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The formation of a cluster of activated fractures when fluid is injected in a low
permeability rock is analysed. A fractured rock is modelled as a dual porosity
medium that consists of a growing cluster of activated fractures and the rock’s
intrinsic porosity. An integro-differential equation for fluid pressure in the developing
cluster of fractures is introduced to account for the pressure-driven flow through the
cluster, the loss of fluid into the porous matrix and the evolution of the cluster’s
permeability and porosity as the fractures are activated. Conditions under which
the dependence of the permeability and porosity on the fluid pressure can be derived
from percolation theory are discussed. It is shown that the integro-differential equation
admits a similarity solution for the fluid pressure and that the cluster radius grows as
a power law of time in two regimes: (i) a short-time regime, when many fractures
are activated but pressure-driven flow in the network still dominates over fluid loss;
and (ii) a long-time regime, when fluid loss dominates. The power law exponents in
the two regimes are functions of the Euclidean dimension of the cluster, percolation
universal exponents and the injection protocol. The model predicts that the effects of
the fluid properties on the morphology of the formed network are different in the two
similarity regimes. For example, increasing the injection rate with time, in the flow
dominant regime, produces a smaller cluster of activated fractures than that formed
by injecting the fluid at a constant rate. In the fluid loss dominated regime, however,
ramping up the injection rate produces a larger cluster.

Key words: geophysical and geological flows, gravity currents, low-Reynolds-number flows

1. Introduction
Several industrial applications such as CO2 sequestration, waste water disposal,

engineered geothermal systems and reservoir stimulation involve the injection of a
high pressure fluid in a porous medium. In all such applications, the rock permeability
may be altered due to the growth of an induced tensile fracture, the activation of
sealed weak planes, known as pre-existing fractures, or a combination of both effects
(Ellsworth 2013; Gor, Stone & Prevost 2013). Understanding the interplay between
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fluid flow and changes in the rock permeability is essential for process optimization
and modelling fluid and heat transport in hydraulically stimulated rocks.

In conventional reservoirs such as tight sandstones, the permeability enhancement
is mainly due to the growth of a tensile fracture, whose geometry can be simple,
and the contribution of activating pre-existing fractures can be neglected. Tensile
fractures grow when the fluid pressure overcomes the compressive stresses acting on
the fracture’s surfaces. Based on this mechanism, the interaction between the rock
and fluid transport has been extensively studied both theoretically and experimentally
(Cleary 1988; Savitski & Detournay 2002; Lolon, Shaoul & Mayerhofer 2007; Lai
et al. 2015, 2016). One of the first developed models assumes that the geometry of
the fracture, i.e. its height and width, is known and independent of the fluid pressure
(Howard & Fast 1957). Other models relax the assumption of fixed aperture and
relate the aperture to the fluid pressure through the rock’s elasticity (Perkins & Kern
1961; Geertsma & de Klerk 1969; Nordgren 1972). All such models are based on
the premise that the volume of the fracture is equal to the amount of the injected
fluid reduced by the total fluid lost from the fracture to the porous matrix through
a process called leak off. The variations in modelling the growth of the tensile
fracture come in the assumed fracture geometry, growth criterion and the type of
fluid flowing through the fracture. For a detailed review on this field of studies, the
reader is referred to the reviews of Adachi et al. (2007), Detournay (2016).

In shale rocks for example, where natural fractures are abundant, microseismic
mappings, core analysis, backflow testing and well logging have shown that the
injection of a high pressure fluid induces the formation of a complex fracture
geometry (Warpinski & Teufel 1987; Sminchak et al. 2002; Warpinski et al. 2005;
Majer et al. 2007). Upon injecting the fluid and initiating a tensile fracture, the tensile
fracture interacts with pre-existing fractures. When the tensile fracture intersects a
network of natural fractures, it gets arrested and fluid flow becomes controlled by
the activation of natural fractures. The formation of a cluster of activated fractures
has been shown to enhance gas production rate from stimulated rocks (Warpinski
et al. 2005). Due to the complexity of the network geometry, modelling the coupling
between fluid transport and mechanical response of the weak planes has been limited
to the direct simulation of the activation process of a representative discrete network
of fractures (Elmo & Stead 2010; Fu, Johnson & Carrigan 2012).

Simulation of discrete fracture networks (DFN), albeit detailed and flexible, requires
extensive statistical analysis of a specific rock and the simulated number density of
weak planes is limited by the computational power. Continuum modelling, on the other
hand, is economical in the sense that it can be simple and can be applied to large
networks that are not accessible using DFN. What limits the use of this approach is
the difficulty in capturing the essential physics that control the growth behaviour of a
cluster of activated natural fractures. This study attempts to develop a simple model
that couples the pressure-driven flow of an incompressible fluid with the activation
process of pre-existing weak planes.

The model is based on the following main assumptions: (i) natural fractures
activate via a slippage mechanism following the Coulomb–Mohr criterion; (ii) stress
perturbations due to the activation of neighbouring natural fractures are neglected;
(iii) fluid flow is mainly within the activated natural fractures and the growth of
a tensile fracture is neglected; and (iv) the rock is saturated with a fluid whose
viscosity is much smaller than the viscosity of the injected fluid. In the slippage
model, the activation of the pre-existing fractures occurs when the shear stress acting
tangentially on the fracture’s surface is larger than the frictional force acting normally
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on the fracture’s surfaces. The frictional force is proportional to the overburden stress
reduced by the fluid pressure saturating the fracture (Wang & Mao 1979; Grasselli &
Egger 2002; Rutldege & Phillips 2003). Therefore, a natural fracture can be activated
by either perturbing the stress field around the fracture or by increasing the fluid
pressure saturating the natural fracture.

Perturbations in the stress can be due to the growth of tensile fractures or due to the
activation of neighbouring natural fractures. Nagel et al. (2013) have shown that stress
perturbations only activate a small number of fractures ahead of the tensile fracture tip.
A larger number of fractures with no spatial preference are activated by perturbations
to the pressure of the reservoir fluid. Networks generated via this mechanism are not
necessarily connected. Both numerical simulations and simple analytical arguments
have shown that the stress disturbance caused by a tensile fracture quickly decays
away from its tip (Warpinski & Teufel 1987; Nagel et al. 2013). Also, it has been
shown experimentally and theoretically that a growing tensile fracture is most likely to
be arrested as it intersects a natural fracture (Warpinski & Teufel 1987; Zhang, Jeffrey
& Thiercelin 2007). Therefore, one can neglect the growth of a tensile fracture when
modelling the activation of pre-existing fractures.

To describe the effects of reservoir fluid pressure perturbations on the activation
of natural fractures, Shapiro & Dinske (2009) have developed a simple equation for
fluid pressure of a linearly compressible fluid in a cluster of natural fractures saturated
with the same fluid. In their model, the interaction between the rock and the injected
fluid is empirically modelled by assuming that the permeability of the cluster is a
power law of pressure. Although this mechanism is only applicable for formations
saturated with liquid, this model has been used widely to characterize fractured gas
saturated rocks (Gischig & Wiemer 2013; Hummel & Shapiro 2013) due to its ability
to interpret microseismic activities generated during the fracturing process. Similar to
the case when stress perturbations activate the fractures, the created network via this
mechanism is not inherently connected.

The activation of the fractures in the present model is based on pressure
perturbations due to the change in fluid pressure as the injected fluid reaches the
fractures. This applies when the viscosity of the injected fluid is much larger than
that of the fluid saturating the natural fractures. The resulting mathematical equation
describing the fluid pressure inside a growing cluster of activated fractures is similar
to that describing viscous gravity currents where the evolution of the fluid pressure is
described by a nonlinear diffusion equation which admits similarity solutions (Huppert
& Woods 1995). The solution of this type of problems has been studied extensively
(Acton, Huppert & Worster 2001; Pritchard, Woods & Hogg 2001; Huppert 2006;
Pritchard 2007; Pegler, Huppert & Neufeld 2014; Hewitt, Neufeld & Balmforth
2015; Zheng et al. 2015) and been used to analyse several applications such as CO2
sequestration and the disposal of waste water (Huppert & Neufeld 2006; Neufeld &
Huppert 2009).

The paper is organized as follows. First, we will argue, in § 2, that percolation
theory provides useful scalings to relate the properties of a network of activated
fractures with the local fluid pressure. Such relations will allow us to derive a simple
transport equation to couple fluid flow with the growth of a network of activated
fractures. Thereafter, the growth of a single fracture system, which can be interpreted
as a growing one-dimensional network of activated fractures, will be analysed in § 3.
In this section, we obtain an analytical solution for the length of the fracture and
show the conditions under which the competition of leakage and pressure-driven flow
gives rise to a self-similar growth behaviour. After that, we analyse the growth of a
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two-dimensional cluster in § 4. Finally, the effects of operating conditions, fluid and
rock properties on the cluster growth along with the expected microseismicity are
discussed in § 5.

2. Theory
In this section, a model that couples the activation of a D-dimensional network of

natural fractures and fluid transport within the activated fractures will be developed.
In particular, we will consider the case where percolation theory can be used to
couple the fluid pressure with the local hydraulic conductivity of the network of
activated fractures. To elucidate this idea, the discussion is presented as follows. First,
percolation theory is briefly explained and the connection between the theory and
the growth of a network of activated fractures when the fluid pressure is constant
and uniform will be discussed. Then, the different growth behaviours of the cluster
that occur when the injection rate is maintained at different values or ramped up at
different rates will be discussed and we will identify the regime where the proposed
coupling model applies. Finally, a general transport equation of the injected fluid will
be introduced.

2.1. Percolation theory and fracture activation under constant fluid pressure
In percolation theory, one starts with connected closed bonds and opens them with
a certain probability. Percolation theory states that one infinite percolating cluster is
formed when a threshold fraction, Fc, of the bonds is opened (Stauffer 1979). The
value of Fc depends on the topology of the formed network. For instance, Fc=1/2 for
a two-dimensional square lattice of bonds and Fc = 1 for a one-dimensional network.
Moreover, several bulk properties of the percolating network scale with the difference
between the fraction of opened bonds, F, and Fc when F − Fc � Fc. That is X ∼
|F−Fc|

a where X is a bulk property of interest and a is a universal scaling exponent
that only depends on the dimension of the network and not on its topological details.

Among several bulk properties that follow universal scalings are the percolating
network’s correlation length, its porosity and its hydraulic conductivity. The correlation
length of a network, ξ , is defined as the average distance between two points in the
network and it is a measure of how sparse the network is. Above the percolation
threshold, the percolating cluster’s correlation length is the average radius of gyration
of the clusters of closed bonds. Portions of the percolating network smaller than
the correlation length look fractal, while the network looks homogeneous when the
length scale is larger than the correlation length. As the fraction of opened bonds
increases beyond Fc, the correlation length decays as ξ ∼ ξ0(F − Fc)

−ν where ξ0 is
the correlation length of the existing bonds in the system. For example, if the bonds
form a square lattice, ξ0 is equal to the lattice spacing. In two dimensions, ν = 4/3
while it is estimated to be about 0.88 in three dimensions (Sahimi 2011).

Similarly, the fraction of the bonds that are open and belong to the percolating
cluster, S, and the percolating network’s hydraulic conductivity, K, scale as S∼ ξ−β/ν
and K∼ k0ξ

−ε/ν , respectively. k0 is the permeability of the network when all the bonds
are opened. For D= 2, β = 5/36 and ε ≈ 1.3, while, for D= 3, β ≈ 0.42 and ε ≈ 2.0
(Stauffer & Aharony 1994; Kozlov & Lagues 2010; Wang et al. 2013). These scalings
are valid when ξ0 � ξ 6 B where B is the system size. If ξ � B � ξ0, the bulk
properties scale with B, e.g. S∼B−β/ν . For more details about percolation theory and
its application to fluid transport, the reader is referred to Stauffer & Aharony (1994),
Sahimi (2011) and Hunt, Ewing & Ghanbarian (2014).
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Returning to the fracturing process, following the slippage mechanism, a weak plane
will undergo slippage when the stress tangent to the plane is larger than the product
of a friction coefficient and an effective normal stress. If the stress field is constant,
each discontinuity is associated with a critical fluid pressure, Pc, the fluid has to reach
in order for slippage to occur:

Pc = σn −
σt

fr
, (2.1)

where σt, σn are the tangential and normal stresses acting on the fracture, respectively,
and fr is the friction coefficient. The initial aperture of the pre-existing discontinuity
is very small such that fluid flow is negligible. Upon slippage, its aperture becomes
large enough to allow fluid flow. The creation of fluid filling volume is due to the
mismatch between the asperities of the two surfaces induced by slippage. To simplify
the model, the effects of stress perturbation due to surface displacement are ignored.
Hence, the time variation in the aperture within the growing fracture is ignored and a
characteristic hydraulic aperture is assumed. When the viscosity of the fluid saturating
the weak planes is much smaller than that of the injected fluid, the fracturing fluid’s
pressure controls the activation process as the fluid perturbs the pressure within the
natural fracture.

If the viscous pressure drop is negligible and the fluid is injected at a constant
pressure, the fraction of pre-existing weak planes whose critical pressure is below the
fluid’s pressure can open. When the fractures’ critical pressures follow a homogeneous
distribution, the fraction of fractures that have a critical pressure below the fluid
pressure, denoted as F, is given by:

F(P)=
∫ P

Pcmin

fpc(x) dx, (2.2)

where P is the fluid pressure and fpc(x) is the probability distribution function of
the fractures’ critical pressures. fpc becomes random when the critical pressures are
uncorrelated with the fracture’s orientation. This can be the case when the stress field
is heterogeneous over large length scales. Pcmin is the minimum critical pressure in the
distribution. As the injected fluid propagates through the network of activated fractures,
some of the fractures that have critical pressures below the fluid pressure will remain
unactivated. These fractures are connected to the activated fracture network via weak
planes with critical pressures that are larger than the fluid pressure. Therefore, they
will not be activated and the injected fluid will be constrained within the formed
percolating network.

The conformity of the percolation problem and the mechanism of activating
pre-existing weak planes under a constant pressure can be stated as follows. The
fraction of opened bonds in percolation theory, F, corresponds to the fraction of
natural fractures whose critical pressure is lower than P. The fraction of the opened
bonds that belong to the percolating network, S, represents the fraction of activated
fractures. The threshold fluid pressure, Pcc, needed to form a percolating network of
activated fractures can be obtained by taking the inverse of (2.2) evaluated at F= Fc.
Since the value of Fc depends on the topology of the network and its dimension,
one expects the same dependence for the value of Pcc. Additionally, the value of Pcc

depends on the functional form of fpc.
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To relate the bulk properties of the activated network of fractures to the fluid
pressure, equation (2.2) can be linearized so that:

F− Fc = kf (P− Pcc), (2.3)

where kf is a proportionality constant whose order of magnitude is equal to the
reciprocal of the probability distribution’s standard deviation, δpc. For a normal
distribution, for instance, kf = 1/(

√
2πδpc). This linearization applies when F − Fc

� Fc; the regime where the universal scalings apply. Given (2.3), the dependence of
the network properties on the fluid pressure can be written as:

ξ = ξ0kξ [kf (P− Pcc)]
−ν, (2.4)

S= ks[kf (P− Pcc)]
β, (2.5)

K = k0kk[kf (P− Pcc)]
ε, (2.6)

where kξ , ks and kk are dimensionless proportionality constants and depend on the
geometry of the network and its dimension while the critical exponents are universal
and only depend on the dimension of the network. ξ0 is the correlation length of the
existing natural fractures and its equivalent length scale in regular percolation is the
lattice spacing.

2.2. Network formation under controlled injection rate
Previously, it has been shown that when the fluid pressure is constant, the dependence
of the activation of natural fractures on the fluid pressure leads to the formation of a
network whose bulk properties follow the same universality scalings found in regular
percolation. Now, we consider the case where the injection rate is controlled and show
that one can use the derived scalings, equations (2.4)–(2.6), locally to model fluid
transport within the fractured rock.

There are four length scales that control the activation process: (i) the average length
of the pre-existing weak planes, Lav; (ii) the correlation length of pre-existing natural
fractures, ξ0, that is related to the second moment of the fractures’ length distribution
(Balberg et al. 1984); (iii) a characteristic correlation length of the cluster of activated
natural fractures ξch; and (iv) the cluster’s radius, R. ξ0 is the average distance between
these fractures and is of the order of the fracture spacing. If the density of these
fractures is large and their lengths are of the same order of magnitude, the average
spacing and hence ξ0 become of the same order as Lav. In this case, the network of
pre-existing natural fractures is homogeneous, that is its fractal dimension is equal
to the Euclidean dimension of the network. However, if the density approaches a
threshold value, ξ0→∞ producing a fractal network of pre-existing natural fractures.
In this paper, we are limiting ourselves to the case in which ξ0 is finite and very close
to Lav. ξch is defined as the average radius of gyration of the clusters of unactivated
fractures within the network of activated fractures. It is a function of the ratio of the
pressure drop across the network of activated fractures to δpc, i.e. ξch ∼ (Pch/δpc)

−ν .
Pch is the characteristic pressure drop across the cluster of activated fractures which
will be derived later on. If the viscous pressure drop is negligible, ξch→∞ and when
an extremely viscous fluid is injected at a high rate, ξch is expected to approach ξ0.

Depending on the competition between the viscous pressure drop required to drive
the flow and the pressure change induced by activating a pre-existing fracture, the
growth dynamics can behave differently. When the viscous pressure drop is negligible
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(a) (b) (c)

FIGURE 1. Type of networks produced based on the importance of the viscous pressure
drop. In all cases, the pre-existing natural fractures form a homogeneous network, i.e. ξ0∼

O(Lav). (a) Shows a fractal network produced when the viscous pressure drop is not
important and the fracturing process is controlled by the distribution of the critical
pressures. (b) Shows a homogeneous network produced when the viscous pressure drop
overcomes the variability of the critical pressures. (c) Shows a network that looks the
same as a network near the percolation threshold at the length scale ξch. Over the length
scale of the radius, the network looks heterogeneous.

when compared to the variability of the critical pressures, a scale-invariant fractal
network is produced while a homogeneous network at all length scales is produced
when the viscous pressure drop is dominant in the fracturing process. Between
these two extreme cases, an intermediate regime can be identified where the viscous
pressure drop is important over the cluster radius but can be neglected over the length
scale, ξch. In this case, the produced network has a structure at small length scales
similar to a percolating network formed near the percolation threshold and looks
heterogeneous over the cluster radius. In all three cases, the injected fluid pressure
must be at least equal to the threshold critical pressure, Pcc.

In the first extreme case where the viscous pressure drop is negligible, i.e. ξ0 ∼

O(Lav)�R� ξch, the network of activated fractures is fractal. Its structure is the same
as a percolating network formed at the threshold value as shown in figure 1(a). In
this case, the injected fluid activates the accessible fractures with the smallest critical
pressure and its growth behaviour can be described by the invasion percolation without
trapping algorithm (Wilkinson & Willemsen 1983). In this algorithm, each bond in a
network is associated with a random resistance to opening. At each simulation step,
a bond with the lowest resistance that is connected to the network of opened bonds
is opened. Bonds with a low resistance connected to the network via a path of bonds
with higher resistances remain closed. This algorithm produces a fractal network with
the same fractal dimension, 1.9 when D= 2, as a network generated at the percolation
threshold following regular percolation rules.

A recent study by Tayeb et al. (2013) has argued that a hydraulically fractured
network of natural fractures, in the Geysers geothermal field in northeast California,
has the same fractal dimension as a percolation cluster formed at the threshold value.
The results were interpreted by a model developed by Sahimi, Robertson & Sammis
(1993) where large scale heterogeneities in the resistances to activate a fracture lead to
a random fracturing process similar to the process used to form a percolating network.
As mentioned in § 2.2, heterogeneity in the stress field, at length scales larger than Lav,
can lead to a random distribution of critical pressures. In order for the randomness
in the resistances to control the cluster growth and produce a fractal network, our
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model predicts that the variability of the critical pressures must be much larger than
the viscous pressure drop required to drive the flow, i.e. ξ0 ≈ Lav� R� ξch.

The other extreme case to consider is when the viscous pressure drop within the
fractures is dominant. If ξch ∼ ξ0� R, one expects that the injected fluid will easily
overcome the largest resistance and hence will activate all natural fractures at the
fluid front. The growth behaviour in this case can be described by a linear diffusion
equation and the network produced via this behaviour looks homogeneous at all
length scales as shown in figure 1(b). The fractal dimension of the produced network
is the same as the Euclidean dimension of space embedding the network. This case
is not relevant to fractured geological reservoirs as Sahimi (2011) has shown that
all networks of activated fractures either form a scale-invariant fractal network or
a network that is fractal at small length scales and homogeneous at large length
scales.

Between such extreme cases, one can identify a regime where the viscous pressure
drop across the cluster of activated fractures is important but it can be neglected over
distances of order ξch, where

ξ0� ξch� R. (2.7)

The produced network in this regime is expected to be near the percolation threshold
throughout the cluster. Below ξch, it looks fractal while the network’s properties are
heterogeneous at large length scales as shown in figure 1(c). In this paper, a model
is developed to describe the growth of a network of activated fractures when (2.7)
applies. If the viscous pressure drop is negligible over ξch and ξch� R, a local fluid
pressure can be defined over that region. In § 2.1, it has been shown that when the
many connected fractures feel a constant fluid pressure, their activation will lead to
the formation of a percolating network. Furthermore, the properties of the activated
network will scale with the fluid pressure in that region. Therefore, one can see that
the local properties of the network can be described using (2.4)–(2.6) if the local
correlation length is much larger than ξ0 but is much smaller than the cluster radius.
Since the viscous pressure drop required to drive the flow of the fluid is important
over the cluster radius, the local properties of the network such as the fraction of
activated fractures, S, and the permeability of the network, K, will evolve spatially
and temporally as fluid is injected. Hence, one can couple fluid transport with the
activation of natural fractures through the dependence of S and K on the fluid pressure.
Since the fluid pressure has to be at least equal to Pcc to form a percolating network,
it is expected that the pressure at the edge of the cluster will be very close to Pcc and
the network will look fractal in that region.

Figure 2 is an illustration of how the activated fracture network will look when
(2.7) applies. The middle cartoon in the figure shows the entire cluster of activated
fractures if the pre-existing natural fractures form a square lattice. The right-hand
sketch shows how a network of activated fractures is expected to form when the
local pressure is slightly larger than the threshold critical pressure, Pcc. The solid
lines represent the activated fracture network and the dashed lines are disconnected
fractures which remain unactivated despite having critical pressures below the local
fluid pressure. Since the pressure drop required to drive the flow is important over
the cluster’s radius, the pressure in the interior region of the network is higher than
Pcc and, hence, the network there is more connected as shown in the left hand sketch.
Based on this picture of how a network of activated fractures propagates, we shall
introduce a continuum model that couples fluid flow with permeability and porosity
evolution within a porous media.
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R

FIGURE 2. (Colour online) A sketch of the cluster of activated fractures. The solid lines
represent the network of activated fractures while the dashed bonds represent the weak
planes with critical pressures below the local pressure that nonetheless remain unactivated.
On the right-hand side, the fluid pressure is slightly larger than the threshold critical
pressure to ensure the formation of a percolating network. As the fluid pressure increases,
the density of the percolating network increases. The network on the left represents a
denser percolating network than the one on the right because the local pressure is higher
due to the viscous pressure drop required to drive the flow.

2.3. Transport equation
The fractured rock is modelled as a dual porosity medium: a primary porosity due
to interconnected activated fractures and a secondary porosity due to the pores of the
rock matrix. Fluid flow in the secondary porosity is coupled with a pressure-driven
flow within the primary porosity through a process called leak off. Each natural
fracture within the primary porosity is assumed to be activated when the fluid
pressure reaches a critical value. The activation process of a network of fractures
with random resistances can be described by percolation theory. Hence, fluid flow
within the primary porosity is controlled by the interconnectivity of the activated
fractures but not by the detailed geometry of the formed network. Equation (2.7)
applies and thus the primary porosity is allowed to change with time and position
as weak planes are fractured. The secondary porosity is assumed to be constant
and unaffected by the pressure of the leaked fluid. The time scale at which the
primary porosity evolves is much larger than the time scale to completely activate a
pre-existing weak plane.

To relate fluid flow with the growth of a cluster of fractures, a local mass balance
that accounts for changes in the primary porosity upon the injection of the fracturing
fluid can be used:

ε
∂S
∂t
+∇ · q+ Vl = 0, (2.8)

where ε is the primary porosity if all the local pre-existing fractures are activated,
which is assumed to be constant when considering a homogeneous number density of
the natural weak planes. Vl accounts for the total leakage rate from the local network
per unit medium volume. q is the superficial flux of the fluid through the network and
it can be described using Darcy’s law where the permeability is given by (2.6). εS is
the primary porosity and its dependence on the fluid pressure is given by (2.5).

Two boundary conditions can be used to fully define the problem. One can specify
the flux at the injection point and the fluid pressure at the edge of the cluster. Since
a percolating network forms when the fluid pressure is at least equal to Pcc, the fluid
pressure at the edge of the cluster can be set to be equal to Pcc. To find how the
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cluster radius grows with time, one can perform a volume integral on (2.8) and apply
the flux at the injection point and zero flux past the moving front of the cluster, R(t),
to get:

ε
∂

∂t

(∫
S dV

)
= qinj −

∫
Vl dV, (2.9)

where qinj is the flux at the injection point.
The above system of equations governs the growth behaviour of a D-dimensional

network of activated fractures by coupling fluid transport and changes in the rock’s
porosity. As can be seen from (2.8), the competition between the leakage term and the
pressure-driven flow controls how the primary porosity evolves. To demonstrate how
this competition can lead to two distinct self-similar growth behaviours, we will first
analyse the growth of a one-dimensional network. For this simple case, an analytical
solution for the length of the network can be obtained. Furthermore, the analysis for
this network will prove useful in justifying some of the assumptions that will be used
to solve for the two-dimensional case. The solution for a two-dimensional network
will be presented in § 4.

3. Single fracture growth
In this section, the effects of the viscous pressure drop and fluid loss on the

activation of natural fractures are analysed by modelling the growth of a single
fracture. Several studies have shown that the activation of natural fractures due to
slippage forms a cloud of microseismic events. In some cases, the cloud can form a
planar structure that propagates in a particular direction during the activation process
(Philips 2000; Tezuka & Niitsuma 2000; Asanuma et al. 2005). The formation of
such clouds has been interpreted as either due to slippage of the asperities within
a large planar fracture system or due to the activation of natural fractures that are
anisotropically aligned in a preferred direction. Both interpretations yield the same
mathematical formulation to describe the growth of the planar cloud. Since the latter
is most commonly accepted and represents a one-dimensional case of the model
presented in (2.8), we will adopt it in this section.

The single fracture represents a linear network of connected fractures and its
growth results from the continuous activation of these fractures. The length of the
fracture represents the position of the cloud’s edge. To make distinction between the
network and the fractures, we are going refer to the fractures forming the network as
discontinuities and the linear network as the single fracture. Using the model, several
limiting cases are discussed. The case where the effects of the pressure drop within
the fracture on leakage can be neglected is considered and an analytical solution
for the fracture’s length is derived. Then, the effects of ignoring the variation in
the leakage velocity within the fracture is discussed. Finally, we present the full
numerical solution of the single fracture model.

Assuming that an infinite fracture is composed of connected natural discontinuities
that form a linear path, the growth of the network can be viewed as growing a
single fracture under the following conditions: (i) the activation conditions of the
discontinuities are similar and (ii) the length scale of the network is much larger
than the average length of these discontinuities. Since the continuous growth of the
linear network requires the activation of its constituents, the pressure of the injected
fluid must be larger than their critical pressure. Their average critical pressure, Pc, is
assumed to control the growth of the single fracture. This assumption is valid when
the difference in the critical pressure of the discontinuities is much smaller than Pc.
Hence, the pressure at the fluid front is equal to Pc.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.313


296 M. G. Alhashim and D. L. Koch

3.1. Governing equations
Assuming that the one-dimensional network forms a rectangular fracture, equation
(2.8) can be reduced to:

d
dx

q+ 2vl = 0. (3.1)

In this equation, q is the fluid flux per width and the fluid flows in the x direction
whereas the leaking fluid flows perpendicular to the two fracture surfaces into the
rock matrix. The leakage term in (2.8) becomes the local leakage velocity, vl, that
is defined as the volumetric flow rate per surface area. The porosity term, ∂S/∂t, in
(2.8) is set to be zero since the local porosity consists of the volume of the locally
activated discontinuity. Therefore, it will not change with time when its aperture is
assumed to be constant. This assumption holds when the pressure within the activated
discontinuities does not overcome the far-field normal stress acting on asperities on the
fracture surfaces that prop the fracture open and the effects of shear dilation following
the initial activation of a discontinuity are ignored. Shear dilation results from stress
perturbations due to slippage and is a function of the magnitude of displacement and
the surface roughness (Willis-Richards, Watanabe & Takahashi 1996; Olsson & Barton
2001). Since the network’s conductivity was described by an effective permeability
when deriving (2.8), a hydraulic aperture, b, will be used for the one-dimensional
network. Since the competition between pressure-driven flow and leakage depends
on a characteristic conductivity parameter, changes in the fracture’s aperture are not
expected to change the qualitative growth behaviour of the fracture.

The pressure at the fluid front L(t) must be equal to Pc, in order for slippage to
occur and maintain the continuous growth of the activated fracture. Hence, one can
use the following boundary condition:

P= Pc, at x= L(t). (3.2)

The other boundary condition required to solve (3.1) can be written as:

q=
Q
w
, at x= 0, (3.3)

through which the injection rate at the injection well Q can be specified.
Finally, equation (2.9) to describe the growth of a rectangular fracture can be written

as:

wb
dL
dt
=Q− 2w

∫ L

0
vl dx, (3.4)

where w is the fracture’s width and b is the activated fracture’s aperture.
To completely define the problem, constitutive relations are needed to describe the

flux within the fracture and the leakage velocity. Since the length of the activated
fracture is of the order of metres while the aperture is of the order of micro- to
millimetres, the flux within the fracture for a Newtonian fluid can be described by
the cubic law (Zimmerman & Bodvarsson 1996):

q=−
b3

12µ
∂P
∂x
, (3.5)

where µ is the fracturing fluid viscosity. The leaked fracturing fluid is assumed to
displace the fluid saturating the rock, whose viscosity is much smaller than that of
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the injected fluid. The pressure at the interface between the two fluids is assumed to
be equal to the pressure of the saturating fluid, Pf . If capillary effects are important,
i.e. when the surface tension per pore width is comparable with Pc, one can account
for it in the definition of Pf . Given a pressure gradient imposed by the difference
between the pressure of the fracturing fluid at the fracture surface and Pf , the leaking
fluid is assumed to propagate following Darcy’s law. This process is denoted as fluid
seepage and can be described by (Howard & Fast 1957):

vl = εm
dlw

dt
=

km

µ

P− Pf

lw
, (3.6)

where lw is the distance between the fracture surface and the interface, and εm and
km are the rock’s porosity and permeability, respectively. If the viscous pressure drop
is much smaller than (Pc − Pf ), one can assume a quasi-steady fluid pressure at the
surface of the fracture and, hence, the solution of (3.6) yields:

vl =C

√
P− Pf

t− t′
, (3.7)

where C=
√
(kmεm)/2µ. The fracturing fluid starts to leak from a point x in space at

t′; the time at which the fracture tip reaches that point. The range of validity of the
quasi-steady assumption is discussed in appendix A.

By substituting (3.7) and (3.5) into (3.1) and (3.4), the system of equations
governing the growth of the fracture becomes:

b
dL
dt
=Q/w− 2C

∫ L

0

√
P− Pf

t− t′(x)
dx, (3.8)

∂2P
∂x2
=

24µC
b3

√
P− Pf

t− t′(x)
, (3.9)

P= Pc, at x= L(t), (3.10)
∂P
∂x
=
−12µQ

wb3
, at x= 0, (3.11)

with the initial condition L(0)= 0.
The following characteristic parameters will be used to non-dimensionalize the

above system of equation:

tch =
µb2

2kmεm(Pc − Pf )
, (3.12)

Lch =
Qµb

2wkmεm(Pc − Pf )
, (3.13)

Pch =
6µ2Q2

w2b2kmεm(Pc − Pf )
, (3.14)

lch
w =

b
εm
, (3.15)

where tch is the time at which the activated fracture extends for a large enough
length, Lch, for the leakage rate to significantly slow down the growth rate.
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For typical rocks with permeabilities ranging from 10−19 to 10−16 m2 and Pc − Pf of
the order of MPa, the characteristic time ranges from a few seconds for water injected
in a high permeability rock to years for a viscous fluid such as a cross-linked gel
whose viscosity can range from 100 to 1000 cP injected in an ultra-low permeable
rock (Montgomery 2013). The characteristic pressure, Pch, is the viscous pressure
drop required to drive the flow of the fracturing fluid over Lch. lch

w is the characteristic
penetration length into the rock matrix. In order to avoid interference between
fractures, lch

w must be much smaller than the average spacing between two fractures.
Since the aperture of typical fractures is of the order of a few millimetres, the
penetration length will be of the order of a few centimetres which is much smaller
than a typical O(10) m fracture spacing.

Now, let t̄ = t/tch, P̄ = (P− Pc)/Pch, L̄ = L/Lch and substitute these dimensionless
variables into (3.8) through (3.11) to get:

dL̄
dt̄
= 1−

∫ L̄

0

√
∆pcP̄+ 1

t̄− t̄′
dx̄, (3.16)

∂2P̄

∂ x̄2
=

√
∆pcP̄+ 1

t̄− t̄′
, (3.17)

P̄= 0, at x= L̄(t̄), (3.18)
∂P̄
∂ x̄
=−1, at x= 0, (3.19)

with the initial condition of zero length at t = 0. ∆pc ≡ Pch/(Pc − Pf ) measures the
importance of pressure variation within the fracture on the leakage rate. For instance,
the leakage rate becomes independent of the viscous pressure drop along the fracture
when ∆pc→ 0.

Before introducing the numerical solution of the above system of equations for
different values of ∆pc, several limiting cases will be discussed. We will show
that when ∆pc = 0, two similarity solutions for the fluid pressure can be obtained
depending on the importance of the leakage rate in affecting the growth of the
fracture. Thereafter, we show that the similarity exponents found in this case are
retained even when one further simplifies the leakage rate by assuming that t′ = 0
and ∆pc = 0.

3.2. Similarity solutions when the pressure variation in the fracture is negligible
When ∆pc = 0, the leakage velocity is not sensitive to fluid pressure variations in
the fracture and therefore (3.16) and (3.17) decouple. In this case, one can obtain an
analytical solution for the fracture length and identify two regimes where the growth
behaves in a self-similar fashion. The complete solution of (3.16), when ∆pc = 0, is
given by:

L̄=
1
π

[
eπt̄erfc

(√
πt̄
)
+ 2
√

t̄− 1
]
. (3.20)

This analytical solution is valid when the ratio of the fluid velocity within the fracture
to the characteristic leakage velocity is much larger than 1 but much smaller than the
square root of the ratio of the flow resistance within the rock matrix to the resistance
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to flow within the fracture, i.e.

1�

(
Q
wb

)
(
(Pc − Pf )kmεm

µb

) � b
√

kmεm
. (3.21)

Derivations of (3.20) and (3.21) are detailed in appendix A. Moreover, equation (3.20)
has been identified by Carter to describe the growth of a tensile rectangular fracture
where the fluid pressure is uniform inside the fracture (Howard & Fast 1957). In his
model, the fluid pressure is assumed to be equal to the pressure required to move
the two surfaces apart creating a pressure-driven tensile fracture whereas this model
assumes that the pressure is equal to the critical pressure for hydroshear slippage of
a natural fracture.

The two regimes where the fracture length grows as a power law of time and (3.17)
admits a similarity solution correspond to cases where most of the injected fluid goes
toward growing the fracture and toward supplying the leaked fluid, respectively. When
t̄� 1, the leakage terms can be neglected and (3.16)–(3.19) can be transformed to:

L̄
t̄
= ηmax = 1, (3.22)

d2φ

dη2
= 0, (3.23)

φ = 0, at η= ηmax, (3.24)
dφ
dη
=−1, at η= 0, (3.25)

where η = x̄/t̄, and φ = P̄/t̄. By solving the above system of equations, one can see
that the fracture length grows as L̄= t̄, and the pressure profile can be written as:

P̄= t̄
(

1−
x̄
t̄

)
. (3.26)

The power law solution of the fracture’s length can also be obtained using the
asymptotic behaviour of (3.20) when t̄→ 0.

As leakage becomes important, the growth rate slows down and when the fracture
length is much larger than Lch, i.e. t̄ � 1, most of the injected fluid leaks off. In
this regime, the left-hand term in (3.16) can be neglected and (3.16)–(3.19) can be
transformed to:

ηmax

∫ 1

0

1√
1− χ 2

dχ = 1, (3.27)

d2φ

dχ 2
=

η2
max√

1− χ 2
, (3.28)

φ = 0, at χ = 1, (3.29)
dφ
dχ
=−ηmax, at χ = 0, (3.30)
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where ηmax = L̄/
√

t̄, η= x̄/
√

t̄ and φ = P̄/
√

t̄. Since t̄′ is the inverse of L̄(t̄), t̄′/t̄= χ 2

where χ = η/ηmax. From (3.27), ηmax = 2/π and, therefore, the length of the fracture
grows as L̄= (2/π)

√
t̄. This can also be obtained using the asymptotic behaviour of

(3.20) when t̄→∞. The solution of (3.28) shows that the self-similar pressure profile
can be written as:

P̄=
(

2
π

)2√
t̄

√1−
(

πx̄

2
√

t̄

)2

+
πx̄

2
√

t̄
sin−1

(
πx̄

2
√

t̄

)− x̄. (3.31)

3.3. Homogeneous leakage rate approximation

Next, we will analyse the case where t̄′(x) = 0 and ∆pc = 0. In this case, not only
is the pressure variation within the fracture negligible but the leakage velocity is also
homogeneous along the fracture and only depends on the age of the fracture, i.e. the
time since it starts to grow. This approximation will prove useful when modelling the
growth of the two-dimensional network of fractures when the time scale to grow a
fracture is much smaller than the time scale to grow a whole network of activated
fractures. We will show that simplifying the leakage rate in this way does not change
the similarity scaling but only the numerical prefactor.

When the leakage rate is independent of position and pressure, the non-dimensional
system of equations governing the fracture growth becomes:

dL̄
dt̄
= 1−

L̄
√

t̄
, (3.32)

∂2P̄

∂ x̄2
=

1
√

t̄
, (3.33)

P̄= 0, at x= L̄(t̄), (3.34)
∂P̄
∂ x̄
=−1, at x= 0 (3.35)

and L̄(0)= 0.
By solving (3.32), one can find the solution for the fracture length that is given by:

L̄=
√

t̄+ 1
2 e−2

√
t̄
−

1
2 . (3.36)

The self-similar solution in the regime where t̄� 1 is the same as derived in § 3.2
since the difference introduced in this section is in the leakage rate which is negligible
when t̄� 1. However, in the fluid loss dominated regime, the self-similar transform of
(3.32) shows that L̄=

√
t̄. Furthermore, the ordinary differential equation that describes

the self-similar pressure profile, φ is given by:

d2φ

dη2
= 1, (3.37)

φ = 0, at η= ηmax, (3.38)
dφ
dη
=−1, at η= 0, (3.39)
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FIGURE 3. (Colour online) Comparison of the fracture growth with constant and
space-dependent leakage velocity. In both cases, ∆pc = 0. (a) The dimensionless fracture
length versus the dimensionless time. The blue dashed line represents the solution for the
fracture length in the case of a constant leakage, equation (3.36), while the red solid
curve corresponds to the case where the leakage is space dependent, given by (3.20).
(b) The similarity pressure profiles φ = P̄/

√
t̄ for the single fracture model in the

leakage dominated regime. The red solid line corresponds to the space-dependent leakage
case, equation (3.31), and the blue dashed line represents the homogenous leakage case,
equation (3.40).

using the same similarity scaling used to derive (3.28). ηmax in this case is equal to 1
and the solution of the pressure profile in the leakage dominant regime is given by:

P̄=
√

t̄
(

x̄2

2t̄
−

x̄
√

t̄
+

1
2

)
. (3.40)

Figure 3 compares the growth of a fracture in the case of a uniform leakage
velocity with the case where the leakage rate is a functional that depends on t′(x). In
both cases, ∆pc = 0. As expected, neglecting t̄′ when calculating the leakage velocity
results in over-predicting the fracture length, as shown in figure 3(a). Furthermore,
figure 3(b) compares the self-similar pressure profile obtained from (3.31) and (3.40).
Underestimating the leakage rate when assuming a uniform leakage velocity increases
the required viscous pressure drop and, hence, the injection pressure is higher.

To quantify the errors introduced when simplifying the leakage rate by neglecting
its dependence on t′, consider a portion of the growing fracture with a length, Ljoint,
that is much smaller than Lch where the self-similar solution in the short-time regime
can be used to calculate t̂. t̂ is the time at which the fluid front reaches Ljoint,
t̂ = t′(Ljoint). The homogeneous leakage rate predicts that the leakage rate of the
whole joint will decay as t̂/

√
t while it decays as 2

√
t(1 −

√
1− t̂/t) when one

accounts for the dependence of the leakage rate on t′. Therefore, one can see that the
homogeneous leakage rate represents the asymptotic solution of the integral leakage
rate as t̂/t → 0. Thus, this simplification applies when the time scale to grow a
one-dimensional network of multiple fractures is much longer than the time scale to
completely activate a single fracture of a finite length.
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FIGURE 4. (Colour online) Comparison of the fracture growth with constant and
space-dependent leakage velocity. (a) The solution for the length of a propagating single
fracture for different values of ∆pc. As ∆pc increases the solution deviates from the
analytical solution, which is obtained for the case of ∆pc = 0, at large times when the
leakage starts to become important. (b) The pressure profile inside the growing fracture
for different values of ∆pc at the same fracture length. The blue thicker lines correspond
to the case where ∆pc = 1 while the red thinner ones correspond to the pressure profile
at different times for the case where ∆pc = 0.

3.4. Numerical solution of the integro-differential equation
To capture the effects of the fluid pressure on the leakage rate and consequently on the
fracture growth, equations (3.16)–(3.19) are solved numerically for different values of
∆pc. The solution is compared with the analytical solution (3.20) for the case where
∆pc = 0. As shown in figure 4(a), as ∆pc is increased, the activated fracture grows
at a slower rate. For smaller values of ∆pc, the deviation is less pronounced and it
becomes important as ∆pc becomes larger than O(1). As the leakage starts to play
a role, the effects of approximating the leakage rate as if it were independent of the
fluid pressure inside the fractures become significant. At larger ∆pc, the leakage rate is
higher and therefore the fracture propagates at a slower rate than would be predicted
when the effects of pressure variation on the leakage velocity are neglected.

Additionally, the self-similar behaviour of the pressure profile is lost when the
leakage rate depends on the local value of the fluid pressure. Figure 4(b) shows
a comparison of the transient pressure profile for ∆pc = 1 and ∆pc = 0 at various
fracture lengths. As expected, the initial pressure profile, when leakage is negligible,
is not affected by the value of ∆pc but deviations occur as the fracture becomes long
enough for leakage to become important. Leakage reduces the velocity of the injected
fluid within the fracture and therefore decreases the pressure drop across the fracture.
Since the pressure at the fracture tip is the same for both values of ∆pc, the injection
pressure is lower when accounting for the effects of fluid pressure on the leakage
velocity.

In summary, we have shown that an activated natural fracture’s length grows, when
the fluid pressure’s effect on the leakage velocity is negligible, as a power law of
time in two different regimes corresponding to negligible and dominant leakage rate.
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Furthermore, we have shown that homogenization of the leakage velocity along the
fracture’s surface does not change the self-similarity behaviour but only the accuracy
in predicting the length of the activated fractures. Finally, the homogenization of the
leakage velocity can be used when the weak plane length is much smaller than Lch.
Although a deviation from the long-time similarity scaling occurs if ∆pc > O(1),
the effect of pressure variation in the fracture on the leakage rate is negligible for
∆pc 6 0.2. These results will prove useful in the next section when we simplify the
two dimensional model while maintaining the self-similar growth behaviour.

4. Network of multiple dimensions
In this section, we will analyse the behaviour of a growing D-dimensional network

of activated fractures where D > 1. Since the problem formulation is similar in two
and three dimensions, we will limit ourselves to the case of two dimensions while
showing the general scalings for both dimensions. First, constitutive relations will be
derived to write (2.8) in terms of the fluid pressure. Then, two asymptotic regimes
where a self-similar solution can be obtained will be discussed. Finally, the solution
of the full partial differential equation will be presented.

4.1. Derivation of the governing equations
Similar to the single fracture case, the system of equations given by (2.8) and (2.9)
will be written in terms of the fluid pressure. The flux of the fluid is described using
Darcy’s flow where the permeability depends on the fluid pressure. If the rock layer
thickness is H and w/H = O(1) where w is the average width of the fractures, the
fracturing process can be described in two dimensions. However, if the rock layer
has an unbounded thickness, the cluster grows in three dimensions. In cylindrical and
spherical coordinates, the radially symmetric Darcy’s law is written as:

q=−
K
µ

∂P
∂r

er, (4.1)

where µ is the fracturing fluid viscosity, and K is the local permeability. The growth
of the cluster in two and three dimensions is assumed to be radially symmetric since
the distribution of critical pressures is considered to be statically homogeneous and
isotropic.

In § 3.3, it has been shown that the rate of leakage from a growing rectangular
fracture can be estimated by:∫ L

0
vl dx≈

2CLw
√

Pc − Pf
√

t− t′
, (4.2)

where t′ is the time at which the fracture starts to grow. If a single fracture is
considered, t′ = 0. This estimated leakage rate ignores the variation in the leakage
velocity within the fracture and has been shown to be fairly accurate if the length of
the fracture is much smaller than Lch and if ∆pc = 0. If a representative number of
rectangular fractures are continuously being activated within the cluster as it grows,
one can replace the surface area in (4.2) by the surface area of the activated fractures.
Thus, the local leakage rate per volume of the medium is given by:

Vl =Cl

∫ S(r,t)

0

ds
√

t− t′(s, r)
, (4.3)
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where Cl = (2ε/b)C
√

Pcc − Pf , and t′(s, r) is the time at which the local fraction of
the activated fractures is equal to s. The leakage rate within the activated fractures
is assumed to be independent of the fluid pressure. This applies when the pressure
drop across the network is much smaller than (Pcc− Pf ). This applies for fluids with
moderate viscosity. However, when extremely viscous fluids are injected at a high
flow rate, one needs to modify (4.3) by using (3.7) to account for the effects of fluid
pressure on the leakage velocity. In this paper, such extreme cases are not considered
since most fracturing processes use water derivatives that have modest viscosities.
Typically, extremely viscous fluids are used to hold proppants which are not needed
when activating pre-existing fractures (Montgomery 2013).

Substituting (4.1) and (4.3) into (2.8) and (2.9), the governing equation describing
the growth of the cluster in two dimensions becomes:

ε
∂S
∂t
=

1
µr

∂

∂r

(
rK
∂P
∂r

)
−Cl

∫ S

0

ds
√

t− t′(s, r)
, (4.4)

ε
∂

∂t

(∫ R

0
Sr dr

)
=

Q0tα

ω
−Cl

∫ R

0
r dr

∫ S

0

ds
√

t− t′(s, r)
. (4.5)

For a time-dependent flow rate, Q0tα, a boundary condition at the injection well can
be written as:

lim
r→ 0

K
µ

r
∂P
∂r
=−

Q0

ω
tα, (4.6)

where ω is a geometric factor that depends on the dimension of the cluster. For D= 2,
ω = 2πH and ω = 4π when considering a three-dimensional cluster. Equation (4.6)
applies when the cluster radius is much larger than the radius of the injection well.
Since a percolating network forms when the fluid pressure is at least equal to Pcc, a
boundary condition at the edge of the cluster can be written as:

P= Pcc on r= R(t). (4.7)

This boundary condition ensures that a percolating network of activated fractures
forms which in turn will allow the fluid to flow through the primary porosity.

Equation (4.4) to (4.5) is a complete set of equations coupling fluid flow with the
growth of the network of activated fractures. The constitutive relations needed to relate
S and K with the fluid pressure are given by (2.5) and (2.6), respectively. Finally, the
required initial condition is that the radius is zero at t= 0.

To non-dimensionalize the governing equations, the following characteristic
parameters will be used:

tch =

(
ε

Cl

)2

, (4.8)

Rch = (Cε+1
f Qε+1−β

f t−E2
ch )1/E1, (4.9)

Pch =

(
Qf tαch

RD−2
ch

)1/(ε+1)

, (4.10)

where Cf = k0kkk
ε−β

f /ksεµ and Qf = Q0µ/k0kkkεf ω. The exponents E1 and E2 are
functions of the percolation exponents D and α and their values are given in table 1.
Similar to the single fracture growth problem, tch is the time required for the cluster

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.313


Fluid flow in naturally fractured media 305

Exponent Equation Value
α = 0 α = 1

D= 2 D= 3 D= 2 D= 3

E2 = αβ − (ε + 1)(α + 1) (4.9) −2.30 −3.0 −4.46 −5.58

γs =
(α + 1)(ε + 1− β)+ β

D(ε + 1− β)+ 2β
(4.15)

1
2

0.35 0.97 0.65

γl =
1
2

(
(2α + 1)(ε + 1− β)+ β

D(ε + 1− β)+ 2β

)
(4.16)

1
4

0.18 0.72 0.48

δs =
2(α + 1)−D

D(ε + 1− β)+ 2β
(4.17) 0 −0.12 0.43 0.12

δl =
(2α + 1)−D/2

D(ε + 1− β)+ 2β
(B 3) 0 −0.06 0.43 0.18

E1 =D(ε + 1− β)+ 2β (4.9) 4.60 8.58 — —

E3 =
β

2(ε + 1)
(4.15) 0.03 — — —

TABLE 1. Summary of exponents used and their values in two and three dimensions.
β is equal to 5/36 when D = 2 and equal to 0.42 in three dimensions. ε = 1.3 in two
dimensions and 2.0 in three dimensions.

to grow to a radius Rch at which the total leakage rate starts to play an important role
in slowing down the cluster propagation rate. Pch is the characteristic flow induced
pressure drop required to drive the flow over the radius Rch. One should note that
the assumptions used to obtain the leakage rate in (4.3) and (2.3) are valid when
Pch/(Pcc − Pf )� 1.

Now, let τ = t/tch, τ
′
= t′(s, r)/tch, p = (P− Pcc)/Pch, ρmax = R/Rch and ρ = r/Rch.

When substituting the percolation relations given in (2.4)–(2.6) into (4.4)–(4.5), the
non-dimensionalized form of the equations can be written as:

∂pβ

∂τ
=

1
ρ

∂

∂ρ

(
ρpε

∂p
∂ρ

)
− β

∫ p

0

ζ β−1

√
τ − τ ′

dζ , (4.11)

∂

∂τ

(∫ ρmax

0
pβρ dρ

)
= τ α − β

∫ ρmax

0
dζ
∫ p

0

ζ β−1

√
τ − τ ′

ρ dρ, (4.12)

p= 0 on ρ = ρmax, (4.13)

lim
ρ→ 0

ρpε
∂p
∂ρ
=−τ α. (4.14)

Before introducing the full solution of the differential equation, two regimes where
similarity solutions arise will be introduced. Analogous to the single fracture model,
the pressure-driven flow dominates over the total leakage rate when τ � 1 due to the
small surface area the fluid can leak through. By neglecting the leakage term in (4.11)
and (4.12), a similarity solution can be obtained. This regime is denoted as the short-
time regime, although one should note that the time needs to be long enough for the
radius of the cluster to grow much larger than ξ0 so that the continuum description
applies. The other case in which a similarity solution arises is when one can neglect
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the left-hand term in (4.11) and (4.12). This corresponds to a long-time regime where
τ � 1 in which the total leakage rate dominates and most of the fluid injected leaks
off. The time where τ ∼ 1 corresponds to the crossover between the two similarity
scaling and is reached when the leakage first starts to play a role in fluid transport.

In both similarity solutions, the radius of the cluster grows as a power law of time.
For the short-time regime:

ρmax = η
s
maxτ

γs, (4.15)

where γs = ((1+ α)/2)− αE3 and in the long-time regime:

ρmax = η
l
maxτ

γl, (4.16)

where γl = ((1+ 2α)/4) − αE3. ηs
max and ηl

max are proportionality constants in the
short and long-time regimes, respectively, and depend on the value of α. The general
expression and values of E3, γs and γl in both dimensions and for different α values
are given in table 1.

4.2. Short-time similarity solution
To find the similarity solution for the pressure profile in the short time regime, let
η= ρτ−γs and

φ = pτ−δs, (4.17)

where δs= α/(ε + 1); a general expression for δs in D dimensions is given in table 1.
By substituting these scaled variables into (4.11)–(4.14) and neglecting the leakage
terms, an ordinary differential equation is obtained:

βδsφ
β
− γsβφ

β−1η
dφ
dη
=

1
η

d
dη

(
ηφε

dφ
dη

)
, (4.18)∫ ηs

max

0
φβη dη=

1
α + 1

, (4.19)

φ = 0 on η= ηs
max, (4.20)

lim
η→ 0

ηφε
dφ
dη
=−1. (4.21)

By inspecting the equations, one can find two asymptotic solutions in the limits
where η→ 0 and when η→ ηs

max. The asymptotic behaviour of φ near the injection
point is given by:

φ =

[
(ε + 1) ln

(
1
η

)]1/(ε+1)

(4.22)

and the behaviour of φ as η→ ηs
max is given by:

φ =
[
γs(ε + 1− β)ηs

max(η
s
max − η)

]1/(ε+1−β)
. (4.23)

From (2.4), one can see that ξ ∼ φ−ν . Therefore, ξ is expected to approach ξ0 near
the injection well and ξ →∞ near the cluster edge. The criterion given by (2.7) is
thus violated at both the centre and edge of the cluster. A detailed discussion about
the thickness of the regions where the continuum approximation or use of percolation
scalings break down is presented in appendix D. To find the solution for φ, a shooting
method, described in appendix C, was used.

Figure 5(a) shows the short-time solution for φ for different values of α. An
approximate empirical function that fits the numerical solution for φ in this regime
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FIGURE 5. (Colour online) Comparison of the self-similar pressure behaviour for different
values of α in the short- and long-time regimes. (a) The similarity solution for different
values of α in the regime where τ � 1. ηs

max corresponds the value of η when φ = 0.
As α increases, ηs

max increases. (b) The similarity solution for different values of α in the
regime where τ � 1. ηl

max is when φ = 0 and it decreases as α increases.

and has the correct asymptotic behaviours near the injection well and the cluster’s
edge is given by:

φapp =Cα

[
(ε + 1) ln

(
ηs

max

η

)]1/(ε+1)

+C−1
α η

3

Cα −C−1
1 +

(
C1

(
1−

η

ηs
max

)1/(ε+1−β)
)−1 , (4.24)

where C1 = [γs(ε + 1 − β)ηs2

max]
1/(ε+1−β). Cα is a fitting parameter that depends on α

and it is given by:

Cα = aα + bα(α + 1)+ cα ln(α + 1)2, (4.25)

where aα = 12.39, bα =−5.42, cα = 6.93. The maximum relative absolute error when
fitting the approximate function with the numerical solution for φ is less than 10 %.
This expression along with relations for permeability and porosity in terms of pressure,
as will be shown later in § 5, can be used as a constitutive relation to model gas
and heat transport in hydraulically fractured rocks when fracturing fluid leakage was
negligible during the stimulation process.

Given the solution of φ and ρmax and the characteristic parameters, one can calculate
the porosity and permeability profiles of the network. Detailed discussion of the effects
of different operating conditions on the properties of the network is presented in § 5.

4.3. Long-time similarity solution
For τ � 1, a similarity solution can be obtained by balancing the pressure-driven
flux with the leakage term in (4.11). This states that most of the injected liquid
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will be used to supply the leakage into the rock matrix and only a small amount
of the injected fluid will be used to activate new fractures, so that we can neglect
the left-hand term in (4.11) and (4.12). Since (4.11) is difficult to solve numerically,
further assumptions will be used. In this section, we will derive the self-similar
solution for a simplified problem and show that the required assumptions do not
change the similarity scaling but only the quantitative accuracy in predicting the
propagation rate. The derivation of the self-similar integro-differential equations
without simplification is presented in appendix B.

In the single fracture model, it has been shown that when assuming a uniform
leakage velocity throughout the fracture, the self-similar scalings were retained.
Likewise, the dependence of the local leakage rate per surface area, in the multiple
fracture model, on the time at which each fracture is activated will be ignored. We
will assume that all fractures that are located at a particular position will have the
same leakage velocity regardless of the time at which each fracture was activated.
Their leakage velocity will depend on the time at which the fluid front reaches that
position. This assumption will still preserve the scalings obtained from analysing
(4.11) in the leakage dominant regime but is not expected to produce a quantitatively
accurate solution. Since this assumption under-predicts the leakage rate, the predicted
radius from the new similarity solution will be larger than the one obtained if one
solves the actual system of equations for the full leakage rate.

Neglecting the dependence of the leakage velocity of each activated fracture on its
activation time, equation (4.3) that describes the leakage rate can be approximated as:∫ S(r,t)

0

ds
√

t− t′(s, r)
≈

S(r, t)
√

t− t′(r)
. (4.26)

In this equation, t′(r) is the time when the fracturing fluid first reaches a point in
space r. Using this approximated leakage term, equations (4.11) and (4.12) become:

∂pβ

∂τ
=

1
ρ

∂

∂ρ

(
ρpε

∂p
∂ρ

)
−

pβ
√
τ − τ ′

(4.27)

∂

∂τ

(∫ ρmax

0
pβρ dρ

)
= τ α −

∫ ρmax

0

pβ
√
τ − τ ′

ρ dρ. (4.28)

To obtain the self-similar behaviour in the long-time regime, substitute η = ρτ−γl ,
equation (4.16) and

φ = pτ−δl, (4.29)

into (4.27)–(4.28) and neglect the left-hand terms. The resulting ordinary differential
equation in two dimensions is written as:

φβ√
1−

(
η

ηl
max

)1/γl

=
1
η

d
dη

(
ηφε

dφ
dη

)
, (4.30)

1=
∫ ηl

max

0

φβη dη√
1−

(
η

ηl
max

)1/γl

, (4.31)

where the boundary conditions are given by (4.20) and (4.21). δl = α/(ε + 1) and its
general expression and value are given in table 1.
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FIGURE 6. (Colour online) Comparing the self-similar pressure profile in the long-time
regime for the case where the leakage is simplified, that is when (4.30) is solved, and
for the full leakage term, when (B 6) is solved. In both cases, α = 0. The dotted-dashed
blue curve corresponds to the case where the leakage is simplified while the solid black
curve represents the solution of (B 6). As expected, ignoring the dependence of the leakage
velocity on the time a fracture is activated over-predicts the cluster’s propagation rate;
i.e. gives a larger value of ηl

max.

The asymptotic solution for φ near the injection point is given by (4.22) while φ
as η→ ηl

max is given by:

φ =

(
Ω[Ω(ε + 1)− 1]

(γlηl
max)

2

)1/(β−ε−1)
[

1−
(
η

ηl
max

)1/γl
]Ω

, (4.32)

where Ω = 3/(2(ε + 1− β)).
The pressure profile is obtained by solving (4.30) using finite difference on

computational coordinates that are scaled with ηl
max following a procedure similar

to that discussed in appendix C. Figure 5(b) shows the solution for φ for different
values of α. Similar to the short-time regime, ηl

max decreases as α increases.
To quantify the effects of simplifying the equations by homogenizing the local

leakage velocity, the solution of (4.30) was compared to the solution one gets when
solving the integro-differential equation presented in appendix B for the case where
α = 0. Figure 6 shows the self-similar pressure profile for both cases. As expected,
the value of ηl

max for the simple case is larger leading to a higher propagation rate
when under-estimating the leakage rate.

4.4. Numerical solution of the partial differential equation
To validate the self-similar solutions and calculate the pressure profile in the transition
regime, the simplified partial differential equations given by (4.27) and (4.28) were
solved numerically for the two dimensional case. A robust numerical scheme similar
to the method described by Zheng, Christov & Stone (2014) was developed for this
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FIGURE 7. (Colour online) The growth of the dimensionless radius of the cluster for
different values of α. The transition from the short-time self-similar solution occurs near
the cross-over transitional dimensionless time τ = O(1). The dotted-dashed lines were
drawn using the theoretical scalings obtained from the similarity solutions.

purpose. This method, which can be used for different values of α in two and three
dimensions, is described in appendix C. It was also used to find the self-similar
solution for φ in the long-time regime by replacing R with ηl

max. Figure 7 shows the
non-dimensional cluster radius as a function of time for different values of α in a
log–log plot. In all cases, the radius initially grows as ρ ∼ τ γs where the value of γs
depends on how the fluid is injected with time. After reaching the cross-over time,
τ = O(1), the growth rate slows down gradually until the leakage dominates and a
new power law behaviour with a different exponent, γl is established. Figure 8 shows
the pressure profile at different times for different values of α. Figure 8(a) shows
the pressure profile for the constant injection rate case while figure 8(b) shows the
pressure profile for the linearly ramped up injection rate. The increase in the fluid
pressure as ρ→ 0 is more noticeable when the fluid is injected with a time-dependent
rate. This is due to the increase in the pressure drop required to drive the increased
flow rate.

5. Discussion
In this section, the effects of fluid and rock properties on the growth of the

activated cluster will be discussed using the short-time and long-time similarity
solutions described in §§ 4.2 and 4.3, respectively. Furthermore, using the model,
microseismic mappings similar to those generated during the fracturing process will
be presented. This will show how one can use these field data to calculate the
permeability and porosity profiles of the network of activated fractures.

The performance of hydraulically fractured reservoirs for gas production or heat
extraction depends on the surface area and the average separation distance between
the activated fractures (Warren & Root 1963; Murphy et al. 1981; Zimmerman et al.
1993). Being able to predict the connectivity of the cluster of activated fractures
can help in optimizing the fracturing process and predicting the performance of
the stimulated reservoir. As more fractures are activated, larger values of S, the
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FIGURE 8. (Colour online) The pressure profile inside the cluster of open fractures at
different times for the two-dimensional case for two different values of α. (a) The pressure
profile inside the cluster for the case of constant injection rate (α = 0). The pressure
near the injection point does not change much as the cluster extends outwardly. (b) The
pressure profile inside the network for the case of linearly ramping up the injection rate
(α = 1). The pressure near the injection point increases as the cluster extends outwardly.
In both self-similar regimes when α= 1, the pressure at a position ρ increases with time
as τ 1/(ε+1).

network of open fractures is expected to become well connected and the cluster’s
correlation length approaches the average separation of the existing weak planes, ξ0.
Since the leakage rate is predominantly controlled by the permeability of the rock,
fracturing ultra-low permeability rocks is expected to follow the short-time similarity
solution while moderately permeable rocks can be analysed using the long-time
solution. Using the self-similar solutions, the effects of operating conditions during
the fracturing process on the fraction of activated fractures, the surface area, As, and
size of the cluster are analysed.

5.1. Effects of injection protocol, fluid and rock properties
In the field, different injection strategies can be used. The fluid can be injected at
a constant rate or at a rate that increases with time. To analyse the effects of the
injection protocol on the network morphology, the total injected volume over a certain
time period is fixed and the injection rate constant, Q0, is set to be a function of α
such that:

Q0 =
V(α + 1)

tα+1
inj

, (5.1)

where tinj is the injection period, and V is the total injected volume.
Figure 9(a) shows the profile of the primary porosity in the pressure-driven flow

dominant regime for different values of α after injecting a total volume of 844 m3

of a fluid with viscosity equal to 150 cP over 5 hours. As seen in the figure, the
cluster radius is slightly larger in the case of a constant injection rate than for a
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FIGURE 9. (Colour online) The effects of the fracturing fluid injection protocol on the
size and sparseness of the network formed. The parameters used to calculate the radial
profile of the fraction of activated fractures are: µ= 150 cP, km= 2× 10−17 m2, εm= 0.1,
Pcc = 40 MPa, Pf = 35 MPa, ε = 5 × 10−4, H = 100 m, kf = 2 × 10−8 Pa−1, b = 5 mm,
ks= 0.36, kk= 0.6 and k0= 5.2× 10−10 m2. The cross-over time at which the leakage will
start to play a role given these parameters is approximately 2 days. In all cases, kf Pch
ranges from 0.014 to 0.17 which satisfies of the criterion for continuum behaviour. (a) In
this plot, the fluid is injected for about 5 hours and V = 844 m3. In this regime, the
leakage is negligible and increasing the injection rate with time produces a smaller but
denser network. (b) In this plot, a fluid volume of 3× 105 m3 is injected over 65 days.
In this leakage dominant regime, ramping up the injection rate creates a network that is
both denser and larger.

linearly increasing one while the local number density of the activated fractures is
enhanced by increasing the injection rate with time. Since there is no fluid loss, the
surface area of the activated fractures is proportional to the total injected volume. In
this case, the surface area does not depend on α because the total injected volume is
fixed. Increasing the injection rate with time increases the pressure drop required to
drive the flow. This leads to the activation of more fractures near the injection well,
leaving less fluid available to activate fractures near the edge of the cluster and grow
the cluster radially. Thus, a more compact but smaller cluster forms when compared
to injecting the fluid at a constant rate.

The effects of ramping up the injection rate on the network structure are different
in the leakage dominant regime. Figure 9(b) shows the profile of S in the long-time
regime for different values of α. As can be seen in the figure, increasing α leads to a
larger cluster with higher primary porosity. In this regime, the leakage rate balances
the injection rate. Therefore, increasing the injection rate with time requires the cluster
to grow faster in order to generate sufficient surface area from which to leak the
additional fluid. This leads to the formation of a larger cluster with more surface area
per medium volume when compared to the constant injection rate case.

The effects of fluid properties on the network’s morphology can be seen from
the scaling of the network properties with the fluid viscosity and the injection rate.
In a similar way, one can show how the rock properties, such as the variability of
the critical pressures, kf , and the rock’s intrinsic permeability, km affect the network’s
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τ � 1 τ � 1

R=
ηs

max
√
εks

(
k0kk

µkf

)E3
(

Q0

2πH

)(1/2)−E3

tγs , R=

√
bηl2

max

ksε
√

2kmεm(Pcc − Pf )

(
k0kk

kf

)E3
(

Q0

ω

)(1/2)−E3

µ(1/4)−E3 tγl .

As =
Q0

b(α + 1)
tα+1, As =Q0η

l2
max

√
µ

2kmεm(Pcc − Pf )
tα+(1/2)

∫ 1

0
φβχ dχ .

S
(

t,
r
R

)
= ks

(
Q0µkf

ωk0kk

)2E3

tδsβφ(χ)β .

K
(

t,
r
R

)
= (kkk0)

1/(ε+1)

(
Q0µkf

ω

)ε/(ε+1)

tδsεφ(χ)ε .

TABLE 2. Summary of the self-similar solution of the network properties in the two
regimes. χ = η/ηmax. Since δ is the same in the two regimes, the dependence of the
porosity and permeability of the network of activated fractures on the fluid and rock
properties are the same while the functional form of φ(χ) is different.

morphology in the two similarity regimes. Table 2 provides a summary of the
dependence of various network properties, such as the radius, R, the surface area of
the network of activated fractures, As and the network’s porosity and permeability,
on the fluid and rock properties in the two similarity regimes. In the following, we
will briefly discuss the effects of the fluid’s viscosity and the range of the fractures’
critical pressures, k−1

f .
Recent microseismic mappings have shown that using slick water produces a

larger and sparser network when compared to one formed by using a cross-linked
gel (Warpinski et al. 2005). The model developed in this paper predicts that this
behaviour arises when the leakage is negligible. In the short-time regime, R ∼ µ−E3 ,
producing a smaller network when using a higher viscosity fluid. On the other hand,
in the long-time regime, R∼ µ(1/4)−E3 and increasing the viscosity produces a larger
network. The surface area of the network of activated fractures is independent of the
fluid’s viscosity in the short-time regime while it increases as µ increases in the long
time regime. In both regimes, using a more viscous fluid produces a denser network,
i.e. S∼µ2E3 . Although the effects of viscosity are similar to those for ramping up the
injection rate, their physical origins are different. In addition to increasing the viscous
pressure drop to drive the flow, the leakage velocity is reduced when increasing the
fluid viscosity. Therefore, less fluid is lost through leakage and more is used to both
propagate the cluster and activate more fractures within the denser network.

Finally, kf is the reciprocal of the standard deviation of the distribution of the
fractures’ critical pressure. As kf increases, it becomes easier to open fractures since
the differences between the critical pressures of the fractures are smaller. The overall
rate at which fractures are activated is not affected by this parameter but the spatial
locations of the newly activated fractures are altered. One would expect the formation
of a denser and smaller network in a rock where the variability of critical pressures
is smaller. Regardless of the importance of leakage, R∼ k−E3

f and S∼ k2E3
f .

5.2. Microseismic events predicted using the model
Although the network’s morphology cannot be measured directly, it can be inferred
from microseismic data. Measurements of microseismic activities provide information

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.313


314 M. G. Alhashim and D. L. Koch

on the location, time, and mechanism by which an event is generated. In this section,
the continuum model will be used to predict microseismic maps generated when
sealed natural fractures are activated. Additionally, a discussion on how one can use
such maps to estimate the permeability and porosity of the cluster of open fractures
will be provided.

To generate microseismic events, one needs to know the relative probability of
activating a fracture at a specific position and time along with the rate at which the
fractures are generated. Assuming that each recorded microseismic event is generated
due to the fracturing of a sealed weak plane following the slippage mechanism, a
spatiotemporal probability distribution function of fracturing weak planes, g, can be
derived from the solution of the pressure profile. g is proportional to the time rate of
change of the local number density of activated fractures. In two dimensions, it can
be written as:

g(r, t)=

∂S
∂t

2π

∫ R

0

∂S
∂t

r dr
, (5.2)

where g(r, t) is the probability of activated fractures per area.
The probability distribution function can be used to determine when and where

new fractures are likely to be activated. Since g ∝ dP/dt, most of the generated
microseismic events will be located near the edge of the cluster where the fluid front
first reaches a region of sealed fractures. As fluid leaks through the rock matrix
and reduces the available fluid to activate new fractures, the probability to activate
fractures near the edge when compared to the interior of the cluster decreases. In
the case of increasing the injection rate, the effects of leakage on changing the value
of g is mitigated. This is because the additional fluid injected when the injection
rate increases with time counteracts the tendency of leakage to reduce the amount of
stored fluid within the network.

The rate of activating fractures per unit time, Nm, is related to the volume of fluid
stored within the cluster and is defined as:

Nm =
Q0tαch

HbLav

(
∂

∂τ

∫ ρmax

0
pβρ dρ

)
, (5.3)

where Lav is the average length of the pre-existing fractures. As one would expect,
when the pressure-driven flow dominates the growth, the rate of activating the
fractures depends solely on the injection rate. As leakage dominates, the rate
of activating the fractures decreases with time due to the loss of fluid. However,
increasing the injection rate with time with α > 1/2, provides the additional fluid
needed to increase Nm. The critical exponent, α = 1/2, is independent of the
percolation parameters and results from the rate of decay of the leakage velocity
with time.

To stochastically simulate the emission of microseismic events, Nm dτ random
numbers, denoted as X, are generated from a uniform distribution ranging from zero
to one. Then, the position of the generated activities within a time interval of dτ is
calculated by finding G−1(X, t) where G is the cumulative distribution function that
can be written as:

G(r, t)= 2π

∫ r

0
g(r′, t)r′ dr′. (5.4)
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FIGURE 10. (Colour online) The front of microseismic events expected for the fracturing
process for different values of α. (a) The front for the constant injection rate case. (b) The
front for the case α = 1. The symbols show the distance of the event from the injection
well. The red solid curve represents the front of the cluster and the black dashed and red
solid curves bracket the zone where ninety per cent of the fractures are activated.

Figure 10 shows an example of microseismic maps generated for different values of
α. Such maps can be easily constructed from field data when seismic stations are used
(Sasaki 1998; Lei et al. 2013). Figure 10(a) is the expected map when the fracturing
fluid is injected at a constant rate while figure 10(b) is related to the case where the
injection rate is increased linearly with time, α=1. In both figures, the red solid curve
shows the cluster radius which represents the front of the seismic cloud while the
black dashed curve defines the region beyond which ninety per cent of the activated
fractures are located. A discussion about the thickness of this region will be provided
at the end of this section.

Maps similar to figure 10 can be used to determine the time regime in which the
cluster is growing since the exponent γ can be calculated using:

R= ηmax
Rch

tγch
tγ , (5.5)

where ηmax, depending on the value of γ , can be obtained from the solutions shown
in figure 5. Qualitatively, one can use the microseismic maps to determine whether
leakage has become significant. As can be seen in figure 10, the rate of recording
events decreases as leakage starts to dominate the growth and the effects of leakage
in reducing the fracturing activities are alleviated when the fluid is injected at an
increasing rate.

To analyse the effects of leakage and the increase in the flow rate with time on the
relative sparseness of the network of activated fractures, consider how the thickness,
λ, of the region where ninety per cent of the activated fractures are located varies
with time for different values of α. Figure 11 shows the profile of λ/R for different
injection strategies. Initially, when leakage is negligible, λ/R is constant because of the
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FIGURE 11. (Colour online) The thickness of the region near the edge of the cluster
in which 90 % of the microseismic events occur. As leakage starts to play a role, the
thickness of the region increases due to the loss of fluid before activating fractures near
the edge. Increasing the injection rate with time stretches out the region too due to the
increase in the pressure drop and the activation of more fractures before reaching the edge
of the cluster.

self-similar behaviour. As leakage starts to play a role, the ratio starts to increase and
then levels off as the long-time similarity solution becomes established. The increase
in λ/R due to leakage is smaller as α increases. As can also be seen in the figure,
using a larger value of α increases the thickness of the high activity zone relative to
the cluster radius. The role of leakage and how it is reduced as α increases has been
explained when g was first introduced. What remains to be explored is the role of
increasing the injection rate with time in the absence of leakage on the value of λ/R.
Earlier in the discussion section, it was shown that the increase in pressure drop due
to increasing the flow rate results in the formation of a smaller cluster. It was argued
that increasing the flow rate will increase the pressure drop and therefore activate more
fractures. As more fractures are activated, less fluid is available to activate fractures
near the edge of the cluster. The faster the injection rate is increased (larger values of
α), the higher the pressure drop and the more fractures are activated near the injection
well. Consequently, less fluid is available to activate fractures near the edge when
compared to the constant injection rate case. This results in an increase in the relative
thickness of the zone where many easy to activate fractures are located.

Finally, to calculate the permeability profile of the rock, one needs information
about the three characteristic parameters given by (4.8)–(4.10). Equation (5.5) and the
probability distribution of the recorded microseismic events provide two relations. The
third relation can be the measurement of the temporal injection pressure profile, Pinj,
since Pinj is given by:

Pinj(Rw, t)=
Pch

tδch

[
(ε + 1) ln

(
R

Rwηmax

)]1/(ε+1)

tδ, (5.6)

where Rw is the well radius.
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6. Summary and conclusion

The interplay between fluid transport through a continuum fractured porous
medium, fluid seepage through a permeable matrix and the evolution of the medium’s
porosity was modelled. The model circumvents the difficulties of simulating the
fracturing process of realistic weak plane networks and provides information about
the connectivity of the activated fractures and the propagation rate of the network.
The fracturing fluid was assumed to flow through a cluster of activated fractures and,
as it advances, the cluster evolves. Fluid flow was described by Darcy’s equation
where the permeability and porosity of the network of activated fractures evolve
spatially and temporally. Percolation theory was employed to derive constitutive
relations that correlate the permeability and porosity of the activated fracture cluster
with fluid pressure based on the assumption that each fracture is activated when
the invading fluid pressure reaches a critical value. The use of percolation theory is
applicable when a characteristic correlation length is much smaller than the radius
of the activated cluster and much larger than the average spacing of the pre-existing
fractures.

The transport equation of the fracturing fluid has been derived for a time-dependent
injection rate, Q0tα in a two-dimensional network. In two distinct regimes, the fluid
front was shown to grow as a power law of time and the structure of the activated
fracture cluster to evolve in a self-similar fashion. The first regime arises when enough
fractures are activated to form a continuum medium through which the fracturing fluid
flows but the cluster is not large enough to lose a significant amount of the fracturing
fluid through leak off. The other self-similar regime arises when the surface area of
the activated fractures is large enough such that most of the injected fluid leaks into
the matrix. The network properties in the two regimes are summarized in table 2.
The cross-over time at which the leakage rate starts to play a role in slowing down
the cluster growth rate depends primarily on the permeability and porosity of the
rock matrix, the threshold fracture critical pressure and the viscosity of the fluid. The
dependence of the cross-over time on these parameters is given by (4.8).

When the leakage is negligible, it has been shown that given the same volume of
injected fracturing fluid over the same fracturing process duration, injecting the fluid
at a constant rate gives a larger stimulated volume when compared to ramping up the
injection rate. On the other hand, the number density and permeability is larger when
the injection rate is increasing with time. Also, in this regime, decreasing the injection
rate or the fracturing fluid viscosity gives a larger stimulated volume with a smaller
number density of activated fractures for the same total injected fluid volume. The
physical explanation for this behaviour is that increasing the injection rate, Q0tα, or the
fluid viscosity increases the viscous pressure drop which, in turn, increases the number
density of fractures near the injection well. Thereby, the fluid available to extend the
activated cluster is reduced. Therefore, for ultra-low permeability shale formations, it
is recommended to perform the fracturing at a low constant injection rate with low
viscosity. This would give a larger stimulated volume and hence a larger region of
accessible natural gas.

On the other hand, in the leakage dominant regime, increasing the fracturing fluid
viscosity or α gives a larger stimulated volume and number density of activated
fractures given the same amount of injected fluid over a certain fracturing period.
Increasing the viscosity decreases the leakage rate per surface area and therefore
more fluid is used to extend the activated cluster and increasing α provides a larger
amount of available fluid to extend the cluster. As a result of this analysis, the
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optimum fracturing strategy for relatively high permeability shale formations is to
ramp up the injection rate of a high viscosity fluid.

To analyse the relative density of the network via measurable parameters, a
probability distribution function of recorded microseismic activities (or fracture
activation events), g(r, t), was derived. The region where ninety per cent of the
probable microseismic events are located has been found to be near the edge of the
cluster. The thickness of this region when compared to the cluster radius has been
shown to increase as leakage starts to become significant. Increasing the value of α
was shown to increase the thickness of this region due to the increase in pressure
drop required to drive the flow.

The model developed in this paper is valid for moderate injection rates and fluid
viscosities for which a characteristic correlation length is much larger than the average
spacing of the fractures. In this model, fluid inertia, which might be important for very
large flow rates and low fluid viscosity, is neglected. For extremely viscous fluids,
the characteristic correlation length can be of the same order of magnitude as the
average fracture length. In this case, a model in which the bulk of the cluster has
a constant permeability but there is a percolating front with evolving permeability
can be used. For a more complete understanding of the fracturing process, one would
need to incorporate a model of how the solid matrix stress perturbations generated by
the activation of fractures affect the critical pressure of the fractures and thereby the
growth of the cluster.
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Appendix A. Single fracture analytical solution and its range of validity

In this section, we show how (3.16) can be solved analytically when ∆pc=0 and the
physical conditions in dimensional variables for which this is limiting case is valid.

When ∆pc = 0, equation (3.20) can be rewritten as:

dL̄
dt̄
= 1−

∫ t̄

0

√
1

t̄− t̄′
dx̄
dt̄′

dt̄′. (A 1)

Using Laplace transform and the initial condition that the initial length is zero, one
can get:

F(s)=
1
s

(
1

s+
√

πs

)
=

1
s3/2

(√
s−
√

π

s−π

)
. (A 2)

By using partial fraction decomposition, equation (A 2) can be rewritten as:

F(s)=
1

√
πs3/2

+
1

π
√

s(
√

s+
√

π)
−

1
πs
. (A 3)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
8.

31
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2018.313


Fluid flow in naturally fractured media 319

Knowing that L−1
s {s

−3/2
} = 2

√
t̄/
√

π, L−1
s {1/(

√
s(
√

s+
√

π))} = eπt̄erfc(
√

πt̄), and
L−1

s {s} = 1, the length of the fracture can be given by:

L̄=
1
π
[eπt̄erfc(

√

πt̄)+ 2
√

t̄− 1]. (A 4)

The assumptions of the unidirectional leakage flow and negligible viscous effects
on the leakage that led to the above analytical solution are valid when (3.21) applies.
Using a unidirectional flow and neglecting the effects of the viscous pressure drop
on the leakage velocity led to a simple coupling between the leakage rate and the
fracture growth rate, i.e. vl ≈

√
(kmεm(Pc − Pf ))/(2µ(t− t′)), that was used to obtain

the analytical solution.
The unidirectional flow of the leaking fluid is only valid when the leakage velocity

is much smaller than the fracture propagation velocity, dL/dt. Since the leakage
velocity decays as 1/

√
t− t′, the unidirectional assumption is expected to be violated

near the fracture tip where the leakage velocity is large. The thickness, λle, of the
region where the leakage velocity is greater than the fracture growth rate can be
obtained by finding the distance away from the fluid front at which the leakage
velocity is equal to dL/dt. In order for the region with high leakage velocity to
be localized, λle � L. Since, the fracture’s growth rate changes with time, we will
analyse the behaviour of λle/L at early times and when the leakage dominates the
growth.

At the beginning of the fracture growth, the fracture length increases at a constant
rate, Q/bw. Therefore, the thickness can be found by simply equating the leakage
velocity with the constant flow rate and the criterion for unidirectional leakage in the
short-time regime to be valid can be written as:

bwkmεm(Pc − Pf )

2Qµ
� L(t). (A 5)

In the long-time regime, on the other hand, dL/dt = Q/(2πwC
√

Pc − Pf
√

t) and
thereby to find λle, one can write:

1
√

L2 − (L− λle)2
=

Q
2πwC2(Pc − Pf )L

. (A 6)

Since λle � L, the term on the left-hand side of (A 6) can be approximated as
1/
√
λleL. Therefore, the assumption of unidirectional leakage flow is valid in the

long-time regime when:
Q
w
µ� kmεm(Pc − Pf ). (A 7)

The other simplification, which consists of neglecting the effects of the viscous
pressure drop on the leakage velocity, applies for both time regimes when ∆pc� 1.
From the definition of ∆pc, one can derive the following criterion for which the effects
of the pressure variation on the leakage velocity are negligible:

Q
w
µ� (Pc − Pf )b

√
kmεm. (A 8)
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To sum up, the simplified leakage velocity can be used when (A 8) along with (A 5),
and (A 8) and (A 7) are satisfied simultaneously in the short- and long-time regimes,
respectively. At early time, merging the two criteria yields:

b
L(t)
�

(
Q
wb

)
(
(Pc − Pf )kmεm

µb

) � b
√

kmεm
(A 9)

and for the long-time regime yields:

1�

(
Q
wb

)
(
(Pc − Pf )kmεm

µb

) � b
√

kmεm
. (A 10)

One can see that since b is a few millimetres, one only needs to satisfy (A 10) in
order to use the analytical solution for the fracture growth. In formations with a
permeability of 10−16 m2 such as tight gas reservoirs, a critical formation pressure
of the order of MPa, and an aperture of the order of a millimetre, this criterion is
satisfied when a low viscosity fluid such as water is injected at flow rates per width
smaller than 10−3 m2 s−1. As the fluid’s viscosity increases, the flow rate per width
needed to satisfy the criterion decreases. For shale gas rocks where the permeability
ranges from 10−21 m2 to 10−18 m2, the flow rates per width up to which one will be
able to use both unidirectional flow and negligible pressure drop assumptions range
from 10−5 m2 s−1 to 10−4 m2 s−1 for water.

Appendix B. Long-time similarity solution when t′ = f (s, r)

In § 4.3, it has been mentioned that solving (4.11) numerically is difficult and
thus, we have simplified the equations by neglecting the dependence of the leakage
velocity on the time at which a fracture is activated. Moreover, we showed that
the simplification preserves the same scalings but over-predicts the rate at which the
cluster grows in the long time regime. In this section, we derive the integro-differential
equation for the long-time regime when the leakage rate is kept as in (4.11) and
describe the method used to solve it.

The integro-differential equations that govern the growth behaviour of the cluster is
written as:

∂pβ

∂τ
=

1
ρ

∂

∂ρ

(
ρpε

∂p
∂ρ

)
− β

∫ p

0

ζ β−1

√
τ − τ ′

dζ , (B 1)

∂

∂τ

(∫ ρmax

0
pβρ dρ

)
= τ α − β

∫ ρmax

0
dζ
∫ p

0

ζ β−1

√
τ − τ ′

ρ dρ. (B 2)

To obtain the similarity solution, let η= ρτ−γl and:

φ = pτ−δl, (B 3)

where γl and δl are the same scaling exponents used in § 4.3 and their values are
given in table 1. To scale the leakage term in (B 1), one must account for both the
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direct τ dependence and the dependence of p on τ . Therefore, let ζ = φ(η′)τ ′δl where
η′ = ρτ ′−γl . Then,

dζ = τ ′δl−1

(
δlφ(η

′)− γlη
′
dφ(η′)

dη′

)
dτ ′. (B 4)

Since ζ = 0 when ρ = ρmax and ζ = p when τ ′ = τ :∫ p

0

ζ β−1

√
τ − τ ′

dζ = τ βδl−1/2
∫ 1

(η/ηmax)
1/γl

dΥ
Υ βδl−1

√
1−Υ

φ(η′)β−1

(
δlφ(η

′)− γlη
′
dφ(η′)

dη′

)
,

(B 5)
where η′ can be rewritten as η′ = ηΥ −γl and Υ = τ ′/τ .

Now, when substituting (B 5) along with the scaled variables into (4.11)–(4.14) and
neglecting the left-hand terms, the desired ordinary integro-differential equations are
given by:

1
η

d
dη

(
ηφε

dφ
dη

)
= β

∫ 1

(η/ηl
max)

1/γl

dΥ
Υ βδl−1

√
1−Υ

φ(η′)β−1

(
δlφ(η

′)− γlη
′
dφ(η′)

dη′

)
, (B 6)

1= β
∫ ηl

max

0
dη
∫ 1

(η/ηl
max)

1/γl

dΥ
Υ βδl−1

√
1−Υ

φ(η′)β−1

(
δlφ(η

′)− γlη
′
dφ(η′)

dη′

)
η, (B 7)

φ = 0, on η= ηl
max, (B 8)

lim
η→ 0

ηφε
dφ
dη
=−1. (B 9)

The asymptotic solution of φ near the injection well is given by (4.22) while the
behaviour of φ as η→ ηl

max is given by:

φ =

[
{(ε + 1)Ω − 1}Γ (βΩ + 1)
Γ (βΩ)

√
πβ(γlηl

max)
2

]1/(β−ε−1)
[

1−
(
η

ηl
max

)1/γl
]Ω

, (B 10)

where Ω = 3/(2(ε + 1− β)) and Γ (x) is the complete gamma function. As one
expects, the assumption of simplifying the leakage rate does not change the qualitative
behaviour of φ. Both asymptotic solutions, when the leakage is simplified and when
the full form is used, have the same power law exponent but with a different prefactor.

To solve the system of equations, equations (B 6) and (B 7) were decoupled by
scaling φ with (ηl

max)
2/(β−ε−1) and η with ηl

max. Following the procedure described
in (Gelmi & Jorquera 2014), equation (B 6) was integrated to obtain the profile of
the scaled φ and the value of ηl

max was calculated using (B 7). The two boundary
conditions needed to integrate (B 6) were derived from (B 10).

Appendix C. Numerical schemes
In this section, we will describe the numerical scheme that has been used to solve

the ordinary differential equations in the self-similar regimes and the simplified partial
differential equation.

To solve for the self-similar pressure profile in the short-time similarity regime,
equation (4.18), a shooting method was used. To start integrating the equations, the
flux within a small region with a radius of 10−8 from the injection point is assumed
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to be constant, Cq. The value of Cq is unknown and it is determined by an iteration
method. Then, the integration using the values of φ and dφ/dη given Cq is carried
out. Equation (4.20) is used as a criterion to stop integrating the equations. The value
of Cq is adjusted until (4.19) is satisfied.

The long-time ordinary differential equation and the full partial differential equations
were solved using a finite difference method. In both methods, the spatial variable was
scaled before discretizing the terms. When solving the partial differential equation, one
needs to keep track of the boundary at the cluster’s edge that moves with time. By
scaling the position variable with the cluster’s radius, one can discretize the equations
on a well-defined region that ranges from 0 to 1. Similarly, the value of ηmax is
unknown. By rescaling the spatial variable η with ηmax, one can perform discretization
for a defined region between 0 and 1.

Below is a description for the method used to solve the partial differential equation.
Adapting this method to solve for the long-time regime, one can replace R by ηmax
and follow the same discretization approach. For a D-dimensional network, let X= r/R
such that P= f (t, X). Hence, equations (4.27) and (4.28) become:

∂P
∂t
=

X
R

(
dR
dt

)
∂P
∂X
+

P1−β

βXD−1R2

∂

∂X

(
XD−1Pε

∂P
∂X

)
−

P
β
√

t− t′
, (C 1)

∂

∂t

(
RD
∫ 1

0
PβXD−1 dX

)
= tα − RD

∫ 1

0
Pβ

XD−1

√
t− t′

dX. (C 2)

Introducing Xi = (i− 1/2)1X and a time step dt, equation (C 1) can be discretized
as

Pn+1
i − Pn

i

dt
=

1
2
(Tn

i + Fn
i + Ln

i + Tn+1
i + Fn+1

i + Ln+1
i ), (C 3)

where

Tn
i =

Xi

Rn

(
Rn
− Rn−1

dt

)
Pn

i+1 − Pn
i−1

Xi+1 − Xi−1
, (C 4)

Fn
i =

(Pn
i )

1−β

XD−1
i β(Rn)2

XD−1
i+1/2

(
Pn

i+1 − Pn
i

1X

)
ψ

n+1/2
i+1/2 − XD−1

i−1/2

(
Pn

i − Pn
i−1

1X

)
ψ

n+1/2
i−1/2

1X

, (C 5)

Ln
i =

Pn
i

β
√

tn − t′ni
, (C 6)

ψ
n+1/2
i+1/2 =

1
4 [(P

n+1
i+1 )

ε
+ (Pn+1

i )ε + (Pn
i+1)

ε
+ (Pn

i )
ε
]. (C 7)

Similarly, the boundary conditions can be expressed as:

Pn+1
1 = Pn+1

2 +
(tn+1)α1X

XD−1
1 (Pn+1

1 )ε
,

Pn+1
N = 0.

 (C 8)

To find the cluster radius in a time step n+ 1, equation (C 2) is discretized and solved
for Rn+1 such that:

Rn+1
=

[
1/2[(tn+1)α + (tn)α] dt+ (Rn)DIn

In+1

]1/D

, (C 9)
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where

In
=

∫ 1

0
Pβ
(

1−
dt

2
√

tn − (t′)n

)
XD−1 dX. (C 10)

t′ is a function of time because the nodes in computational space correspond to
different points in space as the cluster grows. To estimate t′ at the time step n + 1,
we use a Taylor series expansion that includes a finite difference approximation of
the rate at which each node moves:

(t′i)
n+1
= (t′i)

n
+
[(t′i)

n
− (t′i)

n−1
](Rn+1

− Rn)

Rn − Rn−1
. (C 11)

The initial pressure is estimated by neglecting the leakage and as R→ 0, the storage
term is neglected. Thus, the flux is assumed to be independent of r within r<Rinit so
that

P(tinit, X)=
[

tα(ε + 1) ln
(

1
X

)]1/(ε+1)

(C 12)

and

Rinit =

2(β/(1+ε))+1(ε + 1)−β/(1+ε)

(1+ α)Γ
(

β

1+ ε
+ 1
)


1/2

t(α/2)(1−(β/(1+ε)))+1/2
init , (C 13)

where Γ (x) is the complete gamma function. In three dimensions, the initial pressure
and cluster growth rate are estimated via:

P(tinit, X)=
[

tα(ε + 1)
(

1
X
− 1
)]1/(ε+1)

, (C 14)

Rinit =

[
(1+ α)

∫ 1

0
X2

(
1
X
− 1
)β/(1+ε)

dX

]−1/3

(ε + 1)−β/(3(1+ε))t(α/3)(1−(β/(1+ε)))+1/3
init .

(C 15)

The above mentioned method can be easily adapted to solve for φ in the long-time
regime. One can start with (4.30) and follow the same described discretization
procedure. To find ηl

max, one can use (4.31) instead of (C 2).

Appendix D. Validity of primary model assumptions
In this section, the range of validity of several assumptions required for the model

formulation is discussed. First, we will consider when the effects of buoyancy can be
neglected. Then, the assumption of a constant fracture’s aperture is discussed. Finally,
we will derive a criterion for using the continuum assumption throughout most of the
cluster along with local constitutive equations based on percolation scaling.

Hydrostatic pressure in the fluid can affect the activation of fractures and the
leakage rate. However, since the solid stress also increases with depth, the effects
of hydrostatic pressure is mitigated by the increase of Pcc with depth. Nevertheless,
we provide a conservative criterion for the validity of neglecting the effects of
buoyancy by neglecting the depth dependence of Pcc. In a two dimensional network,
the hydrostatic pressure within the fracturing fluid will be the same in each fracture.
Hence, buoyancy will lead to a shift in the values of the network properties since
the pressure becomes P + ρf gH where ρf is the fracturing fluid’s density and H is
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the width of the fractures. Since Pcc/(gρf H)=O(10) for water when Pcc=O(106) Pa
and H = 100 m, the effects of buoyancy within the fracturing fluid are negligible. In
a three-dimensional network, buoyancy can lead to anisotropic growth of the cluster
if Pcc/(gρf R) = O(1). This occurs when the radius of the cluster is larger than a
kilometre.

Due to the contrast between the densities of the fracturing and reservoir fluids, the
leakage rate can be enhanced by buoyancy. The far-field fluid pressure, Pf , will vary
with depth leading to changes in the leakage velocity depending on the depth of the
network. These effects become important when (1ρgLch)/(Pcc − Pf ) = O(1) where
1ρ is the difference between the density of the leaking fluid and the saturating
fluid and Lch is a characteristic length scale. Since (Pcc − Pf )/(1ρgH) � 1 for
a two-dimensional network, its effects can be neglected. Here, we have used the
typical value (Pcc − Pf ) = O(10) MPa. For a three-dimensional network, buoyancy
is negligible when R� (Pcc − Pf )/(1ρg). For networks larger than a kilometre, one
needs to account for buoyancy when calculating the leakage rate.

The intrinsic permeability of the activated fractures, k0, is assumed to be
independent of the fluid pressure. This assumption applies when the effects of
tensile opening and shear dilation on the fractures’ aperture are ignored. To ignore
the tensile opening, the normal stress acting on the fracture’s surface must be larger
than the fluid’s pressure. This is satisfied because the characteristic pressure drop of
the fluid is assumed to be much smaller than σt/fr.

The increase in the fracture’s aperture due to shear dilation is proportional to the
characteristic displacement of the slipping surfaces Uch. Uch is proportional to the
ratio of the excess shear stress available to slip the surfaces and the rock’s shear
stiffness. The excess shear stress is proportional to the characteristic pressure drop of
the fracturing fluid. Thus, the effects of shear dilation on the fracture’s aperture can be
ignored when the characteristic pressure drop is much smaller than the shear stiffness
of the rock for a fracture of the order of 1 m long. The shear stiffness for typical
rocks is of the order of magnitude of 100 GPa m−1 and the characteristic pressure
drop is of the order of MPa.

In § 4.1, it was argued that the assumption of a continuum network of pre-existing
fractures and the use of percolation theory to describe the fraction of activated
fractures hold simultaneously when ξ0 � ξch � R. This assumes that the local
correlation length is of the same order of ξch. Using the asymptotic behaviour of
φ in the two similarity regimes, it has been found that the local correlation length
approaches ξ0 near the injection well and approaches infinity near the cluster edge.
Therefore, a stronger criterion for the validity of the model is that the region near the
injection well where percolation scaling breaks down and the region near the edge in
which the continuum approximation breaks down should both be small compared with
the cluster radius. Since the correlation length also varies with time, the thickness of
these regions will be quantified in both the short- and long-time similarity regimes.

Near the injection point, the radius of the region, denoted as λnp, where (F− Fc)/Fc

= O(1) is defined as the distance from the injection point at which F(λnp) − Fc =

cFc. Typically, setting c= 0.1 is sufficient to reach the region at which the universal
scalings are applicable. Using (2.3) and (4.22), the ratio of λnp to the cluster radius,
R, in both similarity regimes is given by:

λnp

R
=

1
ηmax

exp

[
−

(
R

Rchηmax

)(−δ(ε+1))/γ (
(cFc)

ε+1

ε + 1

)(
ξch

ξ0kξ

)(ε+1)/ν
]
. (D 1)
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Therefore, the criterion for λnp/R� 1 is written as:

ξ0kξ (cFc)
−ν(ε + 1)ν/(ε+1)

(
R

Rchηmax

)δν/γ
� ξch, (D 2)

where γ and δ depend on the considered similarity regime. For the case of a constant
injection rate, the criterion becomes independent of the cluster’s radius and (D 2),
since (cFc)< 0.1, requires that the characteristic correlation length must be more than
10 times the average spacing between the pre-existing fractures. In the case of ramping
up the injection rate, there exists a threshold cluster radius after which (D 2) can
no longer be satisfied. Since increasing the injection rate with time will increase the
viscous pressure drop, the correlation length near the injection point will continuously
decrease.

Now, let us analyse the manner in which the correlation length diverges at large
radial positions. The thickness of the region, λnc, in which the continuum assumption
is violated can be defined as the distance from the cluster’s edge that is of the same
order as the local correlation length, i.e. ξ(R−λnc, t)∼λnc. One can use the asymptotic
solution near the edge of the cluster to calculate the ratio of λnc to the radius. Since
the two similarity solutions have different behaviours in that region, each will be
treated separately. In the short-time regime, the asymptotic solution for φ is given by
(4.23) and therefore, λnc/R is given by:

λnc

R
=KξR−(1+(νδs/γs))((ε+1−β)/(ε+1+ν−β)), (D 3)

where

Kξ =[ξchγs(ε+1−β)](ε+1−β)/(ε+1+ν−β)ην/(ε+1+ν−β)[(δs/γs)(ε+1−β)−1]
max R(δsν/γs)((ε+1−β)/(ε+1+ν−β))

ch .
(D 4)

Since Kξ is equal to order-one factors multiplied by the characteristic correlation
length and radius, the criterion to have a region with negligible thickness in which
the correlation length diverges is given by:

ξ
γs/(γs+νδs)
ch Rδsν/(γs+δsν)

ch � R. (D 5)

To do the same analysis for the long-time regime, equation (4.32) is used. The ratio
of the thickness of the non-continuum region to the cluster radius is given by:

λnc

R
= Zξ

[
1−

(
1−
λnc

R

)1/γl
]−νΩ

R−(νδl+γl)/γl, (D 6)

where

Zξ =
(
Ω[Ω(ε + 1)− 1]

(γlηmax)2

)1/(β−ε−1)

ξch(ηmaxRch)
νδ/γ . (D 7)

By linearizing (D 6) for λnc/R � 1 and noting that Zξ is a product of order-one
parameters, the characteristic correlation length, and the radius, the criterion to
localize the region at which the correlation length diverges can be written as:

ξ
γl/(γl+νδl)
ch Rδlν/(γl+δlν)

ch � R. (D 8)

One can see that the criteria for λnc/R� 1 in the two similarity regimes only differ
in the values of γ and δ and requires the use of a large viscosity fluid in order to
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minimize the region where the correlation length approaches infinity. Equation (D 2),
on the other hand, requires minimizing the viscous pressure drop in order to increase
the correlation length over the average spacing between the fractures. Combining the
two criteria and neglecting order-one factors, the overall requirement for validity of
the analysis is:

ξ0(cFc)
−ν
� ξch� R (D 9)

for a constant injection rate and

ξ
γ /(γ+νδ)

ch Rδν/(γ+δν)ch � R�
(
ξch

ξ0

)γ /δν
Rch(cFc)

γ /δ, (D 10)

when α > 0.
When the fluid is injected at a constant rate, the radius must grow to a certain value

that depends on the operating conditions before one can use the model. For example,
consider a rock whose permeability if all the fractures are opened is 10−10 m2. Let
the standard deviation of the critical pressures be of the order of 10 MPa. If the
injection rate of water per width ranges from 2× 10−2 to 2× 10−4 m2 s−1, the cluster
needs to grow to a value between 200 metres and 10 kilometres, a typical range for
microseismic clouds, before one can use the model.

In the case of increasing the injection rate with time, the model can be used within
a certain range of cluster radius values. The cluster needs to be large but cannot
exceed a threshold value beyond which the use of percolation theory scalings is not
justified. For instance, consider a rock with similar properties to the one used in
the case of a constant injection rate. In the short-time regime, if the permeability of
the rock is about 10−22 m2, Q0/H = 10−10 m2 s−2 (mean injection rate, Q0/Htch =

0.05 m s−2), and α=1, the model is applicable when the cluster radius is in the range
between 600 m and 10 km if water is used as the fracturing fluid. As the viscosity
increases, this range shrinks and if µ = 20 cP, for instance, the model is applicable
when the cluster radius ranges from 500 m to 1 km. Beyond a viscosity of 30 cP,
equation (D 10) is no longer satisfied for the specified Q0/H. Similarly, if the rock’s
permeability is about 10−17 m2 where the long-time regime solution should be used,
the model is applicable for a cluster radius ranging from 200 m to 1 km if water is
used and this range shrinks as the viscosity increases.
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