force with the
Boussinesq number β for several values of the viscosity contrast ε between the
domain and surrounding membrane. The values of ε are chosen such that the domain

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

43
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.434


478 V. Laxminarsimha Rao and S. L. Das

2 4 6 8 10
4.60

4.65

4.70

4.60

4.65

4.70(a)

0 100 200

(b)

1.000 1.005 1.010 1.015

20

0

40

60(c)

21 3 4 5
0

10

20

30(d)

E
rr

or
 in

E
rr

or
 in

FIGURE 4. (Colour online) Variation of the error in F/µsaU (a) with UL for r̃ = 1.014,
n = 4000, h = 0.06, (b) with 1/h for r̃ = 1.014, n = 4000, UL = 6000, (c) with r̃ for
n = 4000, UL = 6000, h = 0.06 and (d) with n for r̃ = 1.014, UL = 6000, h = 0.06. In
all the above cases β = 10 and ε = 1.

characteristic varies from highly viscous to one having very low viscosity with
respect to the surrounding membrane. For example, ε = 0.8 implies ηd/ηm = 5, and
for ε = −20 we obtain ηd/ηm = 1/21. We have chosen β to vary between 5 and
1000, for most cases, as this lies within the range of its possible values. Further,
we obtained accuracy of 95 % or more in the computation of the drag force above
β = 5 in the previous subsection. From figure 6, we observe that, for any specified
ε, the dimensionless drag force increases with β. An increasing β implies increasing
surrounding membrane viscosity ηm for fixed surrounding fluid viscosity and domain
radius. Thus the drag force should increase with β in this scenario.

We observe from figure 6(a) that for positive ε the dimensionless drag force does
not change significantly with ε. The same is true for −1 6 ε 6 1. Note that when
ε changes from 0 to unity the domain behaviour changes from having the same
viscosity as the surrounding membrane to near rigid. During this drastic change in
the domain behaviour the diffusion coefficient does not change. In this scenario, the
domains diffuse in a membrane of low viscosity. A similar observation was also
made by Cicuta et al. (2007) in their experimental study.

For large and negative ε the domain viscosity is much smaller than that of the
surrounding membrane. In this scenario, we observe a significant drop in the drag
force for all β (see figure 6b). From figure 7(a), we also observe that the ratio
between the drag forces on the rigid and liquid domains increases with β initially
and then decreases. The drop is most significant in the intermediate range of β,
between approximately 10 and 100. Again, from figure 7(a) we observe that the drag
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FIGURE 5. (Colour online) Variation of the error and percentage error in F/µsaU versus
β for ε = 1. The parameters are n= 4000, r̃= 1.014,UL = 6000, h= 0.06.
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FIGURE 6. (Colour online) Variation of F/µsaU with the Boussinesq number β for
different viscosity contrast ε. The parameters chosen are n= 4000, r̃= 1.014, UL = 6000,
h= 0.06.
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FIGURE 7. (Colour online) (a) Variation of drag force on the liquid domain, relative to
the drag force on a rigid domain of the same size, with the Boussinesq number β for
three different values of viscosity contrast ε. (b) Mobility with respect to β for β > 5 and
comparison with the results of Saffman (1976) and Hughes et al. (1981). For large and
negative ε, significant departure from the logarithmic behaviour is observed.

forces on the rigid and the liquid domains are almost the same −1 6 ε 6 1 (data for
ε =−1 not presented).

Hughes et al. (1981) have predicted that mobility varies linearly with β for small β.
Due to the large percentage error in our results for β 6 5, we do not attempt a
quantitative comparison of mobility with the asymptotic behaviour predicted by
Hughes et al. (1981). However, we do observe that the absolute error is less for
β � 1 and the mobility varies linearly with β in this regime (not shown). Finally,
in figure 7(b), we present the dimensionless mobility variation with β for different
ε. For a rigid domain (ε = 1) our results agree with the logarithmic behaviour
(U/F ≈ ln(2β)) predicted by Saffman (1976) and Hughes et al. (1981). When the
domain is not rigid, but the viscosity contrast ε is less than unity in magnitude, the
mobility for the liquid domain is close to that for the rigid domain. However, for
large and negative ε, that is when the surrounding membrane is significantly more
viscous than the domain, the mobility is significantly different and does not vary
as ln(2β). The dimensionless mobility initially increases with β and subsequently
decreases but is always larger than the mobility for the rigid domain. To the best
of our knowledge, such a behaviour has not been predicted previously. It is possible
to design experiments by choosing a ternary lipid mixture of ordered and disordered
lipids and cholesterol of suitable composition to obtain domains of significantly lower
viscosity than the surrounding. Ternary phase diagrams presented in figures 8–10 of
Veatch & Keller (2005) can provide guidance to choosing such compositions.
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5. Conclusions

In this paper, we develop a simple numerical solution procedure involving the
discrete collocation method and Chebyshev polynomials for the dual integral equations,
of Fredholm second kind, that compute the drag force (and the diffusion coefficient)
on a liquid microdomain diffusing in a two-dimensional lipid bilayer membrane. We
first validate our method with the existing results for the cases when either the domain
is rigid or the domain and the surrounding membrane have the same viscosity. For
the general case of arbitrary viscosity contrast between the domain and surrounding
membrane, the drag force is almost independent of the viscosity contrast between
the domain and the surrounding membrane for a more viscous domain, whereas it
varies significantly with the viscosity contrast for a less viscous domain. Further,
unlike the rigid domain, the mobility of the domain does not vary logarithmically
with the Boussinesq number for larger values of the latter. The mobility initially
increases with the Boussinesq number and then decreases but is always larger than
that for the rigid domain. In our solution of the dual integral equations, we do not
make any assumptions. Accordingly, unlike the earlier studies, our methodology of
computing the drag force and diffusion coefficient is valid for arbitrary viscosity
contrast between the domain and membrane and for any domain size subject to the
condition that the Boussinesq number should be larger than 5 for good accuracy. A
study of the diffusion behaviour and drag on a microdomain for such a large range
of viscosity contrast between the domain and the surrounding membrane is now
possible.
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