Glasgow Math. J. **64** (2022) 37–44. © The Author(s), 2020. Published by Cambridge University Press on behalf of Glasgow Mathematical Journal Trust. doi:10.1017/S001708952000052X.

THE FINITISTIC DIMENSION AND CHAIN CONDITIONS ON IDEALS

JUNLING ZHENG

Department of Mathematics, China Jiliang University, Hangzhou 310018, Zhejiang Province, P.R. China Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China e-mail: zjlshuxue@163.com

and ZHAOYONG HUANG

Department of Mathematics, Nanjing University, Nanjing 210093, Jiangsu Province, P.R. China e-mail: huangzy@nju.edu.cn

(Received 15 February 2019; revised 16 September 2020; accepted 2 October 2020; first published online 3 November 2020)

Abstract. Let Λ be an artin algebra and $0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$ a chain of ideals of Λ such that $(I_{i+1}/I_i) \operatorname{rad}(\Lambda/I_i) = 0$ for any $0 \le i \le n-1$ and Λ/I_n is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite projective dimension, then the finitistic dimension conjecture holds for Λ . As a consequence, we have that if either none or the direct sum of exactly two consecutive terms in the radical series of Λ has infinite projective dimension, then the finitistic dimension, then the finitistic dimension of exactly two consecutive terms in the radical series of Λ has infinite projective dimension, then the finitistic dimension conjecture holds for Λ . Some known results are obtained as corollaries.

2020 Mathematics Subject Classification. Primary: 16E10; Secondary: 16E05

1. Introduction. Throughout this paper, Λ is an artin algebra, $rad(\Lambda)$ is the Jacobson radical of Λ and mod Λ is the category of finitely generated left Λ -modules. For a module M in mod Λ , we use $pd_{\Lambda} M$ to denote the projective dimension of M.

Recall that the *finitistic dimension* fin.dim Λ of Λ is defined as

 $\sup\{\operatorname{pd}_{\Lambda} M \mid \operatorname{pd}_{\Lambda} M < \infty \text{ with } M \in \operatorname{mod} \Lambda\}.$

The famous finitistic dimension conjecture states that fin.dim $\Lambda < \infty$ for any artin algebra Λ . This conjecture was initially an open question posed by Rosenberg and Zelinsky, published by Bass in 1960 ([1]). The finitistic dimension conjecture is one of the main problems in the representations theory of artin algebras and has a close relation with some other homological conjectures, such as the (generalised) Nakayama conjecture, the Gorenstein symmetry conjecture and the Wakamatsu tilting conjecture, and so on ([2, 24]). These conjectures are still open. See [21, 26] for some progress on the finitistic dimension conjecture.

Igusa and Todorov introduced the ϕ -function and the ψ -function from mod Λ to \mathbb{N} (the natural numbers) in [11]. These two functions are powerful in studying the finitistic dimension conjecture, see [3, 4], [7]–[20], [22, 23, 25] and references therein. In particular, in [18], the finitistic dimension conjecture was investigated in terms of some chain conditions of ideals. Following this philosophy, the aim of this paper is to prove the following

THEOREM 1.1. Let

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$$

be a chain of ideals of Λ such that $(I_{i+1}/I_i) \operatorname{rad}(\Lambda/I_i) = 0$ for any $0 \le i \le n-1$ and Λ/I_n is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite projective dimension, then the finitistic dimension conjecture holds for Λ .

Recall that the *Loewy length* $LL(\Lambda)$ of Λ is defined as $\min\{l \mid \operatorname{rad}^{l-1}(\Lambda) \neq 0$ and $\operatorname{rad}^{l}(\Lambda) = 0\}$. Let $LL(\Lambda) = n$ and

$$0 = \operatorname{rad}^{n}(\Lambda) \subseteq \operatorname{rad}^{n-1}(\Lambda) \subseteq \operatorname{rad}^{n-2}(\Lambda) \subseteq \cdots \subseteq \operatorname{rad}(\Lambda) \subseteq \Lambda$$

be the radical series of Λ . By putting $I_i = \operatorname{rad}^{n-i}(\Lambda)$ for any $0 \le i \le n-1$ in Theorem 1.1, we immediately have the following

COROLLARY 1.2. Let $LL(\Lambda) = n$. If either none or the direct sum of exactly two consecutive terms in the radical series of Λ has infinite projective dimension, then the finitistic dimension conjecture holds for Λ .

The following three results are special cases of Corollary 1.2.

COROLLARY 1.3 ([5, Theorem 16]). If $LL(\Lambda) \leq 3$, then the finitistic dimension conjecture holds for Λ .

COROLLARY 1.4 ([18, Corollary 0.3]). If $pd_{\Lambda} rad^{i}(\Lambda) < \infty$ for all $i \ge 3$, then the finitistic dimension conjecture holds for Λ .

COROLLARY 1.5 ([18, Corollary 3.8]). Let $LL(\Lambda) \leq 4$. If either $pd_{\Lambda} rad^{2}(\Lambda) < \infty$ or $pd_{\Lambda} rad^{3}(\Lambda) < \infty$, then the finitistic dimension conjecture holds for Λ .

2. Preliminaries. In this section, we give some terminology and some preliminary results.

For a module M in mod Λ , we use $\operatorname{rad}_{\Lambda}(M)$ and $\Omega^{i}_{\Lambda}(M)$ to denote the radical and the *i*-th syzygy of M (in particular, $\Omega^{0}_{\Lambda}(M) := M$), respectively, and use add $_{\Lambda}M$ to denote the subcategory of mod Λ consisting of all direct summands of finite direct sums of copies of M.

Let K_0 be the abelian group generated by all [M], where $M \in \text{mod } \Lambda$, subject to the relations [C] = [A] + [B] if $C \cong A \oplus B$ and [P] = 0 if P is projective. Define a homomorphism $L: K_0 \to K_0$ via $L[M] = [\Omega(M)]$. Let $M \in \text{mod } \Lambda$. Denote by $\langle \text{add }_{\Lambda}M \rangle$ the subgroup of K_0 generated by all indecomposable direct summands of M. Let f be an endomorphism of M and X a submodule of M. By the Fitting lemma, there exists a smallest integer $\eta_f(X)$ such that $f|_{f^m(X)}: f^m(X) \to f^{m+1}(X)$ is an isomorphism for any $m \ge \eta_f(X)$. Moreover, if Y is a submodule of X, then $\eta_f(Y) \le \eta_f(X)$. In [11], Igusa and Todorov defined

$$\phi(M) := \eta_L(\langle \text{add }_\Lambda M \rangle),$$

 $\psi(M) := \phi(M) + \sup\{ \mathrm{pd}_{\Lambda} X \mid \mathrm{pd}_{\Lambda} X < \infty \text{ with } X \text{ a direct summand of } \Omega_{\Lambda}^{\phi(M)}(M) \}.$

LEMMA 2.1 ([11]). Let $M \in \text{mod } \Lambda$. Then the function $\psi : \text{mod } \Lambda \to \mathbb{N}$ satisfies the following properties.

- (1) If $\operatorname{pd}_{\Lambda} M < \infty$, then $\psi(M) = \phi(M) = \operatorname{pd}_{\Lambda} M$. If M is indecomposable and $\operatorname{pd}_{\Lambda} M = \infty$, then $\psi(M) = 0$.
- (2) $\psi(M^{(n)}) = \psi(M)$ for any $n \ge 1$.
- (3) $\psi(M) \leq \psi(M \oplus N)$ for any $N \in \text{mod } \Lambda$.

(4) $\psi(M) = \psi(M \oplus P)$ for any projective module P in mod A.

(5) Let

$$0 \to A \to B \to C \to 0$$

be an exact sequence in mod Λ with $pd_{\Lambda} C < \infty$, then $pd_{\Lambda} C \leq \psi(A \oplus B) + 1$.

3. Proof of Theorem 1.1. In this section, we give the proof of Theorem 1.1. We need some lemmas. The first assertion of the following lemma is essentially contained in the proof of [18, Theorem 3.6].

LEMMA 3.1. Let

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$$

be a chain of ideals of Λ such that $(I_{i+1}/I_i) \operatorname{rad}(\Lambda/I_i) = 0$ for any $0 \le i \le n-1$ and Λ/I_n is semisimple. Then for any $M \in \operatorname{mod} \Lambda$, there exists an exact sequence

 $0 \to M_n \to M_{n-1} \to \cdots \to M_1 \to M_0 \to M \to 0$

in mod Λ such that $M_i \in \operatorname{add}_{\Lambda} \Lambda/I_i$ for any $0 \le i \le n$.

Proof. Set $\Lambda_i := \Lambda/I_i$ for any $0 \le i \le n$; in particular, $\Lambda_0 = \Lambda$. Taking $X_0 \in \text{mod } \Lambda$ and writing $X_1 := \Omega^1_{\Lambda}(X_0)$, then we get an exact sequence

$$0 \longrightarrow X_1 \longrightarrow P_{X_0} \longrightarrow X_0 \longrightarrow 0$$

in mod Λ with $P_{X_0} \to X_0$ the projective cover of X_0 . Since $I_1 \operatorname{rad}(\Lambda) = 0$, we have that $I_1X_1 = I_1\Omega_{\Lambda}^1(X_0) \subseteq I_1\operatorname{rad}_{\Lambda}(P_{X_0}) = 0$ and $X_1 \in \operatorname{mod} \Lambda_1$. Inductively, for $X_i \in \operatorname{mod} \Lambda_i$ with $0 \le i \le n-1$, we have an exact sequence

$$0 \longrightarrow X_{i+1} \longrightarrow P_{X_i} \longrightarrow X_i \longrightarrow 0,$$

in mod Λ_i with $P_{X_i} \to X_i$ the projective cover of X_i , such that $X_{i+1} \in \text{mod } \Lambda_{i+1}$. Moreover, restricting these exact sequences to Λ -modules and combining them, we get the following exact sequence

$$0 \longrightarrow X_n \longrightarrow P_{X_{n-1}} \longrightarrow P_{X_{n-1}} \longrightarrow \cdots \longrightarrow P_{X_0} \longrightarrow X_0 \longrightarrow 0$$

in mod Λ , where $X_n \in \text{mod }\Lambda_n$ and each P_{X_i} is projective as a Λ_i -module. We have $P_{X_i} \in \text{add }_{\Lambda_i}\Lambda_i$ for any $0 \le i \le n-1$. Because $\Lambda_n = \Lambda/I_n$ is semisimple, we have that X_n is projective as a Λ_n -module and $X_n \in \text{add }_{\Lambda_n}\Lambda_n$. Thus, $P_{X_i} \in \text{add}_{\Lambda}\Lambda_i$ for any $0 \le i \le n$. Now putting $M := X_0$, $M_n := X_n$ and $M_i := P_{X_i}$ for any $0 \le i \le n-1$, we get the required exact sequence.

The following lemma is useful.

LEMMA 3.2. Let

$$0 \to M_n \to M_{n-1} \to \cdots \to M_1 \to M_0 \to M \to 0$$

be an exact sequence in $\text{mod } \Lambda$.

(1) If $\operatorname{pd}_{\Lambda} M_i < \infty$ for all $0 \le i \le n-1$, then for all $t \ge 0$, we have $\Omega_{\Lambda}^{(n+m)+t}(M) \oplus P \cong \Omega_{\Lambda}^{m+t}(M_n) \oplus Q$, where $m = \max\{ \operatorname{pd}_{\Lambda} M_0, \operatorname{pd}_{\Lambda} M_1, \cdots, \operatorname{pd}_{\Lambda} M_{n-1} \}$ and P, Q are projective in mod Λ .

(2) If $pd_{\Lambda} M_i < \infty$ for all $1 \le i \le n$, then for all $t \ge 0$, we have

$$\Omega_{\Lambda}^{(n+m+1)+t}(M) \oplus P \cong \Omega_{\Lambda}^{(n+m+1)+t}(M_0) \oplus Q,$$

where $m = \max\{ pd_{\Lambda} M_1, pd_{\Lambda} M_2, \cdots, pd_{\Lambda} M_n \}$ and P, Q are projective in mod Λ .

Proof. Let

$$\cdots \rightarrow P_i^j \rightarrow P_i^{j-1} \rightarrow \cdots \rightarrow P_i^1 \rightarrow P_i^0 \rightarrow M_i \rightarrow 0$$

be the minimal projective resolution of M_i in mod Λ for any $0 \le i \le n$. Then by [6, Corollary 3.7], we get an exact sequence

$$\dots \to \bigoplus_{i=0}^{r} P_i^{r-i} \to \dots \to P_0^1 \oplus P_1^0 \to P_0^0 \to M \to 0.$$
(3.1)

(1) By assumption, we have $P_i^j = 0$ for all $0 \le i \le n - 1$ and $j \ge m + 1$. So (3.1) in fact is the following exact sequence

$$\dots \to P_n^{m+1} \to P_n^m \to \bigoplus_{i=0}^n P_i^{(n+m-1)-i} \to \dots \to P_0^1 \oplus P_1^0 \to P_0^0 \to M \to 0$$

and the assertion follows.

(2) By assumption, we have $P_i^j = 0$ for all $1 \le i \le n$ and $j \ge m + 1$. So (3.1) in fact is the following exact sequence

$$\cdots \to P_0^{n+m+2} \to P_0^{n+m+1} \to \bigoplus_{i=0}^n P_i^{(n+m)-i} \to \cdots \to P_0^1 \oplus P_1^0 \to P_0^0 \to M \to 0,$$

and the assertion follows.

Remark 3.3.

- (1) Under the assumption of (1) (respectively, (2)) in Lemma 3.2, we have that $\operatorname{pd}_{\Lambda} M < \infty$ if and only if $\operatorname{pd}_{\Lambda} M_n < \infty$ (respectively, $\operatorname{pd}_{\Lambda} M_0 < \infty$).
- (2) If $pd_{\Lambda} M = \infty$, then all syzygies appear in Lemma 3.2 are non-zero. If $pd_{\Lambda} M < \infty$, then the syzygies appear there might be zero.

The following observation is standard.

LEMMA 3.4. Let

 $0 \to M_n \to M_{n-1} \to \cdots \to M_1 \to M_0 \to M \to 0$

be an exact sequence in mod A. If $pd_{\Lambda} M_i < \infty$ for all $0 \le i \le n$, then for any $l \ge 0$, we have

$$\operatorname{pd}_{\Lambda} \Omega^{l}_{\Lambda}(M) \leq \operatorname{pd}_{\Lambda}(\Omega^{l}_{\Lambda}(\bigoplus_{i=0}^{n} M_{i})) + n.$$

Proof. By the proof of Lemma 3.2(1), we have $pd_{\Lambda}(M) \leq pd_{\Lambda}(\bigoplus_{i=0}^{n} M_{i}) + n$. So the assertion follows.

Now we are in a position to prove the main result.

THEOREM 3.5. Let

$$0 = I_0 \subseteq I_1 \subseteq I_2 \subseteq \cdots \subseteq I_n$$

be a chain of ideals of Λ such that $(I_{i+1}/I_i) \operatorname{rad}(\Lambda/I_i) = 0$ for any $0 \le i \le n-1$ and Λ/I_n is semisimple. If either none or the direct sum of exactly two consecutive ideals has infinite projective dimension, then the finitistic dimension conjecture holds for Λ .

Proof. Let $M \in \text{mod } \Lambda$ with $\text{pd}_{\Lambda} M < \infty$. By Lemma 3.1, there exists an exact sequence

$$0 \to M_n \to M_{n-1} \to \cdots \to M_1 \to M_0 \to M \to 0$$

in mod Λ , where $M_i \in \operatorname{add}_{\Lambda} \Lambda/I_i$ for any $0 \le i \le n$. Set $K_i := \operatorname{Im}(M_i \to M_{i-1})$ for any $1 \le i \le n-1$, $K_n := M_n$ and $K_0 := M$. Then by the construction in the proof of Lemma 3.1 we have the following facts: (i) Each M_i is a projective Λ/I_i -module; (ii) each K_i is a Λ/I_i -module; (iii) if $\operatorname{pd}_{\Lambda} I_i = \infty$, then $\operatorname{pd}_{\Lambda} M_i$ could be ∞ ; (iv) if $\operatorname{pd}_{\Lambda} M_i = \infty$, then at least one of the following are true: $\operatorname{pd}_{\Lambda} K_i = \infty$ or $\operatorname{pd}_{\Lambda} K_{i+1} = \infty$.

We will discuss the situation separately.

(1) If $\operatorname{pd}_{\Lambda} I_i < \infty$ for all $0 \le i \le n$, then $\operatorname{pd}_{\Lambda} M_i \le \operatorname{pd}_{\Lambda} \Lambda/I_i < \infty$ for all $0 \le i \le n$. It follows from Lemma 3.4 that

$$\operatorname{pd}_{\Lambda} M \leq \operatorname{pd}_{\Lambda}(\bigoplus_{i=0}^{n} M_{i}) + n \leq \operatorname{pd}_{\Lambda}(\bigoplus_{i=0}^{n} \Lambda/I_{i}) + n < \infty$$

and fin.dim $\Lambda \leq \mathrm{pd}_{\Lambda}(\oplus_{i=0}^{n}\Lambda/I_{i}) + n < \infty$.

(2) If there is some integer *s* with $1 \le s \le n$ such that $pd_{\Lambda} I_s = \infty$ and $pd_{\Lambda} I_i < \infty$ for all $1 \le i \le n$ but $i \ne s$, then $pd_{\Lambda} M_i \le pd_{\Lambda} \Lambda/I_i < \infty$ for all $0 \le i \le n$ but $i \ne s$. Since $pd_{\Lambda} M < \infty$, we have $pd_{\Lambda} M_s < \infty$; that is, we have $pd_{\Lambda} M_i < \infty$ for all $0 \le i \le n$. Note that $M_i \in add_{\Lambda} \Lambda/I_i$ for any $0 \le i \le n$. Thus, we have

$$pd_{\Lambda} M \le pd_{\Lambda}(\bigoplus_{i=0}^{n} M_{i}) + n \quad (by \text{ Lemma 3.4})$$
$$= \psi(\bigoplus_{i=0}^{n} M_{i}) + n \quad (by \text{ Lemma 2.1(1)})$$
$$\le \psi(\bigoplus_{i=0}^{n} \Lambda/I_{i}) + n \quad (by \text{ Lemma 2.1(2)(3)})$$

and fin.dim $\Lambda \leq \psi(\bigoplus_{i=0}^{n} \Lambda/I_i) + n$.

(3) If there is some integer *s* with $1 \le s < n$ such that $pd_{\Lambda} I_s = \infty$, $pd_{\Lambda} I_{s+1} = \infty$ and $pd_{\Lambda} I_i < \infty$ for all $1 \le i \le n$ but $i \ne s, s+1$, then $pd_{\Lambda} M_i \le pd_{\Lambda} \Lambda/I_i < \infty$ for all $0 \le i \le n$ but $i \ne s, s+1$.

By Lemma 3.2(1) and the exactness of the following sequence

$$0 \to K_s \to M_{s-1} \to \cdots \to M_1 \to M_0 \to M \to 0,$$

we have

$$\Omega_{\Lambda}^{s+m_1}(M) \oplus P_1 \cong \Omega_{\Lambda}^{m_1}(K_s) \oplus Q_1, \tag{3.2}$$

where

$$m_1 := \max\{ \operatorname{pd}_{\Lambda} \Lambda/I_0, \operatorname{pd}_{\Lambda} \Lambda/I_1, \cdots, \operatorname{pd}_{\Lambda} \Lambda/I_{s-1} \}$$

$$\geq \max\{ \operatorname{pd}_{\Lambda} M_0, \operatorname{pd}_{\Lambda} M_1, \cdots, \operatorname{pd}_{\Lambda} M_{s-1} \}$$

and P_1 , Q_1 are projective in mod Λ .

Consider the following exact sequence

$$0 \to M_n \to M_{n-1} \to \cdots \to M_{s+1} \to K_{s+1} \to 0.$$

By Lemma 3.2(2), we have

$$\Omega_{\Lambda}^{n-(s+2)+m_2+1}(K_{s+1}) \oplus P_2 \cong \Omega_{\Lambda}^{n-(s+2)+m_2+1}(M_{s+1}) \oplus Q_2,$$
(3.3)

where

$$m_{2} := \max\{ \mathrm{pd}_{\Lambda} \Lambda/I_{s+2}, \mathrm{pd}_{\Lambda} \Lambda/I_{s+3}, \cdots, \mathrm{pd}_{\Lambda} \Lambda/I_{n} \}$$

$$\geq \max\{ \mathrm{pd}_{\Lambda} M_{s+2}, \mathrm{pd}_{\Lambda} M_{s+3}, \cdots, \mathrm{pd}_{\Lambda} M_{n} \}$$

and P_2 , Q_2 are projective in mod Λ . Set $r_1 := \max\{s + m_1, n - (s + 2) + m_2 + 1\} + 1$. By (3.2) and (3.3), we have

$$\Omega^{r_1}_{\Lambda}(M) \cong \Omega^{r_1-s}_{\Lambda}(K_s) \text{ and } \Omega^{r_1}_{\Lambda}(K_{s+1}) \cong \Omega^{r_1}_{\Lambda}(M_{s+1}).$$
(3.4)

Consider the following exact sequence

$$0 \longrightarrow K_{s+1} \longrightarrow M_s \longrightarrow K_s \longrightarrow 0.$$

By the horseshoe lemma, we have

$$0 \longrightarrow \Omega_{\Lambda}^{r_1}(K_{s+1}) \longrightarrow \Omega_{\Lambda}^{r_1}(M_s) \oplus P \longrightarrow \Omega_{\Lambda}^{r_1}(K_s) \longrightarrow 0,$$
(3.5)

where *P* is projective in mod Λ . Moreover, from (3.4) and (3.5) we obtain the following exact sequence

$$0 \longrightarrow \Omega_{\Lambda}^{r_1}(M_{s+1}) \longrightarrow \Omega_{\Lambda}^{r_1}(M_s) \oplus P \longrightarrow \Omega_{\Lambda}^{r_1+s}(M) \longrightarrow 0.$$

Thus,

$$pd_{\Lambda} M \leq pd_{\Lambda} \Omega_{\Lambda}^{r_1+s}(M) + r_1 + s$$

$$\leq \psi(\Omega_{\Lambda}^{r_1}(M_{s+1}) \oplus \Omega_{\Lambda}^{r_1}(M_s) \oplus P) + 1 + r_1 + s \quad (by \text{ Lemma 2.1(5)})$$

$$\leq \psi(\Omega_{\Lambda}^{r_1}(\Lambda/I_{s+1}) \oplus \Omega_{\Lambda}^{r_1}(\Lambda/I_s)) + 1 + r_1 + s,$$

where the last inequality follows from Lemma 2.1(3)(4) and the fact that $M_s \in \operatorname{add}_{\Lambda} \Lambda/I_s$ and $M_{s+1} \in \operatorname{add}_{\Lambda} \Lambda/I_{s+1}$. Therefore,

fin.dim
$$\Lambda \leq \psi(\Omega_{\Lambda}^{r_1}(\Lambda/I_{s+1}) \oplus \Omega_{\Lambda}^{r_1}(\Lambda/I_s)) + 1 + r_1 + s < \infty$$

The proof is finished.

Finally, we give an example to illustrate Theorem 3.5.

EXAMPLE 3.6. Let k be an algebraically closed field and $\Lambda = kQ/I$, where Q the quiver

$$\begin{array}{c} \alpha_{1} & & \alpha_{2} \\ 1 & \alpha_{2} \\ \alpha_{6} \\ \alpha_{6} \\ \alpha_{5} \\ 6 \\ \end{array} \xrightarrow{\alpha_{5}} 5 \\ \end{array} \begin{array}{c} \beta_{1} \\ \beta_{2} \\ \beta_{2} \\ \beta_{2} \\ \alpha_{3} \\ \alpha_{4} \\ \alpha_{4} \\ \alpha_{4} \\ \alpha_{5} \\ \alpha_{6} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{6} \\ \alpha_{5} \\ \alpha_{5} \\ \alpha_{6} \\ \alpha_{7} \\$$

and *I* is generated by $\{\alpha_1^2, \alpha_2\alpha_1, \alpha_3\beta_1 - \alpha_3\beta_2, \alpha_6\alpha_5\}$. It is straightforward to verify that $LL(\Lambda) = 6$, $pd_{\Lambda} rad(\Lambda) = \infty$, $pd_{\Lambda} rad^2(\Lambda) = \infty$ and $pd_{\Lambda} rad^i(\Lambda) < \infty$ for any $3 \le i \le 5$. So fin.dim $\Lambda < \infty$ by Theorem 3.5.

ACKNOWLEDGEMENTS. This research was partially supported by NSFC (Grant Nos. 11971225, 12001508) and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions. The authors thank the referee for very useful suggestions.

REFERENCES

1. H. Bass, Finitistic dimension and a homological generalization of semiprimary rings, *Trans. Amer. Math. Soc.* **95** (1960), 466–488.

2. A. Beligiannis and I. Reiten, *Homological and homotopical aspects of torsion theories*, Memoirs of the American Mathematical Society, vol. 188 (American Mathematical Society, Providence, RI, 2007).

3. S. M. Fernandes, M. Lanzilotta and O. Mendoza, The Φ -dimension: a new homological measure, *Algebr. Represent. Theory* **18** (2015), 463–476.

4. M. A. Gatica, M. Lanzilotta and M. I. Platzeck, Idempotent ideals and the Igusa-Todorov functions, *Algebr. Represent. Theory* 20 (2017), 275–287.

5. E. L. Green and B. Zimmermann-Huisgen, Finitistic dimension of artinian rings with vanishing radical cube, *Math. Z.* 206 (1991), 505–526.

6. Z. Y. Huang, Proper resolutions and Gorenstein categories, J. Algebra 393 (2013), 142–169.

7. Z. Y. Huang and J. X. Sun, Endomorphism algebras and Igusa-Todorov algebras, *Acta Math. Hungar.* **140** (2013), 60–70.

8. F. Huard and M. Lanzilotta, Self-injective right artinian rings and Igusa-Todorov functions, *Algebr. Represent Theory* **16** (2013), 765–770.

9. F. Huard, M. Lanzilotta and O. Mendoza, An approach to the finitistic dimension conjecture, *J. Algebra* **319** (2008), 3918–3934.

10. F. Huard, M. Lanzilotta and O. Mendoza, Finitistic dimension through infinite projective dimension, *Bull. London Math. Soc.* 41 (2009), 367–376.

11. K. Igusa and G. Todorov, *On the finitistic global dimension conjecture for artin algebras*, Representations of Algebras and Related Topics, Fields Institute Communications, vol. 45 (American Mathematical Society, Providence, RI, 2005), 201–204.

12. M. Lanzilotta, E. N. Marcos and G. Mata, Igusa-Todorov functions for radical square zero algebras, *J. Algebra* 487 (2017), 357–385.

13. M. Lanzilotta and G. Mata, Igusa-Todorov functions for artin algebras, J. Pure Appl. Algebra 222 (2018), 202–212.

14. M. Lanzilotta and O. Mendoza, Relative Igusa-Todorov functions and relative homological dimensions, *Algebr. Represent. Theory* 20 (2017), 765–802.

15. C. X. Wang and C. C. Xi, Finitistic dimension conjecture and radical-power extensions, *J. Pure Appl. Algebra* **221** (2016), 832–846.

16. Y. Wang, A note on the finitistic dimension conjecture, Comm. Algebra 22 (1994), 2525–2528.

17. J. Q. Wei, Finitistic dimension and Igusa-Todorov algebras, Adv. Math. 222 (2009), 2215–2226.

18. J. Q. Wei, Finitistic dimension conjecture and conditions on ideals, *Forum Math.* **23** (2011), 549–564.

19. C. C. Xi, On the finitistic dimension conjecture I: related to representation-finite algebras, *J. Pure Appl. Algebra* **193** (2004), 287–305; and Erratum, *J. Pure Appl. Algebra* **202** (2005), 325–328.

20. C. C. Xi, On the finitistic dimension conjecture II: related to finite global dimension, *Adv. Math.* **201** (2006), 116–142.

21. C. C. Xi, Some new advances in finitistic dimension conjecture (in Chinese), *Adv. Math.* (*China*) **36** (2007), 13–17.

22. C. C. Xi, On the finitistic dimension conjecture III: related to $eAe \subseteq A$, J. Algebra **319** (2008), 3666–3688.

23. D. M. Xu, Generalized Igusa-Todorov function and finitistic dimensions, *Arch. Math.* **100** (2013), 309–322.

24. K. Yamagata, Frobenius algebras, in *Handbook of algebra*, Handbook of Algebra, vol. 1, (Elsevier/North-Holland, Amsterdam, 1996), 841–887.

25. A. P. Zhang and S. H. Zhang, Subalgebras and finitistic dimensions of artin algebras, *Acta Math. Sin. English. Ser.* **31** (2011), 2033–2040.

26. B. Zimmerman-Huisgen, The finitistic dimension conjectures–a tale of 3.5 decades, in *Abelian groups and modules (Padova, 1994)*, Mathematics and Its Applications, vol. 343 (Kluwer Academic Publishers, Dordrecht, 1995), 501–517.