https://doi.org/10.1017/jfm.2022.901 Published online by Cambridge University Press

J. Fluid Mech. (2022), vol. 952, R3, doi:10.1017/jfm.2022.901

JM RAPIDS

Modelling falling film flow: an adjustable
formulation

Sanghasri Mukhopadhyay', Christian Ruyer-Quil*+ and R. Usha’®

'Department of Mathematics, School of Advanced Science, Vellore Institute of Technology,
Vellore 632014, Tamil Nadu, India
2Université Savoie Mont Blanc, CNRS, LOCIE, 73000 Chambéry, France

3Depalrtment of Mathematics, IIT Madras, Chennai 600036, Tamil Nadu, India

(Received 23 June 2022; revised 21 October 2022; accepted 24 October 2022)

A new two-equation model for gravity-driven liquid film flow based on the long-wave
expansion has been derived. The novelty of the model consists in using a base velocity
profile combining parabolic (Ruyer-Quil & Manneville, Eur. Phys. J. B, vol. 15, issue
2, 2000, pp. 357-369) and ellipse (Usha et al., Phys. Fluids, vol. 32, issue 1, 2020,
013603) profile functions in the wall-normal coordinate. The dependence on a free
parameter A related to the eccentricity of an ellipse serves as an adjustable parameter.

The resulting models are consistent at O(¢) for inertia terms and at 0(?) for viscous
diffusion effects, and predict accurately the primary instability. Appropriate tuning of the
adjustable parameter helps to recover accurate predictions for the asymptotic wave celerity
of nonlinear solitary waves. Further, the model is shown to capture the closed separation
vortices that can form underneath the troughs of precursory capillary ripples.
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1. Introduction

A long-standing challenge in falling film flows has been to develop simple and accurate
models that capture their nonlinear wavy dynamics. There have been continued efforts by
researchers to optimise the chemical engineering processes that involve these flows and
obtain models that are based on the fundamental closure assumption for the streamwise
velocity distribution — see the reviews by Kalliadasis et al. (2012), Noble & Vila (2013),
Ruyer-Quil ef al. (2014), Richard, Ruyer-Quil & Vila (2016) and Richard et al. (2019)
for recent attempts. To the best of our knowledge, the four-equation model derived
by Ruyer-Quil & Manneville (2000) using a weighted residual method (WRM) is the
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most accurate. This model precisely captures the characteristics of the solitary waves
that dominate and organise the noise-driven dynamics of falling films. Although the
four-equation WRM model is fully consistent at second order, its complicated expression
hampers its use in the film flow community. This inspired the development and wide
use of a simplified two-equation WRM model, in spite of its moderate overestimation
of the velocity of solitary waves. This two-equation model is hereinafter referred to as the
Ruyer-Quil and Manneville (RQM) model.

In fact, two-equation models, which can be viewed as extensions to viscous flows of
the Saint-Venant formalism of shallow-water flows, offer the most promising framework.
This motivated Richard et al. (2019) to consider all consistent two-equation models
that can be derived by in-depth integration of the momentum balance (momentum
integral method or MIM) or by integration of the energy balance (energy integral
method or EIM). They showed that it is possible to derive consistent two-equation
models up to first order for inertia terms and second-order for viscous diffusion which
present optimal mathematical properties (conservation equations preserving mathematical
entropy). Although some formulations of two-equation models could accurately predict
the asymptotic speed of solitary waves, none of them turned out to be fully satisfactory.
In particular, reconstruction of the velocity field from this approach poses difficulty, as
the derivation of these models is based on the asymptotics of the velocity. In principle,
predictions of the flow field under the waves are thus limited to only small-amplitude
waves and low values of the Reynolds number, where the long-wave expansion is strictly
valid.

Conversely, Ruyer-Quil & Manneville (2002) have shown that any WRM converges to a
unique expression of the WRM models if the number of test functions is sufficient. In fact,
the expressions of these models are entirely determined by the ansatz for the velocity
profile across the film or closure hypothesis (Ruyer-Quil et al. 2014). This raises the
question of the quest for an educated guess for the velocity, yielding the best two-equation
model within the WRM. This approach has the advantage to provide unambiguous
information on the velocity field under the waves.

Recently, Usha, Chattopadhyay & Tiwari (2020) have proposed an ellipse profile for
the velocity field and derived a new first-order model by employing the EIM. The choice
of ellipse profile as weight function in that study was motivated by the success of the
EIM with an ellipse profile in accurately and effectively predicting the squeeze film force
in squeeze flow problems and in predicting the inertial effects on the performance of
squeeze film dampers (Han & Rogers 1996). This choice allows for a free parameter
in the velocity profile, which is related to the eccentricity of the ellipse, and this helps
in adjusting the profile. The results reveal that, as this free parameter is increased but
remains finite, there is significant improvement in the predictions in the inertia-dominant
regimes.

In this paper, we introduce an adjustable velocity profile based on the elliptic profile and
investigate how the eccentricity of this profile influences the properties of the resulting
WRM models. A variant of the ellipse profile (see §2) is employed for the velocity
distribution, yielding a two-equation model with an adjustable parameter, which is referred
to as the ellipse velocity profile (EVP) model. The EVP model, though consistent at first
order for inertia and at second order for viscous terms, does not present the expected
structure of a shallow-water model, where convective terms are quadratic with respect to
the velocity (or flow rate ¢) and diffusion terms are linear with respect to g. A modified
model (EVPM) having this structure is proposed instead. As a first step in assessing
the performance of the derived models, the characteristics of single-hump solitary wave
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solutions are obtained and are compared with the characteristics of the direct numerical
simulation (DNS) of the Navier—Stokes equations presented by Chakraborty et al. (2014).

2. Mathematical modelling

We consider a liquid film flowing down a plane making an angle 8 with the horizontal.
The fluid properties, i.e. kinematic viscosity v = 1/ p, density p and surface tension o, are
constant. At the free surface, the gas is considered to be passive, with a constant pressure.
We assume a slow evolution of the liquid film in space and time and introduce a film
parameter ¢ as a formal parameter, which is inserted along with each derivative d, and
0; in space and time. This allows us to apply Prandtl’s simplification of the cross-stream
momentum balance, which gives

£8(uy + ity + vity) = b(h) + uyy + €7 Qutry + [ttxly=nl), 2.1a)
ux + vy = 07 u|y:0 = U|y=0’ (Zlb)
yly=p = &0 (dhgity|y=p — Ucly=n),  Vly=n = By + uly=phs. (2.1¢)

Here b(h) = 1 — £Chy + &3 hy combines the streamwise gravity acceleration (body force)
and a pressure gradient with a hydrostatic part and a contribution of surface tension.

System (2.1) is obtained after elimination of the pressure field and is consistent up
to O(g?) (Ruyer-Quil & Manneville 2000). We chose to write (2.1) using Shkadov’s
notation, for which the time ¢ and the streamwise coordinate x have been compressed
by a ratio k = (lc/hN)2/3, where [, = /o /(pgsin(B)) is a capillary length and &y is the
thickness of the uniform film (Nusselt solution). The spatial coordinates x and y have been
made dimensionless with the scales k/y and hy, respectively. The time scale is xhy /uy,
where uy = g sin(ﬂ)h,z\, /v is three times the averaged speed of the Nusselt solution, which
corresponds to the speed of kinematic waves at the free surface in the very-long-wave
limit. Similarly, the velocity components # and v have been made dimensionless with the
scales uy and uy /k, respectively. This choice of scales enables us to limit significantly the
number of coefficients in (2.1) differing from unity. In particular, « is adjusted so that the
surface tension term bears a coefficient equal to one.

Three dimensionless groups characterise the flow: the reduced Reynolds number § =
3Re/k, where Re = uyhy/(3v) is the Reynolds number based on the averaged velocity
un/3; a reduced slope ¢ = cot(B)/«; and a parameter = 1/« that compares viscous
diffusion and capillary damping of the waves. The reduced Reynolds number § compares
inertia and viscosity at a scale where surface tension is dominant. Ooshida (1999) showed
that § discriminates between two different regimes for which travelling waves present
different tail lengths and properties, which he called the ‘drag—gravity’” and ‘drag—inertia’

regimes. Finally, we introduce the Kapitza number Ka = o/(pv*/3g!/3), which compares
surface tension, viscosity and gravity. This parameter depends only on the fluid properties.
The Nusselt flat-film flow solution can be written as

a2 (Y 1)’2 g2 = S _
u=h\3 =553 ) =hg0), wherey=y/h. (2.2)

The velocity is then parametrised with only one field, namely the film thickness 4, which
is also the amplitude of the long-wave surface mode of instability. Yet, the velocity
distribution of large-amplitude waves may significantly depart from the Nusselt solution.
This is an effect of the inertia of the film. An easy way to account for this effect is to
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Figure 1. (a) Base flow for different values of A. (b) Solitary wave profiles corresponding to solutions to EVP
and EVPM models (2.8) and (2.9) for 6 = 90, Ka = 3400, § = 4 and A = A* = 2.23219.

parametrise the velocity distribution with another field, usually the flow rate ¢ = foh udy
or the averaged velocity u = ¢/h.

Following Ruyer-Quil et al. (2014), we decompose the streamwise velocity into a main
part and a correction,

2

u=u®h, q) +eu (h, q) = h’g0() + (% — %)m) + euV(h, ), (2.3)

where fy refers to the ellipse-type velocity profile proposed by Usha et al. (2020):

1
=K, ,/A2—4'—1)2—B], with K, = , B=+A2—4.
A=K [ o " IA%6in2/4) - 1B

(2.4)

The ellipse velocity profile f4 and corrections u(! fulfil the O(e) boundary conditions for
the velocity and integral conditions:

1 d h
/(;fA()_’)d}_’:L f4(0) =0, di;(l)zo, /Ou(])(h,q)dy:O. 2.5)

Consequently, (2.3) verifies g = foh u dy such that this decomposition is unique. Note

that u?) coincides with the Nusselt solution (2.2) for ¢ = h?/3, which corresponds to the
in-depth integration of (2.2). The profile f4 involves only one free parameter A, which
can be varied in the range ]2, oo[. In the limit A — 2, f4 approaches a circular shape (see
figure 1a). Note that, as A increases, the eccentricity of the ellipse approaches values closer
to 1 (Usha et al. 2020), and f4 tends to a parabola as A — oo. The profiles for higher values
of A (= 5, 10) are closer to each other and almost coalesce with the parabolic profile.

We retain the non-vanishing terms of highest order, namely first-order inertial terms and
second-order viscous diffusion ones. Although second-order inertia terms can be retained,
these terms may lead to non-physical behaviour, with the loss of solitary wave solutions,
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as ¢ is raised (Ruyer-Quil ef al. 2014):

euD ) (0) ) (0) _4©
ul) = es@u +u@u® + v ul”) - b(h) — u)

—&*nQu + [ ly=nlo) + O(e?), (2.6a)
euV)y0 =0, eulV|mp = 0@ ly—p — vV lyp) + O(?). (2.6b)

The resulting momentum balance (2.6a) is next averaged with a parabolic weight w =
£0(), the solution to wy, = const., since then

h h
/0 gouly) dy = JulV |,y — /0 u®dy = enQhau¥lyop — 30Vh—p). @7

As a result, the computation of the correction uD, the solution to (2.6), is unnecessary
to achieve consistency at order O(¢). Since w is not proportional to u?), the WRM differs
here from the EIM - see Ruyer-Quil, Chakraborty & Dandapat (2012) and Samanta,
Goyeau & Ruyer-Quil (2013) for other examples of the WRM approach where weight
and test functions differ. The obtained averaged momentum balance thus reads

G4 Gy G2, Fq ) h 34
Sqr =8| =L - Than— i\ n— (24 4+ 71 b
q’ [(Shz s Sh+S 9| * 35 [P0 -

J q Ji 2 K CIxhx L q 2
+n[(5h2 Sh>h" 0 (Sh Sh)hxx+sqxx], (2.8)
where the ordering parameter € has been dropped for simplicity. The coefficients F, G,
etc. are functions of the parameter A, the expressions of which are given in Appendix A.
Compared to the RQM model derived by Ruyer-Quil & Manneville (2000), (2.8)
contains deviatory terms that are not present there, corresponding to the coefficients Gy,
Gy, F1, J1 and L;. These terms arise due to the non-self-similar nature of ug(k, ¢) in the
ansatz (2.3) as the parabolic profile 3g¢ differs from the elliptic profile f4. In the limit
A — 00, foo = 3g0 and these terms vanish. Owing to these deviatory terms, the averaged
momentum balance (2.8) differs from the expected form of an averaged momentum
balance, akin to a viscous shallow-water equation (Gerbeau & Perthame 2001), where
convective terms are quadratic with respect to the velocity, or equivalently the flow rate ¢,
and viscous diffusion terms are linear with respect to g.
However, (2.8) can easily be rewritten in a form where convective terms are quadratic
and diffusive terms are linear with respect to g by playing with the zeroth-order
equivalence g = h3/3 4+ O(e) to rewrite the inertia and diffusion terms while retaining

consistency at O(e) for the former and O(&?) for the latter. The result reads

G —3G, —9G,\ ¢ F+3F\ q h 3q
8q =8 || ———— ) s —— ) ~ b(h
a [( S )h2 ¥ s ) nt | Tas [P

J—=31\ q 5 quhx L+ 3L M
—=h — — h — . 2.9
+77|:< S )h2x S & S hxx"'SQxx (2.9)

Completed by the (exact) mass balance h; + gy = 0, (2.8) or (2.9) form two-equation
low-dimensional models, referred to as EVP and EVPM models, respectively. These

models are consistent up to O(g) for inertial terms and up to O(e?) for diffusive ones.
As a consequence, the threshold of instability, §, = %(, is accurately captured by the
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2
q q q ., Iy q
e
EVP (A =A%) 1.229  -2329 3761 —4.160 —-5.656 4.471 0.853
EVPM (A =A*) 1.112 2347 3574 —4.171 —5.738 4.471 0.853
EVPM (A =10) 1.281 —2.426 3.985 —4.489 —5992 4499 0.833

RQM 1.285 —2.428 4 —4.5 —6 4.5 0.833

Table 1. Coefficients of (2.8) (EVP) and (2.9) (EVPM) compared with the RQM model (equation (14) in
Ruyer-Quil ez al. 2014).

Gxx b

two models. These two models lead to the same linear stability analysis of the Nusselt
flat-film solution (same dispersion relation). Moreover, the locations of the marginal
stability curves based on this dispersion relation (not shown) are nearly unaffected by the
value of A for a wide range of parameters. This shows that the linear stability of the Nusselt
film based on the EVP, EVPM and RQM models are nearly equivalent. Since the RQM
model has been shown to accurately capture the solutions to the Orr—Sommerfeld problem
(Ruyer-Quil & Manneville 2002), we conclude that our new formulations reproduce
satisfactorily the primary instability of the film for all values of A > 2. The variations
of the coefficients of the driving force (b), convective quadratic terms (¢>hy/h, qqy/h)
and linear diffusive terms (qh)% Jh%, heqy/h, ghe/h, qy) With respect to A are illustrated in
table 1, which shows an excellent convergence to the RQM model as A is raised.

3. Results and discussion

The results from the EVP and EVPM models are obtained for a film over a vertical wall
(B = 90°) for typical values of the Kapitza number (water—glycerol solution, Ka = 193;
plain water, Ka = 3400; and liquid nitrogen, Ka = 10 000). We use the software AUTO07P
(Doedel et al. 2007) to construct travelling-wave solutions, i.e. waves with a constant
speed and shape, as solutions to a dynamical system in the three-dimensional phase space
spanned by A, &’ and A", where the primes refer to the derivatives with respect to the
coordinate £ = x — ct in a frame moving at the phase speed c. Notice that integration of the
mass balance gives ¢ = ch + qo, where g is a constant, which explains that the dynamic
system is a function of / and its derivatives only. Solitary waves are computed in the
limit of a large computational domain, through a homoclinic bifurcation. The procedure is
detailed in Kalliadasis et al. (2012). The wave profile of a typical solitary wave, connecting
the Nusselt film of thickness & = 1 to itself, is illustrated in figure 1(b). The maximum
amplitude (h,,4,) and phase speed (c) of the one-hump solitary wave are displayed in
figure 2 as a function of the reduced Reynolds number (8) for different values of the
parameter A. In the drag—gravity regime, at low values of 8, ¢ — 1 and Aq, — 1 are o 83/2
(Ruyer-Quil & Kalliadasis 2012). Instead, at large values of §, the phase speed ¢ reaches a
plateau for which the amplitude 4,4, continues to grow slowly, which corresponds to the
drag—inertia regime.

Figure 2(a,c) shows how the adjustable parameter A affects the speed and amplitude
of the waves. For § é 1, all curves fall on a master curve. This is expected, since, in
the drag—gravity regime, inertia is weak, viscosity is high and the wave dynamics is
slaved to its kinematics so that the long-wave expansion holds accurately. Therefore, all
models consistent with the long-wave expansion give very close results in that regime.
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Figure 2. Characteristics of solitary waves: (a,b) amplitude h,,y; (c,d) phase velocity c; (a,c) influence of
varying A for n = 0.01; and (b,d) comparison to DNS on varying Ka for A = A* = 2.23219; for all panels,
6 = 90°. In panels (a,c) dashed lines are for (2.8) (EVP) and solid lines are for (2.9) (EVPM). In panels (b,d)
solid lines are for (2.9) (EVPM), dotted lines are for RQM model, and dashed lines are for DNS (Chakraborty
et al. 2014).

However, for § ; 1, inertia is dominant and the influence of A is significant. The
asymptotic speed lims_, oo ¢ = ¢ increases with A and reaches a maximum as the
EVP and EVPM models converge to the RQM model (co, =~ 2.738). The EVPM model
systematically predicts larger wave amplitudes than the EVP model.

Ruyer-Quil & Manneville (2005) have shown that the asymptotic speed c, is obtained
when the second fixed point location hyy = —1/2 + +/3(c — 1/4), at which gravity and
viscous drag compensate each other (i.e. ¢ = h3/3), corresponds to the critical level at
which inertia terms cancel out, which gives

G —3G; —9G,\ K F +3F\ h?
24 (L2 TP by (2 3.1)
S 9 S 3

for both (2.8) and (2.9). Adjusting ¢ to its prediction 2.560 found by DNS gives A =
A* &~ 2.23219. The DNS results obtained by Chakraborty e al. (2014), along with the
solutions to RQM model and to EVPM for A = A*, are presented for different Kapitza
numbers in figure 2(b,d). Results from the EVP model, which somewhat underestimate
the amplitude of solitary waves, are not shown. The choice of A = A* for comparison
is dictated by the requirement that the asymptotic speed cy, of the models matches the
predictions of DNS. Note that the dependence of the amplitude of the DNS results on the
Kapitza number is an effect of the complex velocity distribution (departure from parabolic
profile) under the capillary ripples. With two-equation models, such as EVP or EVPM
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Figure 3. Streamlines in the laboratory and moving frames of a travelling-wave solution to (2.9) (EVPM)
with A = A* corresponding to an experiment by Dietze, Al-Sibai & Kneer (2009): vertical wall,

water—dimethyl sulfoxide (DMSO) mixture, Re = 15, f = 16 Hz, u = 3.13 x 1073 Pa's, p = 1098.3 kg m >
and o = 0.0484 Nm~! (§ = 14.21, ¢ = 0, n = 0.0876 and Ka = 509.5). (a) Equation (2.9) (EVPM), moving
frame; (b) DNS, moving frame; (c) equation (2.9) (EVPM), laboratory frame; and (d) DNS, laboratory frame.

models, there is no dependence of wave amplitude on the Kapitza number (no effect of
capillarity on amplitude) and a monotonic behaviour of speed and amplitude with respect
to the reduced Reynolds number 6 is observed.

The performance of the EVPM model is further assessed by comparing its predictions
to DNS for a large-amplitude travelling wave corresponding to an experiment performed
by Dietze et al. (2009) in the drag—inertia regime (§ = 14.21, Ka = 509.5). The DNS
travelling-wave solution has been obtained by a projection method on Chebyshev
polynomials and continuation method (see Cellier & Ruyer-Quil (2020) for details).
Figure 3(a) displays the wave profiles and streamlines in the moving frame computed
from the modified model. The streamfunctions have been computed from the zeroth-order
velocity distribution u© (h, ¢), as adding the correction u'" reduces the agreement
with DNS whenever the long-wave expansion does not strictly hold, as is the case for
large-amplitude solitary waves (Ruyer-Quil et al. 2014).

The comparison with the DNS results is quite satisfactory, as evidenced by the
predictions regarding the intensity and location of the recirculation zone in the main hump.
The accumulation of capillary ripples at the foot of the solitary wave is well captured by
the modified model (cf. figure 3¢) and is in striking agreement with the corresponding
DNS results (figure 3d). Streamlines in the laboratory frame (figure 3c,d) reveal the onset
of back-flows, or separation eddies, at the locations of troughs in the capillary ripples
preceding the main hump. Once again, the EVPM model captures remarkably well the
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flow pattern predicted by DNS, which shows that the EVP velocity profile u”) given by
(2.3) is a satisfactory approximation of the true velocity profile.

4. Concluding remarks

Based on a combination of a parabolic and an ellipse profile introduced by Usha et al.
(2020), we have derived a new low-dimensional two-equation model for thin-film flows
using the WRM. The model is first-order consistent for inertia terms and second-order
consistent for diffusive terms, which guarantees that it captures the primary instability
adequately. Equation (2.9) presents the usual structure for a shallow-water momentum
balance, where convective terms are quadratic with respect to the flow rate ¢ and diffusive
terms are linear in g. The EVPM (2.9) successfully and satisfactorily captures the
nonlinear wave properties of film flows down a vertical wall, in both the drag—gravity
and drag—inertia regimes, such as asymptotic wave speed, maximum wave height, wave
profiles, streamlines in the moving frame and the flow patterns in the laboratory frame.
In particular, it is able to capture the onset of closed separation vortices which can form
underneath the troughs of precursory capillary ripples (Dietze et al. 2009).

This study is another step forward in the modelling of falling thin-film flows, thereby
offering new perspectives for theoretical and applied investigations. This calls for further
in-depth investigation of the EVPM model and similar formulations, taking full advantage
of the adjustable ansatz for the velocity profile.
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Appendix A. Coefficients of EVP (2.8) and EVPM (2.9) models

g _ 16B+48N — 3A°N

) Al
96N Al

—16(816 — 760A% + 75A*)B + 30A2(736 — 252A% + 17A%)C + 45A°BC?
F= 720BN2 + (A2)

Fi [43008 + 405A8C? + 1284%(—3317 + 816BC)

~ 138240N2
— 180A%(—9 + 9BC + 76C?) + 240A*(131 + 35BC + 312C?)], (A3)

G — (7376 +5204% — 304)B + 154%(64 — 204% + A C
a 60BN?

) (A4)
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Gi = ———[9216 + 896A%(—82 + 21BC) + 15A%(496
1 11520N2[ + ( + )+ (
+36A% + 4(4 — 9AY)BC + 3(—8 + A% (=32 + 342 )], (A5)
Gy = ————[6144 + 315A8C? + 1284%(—779 + 176BC
2 460801\,2[ + + ( + )
— 60A%(—21 + 21BC + 92C?) + 484%(65 + 145BC + 488C?)], (A6)
1
J=——[-8(56 + 13A%)B* — 3A°(16 + A*)BC> + 128AB°R
Sapn | 856+ 134%) (16 + A*)BC? +
+4A’B>C((64 + 23A%)B — 32AR) + 2A*C*(—160 + 684% — 7A* + 16ABR)],
(A7)
Ji=— ! [4A%B?(16B + A(—64 + 64A% — 19AB))C + 15A%BC?
36BN3
+ 8B%(32 — 76A% + 17A% — 32ABV) — 2A*C*(—32 — 44A% + 13A* + 32ABV)],
(A8)
1
K= 512 + 4A(40B + A(—52 + 5A% — 8AB
12(16 — 4A2 +A4c2)[ +4AM@0B + A(=52 + )
+ A2C(—64B + 16A(5 + A(—A + B)) + 3A%0)], (A9)

1
L= —[4A*B(160B + A(—176 + 16A%> — 7AB))C
5 4N3[ ( + A( + )

— 2A*(80B + A(—88 + A(8A + B)))C? + 3A%C> + 8B*(5BQ — 8AT)],  (A10)

1 2 2p2 7 ~2 8 3 3
L = P [—640AB% + 160A%B>C + 3247 C? — 15A%C3 + 12843B(B + 5C)
— 32A°C(4B + 5C) + 2A%C*(29B + 36C) — 4A*BC(13B + 64C) — 8B°Q],
(A11)
—48B + 72N + A(64 — 3AN

48N
where B = v/A2 — 4, C = arctan(2/B), N = (A>’C —2B),R=A%>+5,V=A2—1,T =
A% — 1l and Q = A% — 16.
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