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Abstract

The practically important classes of equal-input and of monotone Markov matrices are
revisited, with special focus on embeddability, infinite divisibility, and mutual relations.
Several uniqueness results for the classic Markov embedding problem are obtained in the
process. To achieve our results, we need to employ various algebraic and geometric tools,
including commutativity, permutation invariance, and convexity. Of particular relevance
in several demarcation results are Markov matrices that are idempotents.
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1. Introduction

Let Md denote the set of d-dimensional Markov (or stochastic) matrices, which are the
elements of Mat(d,R) with nonnegative entries and all row sums equal to 1. Clearly, Md is
a compact convex set, with the dd Markov matrices with entries in {0, 1} being its extremal
points (or elements); see [24, Sec. II.1] for a summary. Another classic example is the subset
of Md of doubly stochastic matrices, where both the matrix and its transpose are Markov.
Here, the extremal elements are the d! permutation matrices, which is known as Birkhoff’s
theorem. Concepts and methods from convexity will be needed and employed throughout the
manuscript; see [30] for general background on convex structures.

A Markov matrix M is called embeddable [2, 5, 7, 20] if it can be written as M = eQ

with a rate matrix Q, which is a matrix with nonnegative off-diagonal elements and vanishing
row sums. A rate matrix Q is also called a Markov generator, or simply generator, because{
etQ : t � 0

}
is a semigroup of Markov matrices with unit, and is thus a monoid; see [25] for

general background on Markov chains in continuous time. The set of embeddable matrices
from Md is denoted by ME

d . A Markov matrix is called infinitely divisible [8, 11] if it has a
Markov nth root for every n ∈N, where N is the set of positive integers. It is a well-known fact
[20, Prop. 7] that a Markov matrix is embeddable if and only if it is nonsingular and infinitely
divisible; see [14, Sec. 2.3] as well as [6, 12] for related material. In the other direction of
taking powers, whenever Q is a generator, M∞ := limt→∞ etQ exists, and is an idempotent
Markov matrix by [1, Prop. 2.3(3)], so M2∞ = M∞.
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The embedding problem goes back to Elfving [7] and became prominent through the
foundational paper by Kingman [20]. In the two decades following it, many abstract character-
isations of embeddable matrices were found and investigated; see [1, 5] and references cited
there for some of the literature, as well as [14, 17] for various related questions in matrix anal-
ysis. However, beyond d = 3, concrete criteria suitable for real-world applications remained
elusive, and the interest in the problem diminished somewhat. New impetus then came from
theoretical economics and, more recently and quite vigorously, from bioinformatics, where pre-
cisely the embedding problem for d = 4 is relevant in phylogenetics, with significant progress
still being rather fresh; see [1, 2, 11] and references therein.

In this context, the inference problem of discretely-observed, continuous-time Markov
chains is the starting point; compare [31], where natural consistency considerations led to
several new results (see [9] and references therein). Of particular relevance, both theoretically
and practically, are equal-input matrices [27], which possess a powerful algebraic structure and
paved the way to some progress, also beyond this class. In fact, it is precisely the systematic
use of some standard (and some perhaps not quite so standard) tools from (linear) algebra that
unlocks the somewhat stuck embedding problem for progress beyond d = 2 as needed in the
applications. It is one goal of this paper to explain some of these techniques in action, by apply-
ing them to two particularly important classes of Markov chains. This way, we also attempt
to convince the reader that stepping a little into algebraic methods can be more than a little
profitable.

To avoid trivial statements, we will generally assume d � 2. Let C ∈ Mat(d,R) have equal
rows, each being

(
c1, . . . , cd

)
, and define c = c1 + . . .+ cd as its parameter sum. Such a

matrix C is Markov precisely when we have c = 1 together with ci � 0 for all i. However,
it then has rank 1, so det (C) = 0 for d> 1. For this reason, such matrices C are often of lim-
ited interest, for instance in the context of embeddability. Instead, consider MC = (1 − c)1 + C,
which is a matrix with each row summing to 1. Here and below, 1 denotes the identity matrix.
Cleary, MC is Markov if and only if ci � 0 and c � 1 + ci for all i. Following the much-cited
monograph [27], we call such Markov matrices equal-input, since they describe Markov chains
where the probability of a transition i → j, for i �= j, depends on j only. As detailed in [27] (see
also [1] and references therein), they constitute an important model class in bioinformatics and
phylogenetics. All such matrices are of the above form, and the underlying c is called its sum-
matory parameter. For a given d, they form another convex set, which we denote by Cd; see
Lemma 2.8 for more.

A seemingly unrelated concept, at least at first sight, is the following. Consider the standard
simplex of d-dimensional probability vectors,

Pd := {(x1, . . . , xd

)
: all xi � 0 and x1 + . . .+ xd = 1

}
,

which is a compact convex set. Its extremal elements are the standard (row) basis vectors ei

with i ∈ [d] := {1, . . . , d}. One can introduce the partial order of stochastic monotonicity on
Pd by saying that x is dominated by y, written as x � y, when

∑d
i=m xi �

∑d
i=m yi holds for

all m ∈ [d]; see Equation (3.2) below for an alternative formulation. The corresponding partial
order is well defined also on the positive multiples of Pd, called level sets, hence extendable
to convex combinations. Further, it is consistent on the entire positive cone, where two vec-
tors can at most be compared when they lie in the same level set. This notion has its origin
in an important class of stochastic processes [4] that show up in many places in probability
theory and its applications [18, 19, 22]. Though practically perhaps most relevant in various
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economic contexts, stochastic monotonicity induces another class of matrices with a lot of
internal structure, which is relevant in the embedding context, as we shall explain below.

A Markov matrix M = (mij

)
1�i, j�d is called stochastically monotone, or monotone for

short, when the mapping x �→ xM preserves stochastic monotonicity; compare [4, 18]. It is
well-known that M is monotone if and only if its rows mi =

(
mi1, . . . ,mid

)= eiM are ordered
accordingly with increasing row numbers, meaning mi � mj for all i � j. More generally, the
concept of being monotone is well defined for all nonnegative matrices with equal row sums,
which are simply multiples of Markov matrices. Then, preserving the partial order means that
an inequality in one level set is turned into the corresponding one in another. The monotone
Markov matrices in Md form a closed convex set, which we denote by Md,�. All elements
of Md,� have trace �1, and the extremal points of Md,�, as detailed in Lemma 3.4 below,
are the

(2d−1
d

)
monotone Markov matrices with entries in {0, 1}. Monotone Markov matrices

appear in many contexts; see [18, 22] as well as [19, Ch. 3] for examples.
A stationary vector of M ∈Md is any x ∈ Pd with xM = x. Given M, the set of all station-

ary vectors is convex. In fact, it is a subsimplex of Pd that can be a singleton set (as for all
irreducible M) or larger, up to Pd itself (for M = 1). A Markov matrix M is an idempotent
when M2 = M. This means that M maps any x ∈ Pd to a stationary vector in one step. Except
for M = 1, any idempotent in Md has minimal polynomial x(x − 1). In particular, all idempo-
tents in Md are diagonalisable, and all but M = 1 are singular. Markov idempotents constitute
an interesting subset of the Markov matrices in their own right (compare [16, Sec. 1.6]), but
also provide a natural link between equal-input and monotone matrices. Indeed, the above
two matrix classes are intimately connected, and several of their properties can be derived
and understood interactively. In our presentation below, idempotents will play an important
role, which is an interesting point that does not seem to have attracted enough attention in
the past.

The structure of the paper is as follows. Since we build on terminology, methods, and
results from [1], we feel that a renewed section on preliminaries is unnecessary. While we
try to make the paper as self-contained as possible, some reference to [1] is inevitable to
avoid duplication. Instead, we proceed by recalling and extending some important properties
of equal-input matrices in Section 2 and then deriving new results on their graded semigroup
structure (Proposition 2.6), which provides relevant insight into the properties of such Markov
matrices. We then determine their embeddability (Proposition 2.12) and their multiplicative
structure in exponential form (Theorem 2.15).

The latter can be viewed as a nontrivial, explicit version of the Baker–Campbell–Hausdorff
(BCH) formula in this case; see the Wikipedia entry on the BCH formula for a good sum-
mary of this tool, which is particularly useful in the context of inhomogeneous Markov chains.
Beyond the commuting case, where the BCH formula is trivial, we are not aware of many other
matrix classes with such a favourable structure, and a better understanding of multiplicatively
closed matrix classes is needed; compare [28, 29] as well as [27, Ch. 7].

In Section 3, we turn to the monotone matrices, first recalling some of their elementary
properties and then continuing with results on embeddability (Theorem 3.8) and monotone
generators (Proposition 3.11). Throughout the discussion, idempotent matrices will naturally
appear, which can be explained by the intrinsic (pseudo-)Poissonian structure of infinitely
divisible Markov matrices (Proposition 3.14 and Theorem 3.17). We consider the case d = 3 in
more detail in Section 4, where the embeddability can be decided completely (Proposition 4.3
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and Theorem 4.4), and close with a general uniqueness result (Theorem 5.3 and Corollary 5.5)
and some comments on Markov roots and limiting cases in Section 5.

2. Equal-input matrices and some of their properties

From now on, we always use C to denote a nonnegative matrix with equal rows and the
parameter sum c � 0, where c = 0 then implies C = 0. For any matrix C of this type, one has
MC = C for all M ∈Md.

2.1. Equal-input Markov matrices

Given such a matrix C, the corresponding matrix

MC := (1 − c)1 + C (2.1)

is Markov precisely when 0 � ci for all i and c � 1 + mini ci. It is then called an equal-input
Markov matrix, and the set of all such matrices for a fixed d is denoted by Cd. As C �= 0 has
eigenvalues c and 0, the latter with multiplicity d −1, it is clear that

det
(
MC

)= (1 − c)d−1. (2.2)

A Markov generator Q is called equal-input if it is of the form Q = QC = C − c1, with C as
above and c � 0 without further restrictions. Clearly, c = 0 means Q = 0. Also here, we call c
the summatory parameter, as it will always be clear from the context whether we are referring
to a Markov matrix or to a generator. Since C2 = cC, one gets Q2

C = −cQC, so any equal-input
generator is diagonalisable. When c> 0, the matrix 1

c C is both Markov and an idempotent. As
we shall see, the relation QC = MC − 1 will become particularly important.

Fact 2.1. If M ∈ Cd, with d � 2, its summatory parameter satisfies c ∈ [0, d
d−1

]
. Moreover, the

matrix M ∈ Cd is an idempotent if and only if c = 1 or c = 0, where the latter case means
M = 1, while all other idempotents are singular.

Proof. Assume that M = MC is Markov. Since 0 � c = c1 + . . .+ cd � 1 + mini ci, the
maximal value of c is realised for c1 = . . .= cd = c

d , which gives the first claim. The second
follows from considering the equation

(1 − c)1 + C = MC = M2
C = (1 − c)21 + (2 − c)C,

which is solved by C = 0 with c = 0 or, for any c> 0, implies (1 − c)C = 0 and hence c = 1.
This leads to the two cases stated, where 1 is the only nonsingular idempotent by (2.2). �

Let us next look at some asymptotic properties. Here, one has

Mn
C = (1 − c)n1 + 1 − (1 − c)n

c
C

for n ∈N0 and c> 0 (so C �= 0). If |1 − c|< 1, we see that Mn
C, as n → ∞, converges to the

Markov matrix 1
c C. Adding the case with c = 0, but excluding from consideration c = 2 (where

convergence fails, occurring only for d = 2), one can summarise as follows.
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Fact 2.2. Let d � 2 and let C be a nonnegative matrix with equal rows and parameter sum
0 � c< 2. Then, if the matrix MC from (2.1) is Markov, one has

lim
n→∞ Mn

C =

⎧⎪⎨
⎪⎩

1, if c = 0,

1

c
C, otherwise,

where all limits are idempotents. Here, the summatory parameter of Mn
C is 1 − (1 − c)n, which

is 0 for c = 0, or otherwise converges to 1 as n → ∞. �
Since idempotents will show up repeatedly below, we recall the following well-known

property of Markov matrices, which we also prove for the reader’s convenience.

Lemma 2.3. For M ∈Md, the following properties are equivalent:

1. M is a nonsingular idempotent.

2. 1 is the only eigenvalue of M.

3. M = 1.

4. M has minimal polynomial q(x) = x − 1.

Proof. Clearly, M has 1 as an eigenvalue, because it is Markov. When M2 = M, the only
possible other eigenvalue is 0, and (1) ⇒ (2) is clear. The implications (3) ⇒ (4) ⇒ (1) are
immediate, and it remains to show (2) ⇒ (3).

By [10, Thm. 13.10], we know that the algebraic multiplicity of the eigenvalue 1 agrees
with the geometric one. When no other eigenvalue exists, this means M = 1. �

The set Cd of equal-input matrices is important in many applications (see [1, 27] and
references therein) and has interesting and revealing algebraic properties as follows.

Fact 2.4. Let C and C′ be two nonnegative, equal-row matrices, with parameter sums c and
c′, such that MC and MC′ are Markov matrices, so both lie in Cd. Then, one also obtains
that M = MCMC′ ∈ Cd, where one has M = MC′′ with C′′ = (1 − c′)C + C′ and parameter sum
c′′ = c + c′ − cc′. �

The Markov property of M = MCMC′ implies 0 � c′′
i � c′′ � 1 + c′′

i for all i, which may not
be obvious from the formula for C′′. In fact, the relation between the summatory parameters
can be further analysed as follows, where we refer to [21] for the grading notion. We will need
the group C2 with two elements, here written as {1,−1} with ordinary multiplication.

Lemma 2.5. Consider f (a, b) = a + b − ab for a, b ∈ X := [0, 1) ∪ (1, 2]. Then, one of the
following three cases applies:

1. If max (a, b)< 1, one has 0 � max (a, b) � f (a, b)< 1.

2. If min (a, b)> 1, one has 0 � 2 − min (a, b) � f (a, b)< 1.

3. Otherwise, one has 1< f (a, b) � max (a, b) � 2.

In particular, the mapping (a, b) �→ f (a, b) turns X into a C2-graded, commutative monoid,
with 0 as the neutral element of X, and with the grading being induced by the two connected
components of X, for instance via the mapping x �→ sgn(1 − x) for x ∈ X.
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Proof. Without loss of generality, we may assume a � b. Also, observe that the function
x �→ x(2 − x), on [0, 2], has a unique maximum at x = 1, with value 1, so x(x − 1)< 1 holds
for all x ∈ [0, 1) ∪ (1, 2]. Now, we can look at the three cases as follows.

When 0 � a � b< 1, where 1 − b is positive, we obtain the estimate

0 � b � b + (1 − b)a = f (a, b) < b + (1 − b) = 1,

while 1< a � b � 2, where 1 − a is negative, leads to

0 � 2 − a = a + 2(1 − a) � a + b(1 − a) = f (a, b) � a + a(1 − a) = a(2 − a) < 1.

For the remaining case, it suffices to consider 0 � a< 1< b � 2, which gives

1 = b + (1 − b) < b + a(1 − b) = f (a, b) � a + b − a = b � 2,

from which the claims (1)–(3) follow.
Since f ( f (a, b), c) = a + b + c − ab − ac − bc + abc = f (a, f (b, c)), associativity of the

mapping (a, b) �→ f (a, b) is clear, and the C2-graded monoid structure is now obvious. �
Proposition 2.6. The set Cd is a monoid under matrix multiplication, with the subset of non-
singular elements forming a submonoid. The latter is C2-graded by sgn(1 − c), where c is the
summatory parameter, which matches with the grading of X from Lemma 2.5. When d is even,
the same grading emerges from the sign of the determinant.

Proof. The semigroup property follows from Fact 2.4, and 1 ∈ Cd shows that Cd is a monoid.
The nonsingular matrices, which include 1, are closed under multiplication.

The formula for the summatory parameter of a product from Fact 2.4, in conjunction with
Lemma 2.5, implies c′′ ∈ [0, 1) when c and c′ are either both in [0, 1) or both in

(
1, d

d−1

]
,

where the ranges follow from Fact 2.1. Likewise, c′′ > 1 if and only if c< 1< c′ or c′ < 1< c.
Together, these observations provide the claimed C2-grading.

For even d, by Equation (2.2), the sign of 1 − c matches the sign of the determinant. �
Remark 2.7. Given d � 2, one can consider Xd := {x ∈ X : x � d

d−1

}
, which defines a sub-

monoid of X which is again C2-graded. We then have two successive monoid homomorphisms,
namely

Cd −→ Xd −→ C2,

which summarises the grading structure. Let us mention in passing that the grading can be
extended to include the singular matrices (that is, those with c = 1), and thus cover all of Cd,
by employing the semigroup {−1, 0, 1} instead of C2.

Next, we consider the set Cd in a little more detail. We begin with the closed subset (and
semigroup) of nontrivial idempotents,

Cd,1 := {M ∈ Cd : c = 1
}= {M ∈ Cd : M2 = M �= 1

}= {M ∈ Cd : det(M) = 0
}
,

where the alternative characterisations immediately follow from Fact 2.1 and Equation (2.2).
Now, let Ei ∈ Mat(d,R) denote the matrix with 1 in all positions of column i and 0 everywhere
else, which is an idempotent Markov matrix. In fact, these matrices satisfy

EiEj = Ej for all 1 � i, j � d, (2.3)
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and it is easy to see that any convex combination M =∑d
i=1 βiEi, where all βi � 0 subject to

β1 + . . .+ βd = 1, is an idempotent as well. For d � 2, we also define the rational matrix

Gd = 1

d − 1

⎛
⎜⎜⎝
⎛
⎜⎜⎝

1 · · · 1
...

. . .
...

1 · · · 1

⎞
⎟⎟⎠− 1

⎞
⎟⎟⎠= 1

d − 1

(
E1 + . . .+ Ed − 1

)
, (2.4)

which is the unique element of Cd with maximal summatory parameter, c = d
d−1 .

Lemma 2.8. The sets Cd and Cd,1 are convex. When d � 2, the extremal elements of Cd,1 are the
idempotent matrices E1, . . . , Ed, which remain extremal in Cd. There are two further extremal
elements in Cd, namely 1 and Gd.

Proof. The convexity of Cd follows from

αMC + (1 − α)MC′ = (1 − (αc + (1 − α)c′))1 + αC + (1 − α)C′

for α ∈ [0, 1] together with the linearity of the summatory parameter. The convexity of the
subset Cd,1 is then obvious because these are the elements with c = 1. Clearly, the convex
combinations of the d matrices E1, . . . , Ed span Cd,1. Since they are linearly independent, they
must be extremal.

Let M ∈ Cd, so M = MC, where C has equal rows
(
c1, . . . , cd

)
with ci � 0 and parameter

sum c ∈ [0, d
d−1

]
, subject to the condition c � 1 + cmin with cmin = mini ci. We will now show

that M is of the form r1 + sGd +∑i tiEi for some r, s, ti � 0 that sum to 1.
If c ∈ [0, 1], simply choose s = 0, ti = ci, and r = 1 − c, which does the job. If c> 1, we

have cmin > 0 in our setting. Choose s = (d − 1)cmin and ti = ci − cmin, where s � 0 and all
ti � 0 by construction. Then s +∑i ti = c − cmin � 1, so we can complete this with the choice
r = 1 − s −∑i ti � 0. It is easy to check that this gives a convex combination with summatory
parameter c, and also that the sum equals M.

Consequently, the compact set Cd is the convex hull of
{
1,Gd, E1, . . . , Ed

}
, and hence is

the smallest convex set that contains these d + 2 matrices. In view of the classic Krein–Milman
theorem [30, Thm. 2.6.16], it remains to show that they all are extremal. This is clear for 1,
where c = 0, and for Gd, which is the only matrix in Cd with c = d

d−1 . Since the Ei are linearly
independent, but all have c = 1, none can be replaced by a convex combination of the other
matrices (including 1 and Gd), which completes the argument. �

Example 2.9. For d = 2, all Markov matrices are of equal-input type. The four extremal
elements of C2 =M2 are given by

where the two Markov matrices with c = 1 span C2,1; see [1, Fig. 1] for an illustration.
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The situation is a little more interesting for d = 3, where C3 �M3, and one has

part of which will reappear in Table 1 below.

2.2. Equal-input generators and embeddability

If Q is an equal-input generator with summatory parameter c, so Q = C − c1, its exponen-
tial is

eQ = 1 + 1 − e−c

c
Q = 1 − e−c

c
C + e−c1, (2.5)

with C = 0 for c = 0, so the summatory parameter of eQ is always given by c̃ = 1 − e−c. For
embeddability, one has the following well-known result; see [5, 20] for background.

Lemma 2.10. The Markov matrix M =
(

1 − a a
b 1 − b

)
with a, b ∈ [0, 1] is embeddable if and

only if det(M)> 0, which is equivalent to the condition 0 � a + b< 1. In this case, there is
precisely one generator Q such that M = eQ, namely

Q = − log (1 − a − b)

a + b

(
M − 1

)
,

which is an equal-input generator.

Proof. The first statement is Kendall’s theorem; see [1, Thm. 3.1] for a complete formula-
tion. The uniqueness claim is established in [1, Eq. (5) and Cor. 3.3]. �

Put differently, since C2 =M2, a matrix M ∈M2 is embeddable if and only if its sum-
matory parameter satisfies 0 � c< 1. The closure of the set of embeddable matrices in M2
consists of all infinitely divisible elements of M2, as we shall discuss in more detail later, in
Theorem 3.8 and Example 3.15.

Remark 2.11. The equation ex = 1 has precisely one solution x ∈R, namely x = 0. In contrast,

eA = 1 with A ∈ Mat(2,R) has already infinitely many solutions, including A = n

(
0 −2π

2π 0

)
with n ∈Z. Restricting A to real matrices with zero row sums restores uniqueness, because one
eigenvalue of A is then 0, hence also the second, by the spectral mapping theorem (SMT), as
A is real. Since A must be diagonalisable by [1, Fact 2.15], A = 0 is the only solution.

Whenever A = (aij)1�i,j�d is a Markov generator with eA = 1, for arbitrary d, one has

1 = det
(
eA
)= etr(A) and thus 0 = tr(A) = −∑i �=j aij. With aij � 0 for all i �= j by the generator

property, this gives aij = 0 for all i �= j, hence also aii = 0 for all i. Consequently, A = 0 is the
only generator with eA = 1. However, already for d = 3, there are further solutions of eA = 1
among the real matrices with zero row sums, which is one reason why the embedding problem
becomes significantly more complicated for d � 3.
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In general, if Q is an equal-input generator, then so is 1
n Q, for every n ∈N. Now, we

can reformulate results from [1] and combine them with Kingman’s characterisation of
embeddability via regularity in conjunction with infinite divisibility [20, Prop. 7]. As this is
compatible with the equal-input structure, we can summarise the general situation as follows.

Proposition 2.12. When d is even, M ∈ Cd is embeddable if and only if 0 � c< 1. When d � 3
is odd, there are further embeddable cases with c> 1.

For arbitrary d and M ∈ Cd, the following properties are equivalent:

1. M has positive spectrum.

2. M is embeddable via an equal-input generator.

3. M is nonsingular and infinitely divisible within Cd.

4. The summatory parameter of M satisfies 0 � c< 1. �

Note that, for M ∈ Cd with summatory parameter c, the even/odd dichotomy with the dimen-
sion emerges from Equation (2.2). A concrete example of an embeddable matrix M ∈ C3 with
c> 1 is discussed in [5, Ex. 16] and [1, Ex. 4.3]. This M is infinitely divisible within M3, but

not within C3. In fact, since n
√

M has spectrum
{

1, exp
(−π√

3
n ± iπ

n

)}
in this case, M does not

possess an nth root of equal-input type for any n � 2.

Example 2.13. Within Cd lies the submonoid of constant-input matrices [1, Rem. 4.8], which
all are of the form Mc := 1 + cJd with 0 � c � d

d−1 , where Jd = d−1
d (Gd − 1) with Gd from

(2.4) is a constant-input generator with summatory parameter 1, and hence J2
d = −Jd. Clearly

Jd, as well as every constant-input matrix, is diagonalisable. If c ∈ [0, 1), the spectral radius of
cJd is c< 1, and a simple calculation with log (1 + cJd) gives

Mc := 1 + cJd = exp
(− log (1 − c)Jd

)
.

For d even, by Proposition 2.12, no constant-input Markov matrix with c> 1 can be
embeddable, while this changes for d � 3 odd.

Assume that d is odd and Mc with c> 1 is embeddable, so M = eQ, where we also have
[Jd,Q] = 0. So, by [1, Lemma 4.10 and Fact 2.15], Q is doubly stochastic and diagonalisable.
As the eigenvalues of Mc are 1 and 1 − c< 0, the latter with multiplicity d − 1, the spectrum
of Q cannot be real. In particular, Q is not symmetric. Still, for any a ∈ [0, 1), we get

MaMc = e− log (1−a)Jd eQ = eQ−log (1−a)Jd ,

and Mf (a,c) is embeddable as well, where f is the function from Lemma 2.5.
When c> 1 is fixed and a varies in [0, 1), f (a, c) runs through (1, c]. Now, the infinitely

divisible elements of Md form a closed subset, as follows by a standard compactness argu-
ment via convergent subsequences. Since Mc with c> 1 is nonsingular, we see that there
is a number cmax ∈ (1, 2] such that Mc is embeddable precisely for all c ∈ [0, 1) ∪ (1, cmax

]
.

These constant-input matrices form a monoid that inherits the C2-grading from Proposition 2.6.
For the case d = 3, we know from [1, Cor. 6.6] that cmax = 1 + e−π√

3. The determination of
cmax > 1 for d = 2m + 1 with m � 2 is an interesting open question.

When d � 3, the embedding of M ∈ Cd need no longer be unique as for d = 2, but one still
has the following property.
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Lemma 2.14. Let d � 2 and let M ∈ Cd be embeddable. If M admits a representation of the
form M = eQ with a generator Q of equal-input type, the latter is unique in the sense that no
other embedding can have an equal-input generator.

Proof. The claim is obvious for M = 1, where Q = 0 is the only generator that solves
1 = eQ; compare Remark 2.11. Next, let Q and Q′ be equal-input generators, with summa-
tory parameters c and c′, where we may now assume that cc′ > 0. If eQ = eQ′

, Equation (2.5)
implies

e−c1 + 1 − e−c

c
C = e−c′

1 + 1 − e−c′

c′ C′.

As both C and C′ are equal-row matrices, this can only hold when e−c = e−c′
; hence c = c′,

which in turn forces C = C′ and thus Q = Q′ as claimed. �
When M ∈ Cd is equal-input embeddable, so M = MC for some nonnegative matrix C with

parameter sum 0 � c< 1 by Proposition 2.12, the unique generator from Lemma 2.14 is
given by

Q = − log (1 − c)

c

(
MC − 1

)
, (2.6)

meaning Q = 0 for c = 0, which is a nice extension of Lemma 2.10. The derivation rests on the
observation that c< 1 is the spectral radius of MC − 1, which permits the use of the standard
branch of the matrix logarithm and its power series.

Let us next expand on an observation made in [1], in the context of an effective BCH formula
for embeddable equal-input matrices. Here, one considers products of exponentials of equal-
input generators, including the complicated case of noncommuting ones.

Theorem 2.15. Let Q and Q′ be equal-input generators, with summatory parameters c and c′,
respectively. Then, one has eQeQ′ = eQ′′

with

Q′′ = c + c′

c
(
1 − e−(c+c′))

(
e−c′(

1 − e−c)Q + c

c′
(

1 − e−c′)
Q′
)
,

interpreted appropriately for c = 0 or c′ = 0, where Q′′ is again an equal-input generator. In
particular, when

[
Q,Q′]= 0, the formula simplifies to Q′′ = Q + Q′.

Proof. Let C and C′ be the constant-row matrices underneath Q and Q′. Using the second
identity from Equation (2.5) in conjunction with the relation CC′ = c C′, one finds

eQeQ′ = e−(c+c′)1 + e−c′
(1 − e−c)

c
C + 1 − e−c′

c′ C′. (2.7)

Since the summatory parameters of eQ and eQ′
are c̃ = 1 − e−c and c̃′ = 1 − e−c′

, which both
lie in [0, 1), the product eQeQ′

is an equal-input matrix that has the summatory parameter
c̃′′ ∈ [0, 1) by Lemma 2.5. As such, it is equal-input embeddable by Proposition 2.12; see also
[1, Thm. 4.6]. Consequently, there exists an equal-input generator Q′′= C′′ − c′′1 with

eQeQ′ = eQ′′ = e−c′′
1 + 1 − e−c′′

c′′ C′′, (2.8)

where the last step follows once more from (2.5).
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A comparison of (2.7) and (2.8) reveals that equality can only hold when the summatory
parameters satisfy c′′ = c + c′, which then gives

C′′ = c + c′

1 − e−(c+c′)

(
e−c′

(1 − e−c)

c
C + 1 − e−c′

c′ C′
)

.

Inserting C = Q + c1 and the analogous terms for C′ and C′′ leads to the formula stated.
The condition

[
Q,Q′]= 0, which includes the case that one generator is 0, is equivalent

to c′C = c C′, which also gives c′Q = c Q′. Inserting this into the formula for Q′′ produces the
claimed simplification after a short calculation. �

In Theorem 2.15, the summatory parameters of eQ, eQ′
, and eQ′′

are always related by

c̃′′ = c̃ + c̃′ − c̃c̃′ = f
(
c̃, c̃′)= 1 − e−(c+c′) < 1,

in accordance with Fact 2.4 and Lemma 2.5. Various other aspects of equal- and constant-
input Markov matrices have been discussed in [1], although without consideration of their
connection with idempotents. We rectify this omission now by exploring some ideas in this
direction that will prove useful later.

2.3. Markov idempotents and equal-input matrices

When d = 2, the only Markov idempotents are 1 and all the equal-input matrices
αE1 + (1 − α)E2 with α ∈ [0, 1]. This situation is deceptively simple, as one realises already
for d = 3. Still, some general considerations are possible, some of which can be considered as
a refinement of Fact 2.1.

Lemma 2.16. Let M = (mij)1�i,j�d be a Markov idempotent that is also a positive matrix, so
mij > 0 for all i, j ∈ [d]. Then, M is equal-input with M = C for some positive equal-row matrix
C with parameter sum c = 1.

Proof. Let mij be a maximal element in column j of M, so mkj � mij holds for all k ∈ [d].

Then, with M2 = M, we get the inequality

mij =
(
M2)

ij =
d∑

k=1

mik mkj � mij

d∑
k=1

mik = mij, (2.9)

where we actually have equality. When all matrix elements are positive, this is only possible if
mkj = mij holds for all k ∈ [d], which means that column j of M is constant.

Since j ∈ [d] was arbitrary, the above argument applies to any column of M, and we obtain
M = c1E1 + . . .+ cdEd, where all ci > 0 with c = c1 + . . .+ cd = 1 because M is Markov. �

The statement of Lemma 2.16 can also be understood via the Perron–Frobenius theorem, as
M under the assumed conditions is primitive. Then, M∞ = limn→∞ Mn = M is the projector to
the unique equilibrium vector of M, which is

(
c1, . . . , cd

)
. Note that being idempotent implies

that primitivity of M becomes equivalent with positivity of M.
When M fails to be positive, there are further cases. These are driven by the added possibility

of having equality in (2.9) due to the presence of vanishing matrix elements.

Example 2.17. Let us look at Markov idempotents for d = 3. When M2 = M is positive, the
complete answer is provided by Lemma 2.16, so we only need to analyse cases with zero

https://doi.org/10.1017/apr.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.39


On equal-input and monotone Markov matrices 471

entries. Since the set of idempotents within Md is closed, it clearly contains the simplex{
c1E1 + c2E2 + c3E3 : ci � 0 and c1 + c2 + c3 = 1

}
,

in line with Fact 2.1. This simplex includes the three {0, 1} matrices E1, E2, and E3, which are
its extremal elements. Each matrix in this simplex has a unique equilibrium vector.

Further, one finds that the matrices⎛
⎜⎝

1 0 0

0 a 1 − a

0 a 1 − a

⎞
⎟⎠,

⎛
⎜⎝

a 0 1 − a

0 1 0

a 0 1 − a

⎞
⎟⎠, and

⎛
⎜⎝

a 1 − a 0

a 1 − a 0

0 0 1

⎞
⎟⎠

are idempotents for all a ∈ [0, 1]. For each matrix, its equilibrium vectors form a 1-simplex,
hence with two extremal vectors. By choosing a = 0 or a = 1, we obtain six further {0, 1}
matrices. So far, all nine of them are equal-input or blockwise equal-input, possibly after a
state permutation, and the only missing {0, 1} Markov idempotent is M = 1.

Next, again for any a ∈ [0, 1], the matrices⎛
⎜⎝

1 0 0

0 1 0

a 1 − a 0

⎞
⎟⎠ ,

⎛
⎜⎝

1 0 0

a 0 1 − a

0 0 1

⎞
⎟⎠ , and

⎛
⎜⎝

0 a 1 − a

0 1 0

0 0 1

⎞
⎟⎠

are Markov idempotents. They do not produce new {0, 1} matrices. Also, for 0< a< 1, they
are not of equal-input form, not even blockwise, which means that more complicated cases do
occur. We leave it as an exercise to the interested reader to verify that we have covered all cases
for d = 3, and to analyse them further.

At this point, it seems worthwhile to recall the structure of general Markov idempotents,
where we follow [16, Sec. 1.6]. Given any idempotent M ∈Md of rank r, where we must have
1 � r � d, there is a partition of [d] = {1, 2, . . . , d} of the form

[d] = Z ∪̇ K1 ∪̇ . . . ∪̇ Kr (2.10)

with Z = {� : the �th column of M is 0}. Without any further specification of the Ki, we know
from the definition of Z that the matrix elements of M satisfy mij = 0 for all i ∈ [d] and every

j ∈ Z. Further, given some subset K ⊆ [d], we follow standard notation and use M
∣∣
K×K for the

restriction of M to indices from K. Now, we can reformulate [16, Thm. 1.16] as follows.

Theorem 2.18. Let M = (mij)1�i,j�d ∈Md be an idempotent of rank r. Then, there is a
partition of [d] as in (2.10) with the following properties:

1. For all s ∈ [r], one has mij = 0 for all i ∈ Ks and j ∈ [d] \ Ks.

2. For all s ∈ [r], the restriction M
∣∣
Ks×Ks

is a Markov matrix with equal, positive rows.

3. For all i ∈ Z and s ∈ [r], and then every k, � ∈ Ks, one has mikmk� = mi�mkk, where
mkkmk� �= 0 by (2).

Conversely, every Markov matrix M ∈Md with a partition of [d] as in (2.10) with these three
properties is an idempotent. �
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Specialising this classification result to {0, 1} Markov matrices gives the following conse-
quence, the explicit derivation of which we leave to the interested reader. It can also be derived
directly by a careful analysis of {0, 1} Markov matrices.

Corollary 2.19. Possibly after an appropriate state permutation, any idempotent {0, 1}
Markov matrix appears in a block form where each block is an equal-input matrix with a
single column of 1s. �

Simple examples, with an indication of the blocks according to Theorem 18(2), include

⎛
⎜⎜⎝

1 0 0

1 0 0

0 0 1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

0 1 0

0 1 0

0 0 1

⎞
⎟⎟⎠ or

⎛
⎜⎜⎜⎜⎝

1 0 0 0

0 0 1 0

0 0 1 0

1 0 0 0

⎞
⎟⎟⎟⎟⎠∼

⎛
⎜⎜⎜⎜⎝

1 0 0 0

1 0 0 0

0 0 1 0

0 0 1 0

⎞
⎟⎟⎟⎟⎠ ,

where the similarity in the third case is under the obvious state permutation. On the other hand,
the matrices ⎛

⎜⎝
1 0 0

1 0 0

0 1 0

⎞
⎟⎠ and

⎛
⎜⎜⎜⎜⎝

1 0 0 0

1 0 0 0

0 1 0 0

0 0 1 0

⎞
⎟⎟⎟⎟⎠

fail to be idempotent, for instance. Let us now analyse the second class of matrices mentioned
in the introduction before we return to this type of structure.

3. Monotone Markov matrices and embeddability

Let us begin this section with a formalisation of some of our previous recollections. To this
end, we follow [18] and employ the lower-triangular matrix T ∈ Mat(d,R) given by

T =

⎛
⎜⎜⎝

1 0

...
. . .

1 · · · 1

⎞
⎟⎟⎠ , (3.1)

together with its inverse, T−1, which has entries 1 on the diagonal, −1 on the first subdiagonal,
and 0 everywhere else. With T and vectors x, y ∈ Pd, one has the equivalence

x � y ⇐⇒ xT � yT, (3.2)

where the inequality on the right means that it is satisfied element-wise.

3.1. Monotone Markov matrices

If E(i,j) ∈ Mat(d,R) denotes the elementary matrix with a single 1 in position (i, j) and 0
everywhere else, which results in

E(k,�)E(m,n) = δ�,mE(k,n), (3.3)

one obtains the relations

E(i,j)T = E(i,1) + . . .+ E(i,j) and T−1E(i,j) = E(i,j) − E(i+1,j),
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where E(d+1,j) := 0. Furthermore, we call a column vector v = (v1, . . . , vd

)T
nondecreasing

if vi � vi+1 holds for all i ∈ [d −1]. Now, we can characterise monotone matrices as follows.

Fact 3.1. For a Markov matrix M ∈Md, the following statements are equivalent:

1. The matrix M is monotone.

2. The mapping x �→ xM preserves the partial order � on the positive cone.

3. One has T−1MT � 0, understood element-wise, with T as in Equation (3.1).

4. Whenever v is a nondecreasing vector, Mv is also nondecreasing.

Further, the same equivalences hold for any nonnegative B ∈ Mat(d,R) with equal row
sums.

Proof. By our definition, (1) is equivalent to preserving � on Pd, which clearly extends to
all level sets αPd with α > 0, so (1) ⇐⇒ (2) is clear. The equivalences (2) ⇐⇒ (3) ⇐⇒ (4)
are now an immediate consequence of [18, Thm. 1.1].

The case B = 0 is trivial. When B �= 0, with elements bij, is a nonnegative matrix with equal
row sums, meaning that

∑d
j=1 bij = b> 0 for all i ∈ [d], the matrix M = 1

b B is Markov, and the
final claim follows from the compatibility of the partial order on the positive cone with scaling
by b and the fact that the conditions in (3) and (4) are linear in M. �
Example 3.2. Let M = (mij

)
1�i,j�d be Markov. When d = 2, the nonnegativity of T−1MT is

equivalent to the single condition tr(M) � 1, or alternatively to

m22 � m12.

Likewise, for d = 3, the original monotonicity condition for M, or equivalently the nonnega-
tivity condition for T−1MT , boils down to

m33 � m23 � m13 and m11 � m21 � m31,

where it was used that all rows of M sum to 1.

Let E�1,...,�d
denote the {0, 1} Markov matrix with the row vector e�i

as row i, for i ∈ [d], so

E�1,...,�d
= E(1,�1) + . . .+ E(d,�d).

There exist dd such matrices, which are the extremal elements of Md. Since ei � ej if and only
if i � j, it is clear that E�1,...,�d

is monotone precisely when �1 � �2 � · · ·� �d. Using (3.3), or
alternatively tracing the images of the basis vectors ei, one verifies the multiplication rule

Ek1,...,kd
E�1,...,�d

= E�k1 ,...,�kd
. (3.4)

Owing to the existence of singular idempotents among these matrices (when d � 2), one thus
obtains the following simple, but helpful, structure result.

Fact 3.3. For d � 2, the set of {0, 1} Markov matrices, under matrix multiplication, is a
monoid, but not a group. The same property holds for the subset of monotone {0, 1} matrices.

A {0, 1} Markov matrix in Md is nonsingular if and only if it is a permutation matrix. The
subset of the d! permutation matrices is isomorphic with the symmetric group Sd.
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Now, we turn to the convexity structure of Md,�. While this is certainly known, we are not
aware of a source with a proof, whence we include one for convenience.

Lemma 3.4. The set Md,� is convex. It has
(2d−1

d

)
extremal points, which are the monotone

Markov matrices with entries in {0, 1}, that is, the E�1,...,�d
with 1 � �1 � �2 � · · ·� �d � d.

Proof. Convexity is clear, for instance via Fact 3.1 (3). Consequently, any convex combina-
tion of monotone {0, 1} Markov matrices must lie in Md,�. Thus, we first have to show that
such convex combinations exhaust Md,�. This follows from a greedy algorithm that is based
on the following reduction argument.

Consider a nonnegative matrix B �= 0 with equal row sums, b say, where b> 0. Assume
that B is monotone. Such a matrix, because of the monotonicity condition, appears in a (non-
reduced) row-echelon form. This is captured in a set of integer pairs

((
i1, j1

)
, . . . ,

(
ir, jr
))

,
where j1 is the position of the first (or leftmost) nonzero column of B, with i1 the lowest
position of a positive element in it, j2 then is the leftmost position of a column that is nonzero
below row i1, with i2 the lowest position of a positive element in column j2, and so on. Clearly,
r � 1 and ir = d since b> 0 and B is monotone.

For instance, B may have the row-echelon form

here with r = 3 and integer pairs ((3, 2), (4, 3), (6, 5)). A symbol • marks the lowest positive
element in a column, and ∗ any element in the same column (above •) that cannot be smaller
(as a consequence of monotonicity). In each row, there is thus either one ∗ or one • by this
rule. The total number of symbols of type • or ∗ is d, so 6 in this particular case. To the left of
them, all elements are 0, while the remaining elements of B are left unspecified, as they play
no role at this stage.

Now, let α > 0 be the minimal element in the • positions, which are the
(
ik, jk

)
, and let

E denote the matrix that has a 1 in every • and in every ∗ position and a 0 anywhere else,
which obviously is a monotone {0, 1} Markov matrix, namely the E�1,...,�d

where �i is the
unique position of ∗ or • in row i, for i ∈ [d]. Now, set B′ = B − αE, which is still monotone
and has constant row sums b′ = b − α � 0, but one • is now replaced by a 0, which means
that this • is gone or has moved up or right (or both) in the matrix. Unless B′ = 0, we repeat
the procedure with the new row-echelon form, which terminates after finitely many steps. The
result is a decomposition of B as a sum of monotone {0, 1} Markov matrices with positive
weight factors. If we start with M, which has equal row sums b = 1, it is clear that we end up
with a convex combination.
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TABLE 1. The 10 extremal elements E�1,�2,�3
of M3,� with some of their properties. Here, σ (M) is the

spectrum of M with multiplicities, while p and q are, up to an overall sign, the characteristic and the
minimal polynomial of M. Note that p �= q precisely when M is an idempotent. The last column gives M2

in terms of its index parameters.

No monotone {0, 1} Markov matrix can be written as a convex combination of the other
ones, so their extremality is clear. Now, given d, the monotone {0, 1} Markov matrices are
in obvious bijection with the possibilities to distribute d indistinguishable balls (the 1s) to
d distinguishable boxes (the columns of the matrix), where an outcome

(
n1, . . . , nd

)
, with

n1 + . . .+ nd = d, parameterises the matrix M with the row vector e1 in the first n1 rows, then
e2 in the next n2 rows, and so on. The total number of possible outcomes is well known to be(2d−1

d−1

)= (2d−1
d

)
, as this is the number of choices to place d − 1 separating walls between the d

balls on the altogether 2d − 1 positions; see [26, A001700] for details. �

The case d = 3 is summarised in Table 1. By Lemma 3.4, every monotone Markov matrix
M ∈Md can be expressed as a convex combination of the form

M =
∑

1��1�···��d�d

α�1,...,�d
E�1,...,�d

(3.5)

with all coefficients α�1,...,�d
� 0, their sum being 1, and E�1,...,�d

as above. Observing that

tr
(
E�1,...,�d

)
� 1 whenever �1 � �2 � · · ·� �d, one finds from (3.5) that tr(M) � 1 holds for all

monotone Markov matrices, which easily generalises as follows.

Corollary 3.5. Let B ∈ Mat(d,R) be a nonnegative matrix with equal row sums, b � 0. If B is
also monotone, one has tr(B) � b. �
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3.2. Monotonicity and embeddability

As in [1], we use Ed to denote the semigroup generated by the embeddable Markov matrices
of dimension d. For d = 2, every element of E2 is itself embeddable (so E2 =ME

2 , which is no
longer true for d � 3), and the set of monotone Markov matrices agrees with the closure of

E2. In fact, M2,� is the closed triangle in M2 with the vertices being 12, E1 =
(

1 0
1 0

)
, and

E2 =
(

0 1
0 1

)
. Only the line {αE1 + (1 − α)E2 : 0 � α � 1} does not belong to E2, because it

consists of singular idempotents. The only other idempotent in M2 is 1, the trivial case. This
leads to the following result.

Proposition 3.6. An element M ∈M2 is monotone if and only if tr(M) � 1. Thus, being
monotone is equivalent to either being embeddable or being a nontrivial idempotent.

Proof. Observe that tr(M) � 2 holds for all M ∈M2. Since M =
(

1 − a a
b 1 − b

)
with num-

bers a, b ∈ [0, 1] is monotone if and only if 1 � a + b (compare Example 3.2), the first claim
is immediate. By Lemma 2.10, tr(M) = 1 means M is monotone, but not embeddable.

For the second claim, recall that M ∈M2 is an idempotent if and only if M2 = M, which
implies σ (M) ⊆ {0, 1}. Since λ= 1 is always an eigenvalue, being an idempotent means either
that the second eigenvalue is also 1, hence M = 1 by Lemma 2.3, or that det(M) = 0, which
gives the line from E1 to E2 discussed above. �
Corollary 3.7. Any M ∈M2,� is infinitely divisible within M2,�. In fact, M ∈M2 is infinitely
divisible if and only if it is monotone.

Proof. Let M ∈M2 be monotone. By Proposition 3.6, the case det(M) = 0 means M2 = M,
so also Mn = M for all n ∈N by induction, and M is a monotone nth root of itself. Clearly, the
latter statement also applies to M = 1.

When M =
(

1 − a a
b 1 − b

)
�= 1 is embeddable, we have a + b> 0 and M = eQ with the

unique generator Q from Lemma 2.10. Then, for any n ∈N, a Markov nth root of M is
given by

exp
(

1
n Q
)

=
(

1 − εa εa

εb 1 − εb

)
with ε = 1 − n

√
1 − a − b

a + b
,

as follows from the same standard calculation with the matrix exponential that was used to

derive (2.6). Now, exp
(

1
n Q
)

is monotone if and only if 1 � ε(a + b), by an application of the

criterion from Example 3.2. But this estimate follows from 0< a + b< 1 because ε ∈ [0, 1].
It remains to show that infinite divisibility of M ∈M2 implies its monotonicity, which can

be derived from the spectrum as follows. If 1 is the only eigenvalue of M, we have M = 1
by Lemma 2.3, which is embeddable. Otherwise, one has σ (M) = {1, λ} where λ �= 1 must be
real, with |λ|� 1. Since M has a Markov square root by assumption, we get λ ∈ [0, 1). Now,
λ= 0 means that M is an idempotent, while λ> 0 implies det(M)> 0, so M is embeddable by
Lemma 2.10. Monotonicity of M now follows from Proposition 3.6. �

Our next goal is a better understanding of the connection between Md,� and Cd, aiming at
generalisations of Corollary 3.7 to general d. To this end, we once more consider a nonnegative

https://doi.org/10.1017/apr.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.39


On equal-input and monotone Markov matrices 477

matrix C with equal rows and parameter sum c, with C = 0 only when c = 0. For c> 0, the
matrix 1

c C is both Markov and monotone. Consequently, the Markov matrix MC from Equation
(2.1), for any c ∈ [0, 1], is a convex combination of 1 and 1

c C, hence monotone as well.
When c = 0, which means MC = 1, or when c = 1, where MC = C, the matrix MC is a

monotone idempotent. When c ∈ (0, 1), Equation (2.6) implies

MC = eQ with Q = − log (1 − c)

c
QC, (3.6)

where QC = MC − 1 as before, which is an equal-input generator. Now, for arbitrary n ∈N, a
standard calculation with the exponential series gives the formula

exp
( 1

n Q
)= 1 + 1 − n

√
1 − c

c
QC = n

√
1 − c 1 +

(
1 − n

√
1 − c

)
1
c C. (3.7)

Since n
√

1 − c ∈ (0, 1) under our assumptions, this is a convex combination of two monotone
Markov matrices, hence monotone and Markov itself. We have thus proved the following gen-
eralisation of our previous statements, assuming d � 2 as usual. In particular, the idempotent
elements play a similar role as in the two-dimensional case.

Theorem 3.8. Let C, QC, and MC be as above, and let c = c1 + . . .+ cd be the corresponding
parameter sum. If c ∈ [0, 1], MC is Markov and monotone, with the following properties:

1. MC is an idempotent if and only if c ∈ {0, 1}, where c = 0 means MC = 1.

2. MC is embeddable if and only if c ∈ [0, 1), with Q = 0 for c = 0 or the generator Q from
(3.6) otherwise.

In particular, MC = 1 is the only embeddable idempotent. Further, for all c ∈ [0, 1] and for
every n ∈N, MC has a Markov nth root that is both equal-input and monotone, which is to say
that MC is infinitely divisible within Md,� ∩ Cd.

Note that, also in generalisation of the case d = 2, the set of monotone Markov matrices of
type MC with summatory parameter c ∈ [0, 1] is the closure of the set of equal-input Markov
matrices that are embeddable with an equal-input generator, with all non-embeddable boundary
cases being nontrivial idempotents. In fact, one has more as follows.

Corollary 3.9. A Markov matrix M ∈ Cd is monotone if and only if its summatory parameter
satisfies c ∈ [0, 1]. So, one obtains the convex set

Cd,� := Cd ∩Md,� = {M ∈ Cd : c ∈ [0, 1]
}
,

with the d + 1 extremal elements E1, . . . , Ed and 1.
Further, Cd,� is the disjoint union of the set of equal-input embeddable elements from Cd

with the set Cd,1 of nontrivial idempotents in Cd. The eigenvalues of any M ∈ Cd,� are real and
nonnegative, and they are positive precisely for the embeddable cases.

Proof. It is clear from Theorem 3.8 that all M ∈ Cd with c ∈ [0, 1] are monotone, so we
need to show that no further element of Cd is. To this end, consider a Markov matrix of the
form M = (1 − c)1 + C with c> 1, which implies that all ci > 0. Then it is easy to check that
T−1MT fails to be a nonnegative matrix, where T is the matrix from (3.1), and M fails to be
monotone by Fact 3.1 (3).
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When c ∈ [0, 1], we have 0 � ci � c1 + . . .+ cd = c � 1 for all 1 � i � d, and

MC = (1 − c)1 + C = (1 − c)1 +
d∑

i=1

ci Ei

is a convex combination, where the extremality of E1, . . . , Ed and 1 is clear.
Another application of Theorem 3.8 gives the decomposition claimed, while the statement

on the spectrum is clear because the eigenvalues of MC are 1 and 1 − c. �
Geometrically, the situation is that the simplex Cd,� separates the compact set Cd into the

subset with c ∈ [0, 1), which are the ‘good’ cases for embeddability, and the subset with c ∈(
1, d

d−1

]
, where embeddability requires d even and further conditions, but is never possible

with an equal-input generator. For d = 2, we refer to [1, Fig. 1] for an illustration.
One can view Cd,� differently when starting in Md,�. Let Sd be the symmetric (or permu-

tation) group of d elements, and Pπ for π ∈ Sd the standard permutation matrix that represents
the linear mapping ei �→ eπ (i) under multiplication to the right. Pπ has elements δi,π (j) and

satisfies P−1
π = P

π−1 . There are d! such matrices, which are the extremal elements among the
doubly stochastic matrices mentioned earlier. The conjugation action by such a matrix gives

PπE(k,�)P
−1
π = E(π (k),π (�)) and PπE�1,...,�d

P−1
π = E

π
(
�
π−1(1)

)
,...,π
(
�
π−1(d)

),
as follows from a simple calculation with E�1,...,�d

= E(1,�1) + . . .+ E(d,�d), or, alternatively,
from tracing the images of the basis vectors ei for 1 � i � d.

Now, a set F ⊆Md of Markov matrices is called permutation-invariant if PπFP−1
π =F

holds for all π ∈ Sd. Clearly, Md itself is such a set, as is Cd or its subset of constant-input
matrices. The latter are also individually permutation-invariant (which is also called exchange-
able in probability theory [8]); that is, PπMP−1

π = M holds for every constant-input matrix
M and all π ∈ Sd. In fact, the Markov matrices that are individually permutation-invariant are
precisely the constant-input ones, without restriction on the summatory parameter c.

The set of all {0, 1} Markov matrices is permutation-invariant as well, and partitions into
Sd-orbits of the form OSd

(M) = {PπMP−1
π : π ∈ Sd}. Two such orbits are

OSd
(1) = {1} and OSd

(
E1

)= {E1, . . . , Ed

}
,

which both consist of monotone matrices only. One can check that no other orbit of the
decomposition has this property, which implies the following characterisation.

Fact 3.10. The convex set Cd,� is the maximal subset of Md,� that is permutation-invariant.
The elements of Cd,� that are individually permutation-invariant are the constant-input
matrices with c ∈ [0, 1]. �

Let us turn to Markov semigroups. Recall from [18] that a (homogeneous) Markov semi-
group

{
etQ : t � 0

}
, with generator Q, is called monotone when etQ is monotone for every t � 0.

Moreover, a generator Q is called monotone if all off-diagonal elements of T−1QT are nonneg-
ative, where T is the matrix from Equation (3.1). This concept is motivated by the following
connection, which is a minor variant of [18, Thm. 2.1]. Because of its importance, we include
a short proof that is tailored to our later needs in this context.
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Proposition 3.11. If Q is a Markov generator, the following properties are equivalent:

1. The semigroup
{
etQ : t � 0

}
is monotone.

2. The generator Q is monotone.

Proof. For (1) ⇒ (2), observe that T−1etQT � 0 implies
(

T−1 1
t (etQ − 1)T

)
ij
� 0 for t> 0

and all i �= j. Then, taking t ↘ 0 establishes this direction.
For (2) ⇒ (1), is it clear that T−1QT + α1� 0 holds for any sufficiently large α > 0.

Choose α also large enough so that Mα := 1 + α−1Q is Markov, which is clearly possible.
Then T−1MαT � 0, and we get T−1Mm

α T = (T−1MαT
)m � 0 for all integers m � 0. Now,

observe

etQ = e−αteαtMα =
∞∑

m=0

e−αt (αt)m

m! Mm
α ,

which, for all t � 0, constitutes a convergent sum that is a convex combination of monotone
Markov matrices. Consequently, etQ is monotone as well. �
Example 3.12. Let Q = (qij

)
1�i,j�d be a Markov generator. When d = 2, it is always mono-

tone, that is, no extra condition emerges; compare Proposition 3.6. When d = 3, being
monotone is equivalent to the two conditions

q23 � q13 and q21 � q31,

which provide a surprisingly simple criterion for monotonicity in this case.

The above considerations have the following consequence.

Corollary 3.13. For M ∈Md,�, the following properties are equivalent:

1. M is embeddable via a monotone Markov generator.

2. M is nonsingular and infinitely divisible within Md,�.

Proof. (1) ⇒ (2): Let M = eQ with Q a monotone generator, so det(M) = etr(Q) > 0. Now,
1
n Q is still a monotone generator, for any n ∈N, and exp

( 1
n Q
)

is a monotone Markov matrix
(by Proposition 3.11) that is also an nth root of M.

(2) ⇒ (1): By Kingman’s characterisation [20, Prop. 7], M is embeddable, so M = eQ with
some generator Q. We need to show that Q can be chosen to be monotone. Let Rn be an nth
root of M that is Markov and monotone, which exists and implies that An := n(Rn − 1) is a
monotone generator. By a standard compactness argument, there is a subsequence

(
ni

)
i∈N of

increasing integers such that Q′ = limi→∞ Ani is a monotone generator as well. From here on,
we can employ Kingman’s original proof to conclude that

M =
(

1 + Q′

ni

)ni + o(1) as i → ∞,

which gives M = eQ′
as claimed. �

3.3. Idempotents and infinite divisibility

At this point, it seems worthwhile to take a closer look at infinite divisibility in general. In
this context, we refer to [8, Sec. X.9] for the underlying (pseudo-)Poissonian structures.

https://doi.org/10.1017/apr.2021.39 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.39


480 M. BAAKE AND J. SUMNER

Proposition 3.14. Let P0, P ∈Md be chosen such that P2
0 = P0, so P0 is an idempotent, and

that P0P = PP0 = P. Then, the matrix family {M(t) : t � 0} with

M(t) := e−t

(
P0 +

∞∑
m=1

tm

m! Pm

)
= e−t

(
P0 − 1 + etP

)

satisfies the following properties, where A := P − 1 is a Markov generator:

1. The mapping t �→ M(t) is continuous, with M(0) = P0.

2. M(t)M(s) = M(t + s) holds for all t, s � 0.

3. M(t) is Markov, for all t � 0.

4. M(t) = e−t
(
P0 − 1

)+ etA = P0etA for all t � 0.

5. P = P0 if and only if M(t) = P0 holds for all t � 0.

6. For t � 0, M (t) is idempotent if and only if M(t) = P0.

In particular,
{
M(t) : t � 0

}
always constitutes a continuous monoid, with P0 as its neutral

element, while it is a homogeneous Markov semigroup if and only if P0 = 1.

Proof. (1) is obvious, while (2) follows from a standard calculation with the convergent
series. Both P0 and P are Markov, and so is Pm for all m ∈N. Now, for any t � 0, M(t)
is a convergent, convex combination of Markov matrices, hence Markov as well, which
shows (3).

Next, (4) and the easy direction of (5) follow from elementary calculations, using the
expansion P0etP = P0 +∑m�1

tm
m!P

m together with etP = etetA. When M(t) = P0 for all t � 0,

one obtains P0 + etP = 1 + etP0. But, observing etP0 = 1 − P0 + etP0, this implies etP = etP0

for all t � 0 and thus P = P0.
For (6), one direction is trivial. The other follows from (4) upon the observation that

M (t) idempotent implies P0etA = M(t) = M(t)2 = M(2t) = P0e2tA and hence gives the relation
P0 = P0etA = M(t) as claimed.

Finally, while the (abstract) semigroup and monoid properties are clear, the family can only
be a homogeneous Markov semigroup when M(t) = etQ for some generator Q and all t � 0, so
M(0) = 1, which is the only nonsingular idempotent in Md by Lemma 2.3. We thus have
P0 = 1 in this case, and (4) implies M(t) = etA as claimed. �
Example 3.15. Let us analyse the meaning of Proposition 3.14 for d � 2. If P0 = 1, there is no
further restriction on P, and M(t) = etA with A = P − 1, which can thus be any generator with
diagonal elements in [ − 1, 0]. This way, possibly after rescaling t, all embeddable matrices are
covered. For P ∈ Cd with c ∈ [0, 1), we see that A = P − 1 is a generator of equal-input type,
in line with Lemma 2.10 and Proposition 2.12.

If P0 ∈ Cd,1, we get P0 =∑d
i=1 βiEi with βi � 0 and β1 + . . .+ βd = 1; hence P0 = PP0

for any P ∈Md. Assuming PP0 = P0P = P, we find P = P0, which then gives M(t) ≡ P0 by
Proposition 3.14 (5).

For d = 2, where M2 = C2, this exhausts all cases because no further idempotents exist.
Consequently, M ∈M2 is infinitely divisible if and only if it is embeddable or an idempotent,
with M = 1 being the only case that is both; compare Proposition 3.6 and Corollary 3.7.
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When d � 3, one obtains mixtures via direct sums, where 1 ⊕ P0 and (1 + A) ⊕ P0 lead to
M(t) = etA ⊕ P0. There are further examples for d = 3 (compare Example 2.17), such as

P0 = αE1,1,3 + (1 − α)E1,3,3 =
⎛
⎜⎝

1 0 0

α 0 1 − α

0 0 1

⎞
⎟⎠ , with det

(
P0

)= 0,

which is idempotent for any α ∈ [0, 1]. Then, P ∈M3 with PP0 = P0P = P leads to

P =
⎛
⎜⎝

a 0 1− a

c 0 1 − c

1 − b 0 b

⎞
⎟⎠

with a, b ∈ [0, 1] and c = αa + (1 − α)(1 − b). Here, M(t) = P0etA is singular for all t � 0 and
thus never embeddable. Moreover, for P �= P0, the matrix M(t) can only be idempotent for
t = 0 and possibly for isolated further values of t> 0. This is so because M(t) = M(t)2 = M(2t)
implies etP = etP0 via an elementary calculation. When this holds for t from a set with an
accumulation point, t0 say, standard arguments imply P = P0. So, more interesting as well as
more complicated cases emerge in Md\Cd as d grows.

Lemma 3.16. With P0, P, and M(t) as in Proposition 3.14, one has either det(M(t))> 0 for
all t � 0, which happens if and only if P0 = 1, or det(M(t)) = 0 for all t � 0, which is true
whenever P0 �= 1, or equivalently whenever P0 is singular.

Proof. Recall via Lemma 2.3 that P2
0 = P0 either means det

(
P0

)= 1, which forces P0 = 1,
or det

(
P0

)= 0. Now, observe that P0M(t) = M(t) holds for all t � 0, so

det
(
P0

)
det(M(t)) = det(M(t)),

and det(M(t)) ≡ 0 for singular P0 is immediate.
The only remaining case is P0 = 1. Here, Proposition 3.14 (3) implies M(t) = etA with

A = P − 1 and hence det(M(t)) = etr(tA) > 0. �
A semigroup as in Proposition 3.14 is called Poissonian if P0 = 1, and pseudo-Poissonian

otherwise [8, Sec. X.1]. We can now recall the central classification result on infinitely divis-
ible, finite-dimensional Markov matrices from [11] as follows. It seems a bit hidden in the
literature, but nicely underpins the role of idempotents in the embedding problem.

Theorem 3.17. A Markov matrix M ∈Md is infinitely divisible if and only if there are Markov
matrices P0, P ∈Md, with P2

0 = P0 and P0P = PP0 = P, and some s � 0 such that

M = e−s

(
P0 +

∞∑
m=1

sm

m!Pm

)
.

Moreover, M is embeddable if and only if one also has P0 = 1.

Proof. For the proof of the first claim, we refer to [11].
For the second claim, we know that M embeddable implies det(M)> 0, and we are in

the case with P0 = 1 by Lemma 3.16. Conversely, when P0 = 1, Proposition 3.14 (4) gives
M = esA with the generator A = P − 1. �
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Note that the parameter s cannot be avoided in this formulation, because a generator Q can
have diagonal entries of arbitrarily large negative value, whence 1 + Q need not be Markov,
while 1 + sQ, for all suitably small s> 0, will be; compare Example 3.15 and Proposition 3.14.

Further consequences can be derived from
[
P0, P

]= 0 when P is cyclic, which means that
the minimal and characteristic polynomial of P agree. In particular, this is the case when
P is simple; see [1, Fact 2.10] for a systematic characterisation of cyclic matrices. Whenever
P ∈Md is cyclic, its centraliser is the abelian ring

cent(P) = {B ∈ Mat(d,R) : [P, B] = 0} =R[P],

where each element of this ring is of the form
∑d−1

n=0 αnPn with all αn ∈R, as a consequence of
the Cayley–Hamilton theorem. In particular, P0 is then an idempotent from this ring. We leave
further details to the interested reader.

4. Monotone Markov matrices in three dimensions

Let us now look at d = 3 in more detail, stating the following simple and certainly well-
known property, which we also prove owing to lack of reference.

Proposition 4.1. The eigenvalues of any M ∈M3,� are real. Moreover, at most one eigenvalue
of M can be negative, which happens if and only if det(M)< 0.

Further, if d = 3 and Q is a monotone Markov generator, its eigenvalues are nonpositive
real numbers.

Proof. First, M ∈M3,� ⊂M3 implies 1 ∈ σ (M). As d = 3, the characteristic polynomial

of M then is (1 − x)
(
x2 − (tr(M) − 1)x + det(M)

)
, and the remaining two eigenvalues are

λ± = 1

2

(
tr(M) − 1 ± √



)
, (4.1)

with the discriminant 
= (tr(M) − 1)2 − 4 det (M). By an explicit calculation, where one first
eliminates m22 and later also m11 via the row sum condition, one verifies that


= (m11 − m21 + m23 − m33

)2 + 4
(
m23 − m13

)(
m21 − m31

)
� 0,

where the inequality follows from the monotonicity of M via Example 3.2.
This implies σ (M) ⊂R, and the formula for λ± from Equation (4.1) shows that at most λ−

can be negative, because tr(M) � 1 by Corollary 3.5. Also, when det(M) = 0, the spectrum is
σ (M) = {1, tr(M) − 1, 0}, which is nonnegative. This establishes the claims on M.

If Q = (qij

)
1�i,j�3 is a Markov generator, its spectrum contains 0, while the other two

eigenvalues are given by

μ± = 1

2

(
tr(Q) ± √

D
)
, (4.2)

where, in analogy to above, one finds

D = (q11 − q21 + q23 − q33

)2 + 4
(
q23 − q13

)(
q21 − q31

)
� 0.

Here, the inequality follows via the monotonicity criterion from Example 3.12.
Consequently, all eigenvalues are real. They are then nonpositive because all eigenvalues

of Markov generators have real part � 0 (compare [1, Prop. 2.3(1)]), as can also be checked
explicitly from (4.2), where tr(Q) � 0 �

√
D � |tr(Q)|. �
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Considering the convex combinations

M(α) := αE1,1,2 + (1 − α)E2,3,3 =
⎛
⎜⎝
α 1 − α 0

α 0 1 − α

0 α 1 − α

⎞
⎟⎠ with α ∈ (0, 1),

in the notation of Table 1, one finds tr(M(α)) = 1 and det(M(α)) = −α(1 − α)< 0. This shows
that cases with a simple negative eigenvalue exist. On the other hand, Proposition 4.1 also
means that the spectrum of a matrix M ∈M3,� is positive if and only if det(M)> 0.

Corollary 4.2. Consider any M ∈M3,� with det(M)< 0. Then, M is neither embeddable nor
can it have a monotone nth Markov root for n even. In fact, M has no Markov or, indeed, real
square root at all, and M is not infinitely divisible.

Proof. Since det(M)< 0, embeddability is ruled out immediately, and so is the existence of
a real square root because M has only a simple negative eigenvalue; compare [14, Thm. 6.6] or
[15]. Consequently, M cannot be infinitely divisible.

Further, B ∈M3,� with B2m = M for any m ∈N implies nonnegative spectrum for M since
σ (B) ⊂R, which contradicts det(M)< 0. �

Let us now analyse when a matrix M ∈M3,� is embeddable. For this, M must be non-
singular and thus, by Corollary 4.2, have positive spectrum. So, all eigenvalues of M must
satisfy 0<λ� 1. Further, A = M − 1 is a generator that inherits monotonicity from M as all
off-diagonal elements of T−1AT are nonnegative. Since the spectral radius of A is �A < 1,

Q := log (1 + A) =
∞∑

m=1

(−1)m−1

m
Am (4.3)

converges and defines a real matrix with zero row sums and M = eQ. As we are not interested
in other types of solutions, we now introduce the non-unital, real algebra

A(3)
0 := {B ∈ Mat(3,R) : all row sums of B are 0}, (4.4)

which certainly contains the Q from (4.3). Since positive spectrum of M means σ (M) ⊂ (0, 1],
all eigenvalues of Q are nonpositive real numbers by the SMT. It remains to analyse the
generator property and potential uniqueness of Q.

Let q be the minimal polynomial of A. Its degree satisfies deg(q) ∈ {1, 2, 3} and equals the
degree of the minimal polynomial of M. Further, let

alg(A) := 〈Am : m ∈N〉
R

be the real algebra spanned by the positive powers of A, which does not contain 1, as one can
check easily. In fact, one has alg(A) = 〈A, A2

〉
R

by the Cayley–Hamilton theorem, so alg(A) is
a subalgebra of A(3)

0 of dimension � 2. Indeed, we clearly get

dim
(
alg(A)

)= deg(q) − 1 ∈ {0, 1, 2} (4.5)

together with Q ∈ alg(A) by (4.3), which leads to different situations as follows.
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Proposition 4.3. Let the matrix M ∈M3,� have a minimal polynomial of degree � 2. Then,
the following properties are equivalent:

1. The spectrum of M is positive.

2. One has det(M)> 0.

3. M is embeddable.

4. M is embeddable with a monotone generator.

If M is embeddable, there is precisely one monotone generator Q with M = eQ, namely the
one given in Equation (4.3).

Proof. The implications (4) ⇒ (3) ⇒ (2) are clear, while (2) ⇐⇒ (1) follows from
Proposition 4.1. It remains to show (1) ⇒ (4), so assume σ (M) ⊂R+ := {x ∈R : x> 0}. As
above, let q be the minimal polynomial of A = M − 1, which has the same degree as that of M.

When deg(q) = 1, since 0 is always an eigenvalue of A, the only possibility is q(x) = x;
hence A = 0 and thus also Q = 0 from (4.3), which gives the trivial case 1 = exp(0), where 1
is the only matrix in M3,� with a minimal polynomial of degree 1. By Remark 2.11, Q = 0 is

the only generator with eQ = 1, which is trivially monotone.
When deg(q) = 2, we have A �= 0, and hence tr(A)< 0, so by (4.5) we get A2 = −αA

for some α ∈R, where tr
(
A2
)
> 0 implies α > 0. Here, A = M − 1 is diagonalisable, with

eigenvalues 0 and −α >−1, in line with σ (M) ⊂R+. Then (4.3) simplifies to

Q = − log (1 − α)

α
A,

which is a positive multiple of A and hence a monotone generator, so M is embeddable as
M = eQ.

To establish the uniqueness claim, consider any Q′ ∈A(3)
0 such that M = eQ′

, where
M is diagonalisable by assumption, hence also Q′ by [1, Fact 2.15]. We then still have
[Q′, A] = 0, but not necessarily Q′ ∈ alg(A). Now, by [1, Lemma 6.1], there are two possi-
bilities, namely dim

(
alg(Q′)

) ∈ {1, 2}. Here, if the dimension is 2, Q′ must be simple, which is
only possible if Q′ has a complex conjugate pair of (non-real) eigenvalues. But then, Q′ can-
not be monotone, by Proposition 4.1. It remains to consider dim

(
alg(Q′)

)= 1, where we get
alg(Q′) = alg(A) from [1, Lemma 6.1(1)], and hence Q′ = aA for some a> 0. By taking the
determinant on both ends of eQ′= M = eQ, which gives a positive number, one finds

a tr(A) = − log (1 − α)

α
tr(A).

As tr(A) �= 0, this implies a = − log (1−α)
α

and thus Q′ = Q. �
Let us pause to state the asymptotic behaviour of Mn for the embeddable matrices covered

by Proposition 4.3. In the above notation, one trivially has Mn = 1 for all n when deg(q) = 1,
while a simple calculation gives

M∞ := lim
n→∞ Mn = 1 + lim

n→∞
1 − (1 − α)n

α
A = 1 + 1

α
A

for the more interesting case that deg(q) = 2.
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When deg(q) = 3, the situation becomes a little more complex. Here, A = M − 1 is always
cyclic, with 0 being a simple eigenvalue. Then, we obtain A3 = rA + sA2 together with
r = tr(M) − det(M) − 2 and s = tr(A). Since σ (A) = {0, μ+, μ−}, where μ± are negative num-
bers by Proposition 4.1, we get r = −μ+μ− < 0 and s =μ+ +μ− < 0. This remains correct
when μ+ =μ−, where A has a nontrivial Jordan normal form (as it is cyclic). Note that,
although A is a real matrix, it is more convenient, and also completely consistent, to always
employ the complex Jordan normal form of A in our arguments.

Let us first consider the case that A is simple (and hence also diagonalisable). Here, we have
−1<μ− <μ+ < 0 together with σ (M) = {1, 1 +μ+, 1 +μ−

}
. As A is cyclic, any matrix

Q ∈A(3)
0 with M = eQ must lie in alg(A) =R[A] ∩A(3)

0 , so Q = αA + βA2 for some α, β ∈R,
again by Frobenius’s theorem. Then, the SMT implies

αμ± + βμ2± = log
(
1 +μ±

) ∈ R,

which is an inhomogeneous system of linear equations for α and β. As

det

(
μ+ μ2+
μ− μ2−

)
=μ+μ−

(
μ− −μ+

)
< 0,

we get a unique solution, which is given by

α = μ2− log
(
1 +μ+

)−μ2+ log
(
1 +μ−

)
μ+μ−

(
μ− −μ+

) , β = μ+ log
(
1 +μ−

)−μ− log
(
1 +μ+

)
μ+μ−

(
μ− −μ+

) .

(4.6)

This shows that M = eQ has precisely one solution with Q ∈A(3)
0 , which must be the one

from (4.3). One can check via the Taylor series that α > 0 and β < 0, though this is not suffi-
cient to guarantee the generator or the monotonicity property of Q. So far, we have derived the
following constructive result.

Theorem 4.4. Let M ∈M3,� have simple spectrum with det(M)> 0, and set A = M − 1, with
σ (A) = {0, μ+, μ−} as above. Then, there is precisely one Q ∈A(3)

0 such that M = eQ, namely
the matrix Q from (4.3), which also satisfies Q = αA + βA2 with α, β from (4.6).

Further, Q is a generator, and M = eQ, precisely when
(
αA + βA2

)
ij � 0 holds for all i �= j,

and Q is also monotone when the criterion from Example 3.12 is satisfied by αA + βA2.

It remains to consider the case that A is cyclic, but not simple. Here, its eigenvalues are
0 and −1<μ< 0, the latter twice; also, any solution of M = eQ with Q ∈A(3)

0 must be of
the form Q = αA + βA2, which implies the condition αμ+ βμ2 = log (1 +μ) by the SMT.

Using the standard Jordan normal form of A, which must comprise the Jordan block
(μ 1

0 μ

)
because of our assumption, one obtains another condition from eQ = 1 + A, this time from the
superdiagonal element of the Jordan block, namely (1 +μ)(α+ 2βμ) = 1. This results in the
unique solution

α = 2
log (1 +μ)

μ
− 1

1 +μ
and β = 1

μ(1 +μ)
− log (1 +μ)

μ2
. (4.7)

Note that (4.7) also follows from (4.6) by an approximation argument of de L’Hospital type,
via setting μ− =μ=μ+ + x and letting x → 0. So, the Q from (4.3) is once more the only
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solution for M = eQ with Q ∈A(3)
0 . Here, α > 0 for μ sufficiently large (above approximately

−0.7) and β < 0, which is more complicated than in the previous case. Nevertheless, we have
the following result.

Corollary 4.5. Let M ∈M3,� be cyclic, but not simple. Then, the matrix A = M − 1 has spec-
trum σ (A) = {0, μ} with −1<μ< 0, where μ has algebraic multiplicity 2, but geometric
multiplicity 1. Further, all statements of Theorem 4.4 remain true, this time with the coefficients
α, β from (4.7).

Not all M ∈M3,� with positive determinant (and hence spectrum) can be embeddable, as
there are cases with a single 0 in one position; see [1, 5, 12] and references therein for further
examples. For d � 4, the possibility of complex conjugate pairs of eigenvalues increases the
complexity of the treatment, which is nevertheless possible with the recent results from [2].

5. Uniqueness of embedding and further directions

The explicit treatment of M3,� in the previous section shows that some useful sufficient
criteria for unique embeddability should be in store, such as the one stated in [14, Sec. 2.3]
for Markov matrices with distinct positive eigenvalues. Let us first recall a classic result on
the existence of a real logarithm of a given matrix, which can be found in several places, for
instance in [10, Sec. 8.8.2] or as [3, Thm. 1].

Fact 5.1 For B ∈ GL(d,R), the equation B = eR has a solution R ∈ Mat(d,R) if and only if
every elementary Jordan block of B with an eigenvalue on the negative real axis occurs with
even multiplicity. When B is diagonalisable, this simplifies to the condition that each eigenvalue
of B on the negative real axis has even algebraic multiplicity. �

Any matrix R ∈ Mat(d,R) that solves B = eR is called a real logarithm of B. When consid-
ering a nonsingular Markov matrix M, we are only interested in real logarithms of M with zero
row sums, that is, in elements from the subalgebra A(d)

0 ⊂ Mat(d,R). This is justified by the
following observation. Suppose eR has unit row sums with a real matrix R that fails to have
zero row sums. Then the set of matrices etR with unit row sums and t ∈R forms a discrete
subgroup of

{
etR : t ∈R

}�R. This is so because the existence of an accumulation point with
unit row sums, t0 say, would result in (1, . . . , 1)T being an eigenvector of R with eigenvalue 0,
which is a contradiction.

In analogy to the previous case with d = 3, now for A ∈A(d)
0 with arbitrary d � 2, we define

the non-unital algebra

alg(A) := 〈Am : m ∈N
〉
R

= 〈A, A2, . . . , Ad−1〉
R

⊂ A(d)
0 ,

where the second formulation follows from the Cayley–Hamilton theorem in conjunction with
the fact that A(d)

0 is non-unital.

Lemma 5.2. Let M ∈Md be cyclic and nonsingular, and assume that M possesses at least
one real logarithm, according to Fact 5.1. Then, with A = M − 1, any real logarithm R of M
satisfies R ∈ alg(A).

Proof. Clearly, we have [R,M] = [R, A] = 0, so M cyclic implies R ∈R[A] by Frobenius’s
theorem, and thus R = α01 +∑d−1

n=1 αnAn for some α0, . . . , αd−1 ∈R. Hence, R = α01 + X

with X ∈A(d)
0 , where eX then has unit row sums. Consequently, all row sums of eR = eα0 eX

equal eα0 , which must be 1. So we get α0 = 0 and R ∈ alg(A) ⊂A(d)
0 as claimed. �
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Now, we can extend the uniqueness result mentioned earlier to cyclic matrices. It is a variant
of [3, Thm. 2], but we give a different and constructive proof that later leads to an effective (and
numerically stable) criterion for embeddability. It generalises what we saw in Theorem 4.4 and
Corollary 4.5, and also differs from the approach used in [2].

Theorem 5.3. Suppose M ∈Md is cyclic and has real spectrum. Then, M possesses a real
logarithm R, so M = eR, if and only if the spectrum of M is positive. In this case, R is unique,
and is always an element of alg(A) ⊂A(d)

0 , where A = M − 1.

Proof. When M is cyclic, no elementary Jordan block can occur twice, and the first implica-
tion follows from Fact 5.1. When σ (M) ⊂R+, by Fact 5.1 and Lemma 5.2, all real logarithms
of M must lie in alg(A), and there is at least one R ∈ alg(A) with eR = M, so we have
R =∑d−1

i=1 αiA
i for some α1, . . . , αd−1 ∈R. It remains to establish uniqueness.

First, assume that A is simple. As A is a generator, this means σ (A) = {0, μ1, . . . , μd−1

}
,

with distinct μi ∈ (−1, 0) because of our assumptions. Then, since all αi and μj are real, the
SMT implies the d − 1 identities

d−1∑
�=1

α� μ
�
i = log

(
1 +μi

)
, 1 � i � d − 1. (5.1)

They constitute an inhomogeneous system of linear equations for the αi with the matrix

B =

⎛
⎜⎜⎜⎜⎜⎝

μ1 μ2
1 · · · μd−1

1

μ2 μ2
2 · · · μd−1

2

...
...

...

μd−1 μ2
d−1 · · · μd−1

d−1

⎞
⎟⎟⎟⎟⎟⎠ . (5.2)

Since det(B) = (∏i μi

)∏
k>� (μk −μ�) by an obvious variant of the standard Vandermonde

determinant formula, B is invertible when A is simple, and (5.1) has a unique real solution.
When A is cyclic, but not simple, the appearance of nontrivial Jordan blocks necessitates

a more refined argument. Clearly, as A is a generator and also cyclic, 0 is a simple eigenvalue
of A by [1, Prop. 2.3(2)]. Let μ ∈ (−1, 0) be any of the other eigenvalues, say with algebraic
multiplicity m. When m = 1, we get one condition from the SMT, and nothing else is needed.
So, assume m � 2. As A is cyclic, the geometric multiplicity of μ is 1, and the corresponding
Jordan block in standard form is Jμ =μ1m + Nm, where Nm is the nilpotent matrix with entries
1 on the first superdiagonal and 0 everywhere else. It satisfies Nm

m = 0, while Nk
m, for 1 � k<m,

has entries 1 on the kth superdiagonal and 0 elsewhere. In this case, we get only one condition
from the SMT, namely

d−1∑
�=1

α� μ
� = log(1 +μ), (5.3)

as in (5.1), while we need m − 1 independent further ones. They will come from derivatives
of (5.3), which needs a justification as follows.

First, from eR = 1 + A, one concludes that we must have

exp

(
d−1∑
�=1

α� J
�
μ

)
= 1m + Jμ = (1 +μ)1m + Nm. (5.4)
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Now, defining the polynomial φ(x) =∑d−1
�=1 α� x� and the function ψ(x) = eφ(x), one can

employ the standard method from [14, Sec. 1.2.1] to calculate the exponential in (5.4) as

ψ
(
Jμ
)=ψ(μ) 1m +

m−1∑
k=1

ψ (k)(μ)

k! Nk
m,

where ψ (k) denotes the kth derivative of ψ . As ψ(μ) = 1 +μ by (5.3), a comparison with (5.4)
leads to the conditions ψ (k)(μ) = δk,1 for 1 � k � m − 1, noting that 1 +μ �= 0. Iterating the

product rule on ψ = eφ and inserting (5.3) then results in

dk

dμk

d−1∑
�=k

α� μ
� = φ(k)(μ) = (−1)k−1(k − 1)!

(1 +μ)k
= dk

dμk
log (1 +μ), (5.5)

which shows that the additional conditions on the α� emerge via derivatives of the fundamental
relation (5.3). It remains to check when we obtain a unique solution α1, . . . , αd−1 this way.

Here, the matrix B that generalises (5.2) is specified by an n-tuple

((
μ1,m1

)
, . . . ,

(
μn,mn

))
of distinct nonzero eigenvalues μi of A with their algebraic multiplicities mi, where n � d − 1
and m1 + . . .+ mn = d − 1. A pair

(
μi,mi

)
is responsible for mi rows of B of length d − 1,

with the first derived from (5.3), followed by mi − 1 rows induced by (5.5). Here, each new
row emerges from the previous one by differentiation with respect to μi. The resulting matrix
is a variant of the confluent Vandermonde matrix (see [13, Sec. 22.2] or [23]), which is known
from Hermite interpolation. It is invertible if and only if the μi are distinct.

To substantiate the latter claim, define the sequence (γn)n∈N by

γn = det

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

1 2 4 · · · 2n−1

...
...

...
...

1 n n2 . . . nn−1

⎞
⎟⎟⎟⎟⎟⎠ ,

which starts as 1, 1, 2, 12, 288, 34560; compare [26, A000178]. Then one finds

det(B) =
(

n∏
i=1

μ
mi
i γmi

)∏
k>�

(
μk −μ�

)mkm�

(compare [13, Exc. 22.6]), which reduces to the determinant formula stated previously for the
special case m1 = . . .= mn = 1. Since the μi are distinct, det(B) �= 0 is clear, and the claimed
uniqueness follows. �

The benefit of this approach is that one can calculate B−1 and thus determine the coefficients
purely from the eigenvalues of A. In particular, the unique R is a generator if and only if∑d−1

i=1 αiA
i satisfies the corresponding conditions.
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Remark 5.4. The Vandermonde matrix and its inverse are well known from Lagrange interpo-
lation theory. Therefore, in minor modification of the results from [17, Sec. 0.9.11], one finds
the matrix elements of the inverse of B from (5.2) as

(
B−1)

ij =
(−1)i−1S(d−2)

d−1−i

({
μ1, . . . , μd−1

} \ {μj

})
μj

∏
k �=j

(
μk −μj

) ,

where S(n)
m
({

a1, . . . , an

})
is the elementary symmetric polynomial as defined by S(n)

0 ≡ 1, then

S(n)
1

({
a1, . . . , an

})= a1 + . . .+ an, followed by S(n)
2

({
a1, . . . , an

})=∑i<j aiaj, and so on,

up to the final one, which is S(n)
n
({

a1, . . . , an

})=∏i ai.
With a little more effort, this formula can be extended to the cyclic situation as well; see

[23] for a constructive approach to B−1 in this case.

The above result leads to the following sufficient criterion for unique embeddability.

Corollary 5.5. Let M ∈Md be cyclic and have real spectrum, σ (M) ⊂R. Then, M has a real
logarithm if and only if σ (M) ⊂R+.

In this case, the spectral radius of A = M − 1 is �A < 1, and there is at most one Markov

generator Q such that M = eQ. The only choice is Q = log(1 + A) ∈ alg(A) ⊂A(d)
0 , calculated

with the standard branch of the matrix logarithm as a convergent series. In particular, M is
embeddable if and only if the matrix log (1 + A) is a generator.

Proof. The first claim follows from Theorem 5.3. If σ (M) ⊂R+, all eigenvalues of A lie
in the half-open interval (−1, 0], so �A < 1 is clear. By Theorem 5.3, as M is cyclic with
σ (M) ⊂ (0, 1], there is precisely one real matrix R with M = eR. Since �A < 1, the series

log (1 + A) =
∞∑

m=1

(−1)m−1

m
Am

converges. The limit is then an element of alg(A), because this algebra is a closed subset of
Mat(d,R). So we get R = log (1 + A) ∈ alg(A) in this case, which has zero row sums, but need
not be a generator. �

One can go beyond this result, but care is required with the branches of the complex
logarithm; see [14, Ch. 11] for background and [2] for recent progress in this direction.

Remark 5.6. The results from Theorem 4.4 and Corollary 4.5 in particular apply to all cyclic
matrices M ∈M3 with positive spectrum, in that the embeddability of M can most easily be
verified via testing whether αA + βA2 is a generator, where A = M − 1 and α, β ∈R are the
numbers from Equation (4.6) if M is simple, or from Equation (4.7) otherwise.

Clearly, uniqueness results have interesting consequences on the structure of Markov roots,
as can be seen in the following refinement of [1, Ex. 3.9].

Example 5.7. The two-dimensional Markov matrix

M =
(

3
4

1
4

1
2

1
2

)
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is uniquely embeddable by Lemma 2.10, so M = eQ with a unique generator Q. Nevertheless,
as follows from a simple calculation, it has precisely two Markov square roots, namely

M1 =
(

5
6

1
6

1
3

2
3

)
and M2 =

(
1
2

1
2

1 0

)
.

Of these, M1 = exp
( 1

2 Q
)

is embeddable, while M2 is not. So, in the embeddable case, there is
always at least one Markov nth root for every n ∈N of the form exp

( 1
n Q
)
, but there can still be

others. A uniqueness result for the embedding of M then means that, among all Markov roots,
there is precisely one sequence of embeddable Markov nth roots of M.

The set ME
d of embeddable matrices is a relatively closed subset of {M ∈Md : det(M)> 0}

by [20, Prop. 3], but (for d � 2) it is not a closed subset of Md. The closure of ME
d is still a

subset of the infinitely divisible elements of Md, and it is a natural question which matrices
lie on the boundary, which we denote by ∂ME

d . Clearly, there can be embeddable cases, such

as

(
1 0

1 − α α

)
or

(
α 1 − α

0 1

)
for d = 2 and 0<α � 1, as well as (singular) idempotent ones,

such as M∞ = limt→∞ etQ for any generator Q �= 0. For d> 2, there are further possibilities.
Any M ∈ ∂ME

d satisfies M = limn→∞ eQn for some sequence (Qn)n∈N of generators, which
implies limn→∞ etr(Qn) = det(M) � 0.

When M ∈ ∂ME
d has det (M)> 0, it is embeddable by Kingman’s infinite divisibility crite-

rion. Alternatively, a positive determinant implies that the sequence
(
tr(Qn)

)
n∈N converges and

is thus bounded. Since all diagonal elements of a generator are nonpositive, they are bounded
as well, hence also all elements of the Qn thanks to the vanishing row sums. By a standard
compactness argument, there is thus a subsequence (Qni)i∈N such that limi→∞ Qni = Q is a
generator with M = eQ as expected, and M lies in the Markov semigroup

{
etQ : t � 0

}
.

When det(M) = 0, the sequence (tr(Qn))n∈N must be (negatively) unbounded, and we
may assume that, at least at one off-diagonal position, the entries of the Qn are (positively)
unbounded. When d = 2, this suffices to show that M is a singular idempotent. Already for
d = 3, the situation becomes more complex, since one can have a limiting M with det(M) = 0
that is not an idempotent, by considering

exp

⎛
⎜⎝

−a − b a b

c −c − d d

e f −e −f

⎞
⎟⎠

for a, b, . . . , f � 0. Then, fixing b, . . . , f at generic values and letting a → ∞ produces such
examples, and similarly for various other choices. When d = 4, one can have mixtures in block
matrix form, such as

M =
(

1 0

1 − α α

)
⊕
(
β 1 − β

β 1− β

)

for α ∈ (0, 1) and β ∈ [0, 1], which is singular but not idempotent.
It seems worthwhile to characterise the boundary more completely, for instance by relat-

ing semigroups with reducible generators to properties of the boundary, which we leave as
an open problem at this point. It is clear, though, that Markov idempotents and their connec-
tion with blockwise equal-input matrices will be important here. More generally, a simplified
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systematic treatment of the embeddability problem for d � 4 would be helpful in view of the
applications in phylogeny; see [2] for recent progress in this direction. Finally, even some of
the elementary questions become much harder in the situation of countable states, where many
new phenomena occur; see [6] and references therein for some recent results.
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