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We derive a seminonparametric utility function containing the constant relative risk
aversion (CRRA) function as a special case, and we estimate the associated Euler
equations with U.S. consumption data. There is strong evidence that the CRRA function is
misspecified. The correctly specified function includes lagged effects of durable goods
and perhaps nondurable goods, is bounded as required by Arrow’s Utility Boundedness
Theorem, and has a positive rate of time preference. Constraining sample periods and
separability structure to be consistent with the generalized axiom of revealed preference
affects estimation results substantially. Using Divisia aggregates instead of the NIPA
aggregates also affects results.
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1. INTRODUCTION

Euler equation estimation, which has become a mainstay of macroeconomet-
rics, attempts to find the utility function of the representative agent. Whether
such an exercise is useful is the subject of some disagreement, with a number
of economists skeptical of the representative-agent framework for well-known
reasons. We do not join that debate here. Our purpose is to examine some condi-
tions that must be satisfied for Euler equation estimation to be valid once one has
accepted the representative-agent framework. Three such conditions occupy our
attention: The data must be consistent with the existence of a well-behaved aggre-
gate utility function, the broad categories of goods (such as nondurables, services,
and durables) used in estimation must be consistent with the utility function’s
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separability structure, and the aggregation method used to construct categories of
goods also must be consistent with that separability structure. A substantial mi-
croeconomic literature discusses conditions for the existence of a utility function,
its separability structure, and methods for aggregating data. However, that litera-
ture generally has been ignored in the Euler equation studies applied to aggregate
data, which typically assume (implicitly) that the relevant conditions are satisfied
and proceed straight to estimation. In this paper we apply the microeconomic liter-
ature to Euler equation estimation. We find that assumptions often made in Euler
equation studies using aggregate U.S. data apparently are invalid, and correcting
the problems has a substantial effect on estimation results.

A necessary condition for using the representative-agent approach is that there
must exist a nonsatiated, continuous, concave, monotonic utility function that is
consistent with the data set under examination. Such a utility function exists if and
only if the data satisfy the Generalized Axiom of Revealed Preference (GARP);
see Varian (1982). Using tests developed by Varian (1983), Fleissig et al. (2000)
find that the U.S. National Income and Product Account (NIPA) consumption data
generally arenot consistent with GARP over the full periods of data availability.
Estimating Euler equations over those sample periods therefore may be invalid.
Over subsample periods for which the data are GARP-consistent, two important
results emerge: First, the aggregate utility function is separable in nondurables and
services but not in durables; second, durables can be aggregated up to two or three
categories of expenditures but not all the way up to one single overall quantity. The
first of these results implies that one cannot estimate Euler equations from a utility
function (or, strictly speaking, a subutility function) that includes only durables; if
durables are to be included, then nondurables and services also must be included.
The second result implies that if durables are included, then one cannot use simply
an overall aggregate of all durables but instead must enter several subaggregates
separately. Also, the method of aggregating the data should be consistent with the
utility function’s separability structure.

Most published Euler equation studies using aggregate data have ignored the
foregoing issues and have used sample periods, separability structures, and/or ag-
gregation methods that apparently are inconsistent with the data. The estimation
results of those studies therefore are of uncertain validity. We explore the sensi-
tivity of the results by restricting attention to GARP-consistent sample periods,
separability structures, and aggregation methods. We find that doing so affects
estimation substantially. We compare results obtained for a standard constant rel-
ative risk aversion (CRRA) function with those obtained for a seminonparametric
(SNP) function that nests that CRRA.

With no restrictions imposed, the CRRA function appears to be adequate, but
as one restricts the sample period, separability structure, and aggregation method
to those consistent with GARP, the CRRA becomes misspecified. In contrast, the
SNP function is not misspecified. The SNP function is essentially free from spec-
ification error (up to a certain structure, discussed later) and allows for nonsepara-
bility between expenditure on durable and nondurable goods. The overidentifying

https://doi.org/10.1017/S1365100500017077 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100500017077


SEPARABILITY, AGGREGATION, EULER EQUATION 549

restrictions are not rejected, the rate of time preference is significantly positive, and
the utility function is bounded, as required by Arrow’s (1971) Utility Boundedness
Theorem. Lagged durables and possibly lagged nondurables are significant, with
coefficients consistent with habit persistence. Estimates of the index of relative risk
aversion differ considerably across specifications, data frequency, and separability
assumptions. This parameter is central to much applied analysis, such as evaluation
of certain kinds of public policies and assessments of some effects of economic
development. We find that its magnitude can vary by as much as 30 times across
the model specifications we study. We also find that monthly data give results much
different from those for annual or quarterly data, whose results are consistent with
each other, suggesting a possible problem with the use of monthly data.

The rest of the paper is organized as follows: Section 2 presents the model
to be estimated and derives the orthogonality conditions. Section 3 discusses the
data and the issues of GARP consistency, separability, and choice of aggrega-
tion method. Section 4 presents the estimation results. Section 5 concludes the
paper.

2. MODEL TO BE ESTIMATED

2.1. Utility Maximization and Service Flow of Goods

The consumer maximizes the expected value of an intertemporal multigood utility
function

MaxEt

∞∑
s=0

βsu∗
(
c∗t+s, d

∗
t+s

)
, 0< β < 1, (1)

whereβ is the discount factor,c∗ is a vector of service flows derived from expendi-
ture on the nondurables (c), d∗ is a vector of service flows from the stock of durable
goods (k), Et (·) is the conditional expectationEt (· |Ft ), andFt is the agent’s infor-
mation set at timet . We allow nondurables to generate service flows, both because
many goods classified as nondurable have at least some durability [Darby (1974)
Dunn and Singleton (1986)] and because utility may exhibit habit-persistence.
Equation (1) is fairly general and includes as special cases many formulations
from the literature.1 We follow the consumption Euler equation literature in ig-
noring leisure and treating income as exogenous to the household’s consumption
choice problem.2

The consumer maximizes the expected utility function (1) subject to the period-
by-period budget constraint:

At+1 = (1+ rt )At + yt − (ct + pd,t dt ),

whereAt is assets,yt is income,rt is the interest rate,ct is expenditure on non-
durable and services,dt is expenditure on durable goods, andpd,t is the price of
durables in terms of nondurables. The consumer also must satisfy the terminal
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condition of exactly exhausting the lifetime sources. Using the period-by-period
constraint gives the expected lifetime constraint3:

E
∞∑

s=0

[
yt+s

S∏
i=0

(1+ rt+i )
−1

]
= E

∞∑
s=0

[
(ct+s + pd,t+sdt+s)

S∏
i=0

(1+ rt+i )
−1

]
.

The possible sources of uncertainty are future incomeyt+s, future durables prices
pd,t+s, and future interest ratesrt+s. We assume at timet , when the consumer
formulates a consumption plan, that the agent knows the values ofy, p, andr for
periodt but not for any future periodt + s.

Data do not exist for consumption service flows from durable goods, and so,
we must transform expenditures into service flows. We assume the service flow
from the i th nondurable good,c∗it , depends on contemporaneous andJ lagged
expenditures oncit :

c∗i t = f (i )(cit , cit−1, . . . , cit−J), 0≤ J <∞
or, in vector notation,

c∗t = f (ct , ct−1, . . . , ct−J), 0≤ J <∞. (2)

If J= 0, thencit generates service flows only in the period of purchase and is liter-
ally nondurable. Each durable good evolves according to the usual accumulation
equation

kit − kit−1 = dit − µi ki t−1, (3)

whereµi is the rate of depreciation, assumed here to be known a prior.4 Equation (3)
has the solution

kit = [1− (1− µ)L]−1dit . (4)

We assume that the periodt service flow from thei th durable goodd∗i t is propor-
tional to the average stock of the good during the period

d∗i t = νi
1
2(kit−1+ kit ), 0< ν̃i < 1

= νi (kit−1+ kit ) (5)

in which the only unknown variable on the right-hand side isν.
Collecting all stocks into vectors gives the vector equivalent of (5):

d∗t = ν(kt + kt−1). (6)

We then can rewrite the utility function as

u∗
(
c∗t , d

∗
t

) = u(ct , . . . , ct−J; kt + kt−1) (7)

by substituting (2) and (6) into (1). We can simplify the discussion without loss
of generality by considering a composite nondurablect (a scalar) and a composite
durable gooddt (also a scalar). Then, equation (7) simplifies to

u∗
(
c∗t , d

∗
t

) = u(ct , . . . , ct−J; kt + kt−1). (8)
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2.2. Seminonparametric Utility Function

We derive a seminonparametric generalization of the CRRA utility function by
assuming that conditions for exact aggregation of individual utility functions are
satisfied.5 For example, suppose individual utility is degreeδγ homogeneous inc
and degreeθγ in k; that is,u∗ is homogeneous of degree(δ+ θ)γ . Then, extracting
ct andkt from (8) results in

u∗
(
c∗t , d

∗
t

) = (cδt kθt
)γ

u∗
(
1,C#

t ,K
#
t

)
= (cδt kθt

)γ
w
(
C#

t ,K
#
t

)
,

which is a product of two functions, the first being homogeneous of degree(δ+ θ)γ
and the other homogeneous of degree zero, whereC#

t = (ct−1/ct , ct−2/ct , . . . ,

ct−J/ct ) andK #
t = (1+ kt−1/kt ). Taking an affine translation gives

ũ∗
(
c∗t , d

∗
t

) = a
(
cδt kθt

)γ
w
(
C#

t ,K
#
t

)+ b

and settinga= 1/γ andb=−1/γ gives the utility function6

ũ∗
(
c∗t , d

∗
t

) = (cδt kθt
)γ
w
(
C#

t ,K
#
t

)− 1

γ
. (9)

The resulting utility function thus is homothetic (an affine translation of a ho-
mogeneous function) and so is consistent with the Gorman (1953) conditions for
exact aggregation of individual preferences. Exact aggregation is sufficient but not
necessary for constructing an aggregate utility function.

The functionw(C#,K#) is unknown but can be approximated with arbitrary
accuracy by the multivariate polynomial

w(C#,K#) = a0+ γ 2
L∑
λ=1

Aλ(C#,K#), (10)

whereAλ(C#, K #) is itself a polynomial of all possible terms of orderλ in the ele-
ments of(C#,K#) and the accuracy of the approximation improves asL increases.7

Under the mild restriction that the ratiosct−h/ct andkt−h/kt (equivalently, the
growth rates ofc andk) are bounded above and below, the multivariate polynomial
is dense in a Sobolev norm. A Sobolev norm requires the function to approximate
globallythe true unknown functionandits derivatives.8 Approximating derivatives
well is important because the Euler equations are obtained by differentiating the
utility function.9 We determine a value forL in (10) empirically by standard upward
testing, adding polynomial terms until they are no longer statistically significant.

We can test specific forms of the utility function by restricting the polynomial.
For example, the utility function is the standard (multigood) CRRA inc andk
only if w(C#,K#)= 1, which requires either that all polynomial coefficients be
zero or thatγ = 0. In the latter case, the utility function is logarithmic, which is a
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special case of the CRRA. We therefore can test the CRRA through the two null
hypotheses that the polynomial coefficients all are zero and thatγ = 0. Failure to
reject either null implies the CRRA.

2.3. Orthogonality Conditions

We derive orthogonality conditions from two equilibrium conditions of the model.
The control variables are current expenditures on nondurables and durables,ct and
dt . Associated with them are two first-order conditions that can be written

Et [MUc(t)− MUc(t + 1)rt+1] = 0 (11)

and
MUd(t)− pdt MUc(t) = 0, (12)

wherert equals one plus the interest rate andpdt is the real cost of durable pur-
chases. Equation (11) is theintertemporalfirst-order condition, equating the disu-
tility of foregoing current consumptionct to the expected utility gained from
future consumptionct+1. Equation (12) is theintratemporalfirst-order condition,
equating the marginal rate of substitution of a unit of nondurable consumption
for a unit of durable expenditure at timet to the relative price of durables and
nondurables. Equation (11) yields one set of testable orthogonality conditions.
In contrast, equation (12) is not useful directly for deriving testable restrictions.
Because the marginal utility of durables in (12) involves expectations infinitely far
into the future, we follow Dunn and Singleton (1986) and use the related condition

MUd∗(t) = pd∗t MUc(t), (13)

wherepd∗t is the real user cost of durables,pdt − (1−µ)(1+ rt )
−1Et pdt+1. This

condition compresses all expectations about the future intopd∗t , which involves
only an expectation one period into the future.

The orthogonality conditions for our general SNP utility function given by
(9) and (10) are cumbersome, and so, to give an example, we report here the
conditions when (10) is quadratic and nondurables provide service flows for, at
most, two periods (i.e.,J= 1). In applications, more lags may be required. Under
this example, the SNP utility function is

u*
(

c*
t , d*

t

) =
(

cδt k
θ

t

)
γ

{
1+ γ

2

[
a1

ct−1

ct

+ a2

kt−1

kt

+ a3

(
ct−1

ct

)2

+ a4

(
ct−1

ct

)(
kt−1

kt

)
+ a5

(
kt−1

kt

)2
]}
− 1

γ

(14)

or

u∗(c∗, d∗) = [CRRAFt ][Polyt ] − 1

γ
,
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where CRRAF is the constant relative risk aversion factor(cδkθ )γ and Poly is the
quadratic polynomialw(C#,K#). Using (14), we have

MUc(t + s) = Et

[
δβs

ct+s
(CRRAFt+s)(Polyt+s)

+
1∑

j=0

βs+ j (CRRAFt+s+ j )

γ

(
∂ Polyt+S+ j

∂ct+s

)]
, (15)

where

∂ Polyt+s+ j

∂ct+s
= (−1) j+1 γ

2

ct+s

[
a1

(
ct+s+ j−1

ct+s+ j

)
+ 2a3

(
ct+s+ j−1

ct+s+ j

)2

+a4

(
ct+s+ j−1

ct+s+ j

)(
kt+s+ j−1

kt+s+ j

)]
for j = 0 or 1. Substituting (15) into (11) gives the intertemporal orthogonality
condition used in estimation.

The SNP utility function (14) does not contain the service flow variabled∗,
which has been replaced bykt andkt−1 using (5). We obtain from (14)

MUd∗(t) = θβ
kt
(CRRAFt )(Polyt )+

1∑
j=0

β j (CRRAFt+ j )

γ

(
∂ Polyt+ j

∂kt

)
, (16)

where

∂ Polyt+ j

∂kt
= (−1) j+1γ

2

kt

[
a2

(
kt+ j−1

kt+ j

)
+ a4

(
ct+ j−1

ct+ j

)(
kt+ j−1

kt+ j

)

+ 2a5

(
kt+ j−1

kt+ j

)2
]

for j = 0 or 1. Substituting (16) and (15) withs= 0 into (13) gives the intratemporal
orthogonality conditions used in estimation.

3. DATA AND SEPARABILITY

Having derived the seminonparametric generalization of the CRRA, we now need
aggregate data to estimate the Euler equations. To keep estimation tractable, we
must reduce the thousands of goods consumed to a small number of aggregates.
We thus must choose a sample period to analyze, a set of aggregates to construct,
and an aggregation method for constructing them.

The typical approach is to use the longest sample period for which data are avail-
able, the groups of goods reported by NIPA (such as nondurables, services, and
durables), and the aggregation method (Laspeyres quantity aggregates) that NIPA
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uses to construct those groups. This approach simply assumes, without any formal
testing, the existence of a well-behaved aggregate utility function with an appro-
priate separability structure. An alternative approach is to examine the properties
of the data with formal tests. Such tests can be either parametric or nonparametric.
Parametric tests [e.g., Eichenbaum and Hansen (1990)] are attractive in that they
are stochastic and have asociated with them the usual well-defined statistics. They
have the limitation that one must write down explicit functional forms to test; fail-
ure to include the true form may lead to meaningless results. Varian’s (1982, 1983)
nonparametric tests have the opposite characteristics. They are attractive in that
they are totally independent of the underlying form of the utility function, but they
have a shortcoming in that they are nonstochastic and so have no associated statis-
tics of significance. None of the three possible specification approaches (no testing,
parametric testing, nonparametric testing) is perfect. We base the analysis in this
study on Varian’s nonparametric tests and use the results of Fleissig et al. (2000).
We turn now to a brief discussion of the methodology underlying those constructs.

3.1. Nonparametric Tests

Varian’s (1982, 1983) nonparametric approach tests the existence of a utility func-
tion that “rationalizes” a set of data, that is, that yields the observed consumption
path as the optimal path among all feasible paths. The nonparametric tests do
not depend on the form of the utility function. Varian has provided a computer
program, NONPAR, for conducting the tests.

A limitation of NONPAR, already mentioned, is that the tests are deterministic
rather than statistical. According to the tests, if even a single violation of revealed
preference is found, GARP is rejected. Is one rejection out of the hundreds or
thousands of inequalities imposed by GARP really a rejection? This question
cannot be answered in the usual way of checking against a significance level. No
distribution theory has yet been developed for the NONPAR tests, and so, there
are no confidence intervals or levels of significance for test results. The NONPAR
program tests the sufficient condition but not the necessary condition, making
interpretation of rejections of GARP difficult. In particular, measurement error
could lead to spurious conclusions concerning GARP consistency. However, if
conclusions regarding GARP consistency arise solely from measurement error,
which is random, we would not expect to see them vary in a systematic manner.
We therefore report below the results of Euler equation estimation conducted over
three increasingly GARP-consistent samples and check if the results change in
a systematic manner across the various samples. If they do, it is less likely that
measurement error is the reason for the GARP-inconsistency of the less consistent
sample periods. In fact, the tests show just such systematic behavior, suggesting
that measurement error is not the driving force behind our results.

The derivation of GARP assumes certainty. A rejection of GARP might arise
solely because agents’ state of uncertainty differed in two periods, leading them
to choose different consumption bundles even if they face the same relative prices
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in the two periods. In such a case, our tests would indicate a failure of GARP even
though the true aggregate utility function was unchanged and was consistent with
the data in both periods. If this sort of problem is serious, then our GARP tests
will be largely spurious and should have no systematic relation to the results we
obtain from Euler equation estimation. In particular, we should see no systematic
change in estimation results as we restrict the estimation to sample periods that
are increasingly GARP-consistent. That we do find this kind of systematic change
suggests again that the GARP tests are valid.

The tests have some limitations, but the alternative of not testing at all seems
considerably more limited.

3.2. GARP-Consistency of the NIPA Data

Fleissig et al. (2000) apply NONPAR to the NIPA data on consumption. The GARP
tests require prices for all goods. The relevant price for the stock of durables is the
user cost, which involves expectations about future prices of the goods in ques-
tion. Fleissig et al. examined perfect foresight (assumes the current expected value
equals the realized future value of the random variable), static expectations (as-
sumes the current expected value equals the current realized value, which is optimal
if the random variable is a driftless random walk), and ARIMA models of expecta-
tions. They found that ARIMA models gave negative user costs and yielded results
essentially like those obtained from perfect foresight. We therefore confine atten-
tion to perfect foresight and static expectations in the empirical work that follows.

The revealed preference tests of Fleissig et al. are for monthly (1959:1–1990:12),
quarterly (1959:1–1990:4), and annual (1929–1990) data. All of the data fail GARP
over the full periods of data availability, except for static expectations for annual
data, but pass over various subsamples. For annual and quarterly data, there are
long GARP-consistent subsamples under both expectations schemes. Under static
expectations, the quarterly (1960:1–1990:4) data, and annual (1929–1990) data
are consistent with GARP.10 Two subsamples are GARP-consistent under perfect
foresight: quarterly (1960:1–1980:4 and 1981:4–1990:4) and annual (1935–1981
and 1982–1990) data. For monthly data, there is no GARP-consistent subsample of
any econometrically usable length under static expectations, but there is a 20-year
GARP-consistent subsample of 1970:5–1990:12 under perfect foresight.

3.3. Separability of the Utility Function

Weak separability of the utility function is a necessary condition for aggregation.
Goods within a group can be substituted for each other with no regard for the
allocation of goods excluded in that particular group. This kind of substitutability
is justified only if the utility function is weakly separable in the appropriate groups
of goods; see Gorman (1959).

Varian (1983) provides tests of separability, and Fleissig et al. (2000) have ap-
plied them to the NIPA consumption data. For annual data, the utility function is
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separable in (nondurables, services), (motor vehicles), (other autos), and (remain-
ing durables), and for quarterly data the function is separable in (nondurables,
services), (motor vehicles), and (furniture, remaining durables). Thus the utility
function has four arguments with annual data and three with quarterly data. Also,
durables are never separable from nondurables and services, as some of the existing
literature has assumed.

For monthly data, there is no separable utility function, which means no aggre-
gation at all is permissible. This result raises questions about the validity of results
based on monthly data reported in the literature, which generally uses aggregates
of goods that omit durables. Fleissig et al. feel that the monthly data are simply
inadequate for econometric use, and their conclusion is buttressed by Wilcox’s
(1992) closely related criticisms of the data. Despite these difficulties, we use
monthly data to compare the results of our methods with those of the literature and
also with our own results from the annual and quarterly data.

3.4. Aggregation Method

The Commerce Department uses Laspeyres quantity indices to construct the NIPA
data,11 but several better aggregation methods exist. One alternative is Divisia
aggregation, which is superlative or exact for a flexible form [Diewert (1976,
1978)], allows for less than perfect substitution, and is derived from the first-
order conditions of consumer optimization; see Barnett et al. (1992). Moreover,
the Divisia index provides a second-order approximation to an arbitrary unknown
aggregator function, whereas the Laspeyres quantity index can only give a first-
order approximation. To see what difference the aggregation method makes, we
compare results from NIPA aggregates and Divisia aggregation.

4. ESTIMATION RESULTS

We turn now to the estimation. We seek answers to three groups of questions: (1)
Are the estimation results affected by imposing GARP-consistent sample periods
and separability structures, (2) does the SNP utility function offer significant im-
provement over the standard CRRA function, and (3) what are the final estimation
results and their implications?

We follow Dunn and Singleton (1986) in scaling the orthogonality conditions
to correct for nonstationarity induced by economic growth. The scaling is done by
dividing (15) and (16) bycδγ−1

t k(1−δ)γt , making the disturbances in (11) and (13)
functions of the ratiosct+ j /ct , dt+ j /dt , andct/(pdtdt ). The disturbances then will
be stationary if purchases of nondurables and durables grow according to geometric
trends. Estimation is by iterated GMM using TSP International. The convergence
criterion is set at 0.0001. To correct for any autocorrelation in the errors, we use
Gallant’s (1987) estimator for the weighting matrix. The data are from NIPA.

As mentioned earlier, we add terms to the polynomial (10) until they no longer
are statistically significant. We started with the quadratic (14), but none of the
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quadratic terms ever was significant, so we report here only the fits for the linear
model. The final utility functions for annual and quarterly data are, respectively,

u∗
(
c∗t , d1∗t , d2∗t , d3∗t

)
=
(
cδt k1θ1

t k2θ2
t k3θ3

t

)γ{
1+ γ 2

[
a1

ct−1

ct
+ a2

k1t−1

k1t
+ a3

k2t−1

k2t
+ a4

k3t−1

k3t

]}
− 1

γ

(17)

and

u∗
(
c∗t , d1∗t , d2∗t

)
=
(
cδt k1θ1

t k2θ2
t

)γ{
1+ γ 2

[
a1

ct−1

ct
+ a2

k1t−1

k1t
+ a3

k2t−1

k2t

]}
− 1

γ
. (18)

We discuss the monthly equation later.

4.1. Annual Data

We impose the separability structure found by Fleissig et al. and use as argu-
ments of the utility function (nondurables and services), (motor vehicles), (other
autos), and (remaining durables). The latter three together constitute the set of
durable goods, but the separability tests indicate that they must not be aggregated
into one overall durable good. Later we explore the consequences of using such
an overall aggregate. We estimate Euler equations derived from (17) over both
GARP-consistent and total sample periods and also with both NIPA and Divisia
aggregation to compare results. Estimates of the CRRA parameterγ and the di-
agnostic test statistics differ substantially across sample periods and expectations
methods, but the other parameter estimates and their standard errors are about the
same. Therefore, for comparing fits, Table 4 presents only the estimates forγ and
the test statistics; estimates of the other parameters will be discussed presently.

Panel A of Tables 1 and 2 presents the results for the annual data. The joint test for
the SNP polynomial terms always strongly rejects the null hypothesis of insignif-
icance (Wald1, Table 1). Thus the CRRA specification often used in the literature
[e.g., Hansen and Singleton (1983), Dunn and Singleton (1986)] seems misspeci-
fied for the annual data. We discuss the consequences of using the CRRA presently.

The concavity tests (Table 2) report percentage of years for which the Hessian
was not negative semidefinite. Under static expectations, the full sample is GARP-
consistent, so only one set of concavity results is reported. The concavity results
suggest that the SNP function is inconsistent with the data under static expectations.
Under NIPA aggregation, the SNP function fails concavity 50% of the time, and
under Divisia aggregation, it fails 100% of the time. Under perfect foresight,
the full sample is not GARP-consistent, and so, Table 2 reports three sets of

https://doi.org/10.1017/S1365100500017077 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100500017077


558 ADRIAN R. FLEISSIG ET AL.

results: one for the full sample (the one used in most of the literature), one for
a possibly GARP-consistent sample, and one for the longest definitely GARP-
consistent sample. Imposition of GARP-consistency has dramatic effects. Over
the full sample, neither the CRRA nor the SNP ever fails the concavity restriction.
As the sample is made more GARP-consistent, the SNP function begins violating
the concavity restriction with NIPA data. Over the partially GARP-consistent and
full sample, it violates 38% and 100% of the time, respectively. In contrast, the
SNP function never violates concavity when aggregation is by Divisia. We have
strong prior reasons to prefer Divisia aggregation, and so, it seems that the Divisia
results are the relevant ones and that the SNP function passes the concavity tests.
Apparently, both GARP-consistency and the aggregation method make a difference
to estimation results.

The only SNP function that produces useful estimates for the annual data is that
for the 1935–1981 sample under perfect foresight and Divisia aggregation. Table 3
reports the full estimation results for the Euler equations derived from (17) in that
case. Wald2 is a joint test of the significance of the durables polynomial coefficients
a2, a3, anda4, and Wald3 is at-test of the significance of the nondurables and
services coefficienta1. The null hypothesis is rejected, indicating significance
of coefficients. Their negative signs are consistent with habit persistence. The
parameterγ is significantly different from zero, and so, consumer preferences are
not logarithmically separable over the annual data, which contradicts the results
reported by Dunn and Singleton (1986) for monthly data. The discount factorβ is
significantly below one, implying a significantly positive rate of time preference,
a result frequently not found in the literature.

The standard CRRA is not rejected by the overidentifying restrictions or the
concavity tests (except for NIPA aggregation under static expectations). Further-
more, the estimates of the parametersδ, θ1, θ2, andθ3 are much the same as with
the SNP function. However, the CRRA specification is rejected, for the Wald1
test strongly supports significance of the SNP linear polynomial terms. The main
difference between the CRRA and SNP functions is the very different estimates
of γ . For the CRRA,γ always is positive except under NIPA aggregation with
static expectations, when it is insignificantly negative. In contrast,γ always is
significantly negative for the SNP utility function.

This difference in the sign ofγ has an important economic implication. Under
quite mild restrictions on preferences and probabilistic beliefs, any preference
ordering can be represented by a utility function and conversely. Arrow (1971)
calls this conclusion the Expected Utility Theorem. Arrow proves the remarkable
Utility Boundedness Theorem, which states that any utility function satisfying the
conditions of the Expected Utility Theorem must be bounded above and below.
Boundedness of both CRRA and SNP utility depends on the sign ofγ . Whenγ is
positive, both functions are unbounded above as consumption goes to infinity but
bounded below (by−1/γ ) as consumption goes to zero, whereas both are bounded
above (again by−1/γ ) but unbounded below whenγ is negative. Unboundedness
below asc goes to zero is not important, because both utility functions can be
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made bounded below by a minor translation that has no impact on any other
important properties of the utility function or on estimation.12 Our estimates of
γ then imply that the CRRA is unbounded above and inconsistent with Arrow’s
Theorem, whereas the SNP function (17) is bounded above and consistent with
the theorem.

There are two ways to look at the differing results for static expectations and
perfect foresight. An SNP function can globally approximate the “true” utility
function arbitrarily well; given the insignificance of higher-order terms, our linear
polynomial SNP therefore should be very accurate. If one is willing to maintain
the hypothesis of maximization of concave utility by a representative agent, then
the concavity failures under static expectations indicate the inadequacy of that
expectations scheme. On the other hand, if one is not willing to take a stand on
the validity of either expectations scheme (because neither really is likely to be
correct), then the differing concavity results leave open the question of whether
maximization of a concave utility function by a representative agent is a useful
model of the aggregate data.

Finally, the NONPAR tests assume time-separable preferences. A failure of
GARP might therefore indicate that preferences are not time-separable rather than
that no rationalizing utility function exists at all. Our results, taken as a whole,
suggest that is not what is going on. If non-time-separability were the reason for
the GARP failures, then the nonseparable SNP function should take care of the
problem and should show no systematic differences in estimation results over
increasingly GARP-consistent sample periods. As we have seen, however, such
differences do occur, strikingly, implying that GARP-inconsistency really does
indicate nonexistence of a rationalizing utility function over the sample periods in
question.

4.2. Quarterly Data

With quarterly data, Fleissig et al. find the utility function is separable in (non-
durables, services), (motor vehicles), and (furniture, remaining durables). The
results are essentially the same as for the annual data. For GARP-consistent sam-
ples and Divisia aggregation, we have no violations of concavity at all, irrespec-
tive of expectations scheme. Thus, there is no conflict in the concavity results
for the two expectations schemes, in contrast to the annual data. Also, for GARP-
consistent samples and Divisia aggregation, Wald1 implies significance of the SNP
linear polynomial terms. Once again, we see important effects of imposing GARP-
consistency and appropriate aggregation: For perfect foresight expectations, Wald1
fails to reject the null of insignificance for the SNP polynomial under NIPA aggre-
gation, irrespective of sample period, and for Divisia aggregation over the GARP-
inconsistent sample period. As with the annual data, the overidentifying restrictions
never are rejected. Also, the estimates ofγ always are significantly positive for the
CRRA and significantly negative for the SNP (except for Divisia perfect foresight
over the GARP-inconsistent sample period, whenγ is insignificantly negative).
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The Divisia, GARP-consistent estimates are reported in Table 3 for both static
expectations and perfect foresight. There is no substantive difference between the
two sets of results, and so, it does not matter much that we have no way to choose
between them.

In summary, the results for quarterly data are essentially the same as those for
annual data. The only substantive difference between them is that thea1 coefficient
on nondurables and services is insignificant for the quarterly data, in contrast to the
result for the annual data. This result is a bit odd in that it implies that consumers
display habit persistence in durables but not in nondurables and services. Why
such a dichotomy should prevail is unclear.

4.3. Monthly Data

Much of the Euler equation literature has used monthly data [e.g., Hansen and
Singleton (1982, 1983), Dunn and Singleton (1986), Eichenbaum et al. (1988),
Gallant and Tauchen (1989), and Eichenbaum and Hansen (1990)]. Monthly data
are appealing because it seems likely that they are closer to the decision period
of the representative agent than are either quarterly or annual data. However,
Fleissig et al.’s (in press) results suggest that monthly data are mostly inconsistent
with GARP and may be inappropriate for Euler equation estimation. Also, no
groupings of the monthly data satisfied the GARP separability tests, which means
that utility function estimation ought to use as independent consumption variables
all 13 categories of consumer expenditures reported by Citibase. No previous Euler
equation studies have taken account of these characteristics of the data. All have
used sample periods inconsistent with GARP, and all have used aggregates of
consumption inconsistent with the separability results (typically total expenditure
on nondurables and services as one variable and in some cases total expenditures
on durables as another).

Under perfect foresight, we use a moderately long sample of 1970:5–1990:12
for the monthly data and also report for comparison purposes results for the sample
1960:1–1990:12, which is the longest GARP-consistent sample for the quarterly
data. We use the same groupings as for the quarterly data: (nondurables, services),
(motor vehicles), and (furniture, remaining durables) because entering the 13 cat-
egories of consumption expenditure would make the problem intractable.

The monthly results are reported in Tables 1C and 2C. Concavity is violated
in every case except for the SNP utility function under NIPA aggregation with
static expectations over a GARP-inconsistent sample period. The overidentifying
restrictions always are strongly rejected. The model clearly is unacceptable.

If we had only the monthly results, we would be unable to say much about why
the model fails. It could be that there are problems with the data, or it could be
that the model is misspecified. However, based on the results of Fleissig et al. (in
press) and Wilcox (1992), it seems most likely that the monthly results stem from
problems with the data. The annual and quarterly results are consistent with each
other and differ sharply from the monthly results.
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4.4. Separability and Excessive Aggregation

Through all the foregoing tests, we impose the separability structure suggested by
Fleissig et al.’s (2000) GARP tests. Several articles in the literature have used a
single total measure of durables, and so, we now turn to a brief examination of
how sensitive the estimation is to overaggregating durables into a single quantity.

Table 4 reports the results. Point estimates ofγ usually are substantially larger
than in Table 1, sometimes over 30 times as large; they also sometimes have the
opposite sign from the corresponding estimates in Table 4. These differences often
are statistically significant. For the quarterly data, there are some rejections of the
overidentifying restrictions, whereas previously there were none. Overaggregation
therefore does lead to some deterioration of the estimation.

The differences between the magnitudes ofγ reported in Tables 1 and 4 are
economically significant. In steady state,γ − 1 is both the index of relative risk
aversion and the elasticity of marginal utility with respect to total expenditure. Both
interpretations makeγ useful in applied economic analysis. For example, inter-
preted as the index of risk aversion,γ is used in evaluating public policies that affect
the probability of uncertain events [Freeman (1993)]. Interpreted as the elasticity
of marginal utility of total expenditure,γ is used to assess the effect of economic
development on patterns of consumption [Lluch et al. (1977)]. Changing the mag-
nitude ofγ by a factor of two or three would have a substantial impact on any such
evaluation, but the estimated magnitude ofγ changes by a factor of 30 or even more
simply because of overaggregation of durable goods. Clearly, failure to restrict the
estimation appropriately has an effect on results that is economically important.

5. CONCLUSION

In this study, we derive an SNP utility function to explore several issues in Euler
equation estimation and to examine the adequacy of the often-used CRRA utility
function. We find that estimation results are sensitive to restricting sample periods
to be consistent with GARP, to the separability structure imposed on the utility
function, and to the aggregation method used to construct the U.S. consumption
data. We also show that the SNP function can reverse conclusions from the CRRA
often found to be inconsistent with economic theory. Our results suggest that the
CRRA function is severely misspecified. The main results are summarized below:

(1) According to microeconomic theory, a nonsatiated, continuous, concave, monotonic
aggregate utility function does not exist unless the data satisfy GARP. Evidence
presented by Fleissig et al. (in press) suggests that the NIPA data on consumption
generally do not satisfy GARP over the full periods of data availability. That evidence
presumes a time-separable utility function and can only be treated as a guideline for
our estimation of the non-time-separable SNP function. However, using GARP tests
is preferable to the usual approach of doing no testing at all and is not obviously
inferior to the alternative approach of using parametric tests. Our results suggest that
restricting sample periods to those consistent with GARP has important effects on
estimation results.
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(2) Tests of the utility function’s separability structure suggest that it has as arguments
two or three separate categories of durables. Using a single aggregate of total durable
expenditure leads to a deterioration of results, although the effects are not as severe
as using GARP-inconsistent sample periods.

(3) Aggregation theory suggests that the aggregate Laspeyres quantity indexes used by
NIPA are deficient. No other Euler equation study except for that by Hayashi (1982)
has used anything but NIPA aggregation. We find, as did Hayashi, that using Divisia
aggregates instead of NIPA aggregates affects the results.

(4) Our results are consistent with those of Fleissig et al.’s (1997) conclusion that
monthly NIPA data are of little value in empirical work. The annual and quarterly
estimation results are well behaved and mutually consistent; the monthly results are
not well behaved and are inconsistent with those for annual and quarterly data.

(5) When we confine attention to appropriate sample periods, separability structures,
and aggregation methods, and to annual and quarterly data, we find that the CRRA
utility function is rejected in favor of an SNP form that nests the CRRA. The preferred
SNP function includes a linear polynomial in lagged service flows from nondurables
and durables. The nondurables term is marginally significant in the annual data but
not in the quarterly data, suggesting that measured nondurables may contain durable
elements but probably do not. The durables term in the SNP function always is
significant.

(6) The SNP function is bounded, whereas the CRRA is not. Boundedness is required
for a utility function to be consistent with certain aspects of behavior toward risk
[Arrow (1971)].

(7) The point estimates of the rate of time preference are always positive and usually
significantly so, results often not obtained in the Euler equation literature.

Our overall conclusion is that imposing the restrictions implied by revealed
preference theory has significant effects on estimation, leading to results often
different from those reported in the existing literature. This conclusion suggests
a need for further research on two fronts. First, revealed-preference theory needs
to be extended. The existing theory presumes time separability, but our evidence,
as well as that in previous empirical literature, supports non-time-separability of
preferences. Nonetheless, restricting estimation of our non-time-separable utility
function to sample periods and separability structures consistent with the current,
theoretically limited version of GARP substantially affects estimation results. The
nonparametric test results concerning GARP inconsistency of the data and the
utility function’s separability structure across goods thus seem to reflect something
more than the failure of those tests to account for non-time-separability. It therefore
would be most useful to extend revealed-preference theory to encompass non-
time-separable preferences. Second, further empirical research should examine
the sensitivity of our results to alternative instrument sets and the inclusion of
leisure in the utility function.

NOTES

1. For example, Hansen and Singleton (1982) and Gallant and Tauchen (1989) are special cases
that omit durable goods, and Eichenbaum and Hansen (1990) and Dunn and Singleton (1986) only
consider two composite goods: (1) services plus nondurables and (2) durables.
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2. See Abowd and Card (1987), for example. We omit leisure because of the difficulty of measuring
the exact nature of the employment decision and the opportunity cost of time [e.g., Swofford and
Whitney (1987); Gordon (1973)]. Including leisure would be a useful extension.

3. The terminal condition together with the period-by-period budget constraint implies the expected
lifetime budget constraint, but the converse implication does not hold. We do not use the terminal
condition in deriving the Euler equations that we test later, so we do not dwell here on these details.
See Blanchard and Fischer (1989, p. 286) for further discussion.

4. In the empirical work that follows, we use the BEA estimates forµi .
5. See Gallant and Nychka (1987) and Gallant and Tauchen (1989) for details on seminonparametric

utility functions and their estimation.
6. Settingb=−1/γ is necessary whenu(C,K)= 1 andγ tends to zero.
7. For example, if j = 1, then A1(C#,K#)=a1,1(ct−1/ct )+a1,2[1+ (kt−1/kt )], A2(C#,K#)=

a2,1(ct−1/ct )
2+a2,2(ct−1/ct )[1+ (kt−1/kt )]+a2,3[1+ (kt−1/kt )]2 and so on. If j = 2, then

A1(C#,K#) = a1,1(ct−1/ct ) + a1,2[1 + (ct−2/ct )] + a1,3[1 + (kt−1/kt )], A2(C#,K#) = a2,1(ct−1/

ct )
2+a2,2(ct−1/ct )

2+a2,3[1+ (kt−1/kt ) ]2+a2,4(ct−1/ct ) (ct−2/ct )+a2,5(ct−1/ct ) [1+ (kt−1/

kt ) ]+a2,6(ct−2/ct )[1+ (kt−1/kt )], and so on.
8. This requirement goes beyond Diewert’s (1974) definition for a flexible form, i.e., a local second-

order approximation to the unknown utility function at some fixed pointx∗ and no requirements about
the degree of approximation for the derivatives of the function. Examples of Diewert-flexible functional
forms are the translog and AIDS models. See Gallant (1981), Gallant and Nychka (1987), and Gallant
and Tauchen (1989) for discussions of Sobolev norms.

9. Despite its considerable generality, the SNP function has some limitations, as does any specific
utility function. An important one, given some of the recent literature, is that the SNP function maintains
a link between the degree of intertemporal substitution and the degree of risk aversion. Extending our
work to consider other kinds of utility functions without that link would be useful.

10. It is interesting that the violations of GARP occur in the early 1930s and in 1981. Several
often-mentioned episodes in economic history, in particular the October 1979 change in Fed operating
procedure, produce no GARP violations and therefore cause no special problems in estimating Euler
equations.

11. Recently, the BEA has also begun to publish national accounts data using a chained Fisher
ideal index. Since the Fisher ideal index and the Divisia index are both superlative indices, our results,
which use the Divisia index, should be similar to those based on the Fisher ideal index.

12. Write the CRRAF in both functions as(cδkθ + 1)γ . For the magnitudes ofc andk in the data,
adding 1 has an imperceptible effect on estimation, but both utility functions now go to zero as either
c or k goes to zero.

REFERENCES

Abowd, J.M. & D. Card (1987) Intertemporal labor supply and long-term employment contracts.
American Economic Review77, 50–68.

Arrow, K.J. (1971) Essays in the Theory of Risk-Bearing. Chicago: Markham.
Barnett, W.A., D. Fisher & A. Serletis (1992) Consumer theory and the demand for money.Journal of

Economic Literature4, 2086–2119.
Blanchard, O.J. & S. Fischer (1989)Lectures in Macroeconomics. Cambridge, MA: MIT Press.
Darby, M.R. (1974) The permanent income theory of consumption—a restatement.Quarterly Journal

of Economics88, 228–250.
Diewert, W.E. (1974) Intertemporal consumer theory and the demand for durables.Econometrica42,

497–516.
Diewert, W.E. (1976) Exact and superlative index numbers.Journal of Econometrics4, 115–145.
Diewert, W.E. (1978) Superlative index numbers and consistency in aggregation.Econometrica46,

883–900.
Dunn, K.B. & K.J. Singleton (1986) Modelling the term structure of interest rates under nonseparable

utility and durability of goods.Journal of Financial Economics17, 27–55.

https://doi.org/10.1017/S1365100500017077 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100500017077


564 ADRIAN R. FLEISSIG ET AL.

Eichenbaum, M.S. & L.P. Hansen (1990) Estimating models with intertemporal substitution using
aggregate time series data.Journal of Business and Economic Statistics8, 53–69.

Eichenbaum, M.S., L.P. Hansen & K.J. Singleton (1988) A time series analysis of representative agent
models of consumption and leisure choice under uncertainty.Quarterly Journal of Economics103,
51–78.

Fleissig, A.R., A.R. Hall & J.J. Seater (2000) GARP, separability, and the representative agent.Macro-
economic Dynamics4, 324–342.

Freeman, A.M. (1993)The Measurement of Environmental and Resource Values. Washington, DC:
Resources for the Future.

Gallant, A.R. (1981) On the bias in flexible functional forms and an essentially unbiased form: The
Fourier flexible form.Journal of Econometrics15, 211–245.

Gallant, A.R. (1987)Nonlinear Statistical Models. New York: John Wiley.
Gallant, A.R. & D.W. Nychka (1987) Semi-nonparametric maximum likelihood estimation.Econo-

metrica55, 363–390.
Gallant, A.R. & G. Tauchen (1989) Semi-nonparametric estimation of conditionally constrained het-

erogeneous processes: Asset pricing implications.Econometrica57, 1091–1120.
Gordon, R.J. (1973) The welfare cost of higher unemployment.Brookings Papers on Economic Activity

Spring, 133–195.
Gorman, W.M. (1953) Community preference fields.Econometrica21, 63–80.
Gorman, W.M. (1959) Separable utility and aggregation.Econometrica27, 469–481.
Hansen, L.P. & K.J. Singleton (1982) Generalized instrumental variables estimation of non-linear

rational expectations models.Econometrica50, 1269–1286.
Hansen, L.P. & K.J. Singleton (1983) Stochastic consumption, risk aversion, and the temporal behavior

of asset returns.Journal of Political Economy91, 249–265.
Hayashi, F. (1982) The permanent income hypothesis: Estimation and testing by instrumental variables.

Journal of Political Economy90, 895–916.
Lluch, C., A.A. Powell & R.A. Williams (1977)Patterns in Household Demand and Saving. New York:

Oxford University Press.
Swofford, J.L. & G.A. Whitney (1987) Non-parametric tests of utility maximization and weak separa-

bility for consumption, leisure, and money.Review of Economics and Statistics69, 458–464.
Varian, H. (1982) The nonparametric approach to demand analysis.Econometrica50, 945–973.
Varian, H. (1983) Nonparametric tests of consumer behavior.Review of Economic Studies50, 99–110.
Wilcox, D.W. (1992) The construction of U.S. consumption data: Some facts and their implications

for empirical work.American Economic Review82, 922–941.

https://doi.org/10.1017/S1365100500017077 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100500017077


SEPARABILITY, AGGREGATION, EULER EQUATION 565

TABLE 1. Comparative regression results for CRRA and linear polynomial SNP
utility functionsa

A. Annual datab

CRRA Linear polynomial SNP

Time period γ OIR γ OIR Wald1 Wald2 Wald3

NIPA static expectations
1931–1990 −0.007 23.1 −0.420 22.6 102.690 35.240 −0.862

(0.015) [51.4] (0.055) [47.0] {0.000} {0.000} {0.389}
Divisia static expectations

1931–1990 0.127 24.2 −0.376 23.7 70.763 15.289 1.811
(0.019) [51.4] (0.100) [47.0] {0.000} {0.002} {0.070}

NIPA perfect foresight
1931–1990 0.028 22.2 −0.092 22.4 47.880 31.943 −2.858

(0.023) [51.4] (0.030) [47.0] {0.000} {0.000} {0.004}
1935–1990 0.071 22.0 −0.150 20.9 33.822 33.035 3.932

(0.013) [51.4] (0.024) [47.0] {0.000} {0.000} {0.000}
1935–1981 0.058 20.8 −0.163 20.3 47.880 31.943 1.120

(0.011) [51.4] (0.023) [47.0] {0.000} {0.000} {0.263}
Divisia perfect foresight

1931–1990 0.083 23.5 −0.118 23.2 10.124 8.786 −3.142
(0.025) [51.4] (0.023) [47.0] {0.038} {0.033} {0.002}

1935–1990 0.133 22.7 −0.210 16.7 22.751 20.550 −2.891
(0.015) [51.4] (0.052) [47.0] {0.000} {0.000} {0.002}

1935–1981 0.130 20.0 −0.155 20.0 5.613 8.066 −2.369
(0.015) [51.4] (0.034) [47.0] {0.018} {0.045} {0.018}

aγ = utility function parameter [see equation (14)], the standard error is in parentheses.
Wald1= test of all linear polynomial terms; thep-value is in braces.
Wald2= test of durable-goods polynomial terms; thep-value is in braces.
Wald3= test of nondurable-goods polynomial term; thep-value is in braces.
OIR=χ2 test of overidentifying restrictions, with 1% critical value in brackets.
bThe instruments set is{constant, c∗1, c

∗
2, c
∗
3, c
∗
4, p∗1, p∗2, p∗3, p∗4}, wherex∗i = (xit − xit−1)/xit−1 for i = 1, . . . ,4 and

where
c1t = aggregate of nondurables and services,
c2t = aggregate of motor vehicles,
c3t = aggregate of other autos,
c4t = aggregate of other durables,
pit i = 1, . . . ,4 are the corresponding price aggregates.
There are four equations and nine instruments. CRRA has five parameters; SNP has nine parameters. Therefore,
CRRA has 4× 9− 5= 31 overidentifying restrictions, and SNP has 4× 9− 9= 27 overidentifying restrictions.
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TABLE 1. (Continued.)

B. Quarterly datac

CRRA Linear polynomial SNP

Time period γ OIR γ OIR Wald1 Wald2 Wald3

NIPA static expectations
1960:01–1990:04 0.935 12.4−1.064 11.9 9.449 7.800 0.851

(0.106) [33.4] (0.202) [29.1] {0.024} {0.020} {0.395}
Divisia static expectations

1960:01–1990:04 0.895 12.2−0.617 11.3 23.885 6.782 0.821
(0.080) [33.4] (0.109) [29.1] {0.000} {0.034} {0.412}

NIPA perfect foresight
1960:01–1990:04 1.476 11.6−0.291 11.8 2.553 1.779 −1.280

(0.098) [33.4] (0.119) [29.1] {0.466} {0.411} {0.201}
1960:01–1980:04 1.656 9.2 0.124 8.9 5.419 4.330 2.178

(0.046) [33.4] (0.025) [29.1] {0.144} {0.115} {0.029}
Divisia perfect foresight

1960:01–1990:04 1.418 12.5−0.013 12.2 3.786 2.431 −0.159
(0.122) [33.4] (0.079) [29.1] {0.286} {0.296} {0.868}

1960:01–1980:04 1.406 9.1−0.398 8.9 16.552 11.361 −1.238
(0.056) [33.4] (0.127) [29.1] {0.001} {0.003} {0.216}

cFor quarterly data, the instrument set is{constant,c∗1,c∗2,c∗3, p∗1, p∗2, p∗3}wherex∗i = (xit−xit−1)/xit−1 for i = 1, . . . ,4
and where
c1t = aggregate of nondurables and services,
c2t = aggregate of motor vehicles,
c3t = aggregate of other durables,
pit i = 1, 2, 3 are the corresponding price aggregates.
There are three equations and seven instruments. CRRA has four parameters; SNP has seven parameters. Therefore,
CRRA has 3× 7− 4= 17 overidentifying restrictions, and SNP has 3× 7− 7= 14 overidentifying restrictions.
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TABLE 1. (Continued.)

C. Monthly datad

CRRA Linear polynomial SNP

Time period γ OIR γ OIR Wald1 Wald2 Wald3

NIPA static expectations
1960:1–1990:12 3.570 88.8 22.528 85.3 8.438 8.334 1.530

(0.715) [33.4] (3.931) [29.1] {0.038} {0.016} {0.126}
Divisia static expectations

1960:1–1990:12 7.566 81.9 21.115 56.8 14.396 14.39 2.873
(0.819) [33.4] (2.800) [29.1] {0.002} {0.001} {0.090}

NIPA perfect foresight
1960:1–1990:12 2.869 84.6 18.642 77.1 8.802 8.703 1.908

(0.002) [33.4] (3.163) [29.1] {0.032} {0.012} {0.167}
1970:5–1990:12 0.580 72.1 11.448 70.7 3.571 3.568 0.091

(0.520) [33.4] (3.065) [29.1] {0.311} {0.168} {0.763}
Divisia perfect foresight

1960:1–1990:12 7.594 75.1 −2.660 70.8 1.554 1.461 0.517
(0.875) [33.4] (1.404) [29.1] {0.670} {0.482} {0.678}

1970:5–1990:12 3.909 72.1 12.175 56.1 3.928 3.923−0.141
(0.767) [33.4] (3.107) [29.1] {0.269} {0.269} {0.888}

dThe instrument set, number of parameters, number of equations, and therefore the number of overidentifying
restrictions are the same as for quarterly data.
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TABLE 2. Violations of concavitya

A. Annual data

1931–1990 1935–1990 1935–1981

Methodb CRRA SNP CRRA SNP CRRA SNP

SSE 100 50 — — — —
DSE 0 100 — — — —
SPF 0 0 0 38 0 100
DPF 0 0 0 0 0 0

B. Quarterly data

1960:1–1990:4 1960:1–1980:4

Methodb CRRA SNP CRRA SNP

SSE 0 0 — —
DSE 0 0 — —
SPF 0 0 0 100
DPF 0 0 0 0

C. Monthly data

1960:1–1990:12 1970:5–1980:4

Methodb CRRA SNP CRRA SNP

SSE 100 2 — —
DSE 100 84 — —
SPF 100 22 48 26
DPF 100 100 100 45

aNumbers are percentages of observation periods for which the Hessian matrix was not negative semidefinite.
bDPF=Divisia perfect foresight, DST=Divisia static expectation, SPF=NIPA perfect foresight, and SST=NIPA
static expectations.
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TABLE 3. Preferred models: Full estimation results

A. Annual data

Divisia Perfect Foresight 1935–1981a:
u
(
c∗t , d1∗t , d2∗t , d3∗t

)
= 1

γ

(
cδt k1θ1t k2θ2t k3θ3t

)γ{
1+ γ 2

[
a1

ct−1

ct
+ a2

k1t−1

k1t
+ a3

k2t−1

k2t
+ a4

k3t−1

k3t

]}
Parameter Estimate Standard error

β 0.977 0.009
γ −0.155 0.034
δ 0.154 0.008
θ1 0.388 0.019
θ2 0.244 0.009
a1 −2.011 0.849
a2 −10.939 4.531
a3 −2.978 1.053
a4 −9.240 3.735

B. Quarterly data

Divisia Static Expectations 1960:1–1990:4b:

u
(
c∗t , d1∗t , d2∗t

)= 1

γ

(
c1δt k1θ1t k2θ2t

)γ{
1+ γ 2

[
a1

ct−1

ct
+ a2

k1t−1

k1t
+ a3

k2t−1

k2t

]}
Parameter Estimate Standard error

β 0.992 0.002
γ −0.617 0.109
δ 0.254 0.009
θ1 0.404 0.005
a1 0.279 0.340
a2 −1.351 0.522
a3 −1.132 0.445

aθ3= 1− δ− θ1− θ2 because the parameters are constrained to result in degree-one homogeneity;c= aggregate of
nondurables and services;k1=motor vehicles;k2= other autos; andk3= other durables.
bθ2= 1− δ− θ1 because the parameters are constrained to result in degree-one homogeneity;c= aggregate of non-
durables and services;k1=motor vehicles; andk2= other durables.
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TABLE 3. (Continued.)

Divisia Perfect Foresight 1960:1–1980:4c:

u
(
c∗t , d1∗t , d2∗t

)= 1

γ

(
cδt k1θ1t k2θ2t

)γ{
1+ γ 2

[
a1

ct−1

ct
+ a2

k1t−1

k1t
+ a3

k2t−1

k2t

]}
Parameter Estimate Standard error

β 0.988 0.002
γ −0.398 0.127
δ 0.356 0.011
θ1 0.351 0.005
a1 −2.059 1.663
a2 −2.266 1.199
a3 0.371 1.765

cθ2= 1− δ− θ1 because the parameters are constrained to result in degree-one homogeneity;c= aggregate of non-
durables and services;k1=motor vehicles; andk2= other durables.
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TABLE 4. Effects of excessive aggregation

A. Annual data

Linear polynomial SNP

Time period γ OIR

NIPA static expectations
1935–1990 −0.911 10.995

(0.224) [15.086]

Divisia static expectations
1935–1990 −0.282 7.899

(0.009) [15.086]

NIPA perfect foresight
1931–1990 1.228 10.727

(0.261) [15.086]
1935–1990 −2.158 3.844

(0.020) [15.086]
1935–1981 2.773 8.181

(1.353) [15.086]

Divisia perfect foresight
1931–1990 −3.641 8.901

(1.207) [15.086]
1935–1990 −3.591 7.790

(1.093) [15.086]
1935–1981 −3.549 7.336

(1.231) [15.086]

B. Quarterly data

NIPA static expectations
1960:1–1990:4 −1.014 19.462

(0.358) [15.086]

Divisia static expectations
1960:1–1990:4 −0.639 17.883

(0.184) [15.086]

NIPA perfect foresight
1960:1–1990:4 1.194 11.560

(0.310) [15.086]
1960:1–1980:4 1.288 11.351

(0.298) [15.086]

Divisia perfect foresight
1960:1–1990:4 1.147 11.488

(0.345) [15.086]
1960:1–1980:4 1.210 10.098

(0.292) [15.086]
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TABLE 4. (Continued.)

C. Monthly data

Linear polynomial SNP

Time period γ OIR

NIPA static expectations
1960:1–1990:4 −0.962 90.488

(0.636) [18.475]

Divisia static expectations
1960:1–1990:4 27.683 31.927

(4.541) [18.475]

NIPA perfect foresight
1960:1–1990:4 −1.591 74.817

(0.550) [18.475]

Divisia perfect foresight
1960:1–1990:4 −3.709 59.676

(0.602) [18.475]
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