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SUMMARY
The dynamic modeling of a flexible single-link manipulator arm with consideration of backlash in
the planetary gear reducer at the joint is presented, and the influence of backlash on the dynamic
response of the system is evaluated. A 2K-H planetary gear reducer with backlash was employed as
an example to discuss the dynamic modeling of the sub-model of the planetary gear reducer, and
the sub-model of the planetary gear reducer was established based on the lumped mass method. The
flexible manipulator was regarded as an Euler–Bernoulli beam, and the dynamic model of the flexible
manipulator arm with backlash in the planetary gear reducer was determined from Lagrange’s
equations. Based on the this model, the influence of the backlash in the planetary gear reducer and
excitation frequency on the dynamic response of the system were evaluated through simulation,
and the results showed that the dynamic response of the system is sensitive to the backlash and the
excitation frequency simultaneously, which provides a theoretical foundation for improvement of
dynamic modeling and control of the flexible manipulator arm.
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Nomenclature

θs, θp, θc Angular displacement of sun
gear, planetary gear about its
shaft, and carrier

rs, rp Base circle radius of sun gear
and planetary gear

Is, Ip, Ic Inertia moment of sun gear,
planetary gear about its shaft,
and carrier

rc Radius of carrier

bsp, bpr Half of the backlash between
sun gear and planetary gear,
and that between planetary
gear and ring gear

xs, xp, xc Equalized linear displacement
of sun gear, planetary gear,
and carrier

xsp, xpr Relative displacement along the
meshing line between sun
gear and planetary gear, and
that between planetary gear
and ring gear

α Pressure angle of the gear
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Fksp, Fcsp Meshing spring force and
damping force between sun
gear and planetary gear

ksp, csp Meshing stiffness and meshing
damping coefficient between
sun gear and planetary gear

Fkpr, Fcpr Meshing spring force and
damping force planetary gear
and ring gear

kpr , cpr Meshing stiffness and meshing
damping coefficient between
planetary gear and ring gear

mp Mass of the planetary gear Iarm Inertia moment of manipulator
arm connected to carrier

Xsp, Xpr, Xc Dimensionless parameters
corresponding to xsp,xpr ,xc

A, ρ, EI Section area, linear density, and
bending rigidity of
manipulator arm

L Length of manipulator arm �θ Angular displacement error of
rigid manipulator arm due to
backlash of gear reducer

fla Positioning error at the end of
the flexible manipulator arm

dr Flexible deformation of the
manipulator arm

1. Introduction
Manipulator arms have many advantages, including reducing human labor, avoiding dangerous
working environments, and precision operation. Today, more and more manipulator arms are applied
in industrial settings to supplement or replace human operators. At the same time, greater performance
requirements of the manipulator arm are desired, including higher speeds, greater load/weight ratios,
and higher positioning precision. The flexible manipulator arm is regarded as an efficient choice to
achieve greater load/weight ratios, but the flexibility of the arm under high-speed working conditions
often leads to severe vibration of the arm, resulting in deterioration of the positioning precision.
As a result, research on vibration control of flexible manipulator arms and improvement of their
positioning precision has received much attention in recent decades.1–5 Dynamic modeling of the
manipulator is the basis for effective vibration control, and much effort has been devoted to that end.

For example, Mehrdad6 proposed a redundant Lagrangian/finite element approach to model the
dynamics of lightweight spatial manipulators with both flexible links and joints; Albedoor7 presented
a linearized dynamic model for multi-link planar flexible manipulators which can include an arbitrary
number of flexible links; Subudhi8 presented a dynamic modeling technique for a manipulator with
multiple flexible links and flexible joints, based on a combined Euler–Lagrange formulation and
assumed modes method; Green9 discussed the dynamic modeling of a manipulator with flexible
links, where nonlinear rigid-link dynamics are coupled with dominant assumed modes for cantilever
and pinned-pinned beams; Fotouhi10 studied the dynamic modeling and analysis of very flexible
beams with large deflections using a finite element approach; Vakil11 provided closed-form dynamic
equations of planar flexible-link manipulators (FLMs) with revolute joints and constant cross-sections
based on Lagrange’s equations and the assumed mode shape method, which can be used for the model-
based end-effecter control and the vibration suppression of planar FLMs; Kalyoncu12 investigated
the mathematical modeling and dynamic response of a flexible robot manipulator with rotating-
prismatic joint; Zhou13 provided a method to determine the variable flexible-joint parameters which
are dependent on configurations for a PRS (prismatic pairs-revolute joints-spherical joints) parallel
robot, which is applicable to flexible multi-body systems with variable configurations; Yesiloglu14

presented the dynamic model of a co-operating under-actuated flexible manipulator with active joints;
Rognant15 provided a systematic procedure for the elasto-dynamic modeling of an industrial robot, in
which flexible links and joints were considered; Korayem16 presented the kinematics and dynamics
equations of a manipulator with flexible joints, and a computational technique for obtaining maximum
load carrying capacity of robotic manipulators with joint elasticity was discussed; Chen17 proposed
the rigid–flexible coupled dynamics model of a 4-UPS-RPS (universal joints-prismatic pairs-spherical
joints-revolute joints-prismatic pairs-spherical joints) parallel robot, in which, the driving limbs and
spherical joints were treated as flexible bodies, while the moving platform, stationary platform,
and other joints of parallel robot were treated as rigid bodies; Zarafshan18 developed a compact
rigid–flexible interactive dynamics model of multi-body systems composed of rigid and flexible
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Fig. 1. Diagram of manipulator with planetary gear reducer at the joint.

elements, and as a result, less computation cost on the model was obtained; Vakil19 proposed a new
method for dynamic modeling of flexible-link flexible-joint manipulator; Pratiher20 investigated the
nonlinear dynamic modeling and analysis of a Cartesian manipulator carrying an end effector which
was placed at different intermediate positions on the span with a single mode approach.

While these works provide a good basis for improvement of the dynamic modeling of the
manipulator with flexible links and joints, it should be noted that they are all based on the assumption
of no clearance in the mechanism; clearly, though, backlash in the planetary gear reducer is generally
inevitable and can greatly influence the dynamic response of the gear system and the dynamic response
of the flexible manipulator arm connected to the gear reducer. Therefore, it is necessary to analyze
the effect of backlash on the dynamic response of the flexible manipulator arm, in order to improve
the performance of the manipulator arm.

In this paper, the dynamic modeling of a planetary gear reducer with backlash was studied using
the lumped mass method, and a dynamic model of a single-link manipulator arm with backlash in the
planetary gear reducer was presented. Based on the model, the influence of backlash on the dynamic
response of the system was evaluated, which will provide basis for further improvement of dynamic
modeling and positioning control of flexible manipulator arms.

2. Sub-Model of the Planetary Gear Reducer with Backlash
The diagram of the manipulator with planetary gear reducer at the joint is shown in Fig. 1, in which,
the driving motor is connected to the sun gear and the manipulator arm is connected to the carrier.

Without loss of generality, a 2K-H-type planetary gear mechanism was taken as an example for
dynamic modeling of the planetary gear reducer. The diagram of the planetary gear reducer with
backlash is shown in Fig. 2, in which, there is backlash between the sun gear and planetary gear and
between the planetary gear and gear ring.

The angular displacement of the component can be equalized to linear displacement along the
meshing line, in which, the equalized linear displacement of sun gear is given by

xs = rsθs. (1)
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Fig. 2. Diagram of planetary gear reducer with backlash.

The equalized linear displacement of planetary gear is given by

xp = rpθp. (2)

For the carrier, its radius rc plays the similar role as the reference circle of gears, therefore, the
equivalent base radius of carrier is written as rc cos α, and the equivalent linear displacement along
the meshing line for angular displacement of carrier should be given by

xc = rcθc cos α. (3)

The relative displacement along the meshing line between the sun gear and the planetary gear can
be given as

xsp = xs − xp − xc (4)

The relative displacement along the meshing line between the planetary gear and the ring gear can
be given as

xpr = xp − xc. (5)

The meshing spring force Fksp and damping force Fcsp between sun gear and planetary gear are
given by22

{
Fksp = kspfk(xsp, bsp)

Fcsp = cspfc(xsp, bsp)
, (6)

in which,

fk (p, b) =
⎧⎨
⎩

p − b

0
p + b

p > b

−b ≤ p ≤ b

p < −b

, (7)

fc (p, b) =
{

ṗ |p| > b

0 |p| ≤ b
. (8)
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The meshing spring force Fkpr and damping force Fcpr between planetary gear and ring gear are
given by

{
Fkpr = kprfk(xpr, bpr )
Fcpr = cprfc(xpr, bpr ) . (9)

The equilibrium equations of the system can be written as

⎧⎪⎨
⎪⎩

Is θ̈s + 3(Fcsp + Fksp + Fcpr + Fkpr )rs = TM

Ipθ̈p − (Fcsp + Fksp − Fcpr − Fkpr )rp = 0

(Ic + Iarm + 3mpr2
c )θ̈s − 3(Fcsp + Fksp − Fcpr − Fkpr )rc cos α = 0

, (10)

in which, the driving torque of the driving motor is

TM = am − bmθ̇s + Fw sin ωt, (11)

where am and bm are constants provided by the motor manufacture, and Fw sin ωt is the output torque
fluctuation of the motor.

Then Eq. (10) can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ẍsp + 1

Msp

Fcsp + Bm

Ms

ẋsp + B

Msp

Fcpr + Bm

Ms

ẋc + 1

Msp

Fksp + B

Msp

Fkpr = Am

Ms

ẍpr + D

Mpr

Fcsp + 1

Mpr

Fcpr + D

Mpr

Fksp + 1

Mpr

Fkpr = 0

ẍc − 3

M ′
c

Fcsp − 3

M ′
c

Fcpr − 3

M ′
c

Fksp − 3

M ′
c

Fkpr = 0

, (12)

in which,

Ms = Is

r2
s

, Mp = Ip

r2
p

, Am = am

rs

, Bm = bm

r2
s

,

Mc = Ic

r2
c cos2 α

, M ′
c = Mc + 3mp

cos2 α
+ Iarm

r2
c cos2 α

,

Msp = MsMpM ′
c

3MpM ′
c + MsM ′

c + 3MsMp

, Mpr = MpM ′
c

3Mp + M ′
c

,

D = 3Mp − M ′
c

3Mp + M ′
c

, B = 3MsMp − MsM
′
c

3MpM ′
c + MsM ′

c + 3MsMp

.

The nominal time scale ωn and nominal displacement scale bc are introduced to make Eq. (12)
dimensionless.

The dimensionless time parameter is τ = ωnt , and

X = bcx, (13)

Ẋ = bcωnẋ, (14)

Ẍ = bcω
2
nẍ. (15)
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Fig. 3. Diagram of flexible manipulator arm.

Therefore, the dimensionless equations of the system are given by

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Ẍsp + 1

Mspωn

Fcsp + Bm

Msωn

Ẋsp + Bm

Msωn

Ẋpr + 2Bm

Msωn

Ẋc + fk(Xsp) + B

Mspω2
n

Fkpr = Am

Mspbcω2
n

Ẍpr + D

Mspωn

Fcsp + 1

Mprωn

Fcpr + DMsp

Mpr

fk(Xsp) + 1

Mprω2
n

Fkpr = 0

Ẍc − 3

M ′
cωn

Fcsp − 3

M ′
cωn

Fcpr − 3Msp

M ′
c

fk(Xsp) − 3

M ′
cω

2
n

Fkpr = 0

.

(16)

3. Dynamic Model of Flexible Manipulator Arm with Backlash in Planetary Gear Reducer
The diagram of a single-link flexible manipulator arm is shown as Fig. 3. It is assumed that its
shearing deformation is negligible compared with its bending deformation, and it can be regarded as
an Euler–Bernoulli beam. The displacement of the an arbitrary point P on the arm is given by w(x,t).

The flexible manipulator arm can be regarded as a beam with one end fixed and the other end free;
therefore, the mode shape associated with its rth mode is given by

ϕr = (sin βrx − shβrx) + ξr (cos βrx − chβrx), (17)

in which, βr and ξr can be given by

βr = π

l

(
r − 1

2

)
, (18)

ξr = cos βrl + chβr l

sin βrl + shβr l
. (19)

The mode coordinate of ith mode is qi(t), and the displacement of point P can be written as

w (x, t) =
S∑

i=1

ϕi(x)qi(t), (20)

in which, S is the modal truncation order.
The kinetic energy and deformation potential energy of the manipulator arm is given by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

T = 1

2

∫ l

0
ρA

[
∂w (x, t)

∂t

]2

dx

V = 1

2

∫ l

0
EI

[
∂2w (x, t)

∂x2

]2

dx

. (21)

Based on the work presented above, the equations of motion (EOM) of the system can be obtained
by Lagrange’s equations, in which the modal truncation order S is determined by convergence
considerations. The dynamic response of the deformation at the end of the manipulator arm without
backlash in the gear reducer for different modal truncation orders is calculated to determine when

https://doi.org/10.1017/S0263574714000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000915


Influence of gear reducer backlash on dynamics of manipulator arm 1677

Fig. 4. Comparison of the results with different modal truncation order.

convergence is achieved. The results with modal truncation order S = 4 and S = 5 are shown in Fig. 4.
It can be seen that for the difference in the result between modal truncation orders S = 4 and S = 5
is small, which implies that the former is precise enough.

With modal truncation order S = 4, the EOMs of the system can be written as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ẍsp = a11

b0ω2
n

+ a12

ωn

Ẋsp + a12

ωn

Ẋpr + a13

ωn

Ẋc + a14

ω2
n

fk(Xsp) + a15

ωn

fc(Xsp) + a16

ω2
n

fk(Xpr )

+ a17

ωn

fc(Xpr ) + a18

ω2
n

q̄1 + a19

ω2
n

q̄2 + a110

ω2
n

q̄3 + a111

ω2
n

q̄4

Ẍpr = a21

ω2
n

fk(Xsp) + a22

ωn

fc(Xsp) + a23

ω2
n

fk(Xpr ) + a24

ωn

fc(Xpr ) + a18

ω2
n

q̄1 + a19

ω2
n

q̄2 + a110

ω2
n

q̄3 + a111

ω2
n

q̄4

a30Ẍc = a31

ω2
n

q̄1 + a32

ω2
n

q̄2 + a33

ω2
n

q̄3 + a34

ω2
n

q̄4 + a35

ω2
n

fk(Xsp) + a36

ωn

fc(Xsp) + a37

ω2
n

fk(Xpr ) + a38

ωn

fc(Xpr )

a40 ¨̄q1 = a41

ω2
n

q̄1 + a42

ω2
n

q̄2 + a43

ω2
n

q̄3 + a44

ω2
n

q̄4 + a45

ω2
n

fk(Xsp) + a46

ωn

fc(Xsp) + a47

ω2
n

fk(Xpr ) + a48

ωn

fc(Xpr )

a50 ¨̄q2 = a51

ω2
n

q̄1 + a52

ω2
n

q̄2 + a53

ω2
n

q̄3 + a54

ω2
n

q̄4 + a55

ω2
n

fk(Xsp) + a56

ωn

fc(Xsp) + a57

ω2
n

fk(Xpr ) + a58

ωn

fc(Xpr )

a60 ¨̄q2 = a61

ω2
n

q̄1 + a62

ω2
n

q̄2 + a63

ω2
n

q̄3 + a64

ω2
n

q̄4 + a65

ω2
n

fk(Xsp) + a66

ωn

fc(Xsp) + a67

ω2
n

fk(Xpr ) + a68

ωn

fc(Xpr )

a70 ¨̄q2 = a71

ω2
n

q̄1 + a72

ω2
n

q̄2 + a73

ω2
n

q̄3 + a74

ω2
n

q̄4 + a75

ω2
n

fk(Xsp) + a76

ωn

fc(Xsp) + a77

ω2
n

fk(Xpr ) + a78

ωn

fc(Xpr )

,

(22)
in which,

q̄i = bcqi, ¨̄qi = bcω
2
nqi, a01 = Ic + 3mpr2

c + Iarm

rc cos α
, a0(i+1) = ρA

∫ l

0 xϕidx

rc cos α
,

a11 = Am

Ms

, a12 = −Bm

Ms

, a13 = 2a12, a14 = −
(

3

Ms

+ 1

Mp

+ a36

a30

)
ksp, a15 = a14

ksp

csp,

a16 = −
(

3

Ms

− 1

Mp

+ a36

a30

)
kpr , a17 = a16

kpr

cpr , a18 = −a31

a30
, a19 = −a32

a30
,

a110 = −a33

a30
, a111 = −a34

a30
, a21 =

(
1

Mp

− a36

a30

)
ksp, a22 = a21

ksp

csp,

a23 = −
(

1

Mp

+ a36

a30

)
kpr , a24 = a23

kpr

cpr , a30 = a01 −
4∑

i=1

ρA
∫ l

0 xϕidx

ρA
∫ l

0 ϕ2
i dx

a0(i+1),

a3i =
ρA

∫ l

0 xϕidx
∫ l

0 EI
(

d2ϕi

dx2

)2
dx

ρA
∫ l

0 ϕ2
i dx

(i = 1, 2, 3, 4),
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Table I. Parameters of the system used for numerical analysis.

Parameter Value/unit Parameter Value/unit

zs 27 ρ 7900/Kg/m3

zp 36 A 1e − 4/m2

zr 99 l 0.5/m
m 3.0/mm mp 0.66/Kg
α 24.6/◦ Is/r2

s 0.39/Kg
ksp 1e8/ N/m Ip/r2

p 0.61/Kg
kpr 1e8/N/m Ic/r2

c 6.29/Kg
E 2e11/Pa Iarm 0.033/Kg/m2

a35 = 3rc cos αksp, a36 = 3rc cos αcsp, a37 = 3rc cos αkpr , a38 = 3rc cos αcpr ,

a40 = a30ρA

∫ l

0
ϕ2

1dx, a41 = −a30

∫ l

0
EI

(
d2ϕ1

dx2

)2

dx − a02a31,

a4j = −a02a3j (j = 2, 3, . . . , 8),

a50 = a30ρA

∫ l

0
ϕ2

2dx, a52 = −a30

∫ l

0
EI

(
d2ϕ2

dx2

)2

dx − a03a32,

a5k = −a03a3k (k = 1, 3, . . . , 8),

a60 = a30ρA

∫ l

0
ϕ2

3dx, a63 = −a30

∫ l

0
EI

(
d2ϕ3

dx2

)2

dx − a03a33,

a6m = −a04a3m (m = 1, 2, 4, . . . , 8),

a70 = a30ρA

∫ l

0
ϕ2

4dx, a74 = −a30

∫ l

0
EI

(
d2ϕ4

dx2

)2

dx − a03a34,

a7n = −a05a3n (n= 1, . . . , 3, 5, . . . , 8).

The transmission ratio from sun gear to carrier is marked as isH , and the angular displacement error of
the rigid manipulator arm due to backlash of the gear reducer can be given by

�θ = 1

rsisH
(xsp + xpr ). (23)

The positioning error at the end of the flexible manipulator arm includes two components: the
transmission error due to the backlash of the gear reducer and the flexible deformation of the manipulator
arm. It can be written as

fla = l�θ + w (l, t) = l

rs isH
(xsp + xpr ) +

4∑
i=1

ϕi(l)qi(t). (24)

4. Numerical Analysis
Based on the model presented above, the dynamic response of the flexible manipulator arm, considering
backlash in the planetary gear reducer, is examined through numerical examples, and the influence of the
backlash on the dynamic response of the system is evaluated, in which, Adams multi-step integral method
is applied for the numerical analysis.21 Here, it is assumed that there is uniform backlash in the gear pairs
of the planetary gear reducer and the backlash between gear teeth is given by 2b, and that the manipulator
is operated free of loading. The parameters used for the numerical analysis are listed as Table I.
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Fig. 5. Dynamic response of the system with flexible arm (b = 0 μ m, ω = 5π).

Fig. 6. Dynamic response of the system with flexible arm (b = 10 μ m, ω = 5π).

Fig. 7. Dynamic response of the system with flexible arm (b = 25 μ m, ω = 5π).

4.1. The influence of backlash on the dynamic behavior of the system
If the frequency of harmonic fluctuation of the output torque of the motor is ω = 5π , the dynamic responses
of the system with backlash given successively by b = 0 μm, 10 μm, 25 μm, 50 μm, 100 μm are calculated.
The transmission error between the sun gear and planetary gear xsp and the positioning error at the end of
the manipulator arm fla are presented in order to evaluate the dynamic response of the gear reducer and the
manipulator arm, and the results are shown as Figs. 5–9, in which (a) is the results of xsp and (b) shows
the results of fla . And the figure of Gq(f) shows the power spectrum density of displacement.

From these numerical results, it can be seen that backlash has a significant effect on the dynamic behavior
of the system. The dynamic responses of the gear reducer and flexible manipulator arm experience variation
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Fig. 8. Dynamic response of the system with flexible arm (b = 50 μ m, ω = 5π).

Fig. 9. Dynamic response of the system with flexible arm (b = 100 μ m, ω = 5π).

from quasi-period motion to chaos with increasing backlash, and the positioning error at the end of the
flexible manipulator arm increases with the backlash.

As mentioned above, the positioning error at the end of the flexible manipulator arm is composed of two
components: the transmission error due to the backlash of the gear reducer and the flexible deformation of
the manipulator arm. The dominant component is the flexible deformation if the backlash is small, while
the transmission error due to the backlash of the gear reducer gradually becomes the dominant component
with increasing backlash. The flexible deformations of the manipulator arm dr as a function of backlash
in the gear reducer are shown as Fig. 10, in which, (a), (b), (c), and (d) are the results with b = 10 μm,
25 μm, 50 μm, 100 μm, respectively.

It can be seen that when the backlash is small, for example, b = 10 μm, 25 μm, 50 μm, the dominant
frequency of the flexible deformation of the manipulator arm dr is its 1st mode; while if the backlash
increases to 100 μm, its dominant frequency becomes the 3rd mode, which results from the influence of
the nonlinearity of the gear reducer.

4.2. The influence of excitation frequency on the dynamic behavior of the system
When the frequency of harmonic fluctuation of the output torque of the motor is ω = 10π , the system
responses for backlash b = 0 μm, 10 μm, 25 μm, 50 μm, 100 μm are shown as Figs. 11–15, in which,
(a) is the result for xsp and (b) is the result for fla .

Comparison of the results for ω = 5π and ω = 10π reveals that the dynamic behavior of the system is
sensitive to clearance and excitation frequency simultaneously. When the excitation is ω = 5π , the motion
of the gear reducer is quasi-period with b = 10 μm, 25 μm, while it becomes chaotic with b = 50 μm,
100 μm. When the excitation is ω = 10π , the motion of the gear reducer is quasi-period with b = 10 μm,
but chaotic with b = 25 μm, 50 μm, 100 μm.
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Fig. 10. Flexible deformation of the manipulator arm dr (ω = 5π).

Fig. 11. Dynamic response of the system with flexible arm (b = 0 μm, ω = 10π).

4.3. The influence of flexibility of the manipulator arm on the dynamic behavior of the gear reducer
If the manipulator arm is taken to be rigid, the transmission error between the sun gear and planetary gear
xsp for excitation frequency ω = 10π , and backlash b = 10 μm, 25 μm, 50 μm, 100 μm is shown as
Figs. 16–19. Comparing the results of the system with rigid arm flexible arm, it is found that the dynamic
behavior of the gear reducer is significantly influenced by the flexibility. For example, if the backlash
b = 100 μm, the response of the gear system with rigid arm is quasi-period motion, while the response
of system with flexible manipulator arm with the same backlash is chaotic; this is likely the result of the
interaction between the dynamic response of the flexible manipulator arm and gear reducer.

5. Conclusions
Backlash in the planetary gear reducer was taken into consideration in the modeling of a manipulator arm,
and its influence on the dynamic response of the system was evaluated. A two-state model was used to
describe the meshing forces at the gear pairs of the planetary gear reducer with backlash, and the sub-model
of the planetary gear reducer was presented as a lumped mass method. The deformation of the manipulator
arm was based on Euler–Bernoulli beam theory, and the dynamic model of the manipulator arm with
planetary gear reducer was obtained. Numerical analysis based on the Adams multi-step integral method
was carried out to evaluate the dynamic response of the system incorporating backlash in the planetary
gear reducer, and the following conclusions were obtained:
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Fig. 12. Dynamic response of the system with flexible arm (b = 10 μm, ω = 10π).

Fig. 13. Dynamic response of the system with flexible arm (b = 25 μm, ω = 10π).

Fig. 14. Dynamic response of the system with flexible arm (b = 50 μm, ω = 10π).

(1) The backlash in the planetary gear reducer has a significant effect on the dynamic response of the
system and contributes to the positioning precision of the manipulator arm. Therefore, it is necessary
to take the backlash of the gear reducer into consideration in the dynamic modeling of the manipulator.

(2) The responses of the planetary gear reducer and flexible manipulator arm vary from quasi-period
motion to chaos as the backlash increases. However, it should be noted that the dynamic behavior of
the system is also sensitive to the excitation frequency; a change of excitation frequency can cause
significant variation in their motions.
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Fig. 15. Dynamic response of the system with flexible arm (b = 100 μm, ω = 10π).

Fig. 16. Transmission error between the sun gear and planetary gear xsp (b = 10 μm, ω = 10π).

Fig. 17. Transmission error between the sun gear and planetary gear xsp (b = 25 μm, ω = 10π).

https://doi.org/10.1017/S0263574714000915 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574714000915


1684 Influence of gear reducer backlash on dynamics of manipulator arm

Fig. 18. Transmission error between the sun gear and planetary gear xsp (b = 50 μm, ω = 10π).

Fig. 19. Transmission error between the sun gear and planetary gear xsp (b = 100 μm, ω = 10π).

(3) The positioning error at the end of the flexible manipulator arm is composed of two components:
the transmission error due to the backlash of the gear reducer and the flexible deformation of the
manipulator arm. The dominant component is the flexible deformation if the backlash is small, while
the transmission error due to the backlash of the gear reducer gradually becomes the dominant
component with increasing backlash.

(4) The flexible deformation amplitude of the manipulator arm is less affected by the backlash of the
gear reducer, but the dominant mode of the manipulator arm is sensitive to the backlash which is the
result of the nonlinearity of the gear reducer.

(5) The dynamic response of the flexible manipulator arm and that of the gear reducer are interactive.
On the one hand, the dynamic response of the flexible manipulator arm is affected by that of the gear
reducer, while on the other hand the coupling effect between them may lead to change in the dynamic
behavior of the gear reducer.
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