

Solving the inverse dynamic control for low cost real-time
industrial robot control applications
A. Valera†, V. Mata‡, M. Vallés†, F. Valero‡, N. Rosillo‡ and
F. Benimeli‡
(Received in Final Form: November 9, 2002)

SUMMARY
This work deals with the real-time robot control imple-
mentation. In this paper, an algorithm for solving Inverse
Dynamic Problem based on the Gibbs-Appell equations is
proposed and verified. It is developed using mainly vectorial
variables, and the equations are expressed in a recursive
form, it has a computational complexity of O(n). This
algorithm will be compared with one based on Newton-
Euler equations of motion, formulated in a similar way, and
using mainly vectors in their recursive formulation. This
algorithm was implemented in an industrial PUMA robot.
For the robot control a new and open architecture based on
PC had been implemented. The architecture used has two
main advantages. First it provides a total open control
architecture, and second it is not expensive. Because the
controller is based on PC, any control technique can be
programmed and implemented, and in this way the PUMA
can work on high level tasks, such as automatic trajectory
generation, task planning, control by artificial vision, etc.

KEYWORDS: Robotic manipulators; Inverse dynamic problem;
Gibbs-Appell formulation; Robot control; Computer control;
Digital computer applications.

1. INTRODUCTION
One of the main problems when attempting to establish a
control of an industrial robotic system is in its own control
unit, since this unit is generally a totally closed subsystem.
Due to the fact that it uses its own operating system and,
since it is impossible to modify this control system (not
even the gain values), users have serious problems to

implement conventional as well as advanced control
strategies such force control and cooperative control of
several robots. It is also important in programming auto-
matic trajectory generation, control based on external
sensing (such as vision), control strategies, etc.

In order to solve these kinds of problems we can find
some solutions at Moreira et al.,1 where the control
hardware is modified, but generally it is neither trivial nor a
cheap task. Valera et al.2 shows a solution for these
drawbacks which presents a very simple, economical and
total open architecture for robot control.

This paper shows a real-time robot control using this
architecture. The control algorithms are based on the
Inverse Dynamic Problem (IDP) implementation using the
Gibbs and Appell notation. The literature about the IDP in
robots is vast. The interest in its potential applications
(verification that the torques needed to execute a proposed
trajectory do not exceed the capabilities of the actuators,
IDP as part of the Inverse Dynamics Control etc.) has
contributed to it.3,4

In order to increase their computational efficiency, many
algorithms for solving the IDP have been proposed in the
last thirty years. These algorithms are based on different
Principles of Dynamics (Lagrange, Newton-Euler, Kane),
the equations of motion are expressed in a closed-form or
recursive formulation, and use different types of variables to
express physical quantities. These algorithms can be
implemented by means of symbolic programs or strictly
numerical ones. Finally, according with the computer
architecture with which they will be processed, the
algorithms can be sequential or parallel.

Table I shows some of the proposed algorithms for
solving the IDP on robots with rigid links and ideal joints.

Custom-made algorithms, which take advantage of the
special characteristics of particular industrial robots, must
be specially mentioned. Examples of these are proposed by

† Departamento de Ingeniería de Sistemas y Automática,
Universidad Politécnica de Valencia, Valencia (SPAIN)
‡ Departamento de Ingeniería Mecánica y de Materiales,
Universidad Politécnica de Valencia, Valencia (SPAIN)

Table I. Several algorithms for solving the IDP.

Authors Dynamic Principle Formulation Type of Type of Type of
variables resolution processing

(Hollerbach, 1980) Lagrange-Euler Recursive Matricial Numerical Sequential
(Luh et al., 1980) Newton-Euler Recursive Vectorial Numerical Sequential
(Angeles, et al.,1 1989) Kane Recursive Tensorial Numerical Sequential
(Balafoutis and Patel, 1991) Newton-Euler Recursive Tensorial Numerical Sequential
(Khalil and Kleifinger,7 1987) Newton-Euler Recursive Vectorial Symbolic Sequential
(Lee and Chang,8 1986) Newton-Euler Recursive Vectorial Numerical Parallel

Robotica (2003) volume 21, pp. 261–269. © 2003 Cambridge University Press
DOI: 10.1017/S0263574702004769 Printed in the United Kingdom

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

Murray and Newman,5 based on the Newton-Euler formula-
tion, expressed in a recursive way and with vectorial
variables.

Several authors, including Balafoutis and Patel,6 have
made evident that the computational efficiency of the
dynamic algorithms depends fundamentally on the way
the calculations are arranged rather than the dynamic
principle in which they are based. This idea was already
proposed by Hollerbach,7 in which the dynamic problem
was reformulated for robots by using the Principle of
Lagrange in a recursive way and using a rotation matrix
3� 3 instead of a 4� 4 homogeneous transformation matrix.
By this method, the computational complexity could be
reduced from O(n4) to O(n). Nevertheless, the computa-
tional complexity of the Hollerbach algorithm was as three
times larger than the Luh, Walker and Paul algorithm.

On the other hand, it must be pointed out that important
differences can be noticed about the computational effi-
ciency assigned to algorithms of the same characteristics
applied to robots of the same type. An algorithm based on
Newton-Euler formulation, implemented in a recursive way,
using vectorial variables and solved in a numerical and
sequential way, can be found in Luh et al.8 which had been
assigned by Hollerbach a computational complexity of
150n–48 multiplications and 131n–48 additions, where n is
the number of degrees of freedom of the robot. Fu et al.9

provided a version of the same algorithm with a complexity
of 117n–24 multiplications and 103n–21 additions.
Zomaya10 gave a complexity of 150n multiplications
and 116n additions. Finally, Craig11 gave a complexity of
126n–99 multiplications and 106n–92 additions.

The observed differences come fundamentally from the
criteria used for counting operations, for instance, if
operations that involve multiplications by variables with 0
or 1 values, are detected. Therefore, it seems necessary to
indicate clearly the criteria that are going to be used for
counting the operations when comparing the efficiency of
algorithms.

The Gibbs-Appell equations were introduced by Gibbs in
1879 and formalised by Appell twenty years later. However,
in the robot dynamics field there are few published
references to works based on them. Renaud12 stands out
among the first references to the application of the Gibbs-
Appell equations to dynamic modelling of robots, for which
he produced remarkable commentaries on the previous
work of E.P. Popov. Vukobratovic and Kircanski13 devel-
oped a closed-form algorithm with a O(n3) computational
complexity. Desoyer and Lugner14 developed a recursive
algorithm for solving the IDP in robots using the Jacobian
matrix in order to avoid algebraic or numerical derivatives.
The computational complexity of the proposed algorithm is
O(n3).

In the present work the Gibbs-Appell equations are
applied for solving the inverse dynamic problems of robots
that have rigid links and ideal pairs. The algorithm proposed
has a computational complexity of O(n). This algorithms is
formulated in a recursive way, using vectors to express most
of the physical magnitudes involved in them (angular
velocity, angular acceleration, etc.). In order to achieve a
higher computational efficiency, the involved magnitudes in

the Gibbs function are expressed with respect to local
reference systems in the links. The computational efficiency
of this algorithm will be compared with that of the Luh,
Walker and Paul algorithm. That can be done since the same
type of formulation is used in both (recursive) and the
common physical magnitudes are expressed in the same
way. It must be stated that the criteria to evaluate the
number of operations will be the same in both algorithms.

This paper is organised as follows. In Section 2, the
proposed algorithm is developed and an analysis, comparing
it with the Luh, Walker and Paul algorithm, of its
computational complexity is provided. Section 3 presents a
proposed control architecture for industrial robots based on
PC. In Section 4, the inverse dynamic control is addressed
and is applied to a PUMA-type industrial robot. Finally,
Section 5 summarises the development of the paper and
suggests directions for future research.

2. THE GIBBS-APPEL FORMULATION APPLIED
TO THE INVERSE DYNAMIC PROBLEM IN
ROBOTS
In this section, the Gibbs-Appell equations are described,
and two different formulations are presented to solve the
Inverse Dynamic Problem on robot manipulators. The
robots are modelled following the Denavit-Hartenberg
modified notation, which considers four parameters �i, �i, ai,
and di, as it is shown in Figure 1. In the mentioned notation,
the reference system corresponding to link i is located on
joint i, and the z-axis is located on the axis in the same node,
which connects links i–1 and i.

The reference system i is related to the i–1 reference
system by means of the rotation matrix i–1R i and the
position vector i–1�rOi�1,Oi

:

i�1Ri =
cos�i

cos�i · sin�i

sin�i · sin�i

�sin�i

cos�i · cos�i

sin�i · cos�i

0
�sin�i

cos�i

i-1�rOi�1,Oi
=

ai

di sin�i

�di cos�i

The Gibbs-Appell dynamic equations come from the Gibbs
function definition (also known as the energy of the
accelerations). When written in its original form for an

Fig. 1. Modified Denavit-Hartenberg notation.

Robot control262

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

arbitrary solid composed of n-elemental particles with
masses mi an acceleration ai is (considering an inertial
reference system):

G=
1
2�

n

i=1

mia
2
i

The Gibbs function for the i-th rigid solid is given by

Gi =
1
2

mi (�̈rGi
)T · �̈rGi

+
1
2

(�̇�i)
T · IGi

· �̇�i + (�̇�i)
T · [��i ∧(IGi

· ��i)]

(1)

where mi is the mass of the i-th link, IGi is the 3� 3 matrix
representing the centroidal matrix of inertia of the i-th
link, ��i y �̇�i are the three-dimensional vectors representing
the angular velocity and acceleration of the i-th link, and �̈rGi

is the three-dimensional vector representing the acceleration
of the mass centre of the i-th link. An inertial reference
system is considered to express these magnitudes.

It is possible for these tensorial and vectorial magnitudes
to be expressed considering a reference system located in
the i-th link, so that the previous expression could be
expressed as follows:

Gi =
1
2

mi (
0 Ri · i �̈rGi

)T · 0 Ri · i �̈rGi

+
1
2

(0 Ri · i �̇�i)
T · 0 Ri · i IGi

· (0 Ri)
T · (0 Ri · i �̇�i) (2)

+(0 Ri · i �̇�i)
T · {0 Ri · i ��i ∧[0 Ri · i IGi

· (0 Ri)
T · 0 Ri · i ��i]}

the expression (2) could rewritten as follows:

Gi =
1
2

mi (
i �̈rGi

)T · (0 Ri)
T · 0 Ri · i �̈rGi

+
1
2

(i �̇�i)
T · (0 Ri)

T · 0 Ri · i IGi
· (0 Ri)

T · 0 Ri · i �̇�i (3)

+(i �̇�i)
T · (0 Ri)

T · {0 Ri · i ��i ∧[0 Ri · i IGi
· (0 Ri)

T · 0 Ri · i ��i]}

and taking into account the orthogonal nature of the rotation
matrix, the scalar Gi would be given by:

Gi =
1
2

mi (
i �̈rGi

)T · i �̈rGi
+

1
2

(i �̇�i)
T · i IGi

· i �̇�i

+ (i �̇�i)
T · [i ��i ∧i IGi

· i ��i] (4)

where i �̈rGi
, i ��i,

i �̇�i and i IGi
are expressed in the i-th

reference system.
For a system consisting of n-bodies, the Gibbs function of

the system would be given by

G=�n

i=1

Gi (i=1, 2 . . . n) (5)

The Gibbs-Appell equations of motion are obtained from
deriving the Gibbs function with respect to the generalised
accelerations q̈j , obtaining in this way the generalised

inertial forces that are to equate to the generalised external
forces, �j .

�j =�n

i=j

� Gi

� q̈j

(j=1, 2 . . . n) (6)

that is,

�j =�n

i=j
�mi (

i �̈rGi
)T ·

� i �̈rGi

�q̈j

+ (i �̇�i)
T · i IGi

·
� i �̇�i

�q̈j

+�� i �̇�i

�q̈j
�T

· [i ��i ∧ (i IGi
· i ��i)]� (7)

The formulation for the solution of the Inverse Dynamic
Problem in robots would be obtained by reorganizing and
identifying two different terms in expression (7) as
follows:

�j =�n

i=j
��� i �̇�i

�q̈j
�T

· [i IGi
· i �̇�i +

i ��i ∧ (i IGi
· i ��i)]�

Ai

+�n

i=j
��� i �̈rGi

�q̈j
�T

· mi · i �̈rGi� (8)

Bi

It is remarkable that expression above is similar to the
proposed by Angeles et al.15 for solving the IDP based on
the Kane’s dynamic formulation.

To obtain the generalised forces, the angular velocities,
angular accelerations, the accelerations of the origin of
reference system of links and the accelerations of the centre
of masses of the links can be obtained using the following
known recursive expressions:

i ��i =
i Ri�1 · i�1 ��i�1 + i �zi · q̇i (9)

i �̇�i =
i Ri�1 · i�1 �̇�i�1 + i �zi · q̈i +Ri�1 · i�1 ��i�1 ∧ (i �zi · q̇i) (10)

i �̈rOi
= i Ri�1[

i�1�̈rOi�1
+ i�1 ��i�1 ∧ (i�1 ��i�1 ∧ i�1�rOi�1,Oi

)
(11)

+ i�1 �̇�i�1 ∧ i�1�rOi�1,Oi
]+(1�	i)[

i �zi · q̈i +2(i ��i ∧ i �zi · q̇i)]

i �̈rGi
= i �̈rOi

+ i ��i ∧ (i ��i ∧ i �rOi,Gi
)+ i �̇�i ∧ i �rOi,Gi

(12)

where i �zi =[0 0 1]T, and the variable 	i allows us to
distinguish between the revolute joints (i =1) and the
prismatic ones (i =0).

Developing the Aj term:

Aj =�n

i=j
��i

Rj ·
� j �̇�j

� q̈j
�T

· [i IGi
· i �̇�i +

i ��i ∧ (i IGi
· i ��i)]�

(13)

Robot control 263

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

To obtain the
� i �̇�i

� q̈j

term, we start from expression (10). This

derivative could be obtained by a recursive procedure as
follows:

If i< j
� i �̇�i

� q̈j

= [0 0 0]T

If i< j
� i �̇�i

� q̈j

= i Ri�1 · i�1 Ri�2 · · · · j�1 Rj ·
� j �̇�j

� q̈j

(14)

If i= j
� i �̇�i

� q̈j

= i �zi

Taking into account the expressions in (14), the Aj term
could be rewritten as follows:

Aj =�� j �̇�j

� q̈j
�T

·�n

i=j

{j Ri · [i IGi
· i �̇�i +

i ��i ∧ (i IGi
· i ��i)]}(15)

In this last expression, it can be seen that there are
concurrent terms which could reduce the calculation
complexity. Next, an expression that allows the terms to be
obtained in a backward recursive way is presented:

Aj =�� j �̇�j

� q̈j
�T

· j ��j (16)

where
j ��j =

j IGj
· j �̇�j +

j ��j ∧ (j IGj
· ��j)+ j Rj+1 · j+1 ��j+1 (17)

The Bj term can be obtained using the development of
� i �̈rGi

� q̈j

.

This term comes from deriving the expression (12), leading
to

� i �̈rGi

� q̈j

=
� i �̈rOi

� q̈j

+
� i �̇�i

� q̈j

∧ i �rOiGi
(18)

The
� i �̈rOi

� q̈j

term for revolute joints is obtained using the

expression (11):

� i �̈rOi

� q̈j

= i Ri�1 · �� i�1 �̈rOi�1

� q̈j

+
� i�1 �̇�i�1

� q̈j

∧ i�1 �rOi�1,Oi� (19)

In a similar way, for prismatic joints we could obtain:

� i �̈rOi

� q̈j

= i Ri�1 ·
� i�1 �̈rOi�1

� q̈j

+ i Ri�1 ·
� i�1 �̇�i�1

� q̈j

∧ i�1 �rOi�1,Oi

+ i �zi ·
� q̈i

� q̈j

(20)

Notice that there is an additional term in expression (20) in
relation with (19), which must be included if the i-th joint is
a prismatic one:

i �zi ·
� q̈i

� q̈j

(21)

To develop the Bj term, considering expressions (18) and
(19), the following expression is used

� i �̈rGi

� q̈j

=
� i �̇�i

� q̈j

∧ i �rOj�1,Gi

This expression, when substituted in the above description
of every Bj term, would give:

Bj =�n

i=j
��� i �̇�i

� q̈j
�T

· (i �rOj�1,Gi
∧ mi

i �̈rGi
)� (22)

Applying vectorial products properties and using again
expression (14), would give:

Bj =��� j �̇�j

� q̈j
�T

· j �
j (23)

where

j �
j =�n

i=j

[j Ri · (mi
i �̈rGi

∧ i �rOj�1,Gi
)] (24)

This expression could be calculated in a recursive way as
follows:

j �
j =mj
j �̈rGj

∧ j �rOj�1,Gj
+ j ��j ∧ j �rOj,Oj+1

+ j Rj+1 · j+1 �
j+1 (25)

where
j ��j =

j Rj+1 · (mj+1
j+1 �̈rGj+1

+ j+1 ��j+1) (26)

This formulation leads to an algorithm to solve the Inverse
Dynamic Problem in robots of computational complexity of
O(n). The algorithm description and the analysis of its
computational complexity will be shown now. It’s com-
posed of 6 steps (note that in order to compare the
computational complexity with other algorithms, only
revolute joints are considered and the robot base is
considered fixed).

In step 1, there are the computation of the rotation
matrices i�1Ri and translation vectors i�1 �rOi�1,Oi

. The veloci-
ties and accelerations are computed in step 2. Step 3 derives
i �̇�i with respect to the generalised accelerations q̈i, and the
Ai and Bi terms are obtained in steps 4 and 5. Finally, step 6
computes the generalised forces �i.

The computational complexity of the proposed algorithm
is summarised in Table II. Furthermore, the computational
complexity of the Luh, Walker and Paul algorithm is
reported in Table III.

As can be seen from Table III, the computational
complexity of the proposed algorithm is very close to the

Robot control264

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

Newton-Euler based algorithm. It is also remarkable that
using the Denavit-Hartenberg notation under Paul’s conven-
tion, no substantial differences are observed, being in this
case the computational complexity 133n�74 (�) and
97n�71 (+) for a robot with only rotational joints, so that
for a six degree of freedom robot, the computational
complexity would be 724 (�) and 511 (+).

3. A PROPOSED CONTROL ARCHITECTURE FOR
INDUSTRIAL ROBOTS
Increasing demands on the robot systems performance has
led to the development of advanced control methods. If the
robotic system has an open control stage, the implementa-
tion and the use of any of the control methods are very easy
since it can use any high level programming language (for
instance, the C language has been used to program the new
control system). In this work a new control architecture was
used. This control unit is based on PC, and was imple-
mented to control a 6-joint industrial robot, the PUMA
600.

The original control module consists of one processor
LS-11/02, which interprets VAL-II statements and generates
trajectories that are sent to the six digital servos (each of
them containing a Rockwell 6503 processor). These digital
servos generate analog signals through a series of Digital to
Analog converters, which are sent to the amplifiers panels
connected to the arm. The control loop is closed with the
potentiometers and the encoders. Each robot joint has
associated a potentiometer that gives the joint absolute
position, while the signals of the incremental encoders (200
counts per revolution for the 2 first joints and 250 for the
remainder) provide a more precise motion measurement.

In order to avoid the original control unit limitations
(high level tasks implementation, modification of the
control algorithm, etc.), the control stage has been substi-
tuted by a module based on PC. In this way the PC has
access to the positions and generates adequate control
actions in order to move the different elements of the robot.
This proposed architecture is specified in Figure 2.

In order to implement this control architecture, four data
acquisition cards have been used: a card, Advantech™ PCL-
818, has been used in order to obtain the analog outputs;
another one, PCL-726, has been used for supplying the
control actions; and the two others, PCL-833, have been
used for reading encoders. The proposed control archi-
tecture has two advantages: First, the simplicity, and second
the low cost (the total cost of all these cards doesn’t exceed
$2.000). In addition, this open architecture gives a powerful
platform for programming a higher level tasks.

Technically this control architecture works as follows:

• Analog inputs: These are the potentiometers signals that
give the absolute position of each robot joint. Since there
are six elements in the robot it is necessary to have 6
analog inputs to obtain the potentiometers voltages
(0–5volts). These analog inputs are provided by the PCL-
818 card.

• Digital inputs: The robot supplies some thermo signals
which indicate the joint motors over-temperature. These
signals are digital, so it is necessary to have 6 digital
inputs to read them. These digital inputs are also provided
by the PCL-818 card.

• Encoder signals: The encoders used by the robot are
incremental encoders, and each of them provides three
signals: channel A, channel B and index pulse. Since each
PCL-833 card can control 3 encoders, 2 cards are needed
in order to obtain the robot position.

• Analog outputs: Once the 6 control actions have been
calculated by the control strategy, it will be necessary to
make a digital to analog conversion. Although the power
amplifiers of the robot could be fed with 12 volts, we had
limited it to 10 volts due to the robot and the PCL-726
card features, therefore 6 channels of the PCL-726 card
are used.

• Digital outputs: In order to activate the robot tool it is
necessary to have 2 digital outputs. These digital outputs
are also provided by the PCL-726.

4. INVERSE DYNAMIC CONTROL
With the control architecture depicted previously some
controllers, based on inverse dynamic method, have been
implemented. This control approach provides a regular
static state feedback that transforms the nonlinear system

Table II. Proposed algorithm complexity.

Step Complexity
(�) (+)

Step 1 4n 0
Step 2 62n�75 46n�61
Step 3 0 0
Step 4 24n�23 18n�18
Step 5 31n�38 26n�37
Step 6 0 n

Table III. Inverse dynamics controllers implemented.

Algorithm Complexity n=6

Luh, Walker y Paul (�) 121n�112 614
(+) 90n�82 458

Proposed algorithm (�) 121n�136 590
(+) 91n�116 430

Fig. 2. New control architecture used in this work.

Robot control 265

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

into a linear one (this is known as the inverse dynamics or
feedback linealization problem). Potentially this technique
is very useful because it reduces the nonlinear control
problem to the control problem of a linear system, for which
many tools are available. Assuming the dynamic model as:

x(n) = f (x)+b(x)u

where f (x) is a nonlinear state function and u is the control
input. If we use as the control input the expression:

u=
1
b

[v� f] (27)

the nonlinearities will be cancelling, and the simple input-
output relation will be obtained:

x(n) =v

where v is a new input vector to be defined below. In the
robot case, the dynamic model can be expressed by the
equation:

�=C(q,q̇)q̇+G(q)+M(q)q̈ (28)

where C(q,q̇) is the vector of centrifugal and Coriolis terms,
G(q) is the vector of gravity terms, and M(q) is the mass
matrix. Working with this equation:

q̈=M�1(q)(��C(q,q̇)q̇�G(q))

we define the terms:

f (x)	M�1(q)(�C(q,q̇)q̇�G(q))

b(x)	M�1(q)

using the general expression (27):

�c =
1

M�1(q)
[v�M�1(q)(�C(q,q̇)�G(q))]

the controllers based on the inverse dynamics could be
viewed such as particular cases of the general control law:

�c =C(q,q̇)q̇+G(q)+M(q)v (29)

The inverse dynamics control (29) shows how the non-
linearities, such as Coriolis terms as well as gravity terms,
can be simply compensated by adding these forces to the
control input (Table IV). Depending on the v expression,
different controllers can be obtained:16

The first controller implemented was the point to point
controller. In this case proportional and derivative terms
compose the linear auxiliary control input v, and the robot
system is exponentially stable by a suitable choice of the
matrices Kd and Kp.

The second controller is very similar to the first, but in
this case the robot must follow a given time-varying

trajectory qd(t) and its successive derivatives q̇d and q̈d

which, respectively, describe the desired velocity and
acceleration. This tracking control is very simple but it has
several drawbacks: any error in the robot dynamics
estimation can cause a variation in the equilibrium point and
therefore a position error. The second problem that can
occur is related to the dead-zone phenomenon; in this case
the static friction at the motor shafts can also provoke a
position error. A practical solution to attempt to solve these
problems is to insert an integral action in the control law.
This is the case of the last controller, where it has been
added the integral of the error.

All these controllers need the dynamic elements of the
robot. In this work we used the Gibbs-Appell equations
presented before to calculate the control action because it is
a very efficient way to calculate these elements. In this way,
some functions were programmed to calculate with the Aj

term the mass matrix M(q) using equation (15), to obtain the
vector bias C(q,q̇)q̇+G(q) employing the Bj term of
equation (23), etc.

On the other hand, because the robot parameters can vary
along the time (deformation or wear on the elements, robot
payload etc.), in order to implement the robot control, a
precise real robot dynamic model is required. A dynamic
parameters identification can be obtained by rewritten robot
equations:

�m =Km(q,q̇,q̈) · �m

where �m is the generalized torques, Km is the observation
matrix, and �m is the robot parameters

�m =[mm mcx m
mcy m

mcz m
Ixx m

Ixy m
Ixz m

Iyy m
Iyz m

Izz m
]

Parameters vector �i can be obtained using less squares or
any other matrix technique. In our work, QR decomposition,
Singular Values decomposition, pseudo-inverse calculation
or Ridge regression have been implemented. In this way, the
robot parameters used are shown in Tables V, VI and VII.

Table IV. Computational complexity for robots with n≥3.

Controller v

Point to point control �Kd q̇�Kpe
Tracking Control q̈d �Kd q̇�Kpe
Tracking Control with
integral action

q̈d �Kd q̇�Kpe�Ki
 t

0
e(u)du

Table V. Denavit-Hartenberg parameters.

Joint �(rad) a(m) D(m)

1 0 0 0
2 �/2 0 0
3 0 0.432 �0.15
4 /2 �0.02 �0.433
5 �/2 0 0
6 /2 0 0

Table VI. Masses of the link.

Joint Mass (kg)

1 10.521
2 15.781
3 8.767
4 1.052
5 1.052
6 0.351

Robot control266

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

The inertial tensor of links (kg.m2) defined with respect to
parallel axes to the local links and passing through their
centre of masses is:

1IG1
=

1.612
0
0

0
0.5091

0

0
0

1.612

2IG2
=

0.4898
0
0

0
8.0783

0

0
0

8.2672

3IG3
=

3.3768
0
0

0
0.3009

0

0
0

3.3768

4IG4
=

0.181
0
0

0
0.181

0

0
0

0.1273

5IG5
=

0.0735
0
0

0
0.0735

0

0
0

0.1273

6IG6
=

0.0071
0
0

0
0.0071

0

0
0

0.0141

Before the implementation of the new control unit, some
simulations have been carried out with the symbolic algebra
software MACSYMA. In the next example, a straight-line
trajectory has been considered. The start point has coor-
dinates [0.6 0.175 0.250]Tm and the end point [0.018 0.757
0]Tm, the constant orientation given by Euler angles ZYZ is
(45° 60° 90°). The constant linear velocity prescribed for
the robot end-effector is 0.1m/s, the total time needed for the
prescribed robot motion is 8.6 seconds (s). In Figure 3
the initial configuration of the robot, an intermediate and the
final one are depicted. The torques required in each joint are
depicted in Figure 4 as a function of time.

Figure 5 shows the positions of the real robot controlled
by the inverse dynamic strategies with a ramp and splines
references. In both cases the joint positions follow without
problems the input references. Several types of computers
have been used to obtain the execution times of these
control algorithms. If a Pentium 150Mhz. is employed, the
execution time was 0.225 ms, and with a Pentium II
350Mhz. the time required was 0.061 ms.

5. CONCLUSIONS
This paper has shown the implementation of the inverse
dynamics controllers using an open control system for the
PUMA industrial robot arm. Due to the components used
(PC and conventional data acquisition cards), the control
stage is very economic and flexible. This flexibility allows,
for instance, programming and comparing advanced control
strategies, control algorithms based on artificial vision, as
well as integrating the PUMA in a flexible manufacturing
system, etc.

In this open control unit, several algorithms based on the
Gibbs-Appell equations have been proposed and verified for
solving the Inverse Dynamic Problem and the control
problem. These algorithms have computational complex-
ities slightly lower than the algorithm based on the
Newton-Euler equations of motion, formulated in a similar
way, and using mainly vectors in its recursive formulation.
This fact confirms the conclusion of other authors who
claim that the efficiency of the dynamic algorithms arises
from the type of formulation used, rather than the Principle
of Dynamics considered. In this way, it can be expected that
further reductions in computational complexity may be

Table VII. Coordinates in a local reference system.

Link i Centre of masses (m) i�rOi,Gi

1 [0.0�0.054 0.0]T

2 [0.1398 0.0 0.1491]T

3 [�0.32.10–3 �0.197 0.0]T

4 [0.0 0.0 �0.057]T

5 [0.0 �0.007 0.0]T

6 [0.0 0.0 0.0372]T

Fig. 3. Prescribed trajectory for the Puma robot.

Robot control 267

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

achieved by using tensorial notation rather than vectorial
notation. For instance, important savings could be obtained
developing the term corresponding to the Moment of Inertia
(Euler equation) in the A terms in a tensorial form.

The paper showed the robot response in the simulation
and in the real execution, working with the point to point
and the tracking problem. Several aspects of the overall
robot response can be analysed easily. In addition, the PC
environment has allow us to connect the data structure with

commercial CADCS packages, such as MATLAB, MATH-
EMATICA etc.

References
1. N. Moreira, P. Alvito and P. Lima, “First steps towards an

open control architecture for a PUMA 560”, Proc. 2nd
Portuguese Conf. on Automatic Control Porto, Portugal
(1996) pp. 625–630.

2. A. Valera, J.V. Vergara, J. Tornero and E. García, “Control a
PUMA 500 Using a New Open Architecture”, Proc. 3rd

Fig. 4. Torques required per joint.

Fig. 5. Real robot positions for ramp and splines references.

Robot control268

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

Portuguese Conf. on Automatic Control Coimbra, Portugal
(1998) pp. 795–798.

3. W. Khalil and J-F. Kleinfinger, “Minimum Operations and
Minimum parameters of the Dynamic Models of Tree
Structure Robots”, IEEE J. of Robotics and Automation 3(6),
517–526 (1987).

4. C.S.G. Lee and P.R. Chang, “Efficient Parallel Algorithm For
Robot Inverse Dynamics Computation”, IEEE Trans. on
Systems, Man, and Cybernetics 16(4), 532–542 (1986).

5. J.J. Murray and C.P. Newman “Organizing Customized Robot
Dynamics Algorithms for Efficient Numerical Evaluation”,
IEEE Trans. on Systems, Man, and Cybernetics 18(1),
115–125 (1988).

6. C.A. Balafoutis and R.A. Patel, Dynamic Analysis of Robot
Manipulators: A Cartesian Tensor Approach (Kluwer Aca-
demic Press, 1991).

7. J.M. Hollerbach, “A Recursive Lagrangian Formulation of
Manipulator Dynamics and a Comparative Study of Dynam-
ics Formulation Complexity”, IEEE Trans. on Systems, Man,
and Cybernetics SMC-10(11), 730–736 (1980).

8. J.Y.S. Luh, M.W. Walker and R.P.C. Paul, “On-line Computa-
tional Scheme for Mechanical Manipulators”, J. Dynamic
Systems, Measurement, and Control 102, 69–76 (1980).

9. K.S. Fu, R.C. Gonzalez and C.S.G. Lee, Robotics: Control,
Sensing, Vision, and Intelligence (McGraw-Hill, 1987).

10. A.Y. Zomaya, Modelling and Simulation of Robot Manip-
ulators: A Parallel Processing Approach (World Scientific
Publishing Co., Singapore, 1992).

11. J.J. Craig, Introduction to Robotics: Mechanics and Control
(Addison-Wesley, Reading, 1986).

12. M. Renaud, “Contribution a l’etude de la modélisation et de la
commande des systèmes mécaniques articulés” Ph.D. Thesis
(Université Paul Sabatier, Toulouse, 1975).

13. M. Vukobratovic and N. Kircanski, Real-Time Dynamics of
Manipulation Robots (Springer-Verlag, Berlin, 1985).

14. K. Desoyer and P. Lugner, “Recursive formulation for the
analytical or numerical application of the Gibbs-Appell
method to the dynamics of robots”, Robotica 7 343–347
(1989).

15. J. Angeles, O. Ma and A. Rojas, “An Algorithm for the Inverse
Dynamics of n-Axis General Manipulators Using Kane’s
Equations”, Computers Math. Applic. 17(12), 1545–1561
(1989).

16. A. Valera, Análisis Comparativo de Técnicas de Control de
Robots Rígidos y Flexibles (Editorial de la Universidad
Politécnica de Valencia, Valencia, 2000).

Robot control 269

https://doi.org/10.1017/S0263574702004769 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574702004769

