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Abstract. Let � be an artin algebra and 0 = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In a chain of ide-
als of � such that (Ii+1/Ii) rad(�/Ii)= 0 for any 0 ≤ i ≤ n − 1 and �/In is semisimple.
If either none or the direct sum of exactly two consecutive ideals has infinite projective
dimension, then the finitistic dimension conjecture holds for �. As a consequence, we
have that if either none or the direct sum of exactly two consecutive terms in the radical
series of� has infinite projective dimension, then the finitistic dimension conjecture holds
for �. Some known results are obtained as corollaries.

2020 Mathematics Subject Classification. Primary: 16E10; Secondary: 16E05

1. Introduction. Throughout this paper, � is an artin algebra, rad(�) is the
Jacobson radical of � and mod� is the category of finitely generated left �-modules.
For a module M in mod�, we use pd� M to denote the projective dimension of M .

Recall that the finitistic dimension fin.dim� of � is defined as

sup{pd� M | pd� M <∞ with M ∈ mod�}.
The famous finitistic dimension conjecture states that fin.dim�<∞ for any artin alge-
bra �. This conjecture was initially an open question posed by Rosenberg and Zelinsky,
published by Bass in 1960 ([1]). The finitistic dimension conjecture is one of the main
problems in the representations theory of artin algebras and has a close relation with
some other homological conjectures, such as the (generalised) Nakayama conjecture, the
Gorenstein symmetry conjecture and the Wakamatsu tilting conjecture, and so on ([2, 24]).
These conjectures are still open. See [21, 26] for some progress on the finitistic dimension
conjecture.

Igusa and Todorov introduced the φ-function and theψ-function from mod� to N (the
natural numbers) in [11]. These two functions are powerful in studying the finitistic dimen-
sion conjecture, see [3, 4], [7]–[20], [22, 23, 25] and references therein. In particular, in
[18], the finitistic dimension conjecture was investigated in terms of some chain conditions
of ideals. Following this philosophy, the aim of this paper is to prove the following

THEOREM 1.1. Let

0 = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In
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be a chain of ideals of � such that (Ii+1/Ii) rad(�/Ii)= 0 for any 0 ≤ i ≤ n − 1 and �/In

is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite
projective dimension, then the finitistic dimension conjecture holds for �.

Recall that the Loewy length LL(�) of � is defined as min{l | radl−1(�) �= 0
and radl(�)= 0}. Let LL(�)= n and

0 = radn(�)⊆ radn−1(�)⊆ radn−2(�)⊆ · · · ⊆ rad(�)⊆�

be the radical series of �. By putting Ii = radn−i(�) for any 0 ≤ i ≤ n − 1 in Theorem 1.1,
we immediately have the following

COROLLARY 1.2. Let LL(�)= n. If either none or the direct sum of exactly two con-
secutive terms in the radical series of� has infinite projective dimension, then the finitistic
dimension conjecture holds for �.

The following three results are special cases of Corollary 1.2.

COROLLARY 1.3 ([5, Theorem 16]). If LL(�)≤ 3, then the finitistic dimension conjec-
ture holds for �.

COROLLARY 1.4 ([18, Corollary 0.3]). If pd� radi(�) <∞ for all i ≥ 3, then the
finitistic dimension conjecture holds for �.

COROLLARY 1.5 ([18, Corollary 3.8]). Let LL(�)≤ 4. If either pd� rad2(�) <∞ or
pd� rad3(�) <∞, then the finitistic dimension conjecture holds for �.

2. Preliminaries. In this section, we give some terminology and some preliminary
results.

For a module M in mod�, we use rad�(M) and �i
�(M) to denote the radical and the

i-th syzygy of M (in particular, �0
�(M) := M), respectively, and use add �M to denote

the subcategory of mod� consisting of all direct summands of finite direct sums of
copies of M .

Let K0 be the abelian group generated by all [M], where M ∈ mod�, subject to the
relations [C] = [A] + [B] if C ∼= A ⊕ B and [P] = 0 if P is projective. Define a homo-
morphism L : K0 → K0 via L[M] = [�(M)]. Let M ∈ mod�. Denote by 〈add �M〉 the
subgroup of K0 generated by all indecomposable direct summands of M . Let f be an endo-
morphism of M and X a submodule of M . By the Fitting lemma, there exists a smallest
integer ηf (X ) such that f |f m(X ) : f m(X )→ f m+1(X ) is an isomorphism for any m ≥ ηf (X ).
Moreover, if Y is a submodule of X , then ηf (Y )≤ ηf (X ). In [11], Igusa and Todorov defined

φ(M) := ηL(〈add �M〉),
ψ(M) := φ(M)+ sup{pd� X | pd� X <∞ with X a direct summand of �φ(M)� (M)}.

LEMMA 2.1 ([11]). Let M ∈ mod�. Then the function ψ : mod�→ N satisfies the
following properties.

(1) If pd� M <∞, then ψ(M)= φ(M)= pd� M. If M is indecomposable and
pd� M = ∞, then ψ(M)= 0.

(2) ψ(M (n))=ψ(M) for any n ≥ 1.
(3) ψ(M)≤ψ(M ⊕ N) for any N ∈ mod�.
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(4) ψ(M)=ψ(M ⊕ P) for any projective module P in mod�.
(5) Let

0 → A → B → C → 0

be an exact sequence in mod� with pd� C<∞, then pd� C ≤ψ(A ⊕ B)+ 1.

3. Proof of Theorem 1.1. In this section, we give the proof of Theorem 1.1. We
need some lemmas. The first assertion of the following lemma is essentially contained in
the proof of [18, Theorem 3.6].

LEMMA 3.1. Let

0 = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In

be a chain of ideals of � such that (Ii+1/Ii) rad(�/Ii)= 0 for any 0 ≤ i ≤ n − 1 and �/In

is semisimple. Then for any M ∈ mod�, there exists an exact sequence

0 → Mn → Mn−1 → · · · → M1 → M0 → M → 0

in mod� such that Mi ∈ add� �/Ii for any 0 ≤ i ≤ n.

Proof. Set�i :=�/Ii for any 0 ≤ i ≤ n; in particular,�0 =�. Taking X0 ∈ mod� and
writing X1 :=�1

�(X0), then we get an exact sequence

0 −→ X1 −→ PX0 −→ X0 −→ 0

in mod� with PX0 → X0 the projective cover of X0. Since I1 rad(�)= 0, we have that
I1X1 = I1�

1
�(X0)⊆ I1rad�(PX0)= 0 and X1 ∈ mod�1. Inductively, for Xi ∈ mod�i with

0 ≤ i ≤ n − 1, we have an exact sequence

0 −→ Xi+1 −→ PXi −→ Xi −→ 0,

in mod�i with PXi → Xi the projective cover of Xi, such that Xi+1 ∈ mod�i+1. Moreover,
restricting these exact sequences to �-modules and combining them, we get the following
exact sequence

0 −→ Xn −→ PXn−1 −→ PXn−1 −→ · · · −→ PX0 −→ X0 −→ 0

in mod�, where Xn ∈ mod�n and each PXi is projective as a �i-module. We have
PXi ∈ add �i�i for any 0 ≤ i ≤ n − 1. Because �n =�/In is semisimple, we have that Xn is
projective as a �n-module and Xn ∈ add �n�n. Thus, PXi ∈ add� �i for any 0 ≤ i ≤ n. Now
putting M := X0, Mn := Xn and Mi := PXi for any 0 ≤ i ≤ n − 1, we get the required exact
sequence.

The following lemma is useful.

LEMMA 3.2. Let

0 → Mn → Mn−1 → · · · → M1 → M0 → M → 0

be an exact sequence in mod�.

(1) If pd� Mi <∞ for all 0 ≤ i ≤ n − 1, then for all t ≥ 0, we have

�
(n+m)+t
� (M)⊕ P ∼=�m+t

� (Mn)⊕ Q,
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where m = max{pd� M0, pd� M1, · · · , pd� Mn−1} and P,Q are projective in
mod�.

(2) If pd� Mi <∞ for all 1 ≤ i ≤ n, then for all t ≥ 0, we have

�
(n+m+1)+t
� (M)⊕ P ∼=�

(n+m+1)+t
� (M0)⊕ Q,

where m = max{pd� M1, pd� M2, · · · , pd� Mn} and P,Q are projective in mod�.

Proof. Let

· · · → Pj
i → Pj−1

i → · · · → P1
i → P0

i → Mi → 0

be the minimal projective resolution of Mi in mod� for any 0 ≤ i ≤ n. Then by [6,
Corollary 3.7], we get an exact sequence

· · · → ⊕r
i=0Pr−i

i → · · · → P1
0 ⊕ P0

1 → P0
0 → M → 0. (3.1)

(1) By assumption, we have Pj
i = 0 for all 0 ≤ i ≤ n − 1 and j ≥ m + 1. So (3.1) in fact

is the following exact sequence

· · · → Pm+1
n → Pm

n → ⊕n
i=0P(n+m−1)−i

i → · · · → P1
0 ⊕ P0

1 → P0
0 → M → 0,

and the assertion follows.
(2) By assumption, we have Pj

i = 0 for all 1 ≤ i ≤ n and j ≥ m + 1. So (3.1) in fact is
the following exact sequence

· · · → Pn+m+2
0 → Pn+m+1

0 → ⊕n
i=0P(n+m)−i

i → · · · → P1
0 ⊕ P0

1 → P0
0 → M → 0,

and the assertion follows.

REMARK 3.3.
(1) Under the assumption of (1) (respectively, (2)) in Lemma 3.2, we have that

pd� M <∞ if and only if pd� Mn <∞ (respectively, pd� M0 <∞).
(2) If pd� M = ∞, then all syzygies appear in Lemma 3.2 are non-zero. If pd� M <∞,

then the syzygies appear there might be zero.

The following observation is standard.

LEMMA 3.4. Let

0 → Mn → Mn−1 → · · · → M1 → M0 → M → 0

be an exact sequence in mod�. If pd� Mi <∞ for all 0 ≤ i ≤ n, then for any l ≥ 0,
we have

pd� �
l
�(M)≤ pd�(�

l
�(⊕n

i=0Mi))+ n.

Proof. By the proof of Lemma 3.2(1), we have pd�(M)≤ pd�(⊕n
i=0Mi)+ n. So the

assertion follows.

Now we are in a position to prove the main result.

THEOREM 3.5. Let

0 = I0 ⊆ I1 ⊆ I2 ⊆ · · · ⊆ In
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be a chain of ideals of � such that (Ii+1/Ii) rad(�/Ii)= 0 for any 0 ≤ i ≤ n − 1 and �/In

is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite
projective dimension, then the finitistic dimension conjecture holds for �.

Proof. Let M ∈ mod� with pd� M <∞. By Lemma 3.1, there exists an exact
sequence

0 → Mn → Mn−1 → · · · → M1 → M0 → M → 0

in mod�, where Mi ∈ add� �/Ii for any 0 ≤ i ≤ n. Set Ki := Im(Mi → Mi−1) for any
1 ≤ i ≤ n − 1, Kn := Mn and K0 := M . Then by the construction in the proof of Lemma 3.1
we have the following facts: (i) Each Mi is a projective�/Ii-module; (ii) each Ki is a�/Ii-
module; (iii) if pd� Ii = ∞, then pd� Mi could be ∞; (iv) if pd� Mi = ∞, then at least one
of the following are true: pd� Ki = ∞ or pd� Ki+1 = ∞.

We will discuss the situation separately.
(1) If pd �Ii <∞ for all 0 ≤ i ≤ n, then pd� Mi ≤ pd� �/Ii <∞ for all 0 ≤ i ≤ n. It

follows from Lemma 3.4 that

pd� M ≤ pd�(⊕n
i=0Mi)+ n ≤ pd�(⊕n

i=0�/Ii)+ n<∞
and fin.dim�≤ pd�(⊕n

i=0�/Ii)+ n<∞.

(2) If there is some integer s with 1 ≤ s ≤ n such that pd� Is = ∞ and pd� Ii <∞
for all 1 ≤ i ≤ n but i �= s, then pd� Mi ≤ pd� �/Ii <∞ for all 0 ≤ i ≤ n but i �= s. Since
pd� M <∞, we have pd� Ms <∞; that is, we have pd� Mi <∞ for all 0 ≤ i ≤ n. Note
that Mi ∈ add� �/Ii for any 0 ≤ i ≤ n. Thus, we have

pd� M ≤ pd�(⊕n
i=0Mi)+ n (by Lemma 3.4)

=ψ(⊕n
i=0Mi)+ n (by Lemma 2.1(1))

≤ψ(⊕n
i=0�/Ii)+ n (by Lemma 2.1(2)(3))

and fin.dim�≤ψ(⊕n
i=0�/Ii)+ n.

(3) If there is some integer s with 1 ≤ s< n such that pd� Is = ∞, pd� Is+1 = ∞ and
pd� Ii <∞ for all 1 ≤ i ≤ n but i �= s, s + 1, then pd� Mi ≤ pd� �/Ii <∞ for all 0 ≤ i ≤ n
but i �= s, s + 1.

By Lemma 3.2(1) and the exactness of the following sequence

0 → Ks → Ms−1 → · · · → M1 → M0 → M → 0,

we have

�
s+m1
� (M)⊕ P1

∼=�
m1
� (Ks)⊕ Q1, (3.2)

where

m1 := max{pd� �/I0, pd� �/I1, · · · , pd� �/Is−1}
≥ max{pd� M0, pd� M1, · · · , pd� Ms−1}

and P1,Q1 are projective in mod�.
Consider the following exact sequence

0 → Mn → Mn−1 → · · · → Ms+1 → Ks+1 → 0.
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By Lemma 3.2(2), we have

�
n−(s+2)+m2+1
� (Ks+1)⊕ P2

∼=�
n−(s+2)+m2+1
� (Ms+1)⊕ Q2, (3.3)

where

m2 := max{pd� �/Is+2, pd� �/Is+3, · · · , pd� �/In}
≥ max{pd� Ms+2, pd� Ms+3, · · · , pd� Mn}

and P2,Q2 are projective in mod�. Set r1 := max{s + m1, n − (s + 2)+ m2 + 1} + 1. By
(3.2) and (3.3), we have

�
r1
�(M)∼=�

r1−s
� (Ks) and �r1

�(Ks+1)∼=�
r1
�(Ms+1). (3.4)

Consider the following exact sequence

0 −→ Ks+1 −→ Ms −→ Ks → 0.

By the horseshoe lemma, we have

0 −→�
r1
�(Ks+1)−→�

r1
�(Ms)⊕ P −→�

r1
�(Ks)−→ 0, (3.5)

where P is projective in mod�. Moreover, from (3.4) and (3.5) we obtain the following
exact sequence

0 −→�
r1
�(Ms+1)−→�

r1
�(Ms)⊕ P −→�

r1+s
� (M)−→ 0.

Thus,

pd� M ≤ pd� �
r1+s
� (M)+ r1 + s

≤ψ(�r1
�(Ms+1)⊕�

r1
�(Ms)⊕ P)+ 1 + r1 + s (by Lemma 2.1(5))

≤ψ(�r1
�(�/Is+1)⊕�

r1
�(�/Is))+ 1 + r1 + s,

where the last inequality follows from Lemma 2.1(3)(4) and the fact that Ms ∈ add� �/Is

and Ms+1 ∈ add� �/Is+1. Therefore,

fin.dim�≤ψ(�r1
�(�/Is+1)⊕�

r1
�(�/Is))+ 1 + r1 + s<∞.

The proof is finished.

Finally, we give an example to illustrate Theorem 3.5.

EXAMPLE 3.6. Let k be an algebraically closed field and�= kQ/I , where Q the quiver

1

α1

��
α2 �� 2

β1 ��
β2

�� 3

α3

��
6

α6

��

5
α5�� 4

α4��

and I is generated by {α2
1, α2α1, α3β1 − α3β2, α6α5}. It is straightforward to verify that

LL(�)= 6, pd� rad(�)= ∞, pd� rad2(�)= ∞ and pd� radi(�) <∞ for any 3 ≤ i ≤ 5.
So fin.dim�<∞ by Theorem 3.5.
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