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Instability waves in a subsonic round jet detected
using a near-field phased microphone array

By TAKAO SUZUKI† AND TIM COLONIUS
Division of Engineering and Applied Science, California Institute of Technology,

Pasadena, CA 91125, USA

(Received 11 January 2005 and in revised form 21 March 2006)

We propose a diagnostic technique to detect instability waves in a subsonic round jet
using a phased microphone array. The detection algorithm is analogous to the beam-
forming technique, which is typically used with a far-field microphone array to localize
noise sources. By replacing the reference solutions used in the conventional beam-
forming with eigenfunctions from linear stability analysis, the amplitudes of instability
waves in the axisymmetric and first two azimuthal modes are inferred. Experimental
measurements with particle image velocimetry and a database from direct numerical
simulation are incorporated to design a conical array that is placed just outside the
mixing layer near the nozzle exit. The proposed diagnostic technique is tested in
experiments by checking for consistency of the radial decay, streamwise evolution
and phase correlation of hydrodynamic pressure. The results demonstrate that in a
statistical sense, the pressure field is consistent with instability waves evolving in the
turbulent mean flow from the nozzle exit to the end of the potential core, particularly
near the most amplified frequency of each azimuthal mode. We apply this technique
to study the effects of jet Mach number and temperature ratio on the azimuthal
mode balance and evolution of instability waves. We also compare the results from
the beam-forming algorithm with the proper orthogonal decomposition and discuss
some implications for jet noise.

1. Introduction
Large-scale structures in turbulent jets are often qualitatively associated with

Kelvin–Helmholtz instabilities of the inflectional mean-velocity profile (Crighton &
Gaster 1976; Mankbadi & Liu 1981). In acoustically excited jets, pressure and velocity
fluctuations have been successfully predicted using eigenfunctions obtained from linear
stability analysis (Zaman & Hussain 1980; Mankbadi 1985; Tam & Morris 1985;
Tanna & Ahuja 1985). While large-scale coherent structures reminiscent of instability
waves have also been observed in natural jets (Brown & Roshko 1974; Michalke
& Fuchs 1975; Maestrello & Fung 1979; Morris, Giridharan & Lilley 1990; Arndt,
Long & Glauser 1997; Jordan et al. 2004; Hall, Pinier & Glauser 2006), it is difficult
to assert whether they can be quantitatively identified with instability waves. One
difficulty stems from a lack of time-resolved three-dimensional flow measurements,
which are necessary for such an identification. A second and more fundamental
difficulty is that turbulence in the jet consists of eddies with a range of length scales
and lifetimes; thereby, it is unclear whether there is an appropriate scale-separation
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Figure 1. Diagram of the flow regimes of a round jet in the radial direction. The solid line
depicts the time-averaged pressure fluctuation of the axisymmetric mode (i.e. m= 0) at x/D = 4
from DNS (Freund 2001), and the dotted line denotes the corresponding eigenfunction
calculated from linear stability analysis. The maximum pressure fluctuation is normalized
as unity, and the eigenfunction is arbitrarily scaled.

that allows instability waves to evolve in the time-averaged flow without interaction
with smaller-scale turbulence. The instability waves in natural jets are correlated
over shorter distances and time scales than those in forced jets. Hence, even if the
detailed three-dimensional flow field were available, there are no existing techniques
that would permit a decomposition of the nonlinear field into separate contributions
from instability waves and other disturbances.

The difficulty associated with decomposition of the turbulent near field can be
alleviated by measuring fluctuations just outside the jet mixing layer, where the
pressure signals are governed by the linear wave equation. If instability waves are
present in the jet, they must be accompanied by an evanescent pressure field, which
is exponentially decaying with radius in this region (see the linear hydrodynamic
regime in figure 1). At the low frequencies typically associated with instability waves,
nonlinear pressure fluctuations from smaller-scale turbulence tend to decay more
rapidly with radius. Moreover, acoustic waves generated by the turbulence are likely
to be of smaller amplitude, although they decay more slowly. In § 2.1, we provide
detailed estimates for these decay rates and conclude that at low frequencies, there
exists a region where the evanescent pressure field associated with linear instability
waves should dominate the total pressure fluctuations. This allows us to project
pressure signals onto the known solution (i.e. eigenfunctions representing instability
waves) and to infer the amplitude of instability waves.

Thus, the goal of the present work is to acquire pressure signals just outside the
mixing layer and to determine whether the evanescent pressure field is consistent
with instability waves evolving in the time-averaged turbulent jet flow. To this end,
we propose using a phased microphone array surrounding the jet from the nozzle
exit to the end of the potential core (referred to as the hydrodynamic array). The
configuration of the array is similar to that employed by Arndt et al. (1997), but
we focus on developing algorithms that can identify specific signatures of instability
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waves. To minimize contamination of the signal by acoustic waves and pressure fluc-
tuations associated with smaller-scale turbulence, we introduce a beam-forming (or
matched-field processing) technique. The approach is in many ways analogous to
aerodynamic noise source identification techniques that have been successfully used
in many applications (Gramann & Mocio 1995; Mosher 1996; Piet & Elias 1997;
Dougherty & Stoker 1998; Suzuki & Butler 2002; Underbrink 2002; Brooks &
Humphreys 2003; Venkatesh, Polak & Narayanan 2003). The idea in these previous
studies is to detect the position and amplitude of a noise source that best matches
a reference solution (typically a monopole source) in a least-squares sense (cf.
Johnson & Dudgeon 1993; Tolstoy 1993; Dougherty 2002). In the present case, we
replace the monopole noise source with a spatially evolving eigenfunction obtained
from linear stability analysis applied to the measured mean velocity field. Because
of limitations on the total number of microphones available, we concentrate on
the initial mixing layer (approximately to the end of the potential core) and
distribute microphones to target a range of frequencies from St (≡ f D/Ujet) =
0.25 to 0.5, which includes the most amplified instability waves. The microphones are
also azimuthally distributed to detect instability waves for the axisymmetric and first
two azimuthal modes (i.e. m = 0, ±1 and ±2).

The remainder of the paper is organized as follows. In the next section, we analyse
properties of disturbances associated with a turbulent round jet, review results from
linear stability analysis, and describe the proposed beam-forming algorithm. In § 3, we
outline a preliminary microphone array design based on direct numerical simulation
(DNS) of a subsonic round jet by Freund (2001). Subsequently, we describe the
experimental facilities, test conditions and final array design for the laboratory-scale
jets (Re � 105) based on mean-flow data from particle image velocimetry (PIV) by
Bridges & Wernet (2003) and Bridges & Brown (2004) in § 4. In § 5, we evaluate the
capabilities of the proposed technique over a range of Mach numbers (Ujet/a∞ = 0.35
to 0.90) and temperature ratios (Tjet/T∞ = 0.84 to 2.70). We also compare the detected
instability waves with structures extracted using the proper orthogonal decomposition
(POD), as done by Arndt et al. (1997). We finally discuss some connections and
implications of the results for jet noise and conclude by summarizing the benefits and
limitations of the instability-wave detection algorithm.

2. Theoretical background and detection algorithm
2.1. Linear hydrodynamic regime

As illustrated in figure 1, the pressure field of a jet consists of several different
disturbances. We here categorize them into three types: (i) linear hydrodynamic
disturbances, which we represent by eigenfunctions obtained from linear stability
analysis; (ii) nonlinear disturbances, which vorticity and entropy modes associated
with turbulence typically generate in the mixing layer; and (iii) acoustic waves. To
evaluate each of their contributions to the pressure field, we plot their expected
radial decay for the axisymmetric mode (m = 0) in figure 2. As an example of a
nonlinear disturbance, we consider an inviscid line-vortex ring with a core centred
at r/D = 0.5, whose pressure field asymptotically decays as (r − D/2)−2 in the near
field (the decay over the domain of interest is actually close to ∼(r − D/2)−3). For
an acoustic disturbance, we use a quadrupole (decays as ∼ r−3 in the near field and
∼ r−1 in the far field, where k is the axial wavenumber) centred at the jet axis for
St = 0.35. These disturbances are compared with an eigenfunction of instability waves
in the radial direction.
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Figure 2. Comparison of decay rates in the radial direction: ——, instability waves for m = 0
at St= 0.35 (x/D = 2.5 for case B, shown in table 1); – – –, vortex ring at r/D = 0.5; −·−,
acoustic quadrupole at the centreline. Magnitudes are arbitrary scaled.

Figure 2 shows that even if the amplitude of the vortex ring is the highest in the
mixing layer, its pressure level falls off much faster than that of the instability waves,

which decay as ∼ r−1/2 exp[−r
√

k2 − (ω/a∞)2], where ω is the angular frequency. On
the other hand, acoustic waves, which decay more gently, can readily dominate the
signals at sufficiently large r , although their amplitude is typically much smaller than
the other two types of disturbance inside the mixing layer. Thus, there exist crossover
points, one from nonlinear disturbance to linear hydrodynamic waves and the other
from linear hydrodynamic waves to acoustic signals (Crighton & Huerre 1990). The
main goal of the hydrodynamic-array design is to identify this ‘linear hydrodynamic
regime’ and distribute microphones in this region to extract signals from instability
waves most efficiently.

2.2. Linear stability analysis

We now briefly review results from linear stability analysis for a weakly non-parallel
mean flow. This provides the forms of instability waves, which are later used as
reference solutions for the proposed beam-forming algorithm.

We assume that the flow is compressible and inviscid. The ansatz for the instability
wave is

Π(ω, m, as; x, r, θ) = asA(ω, m; r)e−i(ωt−kx−mθ), (2.1)

where Π denotes logarithmic pressure (i.e. Π ≡ γ −1 log(p/p∞), γ being the specific
heat ratio and p∞ the ambient pressure), m is the azimuthal mode number, and
A denotes the eigenfunction, which is arbitrarily normalized here. Note that the
eigenfunctions of positive and negative azimuthal modes are identical.

To solve eigenfunctions, we substitute (2.1) into the third-order convective wave
operator (Pridmore-Brown 1958; Lilley 1974), which is Fourier-transformed as
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Figure 3. Growth rates of instability waves in a round jet (M∞ = 0.5, unheated). A spatial
problem is solved based on linear stability analysis, and the imaginary part of the wavenumber
is plotted: ——, m = 0; – – –, m = 1; −·−, m = 2; · · ·, m = 3. The mean velocity and
temperature profiles were taken from the PIV data (Bridges & Wernet 2003) at x/D = 2.25.

follows:

d

dr

(
r

n2

dA

dr

)
+

(
n2 − k2 − m2

r2

)
r

n2
A = 0, (2.2)

where n(r) ≡ [ω − kU (r)]/a(r), U (r) being the mean velocity in the axial direction
(denoted by x) and a(r) the mean speed of sound.

The structure of the eigenfunction outside the jet is of special relevance to this study.
At a larger radial distance, the Sommerfeld radiation condition must be satisfied:

r1/2

(
dA

dr
− i

√
n2

∞ − k2A

)
→ 0 as r → ∞, (2.3)

where n∞ ≡ n(r = ∞). At large r , the eigenfunction is exponentially decaying when
the phase speed is subsonic, i.e. ω/k < a∞.

In addition, the asymptotic behaviour of A(ω, m; r) near the jet axis is given by

A(ω, m; r) ∼ rm as r → 0. (2.4)

In this study, we are interested in families of the most unstable mode, i.e. the lar-
gest −Im[k], for each m. For typical velocity profiles of a subsonic unheated round
jet, at most only one family of unstable modes exists for each m (Mattingly & Chang
1974). Figure 3 depicts growth rates of instability waves for the axisymmetric and
first two azimuthal modes (m = 0 to 2). Each family has a peak growth rate between
St = 0.2 and 0.4 at a cross-section specified here (x/D = 2.25). Since the growth rates
of the modes higher than m = 2 are much weaker than those of the lower modes, we
investigate only up to m = 2 in this study.

To take into account the spreading effects of the mixing layer, an eigenfunction
is calculated at each axial station, x, by assuming that the velocity and temperature
profiles are locally parallel. The composite eigenfunction (here in after referred to as
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Figure 4. (a) Pressure contours of eigenfunctions, (2.5), and (b) averaged pressure fluctuation

(

√
|p̂′|2) from the DNS: (i) m= 0; (ii) m= 1; (iii) m= 2. The contour interval is 6 dB in both

figures. Thicker lines depict iso-mean-velocity contours of Umax/4, Umax/2, and 3Umax/4.

the eigenfunction for simplicity) then becomes

A(ω, m; x, r) = Ā(ω, m; x, r) exp

[
i

∫ x

0

k(ξ ) dξ

]
, (2.5)

where Ā(ω, m; x, r) is a normalized eigenfunction at each x and k(ξ ) is the correspond-
ing complex wavenumber at x = ξ . We normalize Ā to be unity (with no imaginary
part) at the radial position where the complex amplitude is maximum.

In computing the eigenfunctions, the velocity and temperature profiles (either from
DNS or experiment) are fitted with hyperbolic tangent profiles at each cross-section in
a least-squares sense so that the equation can be smoothly integrated. Subsequently,
eigenfunctions are computed by a shooting method with a standard fourth-order
Runge–Kutta scheme. The same scheme is used to integrate the phase part of (2.5).
Special care is taken to circumvent the critical layer (Tam & Morris 1980), where
eigenfunctions decay downstream as the mean flow spreads (see Appendix A for
details).

Figure 4 compares the magnitude of eigenfunctions (2.5) with the averaged pressure
fluctuations calculated directly from DNS (Freund 2001) at St = 0.3. The eigenfunc-
tions capture the exponential growth and successive saturation in the streamwise
direction, especially in 1.75 <x/D < 6.25. The quantitative agreement is satisfactory
for the m =0 and m =1 modes, while for m = 2 the eigenfunction saturates more
rapidly than the result from the DNS. The pressure fluctuations from the DNS
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Figure 5. (a) Iso-phase contours of the eigenfunctions and (b) those of the pressure fluctuation
from the DNS. Notation is the same as figure 4. The contour interval is 45◦, and the thicker
lines denote every 360◦.

have slower decay at larger radius, where sound-wave amplitude overcomes the
hydrodynamic fluctuations, as discussed in the preceding section.

We also compare the phase fields between the eigenfunctions and DNS pressure
fluctuations in figure 5. As discussed later, the beam-forming algorithm predicts
amplitude based on phase matching. In the phase contours of the DNS, several
branch points appear (where multiple contours converge), at which the contribution
from acoustic signals exceeds that from instability waves. Therefore, we must place
the array closer to the centreline than these points. On the other hand, in the mixing
layer we can observe some phase distortion, particularly for m =0 and m =1 near
x/D =3, presumably due to nonlinear disturbances. It is also important to notice
that the agreement of phase variation in the hydrodynamic region, say 1 < r/D < 2,
is relatively good for the m =0 and m =1 modes, while there is some phase delay in
the saturated region (x/D > 5) for m = 2.

We should remember that the Reynolds number in the DNS is sufficiently low
(Re = 3600) such that the initial mixing layer is transitional. Compared with the
experiments (whose Reynolds numbers are of the order of Re � 105), the DNS flow
field has a smaller spreading rate of the mixing layer and a longer potential core.
Nonetheless, the wavelengths at our frequencies of interest are nearly the same for
both cases. Therefore, the design criteria of a hydrodynamic array assessed with the
DNS database are expected to be valid for high-Reynolds-number jets with minimal
modifications.
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2.3. Beam-forming algorithm

In this section, we start with the existing beam-forming algorithm (cf. Johnson &
Dudgeon 1993; Dougherty 2002) for acoustic source localization. Note that this
algorithm is equivalent to the matched field processing (cf. Tolstoy 1993), which has
been widely used for underwater acoustics and seismology. Subsequently, we extend
it for instability wave identification in the following section.

Suppose sound generated by a monopole source propagates in a free quiescent
space. If we take a Fourier transform of pressure (or γ −1 log(p/p∞), as shown in
(2.1)) in time, the pressure fluctuation at the point x may be represented by

p̂(ω, as, xs; x) =
1

2

as(ω)

4π|x − xs |
eik|x−xs | ≡ asP̂ (xs; x), (2.6)

where as is the complex source amplitude including an arbitrary phase shift. In
addition, k denotes the wavenumber, xs the source position, and P̂ the form of a
monopole solution in (2.6). We consider p̂(ω, as, xs; x) to be the reference solution
for an acoustic source. On the other hand, suppose the pressure data are available
at Nmic observer points (i.e. microphones) and define the position of the lth observer
to be x l . At each xl , we Fourier-transform the measured pressure data in time and
denote them as q̂l(ω). Subsequently, we consider the square norm of the difference
between the reference solution and the measured data and define the following cost
function:

J (ω, as, xs) ≡
Nmic∑
l=1

|p̂(ω, as, xs; xl) − q̂l(ω)|2. (2.7)

Next, we determine the complex source amplitude, as , that optimizes the cost
function above. By differentiating J with respect to as , the source amplitude that
minimizes (2.7) is given by

(as)min(ω, xs) =

Nmic∑
l=1

P̂ ∗(xs; x l)q̂l(ω)

Nmic∑
l=1

|P̂ (xs; x l)|2
, (2.8)

where the superscript ∗ denotes complex conjugation. The quantity, (as)min, can then
be computed at each xs . Substituting (2.8) into (2.7), we obtain the minimized cost
function as a function of ω and xs as

J (ω, (as)min, xs) =

Nmic∑
l=1

|q̂l(ω)|2 −

∣∣∣∣∣
Nmic∑
l=1

P̂ ∗(xs; xl)q̂l(ω)

∣∣∣∣∣
2

Nmic∑
l=1

|P̂ (xs; x l)|2
. (2.9)

Rearranging (2.9) and expressing it in matrix form, we generally generate contours
of the following quantity to localize the acoustic source position:

Q(ω, xs) ≡ |q|2 − J (ω, (as)min(ω, xs), xs) =
P†

|P | · qq† · P
|P | , (2.10)
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where q ≡ q̂l(ω), P ≡ P̂ (xs; x l), and † denotes complex conjugate transpose. The l × l

matrix, qq∗, is called the cross-spectral matrix and the vector, P/|P | (which has l

components), is the steering vector. The position where the cost function becomes
minimum, and in turn, Q(ω, xs) becomes maximum, indicates the source position.
At this point, (as)min corresponds to the predicted complex source amplitude, and
Q(ω, xs)/|P |2 to the source intensity. Thus, we can detect the position and amplitude
of an acoustic source in a non-contact fashion.

Now, suppose the transformed pressure signals consist of Nsrc (� Nmic) uncorrelated
noise sources; namely, we expressed them as

q ≡
Nsrc∑
l′=1

al′vl′, (2.11)

where al′ denotes the complex amplitude of the signals from the l′th source and its
vector vl′ is normalized so that |vl′ | =1, but the vectors are not mutually orthogonal
in general. If we take an ensemble average of a cross-spectral matrix, the cross-terms
between uncorrelated noise sources then vanish. Thus, the averaged cross-spectral
matrix can be simplified as

qq† =

Nsrc∑
l′=1

|al′ |2vl′v
†
l′ . (2.12)

On the other hand, the cross-spectral matrix can be diagonalized with a unitary
matrix because it is Hermitian. Therefore, the following relation holds:

Nmic∑
l=1

λlulu
†
l =

Nsrc∑
l′=1

|al′ |2vl′v
†
l′ or λl =

Nsrc∑
l′=1

|al′ |2|u†
l · vl′ |2, (2.13)

where λl is the lth eigenvalue (non-negative) and ul is the corresponding orthonormal
eigenvector (i.e. |ul | =1 and orthogonal to each other). The set of eigenvectors is
equivalent to the POD modes in the frequency space (Arndt et al. 1997). This equation
shows that when the primary signal has by far the greatest amplitude, the square root
of the first eigenvalue, i.e.

√
λ1, approximately gives the amplitude of this signal, and

its eigenvector, u1, coincides with the normalized signal, v1. Thus, the POD is useful
particularly when we extract distinctive signals without knowing their information a
priori. However, if amplitudes of multiple signals are comparable, each eigenvector
does not coincides with an individual uncorrelated signal in general. Moreover, as
the mode number, l, increases on the left-hand side of (2.13), the subspaces occupied
by the preceding eigenvectors (i.e. < l) prevent spanning dimensions from capturing
the correlated signals. Thus, eigenvectors of a cross-spectral matrix do not necessarily
separate uncorrelated signals nor extract correlated signals, while the beam-forming
can detect the amplitude projected onto the reference solution.

2.4. Detection of instability waves

We extend the discussion above to the detection of instability waves. We similarly
assume that the pressure histories are available at Nmic observer points (which are
distributed just outside of the mixing layer) and define the transformed logarithmic
pressure at the lth observer to be

Θ̂l(ω) ≡ 1

2π

∫ ∞

0

1

γ
log

[
p(t, xl, rl, θl)

p∞

]
eiωt dt. (2.14)
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We also transform the eigenfunction (2.1), which is computed with given U (r) and
a(r), and define it as Π̂(ω, m, as; xl, rl, θl). Subsequently, we introduce a cost function
as

J (ω, m, as) ≡
Nmic∑
l=1

|Π̂(ω, m, as; xl, rl, θl) − Θ̂l(ω)|2. (2.15)

From (2.8), the amplitude of the instability waves is then estimated as

(as)min(ω, m) =

Nmic∑
l=1

A∗(ω, m; rl) exp(−Im[k]xl) exp(−i(Re[k]xl + mθl))Θ̂l(ω)

Nmic∑
l=1

|A(ω, m; rl)|2 exp(−2Im[k]xl)

, (2.16)

for each ω and m. Thus, the magnitude of instability waves, |(as)min|, and its phase,
arg[(as)min], for each m at a given ω can be computed from pressure time histories at
Nmic observer points. To be precise, the eigenfunctions are also functions of x in this
study, since we take into account the mean flow variation in the axial direction (refer
to (2.5)).

It should be mentioned that the principal idea of the beam-forming is detection
based on phase matching. As seen from (2.10), the quantity Q(ω, xs) is nearly
maximized when the phases of the steering vector best match those of the cross-
spectral matrix. From the DNS data, the agreement in figure 5 demonstrates the
feasibility of prediction based on phase matching, while the agreement in figure 4
strongly indicates that the reference solution represents a large-scale coherent structure
over a substantial region of a jet. Because the amplitude acts as a weight function,
phase is most closely matched where the amplitude is highest. In detection of acoustic
sources, variation in amplitude is generally insignificant provided that the array is
reasonably far from the source, relative to the aperture. By contrast, signals from
instability waves exponentially grow in the axial direction; therefore, we must carefully
distribute observer points so that amplitude variation between them is sufficiently
small. This, in turn, helps reduce uncorrelated noise between microphones.

3. Array design guidelines from DNS
To develop design procedures of the hydrodynamic array and evaluate the potential

accuracy of the proposed detection method, the DNS database computed by Freund
(2001) for a round jet at a Mach number of Mjet ≡ Ujet/ajet = 0.9 and a Reynolds
number of Re ≡ UjetD/ν = 3600 was used. Figures 1, 4 and 5 were generated from
this database. The details of numerical procedures may be found in Freund (2001).

Using the mean flow field from the DNS database, we construct reference solutions
for St = 0.3 following the procedures described in § 2.2. We calculate the amplitude of
instability waves for each azimuthal mode with the proposed beam-forming algorithm
using every other grid point in the region indicated in figure 6, and treat this as the
exact amplitude. Subsequently, we try to recover this amplitude from a limited number
of microphones and evaluate the accuracy as a function of a microphone number
and their distribution.

The overall results based on the DNS suggest that the array requires at least seven
rings in the streamwise direction and each ring requires six microphones (i.e. a total
of 42 microphones) to resolve modes up to the m =2. The azimuthal angles of the
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Figure 6. The domain where the amplitude of the reference solutions is calculated (denoted
by a grey region), and the line along which the microphones are distributed (denoted by a
solid line) in the DNS test. As an example, seven microphones (i.e. rings) are distributed along
the line. Contours of pressure fluctuations over m= −9 ∼ 9 are superposed with an interval of
3 dB.

microphones are staggered in every other ring (i.e. 30◦, 90◦, 150◦, 210◦, 270◦ and 330◦

for the first ring; 0◦, 60◦, 120◦, 180◦, 240◦ and 300◦ for the second ring, and so on)
in order to suppress aliasing errors from higher azimuthal modes. The axial length of
the array is set to cover two wavelengths of the instability waves, and the spreading
angle of the array is determined so that the variation of pressure intensity is within
the same order of magnitude (8.7◦ in the DNS). The position of the array used with
the DNS database is displayed in figure 6. The accuracy of detection using this model
array is estimated to be of the order of 10 % (∼ 1 dB) for m = 0 and 30 % (∼ 3 dB)
for m =1 and 2 in pressure amplitude, respectively. Since the reference domain is
determined by referring to the m =0 mode, the errors in the other two modes appear
to be larger in the DNS.

4. Experimental facilities and data processing
4.1. Small hot jet acoustic rig

Experiments were conducted using the small hot jet acoustic rig (SHJAR) at NASA
Glenn Research Centre. A single-stream round jet was mounted 3.05 m from the
ground in an anechoic dome with a 20 m radius. The wall of the dome was filled with
foam wedges. The jet exit was a converging nozzle, and the exit diameter was 5.08 cm
(2.0 in). We tested a variety of combinations of Mach numbers (M∞ ≡ Ujet/a∞ = 0.35
to 0.90) and temperature ratios (Tjet/T∞ = 0.84 to 2.70). These conditions followed
the set points of the previous experiment by Tanna (1977). Bridges & Wernet (2003)
and Bridges & Brown (2004) summarized the flow characteristics in most of these
cases. Table 1 shows the flow conditions considered in this study. Note that velocity
fluctuation from the designated test conditions was within 1 %.

4.2. Mean flow data from PIV

To construct the eigenfunctions for the experimental cases, we used mean flow data
measured by Bridges & Wernet (2003) and Bridges & Brown (2004). Velocity fields
on cross-sectional and streamwise planes were obtained using PIV with resolutions
of approximately 0.1D and 0.02D in the streamwise and the radial directions,
respectively. Although the mean flow fields for cases A, C and G were not available,
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Case Set point M∞ (Mjet) Tjet/T∞ Re PIV flow data availability

A 1 0.35 (0.35) 0.98 (cold) 4 × 105 No
B 3 0.50 (0.51) 0.96 (cold) 7 × 105 Yes
C 5 0.70 (0.74) 0.91 (cold) 11 × 105 No
D 7 0.90 (0.98) 0.84 (cold) 16 × 105 Yes
E 23 0.50 (0.38) 1.76 (hot) 2 × 105 Yes
F 27 0.90 (0.69) 1.76 (hot) 4 × 105 Yes
G 42 0.50 (0.31) 2.70 (hot) 1 × 105 No
H 46 0.90 (0.56) 2.70 (hot) 2 × 105 Yes

Table 1. Operating conditions of jet flows. Mjet ≡ (U/a)jet and Re ≡ (ρUD/µ)jet.

–1.5 –1.0 –0.5 0 0.5 1.0 1.5
0

0.2

0.4

0.6

0.8

1.0

Ujet—–a∞

y/D

Figure 7. Velocity profile at x/D = 2 (case D): �, data from the PIV; ——, approximate
hyperbolic-tangent profile used for the linear stability analysis.

they were estimated from case B, the average of cases B and D, and case H,
respectively, by scaling with the free-stream jet velocity ignoring compressibility.

To integrate (2.2) smoothly, we fitted the axial mean-velocity data with a hyperbolic
tangent profile, U0(r) ≈ Umax/2(tanh[s(r+r0)]−tanh[s(r−r0)]). These three parameters,
Umax, s and r0, were optimized in a least-squares sense at each cross-section (see
figure 7). From the axial velocity profiles, temperature profiles were estimated using
the Crocco–Busemann relation. The agreement with data obtained from total pressure
and temperature probes for the case with the highest temperature ratio (case H) is
shown in figure 8.

4.3. Hydrodynamic array

Starting with the overall requirements for the array design obtained from the DNS
analyses in § 3, we modified the design to account for diffusiveness of the mean
velocity profiles in the experiments. In particular, the Reynolds numbers under the
laboratory conditions are one to two orders of magnitude higher than that of the
DNS. Hence, the mixing layer of the jet spreads more rapidly, and the potential core
becomes shorter.

To determine the size of the array in the axial direction, we calculated instability
wavelengths at several frequencies for m = 0, 1 and 2 based on the PIV mean flow (see
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Figure 8. Temperature profile at x/D = 2 (case H): �, data from direct probe measurement;
——, approximate profile computed from the velocity profile using the Crocco–Busemann
relation.

m = 0 m = 1 m = 2

St = 0.25 3.30 2.47 2.13
St = 0.30 2.47 1.97 1.75
St = 0.35 1.87 1.63 1.49
St = 0.50 1.17 1.13 1.09

Table 2. Wavelengths of instability waves (relative to the jet diameter) obtained from the
experimental velocity and temperature profiles for case B at x/D = 2.25.

table 2). We chose an unheated jet at M∞ = 0.5 (case B) as the base-line case for the
design and used the mean velocity and temperature profiles at x/D = 2.25, which is,
in turn, approximately the centre of the array in the axial direction. Table 2 indicates
that the array must extend to 5D in order to cover two wavelengths of these modes
at St =0.3 (see m =0 in table 2). Hence, even if the array starts at x/D = 0, it would
nearly reach the end of the potential core, beyond which the assumption of the locally
parallel mean flow fails. On the other hand, we cannot locate microphones very close
to x/D =0 because of possible interference near the nozzle exit. In particular, some
modes associated with internal aerodynamics were observed in unheated jets at higher
Mach numbers (refer to Appendix B). As a compromise, we set the array length to
be 3.75D, starting approximately at x/D = 0.35.

The spreading angle of the array (the half-angle of the cone) was set to be 11.3◦.
This angle was determined so that it was slightly steeper than the spreading angle
of the PIV velocity fluctuation. To test various radial positions of microphones,
additional rings were introduced with equal spacings (the total number of the rings is
13). Hence, by shifting the whole array in the axial direction by an increment of the
ring spacing and by choosing a different set of seven rings, pressure signals can be
measured at different radial distances. The radius at the centre of the array was then
varied in the range of 1.0 � r/D � 1.75 (at x/D = 2.25). The resulting configuration
of the hydrodynamic array for the experiments is illustrated in figure 9. Note that
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Figure 9. Microphone distribution of the hydrodynamic array designed for the experiments.

Jet

Figure 10. Photograph of the hydrodynamic array with the SHJAR facility.

when the array was shifted upstream to measure pressure signals at a larger radius,
the first few upstream rings were removed.

The overall microphone array consisted of 13 ring with 6 microphones each, for a
total of 78 quarter-inch microphones (note that Arndt et al. (1997) used 8 unequally
spaced rings with 4 microphones per ring and took the data along 10◦ and 15◦ from
the centre of the jet exit). Each microphone was supported by a non-conductive plastic
sleeve, and it was joined to a stinger mounted on a cylindrical steel frame with 1.22 m
diameter and 0.42 m axial length. The whole array was mounted on a structure with
wheels to adjust the axial position (figure 10). The error in microphone position was
estimated to be less than 0.05D based on a noise-source test using a spark plug. This
error was at most 5 % of the instability wavelength (table 2). The background noise
amplitude was at least three orders of magnitude smaller than signals from the jet.
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4.4. Data acquisition and uncertainty in data processing

We set a sampling rate of 50 kHz and low-pass-filtered pressure signals to 20 kHz;
thus, for example, the frequency resolution is approximately up to St = 3 at M∞ = 0.9
for an unheated jet. In computing Fourier transforms in time, four period segments
at each target frequency were processed (approximately corresponding to 1/6 octave
bandwidth). Although no windowing function was applied to the segments, the
uncertainty in amplitude of instability waves due to windowing is estimated to be less
than 3 % (∼0.25 dB). For each flow condition, pressure histories were recored for 10 s
so that at least 500 four-period segments at the target frequency can be processed. If
the number of intervals is decreased from 500 to 250, possible variation in amplitude
of instability waves is less than 5 % (∼0.4 dB). To plot the amplitude of pressure
based on Fourier transforms and beam-forming, the root mean square was taken over
500 segments.

We also consider the aliasing error from higher azimuthal modes. Since the pressure
disturbances from fine-scale turbulence generally decay rapidly with radius, the largest
contamination is most probably due to coherent structures (i.e. instability waves for
m = 4, 5, 6, etc.). In particular, the contamination of the m = 2 mode by m = 4 is
considered the greatest because growth rates are decreased with increasing azimuthal
mode number. To evaluate this uncertainty, we carried out the following test. We
constructed the eigenfunction of m = 4 for case B with the amplitude normalized to
unity at (x/D, r/D) = (0.0, 0.5) and applied the beam-forming algorithm to this signal
with the reference solution for m = 2; as a result, we obtained an amplitude of 0.148
(if we apply this to the eigenfunction for m = 2, we recover an amplitude of unity).
Assuming that the disturbance level of instability waves at the exit for m = 4 is equal
to that for m = 2 (which can be confirmed in figure 16 later), the contamination from
m = 4 in m = 2 is less than 1.2 dB even if they are perfectly correlated and 0.1 dB if
uncorrelated.

As mentioned before, we observed strong signals that are not associated with
instability waves near the nozzle exit in unheated jets at higher Mach numbers (see
Appendix B). This causes an increased pressure amplitude at the first ring up to 10 Pa
at St = 0.35 for case D, for example (this effect can be seen in figure 18a). However,
by applying the beam-forming algorithm, we can mostly eliminate this influence. The
estimated increase in instability-wave amplitude is of the order of 0.1 % even if this
signal is perfectly correlated with instability waves. This ensures that the amplitude
at the exit can be appropriately determined even when the influence of this signal
varies in a range of Mach numbers (refer to figure 16).

5. Results and discussion
5.1. Capabilities of the measurement technique

To evaluate the capabilities of the proposed detection algorithm, we compare the
eigenfunctions whose amplitudes are determined by the beam-forming algorithm to
pressure fluctuations processed with either Fourier transforms or the POD. In this
section, we consider the radial decay, streamwise evolution and phase correlation of
the instability waves. The comparisons reveal the extent to which the actual pressure
field is composed of linear instability waves, and help identify possible causes for
discrepancies where they exist. We choose case B (M∞ = 0.5, unheated) for reference
throughout this section unless otherwise noted. In what follows, we refer to the
data that are Fourier-transformed in time and the azimuthal direction at each ring
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Figure 11. Pressure levels of two different cross-sections at several radial microphone positions
(at St= 0.35 in case B). Pressure levels detected using the beam-forming (i.e. eigenfunction):
——, m = 0; – – –, m = 1; −·−, m = 2. Ring-wise pressure amplitude: �, m = 0; ∗, m = 1;
+, m= 2. Values are obtained by interpolation at the cross-section of (a) x/D =1.5;
(b) x/D = 3.5. The radius of 1 % Ujet in the mean velocity is denoted by a vertical dashed line.

as the ring-wise pressure amplitude in order to distinguish them from point-wise
measurements or axially non-local quantities, such as detected instability waves or
POD modes.

We begin by considering the radial decay of pressure. As mentioned in § 4.3, to
obtain independent data sets at different radii, we shifted the array to six axial
positions for a given flow condition. Figure 11 plots ring-wise pressure amplitude
and the eigenfunctions whose magnitudes are given from the beam-forming at two
cross-sections. Although the negative azimuthal modes (i.e. m = −1 and −2) are not
plotted here, their amplitudes are statistically identical to the corresponding positive
modes. The target frequency is chosen to be St = 0.35, which is close to the most
amplified frequency of hydrodynamic fluctuations for m = 0 (note that the frequency
of peak sound radiation in the far field is close to St ≈ 0.2). At both cross-sections,
there is a substantial region of exponential decay, for which the amplitude is detected
to within the 1 dB uncertainty. The largest discrepancy is found for m = 2, and this
is probably from the aliasing error discussed in § 4.4.

Near the nozzle exit (x/D =1.5), the ring-wise data deviate above the eigenfunctions
for small r . As discussed in § 2.1, nonlinear interactions in the mixing layer can
create strong pressure deficits which decay faster than the instability waves. Farther
downstream (x/D = 3.5), we observe an expected crossover between exponential
decay (instability wave) and algebraic decay (acoustic wave) at large r . These results
suggest that the third or fourth microphone array position can extract the signals
from linear hydrodynamic waves most effectively. We performed the same tests for all
other cases discussed in this paper and found similar results. Moreover, the amplitude
variation among axial microphone positions for these two configurations is within
the same order of magnitude in most cases. Therefore, for the rest of the study, we
choose the third microphone position from the centre, unless otherwise noted.

Next, streamwise evolution of instability waves is shown in figures 12(a)(i)–(iii) at
St= 0.25, 0.35, and 0.50, respectively. To be precise, the evolution is plotted along
the conical array; hence, the signals appear to saturate and decay more rapidly than
they evolve in the axial direction at a constant r . At a lower frequency (St = 0.25),
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Figure 12. (a) Evolution of pressure amplitude along the microphone array (ring-wise pressure
amplitudes are compared with the eigenfunctions), and (b) averaged phase correlation along
the microphone array (phase shifts of the eigenvector of the cross-spectral matrix are compared
with those of the eigenfunctions) (case B): (i) St= 0.25; (ii) St = 0.35; (iii) St= 0.50. Notation
is the same as figure 11.

the ring-wise measurements for the m = 0 mode grow faster near the nozzle exit
compared with the eigenfunction, while those for m = 1 and m = 2 closely follow the
eigenfunctions. As the frequency is increased (St = 0.35), the discrepancy in m = 0 is
much improved, while the agreement at the higher azimuthal modes is only slightly
worse. At a still higher frequency (St =0.50), the growth rates of all three modes are
somewhat under-predicted, although the overall evolution, i.e. growth – saturation –
decay, is captured well.
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It should be mentioned that since the beam-forming algorithm attempts to eliminate
signals other than the target instability mode, the estimated amplitude of instability
waves is generally lower than the pressure level obtained from Fourier transforms. It
is possible to minimize, for example, contributions from convecting turbulence at the
same frequency but uncorrelated from instability waves, as shown in (2.12). Moreover,
an aliasing error arises from the higher azimuthal modes, and its signal to noise ratio
is different between these three modes. The pressure level in m = 2 includes the m = 4
mode, whose relative intensity is higher than that of the contamination in m = 0
(from m = 6) and m = 1 (from m = 5). As mentioned in § 4.4, the amplitude given by
the beam-forming can contain the aliasing error up to 15 % for m = 2, if perfectly
correlated. Nonetheless, the proposed algorithm captures streamwise evolution well,
except for the axisymmetric mode at low frequencies.

We should emphasize that linear stability analysis predicts the growth rate of m = 0
to be much lower than that of m = 1 at frequencies lower than the peak (see figure 3).
In an axisymmetric jet, the length scale that governs the eigenfunction for m = 0
is the jet diameter at low frequencies, while that for the higher azimuthal modes is
the vorticity thickness of the shear layer over a wider frequency range (the former
mode is analogous to the mode sometimes referred to as a preferred mode, and the
latter as a shear-layer mode, cf. Petersen & Samet 1988). Based on the PIV mean flow
data for case B, we find only a single unstable mode, which is associated with the
diameter at the nozzle exit (in contrast, we find two modes in case H at St � 0.55, for
example). This difference originates from the centreline condition of the eigenvalue
problem; namely, ∂p′/∂r = 0 for m = 0 and p′ = 0 for others. In the actual ring-wise
data, however, the growth rates at St = 0.25 and St = 0.35 are comparable as shown
in figure 12(a); as a result, the discrepancy in m = 0 at the lowest frequency is by far
the greatest. This point is further discussed at the end of the section.

Phase correlation among the rings in the streamwise direction is shown in
figure 12(b). To obtain the phase correlation, the time histories of pressure data
are Fourier-transformed in time and the azimuthal direction, and a cross-spectral
matrix of the seven rings (7 × 7) is generated; subsequently, the phase-shift of the
eigenvector with the greatest eigenvalue of the cross-spectral matrix is plotted relative
to the fourth ring, and this is compared with the phase relation of the eigenfunction
in each azimuthal mode. This method can eliminate the signals from acoustic waves
near the end of the potential core and those propagating upstream near the nozzle,
as discussed in next section (on the other hand, this method is not preferable for the
previous two tests because, as we show later, the eigenvectors capture the amplitude
evolution only near the saturated region).

In general, the agreement is fairly good in all cases. Although the disturbance level
that is not associated with large-scale structures may be higher in the experiments than
that in the DNS, the agreement over a sufficient axial extent guarantees the beam-
forming algorithm to work. To be precise, at St =0.25 in figure 12(b)(i), the phase
correlations in all three modes indicate that the length scales of the hydrodynamic
structures are slightly shorter than those predicted from the linear stability analysis.
In contrast, the actual phase shifts are slower than the prediction at St= 0.50 in
all modes. Similar to the streamwise evolution, the overall agreement is the best at
the middle frequency (St =0.35). These results are unchanged even if we narrow the
frequency response by increasing the sampling time segment from 4 to 16 periods.
We observe that the signals in the experiments tend to deviate in the direction toward
the most amplified frequency of the near field, although the degree of deviation is
sufficiently small (of the order of 10◦) for the beam-forming to work.
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Figure 13. Comparison between the first three eigenvectors of the cross-spectral matrix and
the eigenfunction based on the linear stability analysis (m = 0 at St= 0.35 for case B): �,
eigenvector with the greatest eigenvalue; �, that with the second; ×, that with the third; ——,
eigenfunction. (a) amplitude; (b) phase correlation.

The results of both amplitude evolution and phase correlation consistently show
that the frequency that can be most accurately captured by the beam-forming is
the most amplified frequency. To be precise, the most unstable frequency decreases
slightly with increasing azimuthal mode number. The trends of deviation at both
lower and higher frequencies indicate that the signals are contaminated from the
most amplified modes. It has been also reported in experiments (Mankbadi 1985)
as well as simulations (Mohseni, Colonius & Freund 2002) that the growth rates at
off-peak frequencies tend to be under-predicted by the linear stability analysis. The
current results show that the discrepancy becomes particularly noticeable near the
nozzle exit for m = 0 at low frequencies.

In theory, since an eigenfunction is a discrete solution for a given frequency,
the phase relation and the growth rate should be uniquely determined for each m.
We should remember, however, that the eigenfunctions in this study are constructed
assuming that the flow is locally parallel. At low frequencies, the instability wavelength
becomes comparable to the length of the potential core (see table 2). Therefore, the
assumption of locally parallel flow is probably no longer valid, and this may cause
significant discrepancy near the nozzle exit. To calculate the growth rates accurately,
we must expand the equation including the spreading rate of the mixing layer in
linear stability analysis (Crighton & Gaster 1976; Tam & Morris 1980).

5.2. Eigenvectors of the cross-spectral matrix

To further investigate the signals from the hydrodynamic array, we study eigenvectors
of cross-spectral matrices (i.e. POD modes). In fact, several previous studies have
analysed coherent structures in the jet mixing layer based on the POD technique
(Arndt et al. 1997; Bonnet et al. 1998; Citriniti & George 2000). Here, we process 7×7
cross-spectral matrices in the same way as described for the phase correlation above.
Figure 13 plots the first three eigenvectors for m = 0 (eigenvectors multiplied by the
square root of the corresponding eigenvalues in figure 13(a) and their phase correlation
in figure 13(b)). The first eigenvector (i.e. the one with the greatest eigenvalue)
approximately follows the evolution of instability waves; however, the mode shape of
the eigenvector deviates substantially from the eigenfunction near the nozzle exit. The
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Figure 14. Ring-wise pressure of ten samples for m = 0 at St= 0.35 (case B): (a) amplitude;
(b) phase. Four periods of the target frequency were Fourier-transformed. Each symbol
corresponds to one sample.

second eigenvector depicts the same behaviour upstream, but does not capture the
amplitude near the saturated region. The phase correlation confirms the agreement
of the first eigenvector with the prediction based on the linear stability analysis.

We should emphasize that during each sampling period, instability waves only
partially occupy the domain of interest in the form predicted by linear stability
analysis. Figure 14 depicts ring-wise pressure amplitude and the phase correlation of
the first ten sampling segments for m = 0. Some samples follow the initial growth,
and others capture the saturated region in amplitude. The characteristic length of
the occupancy, i.e. the correlated length scale, is typically shorter than the length of
the array. As a result, the first eigenvector represents only the mode-shape near the
peak amplitude, where the ‘energy’ is concentrated, and rapidly decays upstream and
downstream (see figure 13a). Consequently, the second and even third eigenvectors
capture the instability waves upstream, but do not capture the peak amplification in
the streamwise direction. Recall that from (2.13), each eigenvector must be orthogonal
to the preceding ones. Thus, a single POD mode does not always represent an
instability-wave component in amplitude. On the other hand, phase deviation caused
by uncorrelated signals is cancelled when the cross-spectral matrices are averaged
over many segments; hence, excellent agreement between the phase correlation of the
first eigenvector and the linear stability analysis is obtained, as seen in figure 13(b).

At a higher Mach number (M∞ = 0.9), the trend explained above can be observed
more clearly. Amplitude and phase of the first three eigenvectors are plotted in
figure 15. Although the growth rate of the instability wave is estimated well, the down-
stream decay is not captured by the first eigenvector. As discussed in the next section,
the downstream plateau indicates that the signals are contaminated by acoustic waves
(most probably associated with instability waves). Since these acoustic signals are
correlated with instability waves, the first eigenvector is composed of both instability
and acoustic waves and its magnitude cannot be accurately determined by the square
root of the eigenvalue.

The phase correlation of the second eigenvector in figure 15(b) indicates an
upstream-propagating mode. This wave is a neutral acoustic mode decaying in the
radial direction (i.e. a discrete solution), and the wavenumber calculated based on the
convective wave operator (2.2) actually predicts its phase evolution near the nozzle
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Figure 15. Comparison between the first three eigenvectors of the cross-spectral matrix and
the eigenfunctions based on the linear stability analysis at M∞ = 0.9 (m = 0 at St= 0.35 for
case D). Notation is the same as figure 13. The dashed line in (b) denotes phase evolution of
an up-propagating neutral acoustic mode.
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Figure 16. Balance of instability-wave amplitude (at St= 0.35 for cases A–D, unheated):
(a) at the exit (x/D = 0); (b) at the peak. Pressure amplitude at r/D = 0.5 measured by the
beam-forming is normalized by ρ∞U 2

jet, and the amplitude of the m = 0 mode for M∞ = 0.35

at the exit is taken to be unity. Azimuthal modes of m = −2, −1, 0, 1 and 2 are shown from
left to right in each distribution.

exit. Its eigenvector in figure 15(a), however, cannot capture its mode-shape accurately
because it must again satisfy the orthogonality condition with the first eigenvector.

5.3. Compressibility effects

To investigate the scaling of instability-wave amplitude with the Mach number, we
first show the azimuthal mode balance for unheated jets at various values of M∞.
We normalize all amplitudes by ρ∞U 2

jet and then divide them by the amplitude of the
m = 0 mode for case A at the nozzle exit (we use ρ∞ to normalize the azimuthal mode
balance to readily compare with the far-field sound pressure level throughout this
paper). The variation in azimuthal mode balance with the Mach number is displayed
at the nozzle exit in figure 16(a) and the peak value along the mixing layer (r/D = 0.5)
in figure 16(b) (actual pressure amplitudes are also given in table 3 in Appendix C).
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Figure 17. Pressure levels as a function of a radius at two different Mach numbers. Ring-wise
pressure amplitudes and the eigenfunctions are compared (at St = 0.35 and x/D = 2.5):
(a) case B (M∞ = 0.5); (b) case D (M∞ = 0.9). Notation is the same as figure 11.

The amplitudes at the nozzle exit demonstrate that the normalized disturbance level
is nearly constant with the Mach number, which is consistent with the observation
by Armstrong & Michalke (1977). In contrast, the peak pressure amplitude is
substantially reduced with increasing Mach number, following the trends of growth
rates predicted by the linear stability theory (Blumen 1970) (we should note, however,
that significant deviation from the U 8

jet scaling law has not been observed in the
far-field sound pressure level by previous experiments, e.g. Tanna 1977). This also
confirms the validity of the proposed detection algorithm: the magnitude determined
from the detection algorithm appears to provide the appropriate amplitude at the
nozzle exit, although the ring-wise data deviate from the eigenfunctions at the most
upstream ring owing to resonance (refer to Appendix B or figure 18a).

Next, we consider the impact of the Mach number on the radial decay of pressure
fluctuations. In figure 17, we compare pressure fluctuations for six different array
positions at two different Mach numbers. At a higher Mach number (case D,
M∞ = 0.9), intensity of the acoustic signals relative to the hydrodynamic disturbances
increases for all three modes. As a result, the outer edge of the linear hydrodynamic
region shrinks. Yet, we can confirm that the third microphone position from the
centre still appears to be appropriate. As the jet velocity increases, pressure amplitude
associated with sound follows ∼U 4

jet in the far field (Lighthill 1952), as opposed to

∼U 2
jet in the linear hydrodynamic field. This implies, for example, that the pressure

level in the near field can increase up to 10 dB from cases B to D, while the sound
pressure level can increase as much as 20 dB in the far-field asymptote. The difference
between figures 17(a) and 17(b) falls within this range, although it is less than the
prediction because of the relatively small radial distance.

5.4. Temperature effects

Finally, to study the effects of the temperature ratio, we focus on St = 0.30, since
the most unstable frequency tends to be lowered in heated jets. Figure 18 depicts
the streamwise evolution of the pressure amplitude for unheated and heated cases
at M∞ = 0.9. Compared with the unheated jet, the axisymmetric mode is greatly
amplified, while the other two modes are only slightly enhanced in the heated jet. All
three modes saturate more rapidly, which is consistent with the shortened potential
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Figure 18. Evolution of pressure amplitude along the microphone array at different
temperature ratios (St=0.30 and M∞ = 0.9): (a) case D (unheated); (b) case H (Tjet/T∞ =2.70).
Notation is the same as figure 12.

0 1 2 3 4 5

–360

–180

0

180

360 (a)

0 1 2 3 4 5

–360

–180

0

180

360 (b)

P
ha

se
 (

de
g.

)

x/D x/D

Figure 19. Averaged phase correlation along the microphone array at different temperature
ratios. Flow conditions are the same as figure 18: (a) case D; (b) case H. Notation is the same
as figure 12.

core in heated jets (Bridges & Wernet 2003). The averaged phase correlation is also
plotted in figure 19. In contrast, the local wavenumber is nearly unchanged with
temperature; namely, the phase speed is independent of the jet temperature.

The strong growth of the axisymmetric mode in heated jets can also be seen
from the instability mode balance. Normalized azimuthal mode balance at the peak
for M∞ = 0.9 is displayed in figure 20(a). The amplification of m = ±1 and ±2
seems independent of the jet temperature, while m = 0 is noticeably enhanced with
increasing temperature. At a lower Mach number (M∞ = 0.5), the enhancement of
the axisymmetric mode is even more amplified, as shown in figure 20(b). The phase
correlation along the array is unchanged between cases B, E and G (not shown). For
reference, the peak pressure amplitudes measured in this study are given in table 4.

Note that Tanna (1977) reported that at low Mach numbers (i.e. M∞ < 0.7), the
far-field sound pressure level near the peak frequency increases monotonically with
increasing jet temperature, although the jet velocity relative to the ambient is the same.
The experiments by Bridges & Wernet (2003) also confirmed the same trend with an
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Figure 20. Balance of instability-wave amplitude at the peak for different temperature ratios
(at St= 0.30). (a) M∞ =0.9 (cases D, F and H). (b) M∞ = 0.5 (cases B, E and G). Pressure
amplitude of m = 0 for the unheated case at (x/D, r/D) = (0, 0.5) is taken to be unity. Notation
is the same as figure 16(b).

approximately 8 dB increase from the unheated to Tjet/T∞ =2.7 cases at M∞ = 0.5 over
a wide range of polar angles. These experiments have also shown that at M∞ � 0.7, the
dependence of the sound pressure level on the jet temperature becomes significantly
weaker (the variation between the unheated and Tjet/T∞ = 2.7 cases is within 3 dB at
M∞ = 0.9). On the other hand, we did not observe a substantial compressibility effect
on instability wave amplitudes (see figure 20) as well as their phase speed in the near
field. However, such trends in the far field are not simply related to the instability
wave mode balance (even if the acoustic radiation were a linear process), since the
radiative efficiency is also a function of the instability wave envelope (Crighton &
Huerre 1990). Thus, we should not view the apparently conflicting trends between
near and far field as supporting or conflicting with the hypothesis that instability
waves are an important source of sound at low frequencies. This is discussed further
in the conclusions.

6. Conclusions
We have developed an algorithm that detects instability waves in a subsonic

turbulent round jet by measuring pressure on a conical surface just outside the
mixing layer. The algorithm is analogous to the beam-forming technique; namely, it
minimizes the least-squares norm between the pressure measured with a hydrodynamic
array and the eigenfunctions from linear stability analysis. We have used a DNS
database to set the initial design for the array; subsequently, we have optimized the
microphone distribution by focusing on the frequency range from St = 0.25 to 0.50
for the axisymmetric and first two azimuthal modes. The proposed algorithm has
then been examined by experiments that cover a range of Mach numbers (M∞ = 0.35
to 0.90) and temperature ratios (Tjet/T∞ = 0.84 to 2.70).

For the experiments, we have compared radial decay and streamwise evolution
between the amplitudes directly obtained from Fourier transforms (in time and
the azimuthal direction) and the eigenfunctions whose amplitudes are determined
by the proposed algorithm. We have also compared phase correlation between the
first eigenvector of the cross-spectral matrix (i.e. the POD mode with the greatest
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eigenvalue) and the linear stability theory. The comparisons have shown that there
is an extensive region in the radial direction where linear hydrodynamic waves
dominate the pressure field, and the deviations from the predicted eigenfunctions are
generally within 2 dB over a range of frequencies (St = 0.25 to 0.50). The agreement is
particularly good near the most amplified frequency in each azimuthal mode (m =0,
±1 and ±2).

The results of this study show that the influence of the compressibility and the
temperature ratio on the instability-wave amplitude including their mode balance
at the nozzle exit is relatively small. Moreover, the good agreement between the
experimental data and the prediction may well indicate that the influence of small-
scale turbulence on large-scale structures are negligible up to the end of the potential
core, even for natural jets. Therefore, the growth rates of instability waves, which
are predictable with linear stability analysis, govern the peak mode balance of the
large-scale flow structures. We should note, however, that during any sampling period,
pressure signals follow the eigenfunctions in a region less than two wavelengths in
the streamwise extent; thus, the linear stability theory captures large-scale structures
only in a statistical sense.

Despite the excellent agreement for the most amplified frequency of the near field,
the growth rates near the nozzle exit tend to be under-estimated by the linear stability
analysis at off-peak frequencies. The discrepancy is most severe for the axisymmetric
mode (m = 0) at low frequencies where the governing length scale is changed from the
local vorticity thickness to the jet diameter. It should be remembered that the linear
stability analysis in this study assumes that the growth rate can be locally determined
by the velocity and temperature profiles at each cross-section. As the axial wavelength
of instability waves becomes longer at low frequencies, this assumption probably fails.
Thus, the effect of the spreading mixing layer may cause the discrepancy, although
the precise mechanism cannot be determined from the present study. To measure the
instability wave amplitude for m = 0 at low frequencies, an accurate model must be
developed as a reference solution for the beam-forming.

While the evidence presented here strongly supports the connection of linear
instability waves evolving in the time-averaged flow field to the evanescent pressure
field measured just outside the mixing layer, the connection to the far-field sound is
less clear. When instability waves convect supersonically, they give rise to Mach wave
radiation that has been clearly detected in previous experiments; certain aspects of
their spectrum and directivity follow directly from linear stability theory. In contrast,
for subsonically convecting waves (including the present experiments), models for their
acoustic radiation have long been sought (Liu 1974; Fuchs & Michel 1978; Tam &
Morris 1980; Mankbadi 1985; Zaman 1986; Crighton & Huerre 1990; Goldstein &
Leib 2005), but their relevance to the observed acoustic field is still a topic of debate.

The present data, together with acoustic data acquired in the same facility and at
the same conditions (J. Bridges & S.-S. Lee, personal communication 2004), offer an
extensive database with which to explore the connections between instability waves
and sound. For example, Reba et al. (2005) used a Green’s function solution to the
linear wave equation to project the present near-field array data to the far field and
compared the results with the aforementioned far-field measurements. They showed
that at polar angles of about 50◦, there was quantitative agreement between the
projected near-field data and the far-field measurements, partly supporting a direct
(linear) relation between instability waves and the far-field sound. Unfortunately, at
smaller polar angles, the agreement was unsatisfactory, especially in those cases where
truncation of the array near the end of the potential core caused a significant clipping
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of the instability wave packets (cf. figure 18a). It appears that refraction, which is not
accounted for in the Green’s function, may also have contributed to the disagreement
at shallow angles. In the future, we plan to further investigate the relation between
instability waves and acoustic radiation using these datasets.

We have compared the proposed detection algorithm with a POD analysis of the
experimental data. The POD extracts correlated structures based on their amplitude
without assuming a form of the structures. The first POD mode gives almost perfect
agreement with the linear stability theory for the phase correlation. On the other
hand, it captures only a limited extent of the instability-wave envelope near the
saturated region, because the characteristic length occupied by instability waves
during a sampling interval is shorter than the length of the array. As a result, the
upstream components of instability waves consist of multiple POD modes. On the
other hand, the POD method can detect structures other than instability waves. An
example from our study is upstream-propagating acoustic waves in the jet core, which
may be important as a feedback mechanism. Once the physics of such a mode is
identified and the structure is explicitly formulated, its amplitude could be determined
accurately with the proposed technique. It should be remembered that the beam-
forming algorithm gives the projection of signals onto the target mode that we wish
to extract.

The optimal array position to extract linear hydrodynamic signals is a function of
the frequency, while the number of microphones is generally limited. Therefore, the
array configuration must be designed according to these requirements. For example,
to measure instability waves at lower Strouhal numbers, the array must be extended
in the axial direction; however, the assumption of the locally parallel mean flow
probably fails beyond the end of the potential core. When we focus on higher
Strouhal numbers or higher azimuthal modes, we must cluster microphones in the
axial and the azimuthal directions, respectively. These measurements would require
the use of smaller microphones so that the interaction with the entrained flow is
minimized.

Detection algorithms based on least-squares optimization are being developed
for a number of applications, including the detection of isolated vortices based on
wall-pressure measurements (Suzuki & Colonius 2003), and the detection of trailing
vortices from aircraft based on their ground-plane acoustic signature (Dougherty
2004). In addition, such detection algorithms can provide useful data for numerical
simulations. For example, computational studies of turbulent jets suffer from
incomplete information on the statistics of instability-wave amplitudes at the nozzle
exit. The present data can provide such inflow conditions.

The authors acknowledge the support of an AeroAcoustics Research Consortium
(AARC) grant from the Ohio Aerospace Institute (OAI). We would like to express our
deepest appreciation to Drs J. Bridges, S.-S. Lee and their colleagues at NASA Glenn
Research Centre for conducting the experiments and fruitful discussions. We would
also like to thank Professor J. Freund for the DNS database and Drs S. Narayanan,
R. Reba and R. Schlinker for technical discussions regarding jet noise experiments,
as well as Professor P. Huerre for useful discussion.

Appendix A. Eigenfunction beyond the neutrally stable point
As Tam & Morris (1980) explained in their Appendix, we must consider carefully

a branch-cut in the complex r-plane when we compute stable or neutrally stable
eigenfunctions. As the velocity profile spreads downstream, the growth rates of
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Figure 21. Frequency spectra in case D (at M∞ = 0.9, unheated). Sound pressure levels of
the first seven rings are plotted from the bottom: (a) m = 0; (b) m = 1. The arrows denote
frequencies of duct-acoustic modes in a quiescent flow.

eigenfunctions vanish, i.e. Im[k] = 0, when ω − kU =0 at some r . This point is
referred to as a critical layer, corresponding to a branch point in the complex r-plane.
As the growth rate becomes negative further downstream, the imaginary part of the
critical point in r becomes positive. To circumvent this branch point, we integrate
(2.2) along

r(ρ) = ρ + i
 exp

[
− (ρ − Re[r∗])

2

σ 2

]
, (A 1)

where r∗ satisfies ω − kU (r∗) = 0. In this study, we use 
/D =0.04 + Im[r∗] and
σ/D = 0.02 and integrate (2.2) in 0 � ρ � 3D by a shooting method (see Boyd 1985).

Appendix B. Frequency spectra at high Mach numbers
In this experiment, we have observed a spurious resonance phenomenon, parti-

cularly at higher Mach numbers for unheated jets. Figure 21 depicts frequency
spectra of the first seven rings from the nozzle exit (the data are Fourier-decomposed
in the azimuthal direction) for case D (M∞ =0.90, unheated). In the m = 0 mode,
the highest peak appears at St ≈ 0.35, and their harmonics seem to follow at higher
frequencies (although their spacings are not exactly harmonics). These peaks are
smeared downstream. For m =1, the spectra are first peaked at St ≈ 0.6, and the
qualitative characteristics are similar to those of the m = 0 mode. Note that the first
peak frequency for m =2 (not shown) is nearly the same as that of the second peak
of the m =0 mode. Thus, the first few rings are influenced for m =0 in the frequency
range of interest (from St = 0.25 to 0.50).

This tonal sound is weaker or undetectable at lower Mach numbers or for heated
jets. At M∞ =0.7 for an unheated case, the first peak is observed at St ≈ 0.6 for m =0;
hence, it is not scaled with the Strouhal number (nor the Helmholtz number). Because
six microphones at the same axial station were not directly tied in the array, this
phenomenon is not caused by structural vibration. One hypothesis is that this signal
originates from the internal aerodynamics. Here, we compute duct acoustic modes
in a quiescent space, assuming that the wavelength in the axial direction is much
longer than the rig radius (7.62 cm), and denote their Strouhal numbers by arrows
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M∞ = 0.35 M∞ = 0.50 M∞ = 0.70 M∞ = 0.90

m = −2 97, 130 101, 135 107, 138 110, 138
m = −1 97, 135 102, 140 109, 144 112, 144
m = 0 101, 137 107, 142 112, 145 117, 146
m = +1 98, 136 103, 140 108, 143 113, 145
m = +2 97, 131 102, 135 108, 139 111, 139

Table 3. Pressure amplitude (dB) of instability waves. Values at the exit are listed on the left
and those at the peak on the right (corresponding to figure 16).

(a) Unheated Tjet/T∞ = 1.76 Tjet/T∞ = 2.70

m = −2 137 141 139
m = −1 145 147 146
m = 0 144 150 151
m = +1 146 147 146
m = +2 137 140 140

(b) Unheated Tjet/T∞ = 1.76 Tjet/T∞ = 2.70

m = −2 132 132 133
m = −1 139 139 140
m = 0 139 142 147
m = +1 140 138 140
m = +2 132 132 134

Table 4. Pressure amplitude (dB) of instability waves at the peak. (a) Values at M∞ = 0.9;
(b) values at M∞ = 0.5 (corresponding to figure 20).

in figure 21. The higher modes correspond to the harmonics in the radial direction
(i.e. the Bessel functions). Although the first mode is absent in all cases (it is also the
case for m = 2), the duct acoustic modes seem to scale the peak frequencies. Thus,
the agreement partially supports the hypothesis. However, as mentioned above, this
tonal sound is significantly suppressed at lower Mach numbers and for heated jets for
unknown reasons; moreover, it is not observed in the far-field sound spectra. Hence,
further investigation is required to fully understand this phenomenon.

Nevertheless, as discussed in § 4.4, the error in amplitude determined by the proposed
beam-forming algorithm is estimated to be of the order of 0.1% even if this signal is
perfectly correlated with instability waves. Moreover, from the study on the instability-
wave amplitude at the nozzle exit over a range of Mach numbers, the influence of
the resonance phenomenon is shown to be sufficiently small (see § 5.3).

Appendix C. Measured amplitudes of instability waves
The measured pressure amplitude of instability waves corresponding to figures 16

and 20 are given in tables 3 and 4, respectively.
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