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SUMMARY

Here we describe extracellular matrix alterations in footpad lesions and draining lymph nodes caused by Leishmania (L.)

amazonensis in mouse strains with distinct susceptibilities to this parasite : BALB/c (susceptible), C57BL/6 (intermediate),

and DBA/2 (resistant). Changes in ECM were observed mainly in BALB/c mice that, in general, presented tissue damage

associated with high parasite burden. Under polarized light, Sirius Red revealed type I collagen that was predominant

in the primary lesion in all strains studied at the early phase of infection, but gradually decreased and was replaced by

abundant type III collagen fibres in chronic phase lesions. The presence of type III collagen seemed to provide support to

inflammatory cells,mainly vacuolated andparasitizedmacrophages. Laminin expressionwas not altered during infection by

L. (L.) amazonensis in any of the mouse strains studied. Furthermore, the decreased fibronectin expression, in all strains,

in areas where amastigotes have been found, indicated that this decline was also not related to the genetic background.
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INTRODUCTION

Leishmania is the causative agent of a broad spectrum

of human diseases ranging from single self-healing

cutaneous lesions to anergic diffuse cutaneous lesions

to fatal visceral leishmaniasis. Clinical manifes-

tations of leishmaniasis depend on a fine interaction

between the parasite and the host genetic back-

grounds (Handman, 2001). Several parasites produce

proteases that degrade matrix proteins, facilitating

the breaching of the dermal barrier to spread the

infection.WhenLeishmania promastigotes are inocu-

lated into the host skin, a loosening of the dermis

connective tissue matrix occurs enabling then the es-

tablishment of infection (Lira, Rosales-Encina &

Arguelos, 1997).

The extracellular matrix (ECM) consists of fibrous

proteins (collagen and elastin), proteoglycans, gly-

cosaminoglycans, and structural proteins. Based on

their chemical nature, the fibrous components may

be divided into two distinct systems: elastic and

collagen (Montes, 1996). ECM plays an essential

role in cell anchorage, migration, division, differen-

tiation, and also in cellular death. Furthermore, ECM

takes part in tissue fluid dynamics and provides

mechanical support for both rigid and elastic tissues

(Rodgers & Irving-Rodgers, 2002). Studies have

shown that certain enzymes such as metalloprotei-

nases can modify the functions of extracellular

matrices not only by degrading matrix proteins,

but also by affecting growth factors, cytokines and

cell adhesion molecules (Yamada & Kemler, 2002).

Laminin, a large mosaic protein of the extracellular

matrix, is important in the development and main-

tenance of cellular organization (Becker, Hunter

& Engel, 1990). Recent work suggests that migration

of Leishmania through the ECM precedes macro-

phage attachment, and that cell entry is mediated by

the interaction of laminin with parasite laminin re-

ceptors (Bandyopadhyay et al. 2001). Fibronectin is

also a key component in several biological processes

(Wyller, 1987). It has several functional domains

that enable interactions with cells, heparin, fibrin,

collagen, immunoglobulins, and also with parasites

(Wyller et al. 1985). It increases the phagocytic

capacity of macrophages and neutrophils, since it

enhances chemotaxis, phagocyte adherence, and
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phagocytosis (Proctor, 1987; Vannier-Santos et al.

1992). Studies in both Leishmania spp. and Try-

panosoma cruzi have provided strong evidence that

these protozoan parasites use host fibronectin to

bridge their association with the host monocytes and

macrophages (Wyller, 1987).

Based upon histopathological and immunological

studies, a broad spectrum of host responses to L. (L.)

amazonensis has been observed in man (Barral et al.

1991). Similar spectral aspects could be reproduced

when mouse inbred strains were infected with the

H21MHOM/BR/76/MA-76 strain of L. (L.) amazo-

nensis, as was previously published by our group

(Calabrese & Gonçalves da Costa, 1992; Cupolilo

et al. 2003). Our primary interest in the present study

has been to investigate whether extracellular matrix

changes due to L. (L.) amazonensis infection are

related to the genetic background of the host. Thus,

in this study, we have examined extracellular matrix

changes in three mouse strains (BALB/c, C57BL/6,

and DBA/2) that display distinct susceptibilities to

the cutaneous infectionbyL. (L.)amazonensis amasti-

gotes. Whereas BALB/c mice are highly susceptible

and DBA/2 resistant, C57BL/6 show intermediate

susceptibility to L. (L.) amazonensis infection.

MATERIALS AND METHODS

Animals

Female BALB/c, C57BL/6, and DBA/2 mice with

ages ranging from 4 to 6 weeks were obtained from

the animal facilities of Instituto Oswaldo Cruz. We

used 6 animals per experimental group.

Parasites

L. (L.) amazonensis, H21 MHOM/BR/76/MA-76

strain was isolated from a patient with diffuse cu-

taneous leishmaniasis (DCL) and maintained by

serial passages in mice in our laboratory: amastigotes

were removed from footpad lesions, purified by fil-

tering and inoculated subcutaneously (106 parasites/

0.05 ml) in normal mice footpads. Evaluation of

the percentage viability of the parasites was made

using erythrosine B stain, as described elsewhere

(Hodgkinson, Herman & Semprevivo, 1980).

Experimental design

Normal mice were subcutaneously infected in the

left footpad by injecting 104 L. (L.) amazonensis
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Fig. 1. Histological analysis of the footpad (primary lesion) of BALB/c mouse infected with 104 Leishmania (L).

amazonensis amastigotes, H21 MHOM/BR/76/MA-76. (A) Control group showing predominance of type I collagen

(thick red fibre) – Sirius Red – under polarized light (arrows). (B) Infected mouse, substantial amounts of type III collagen

are visible (thin greenish fibre) – Sirius Red – under polarized light (arrows). (C) Severe tissue damage is observed close to

large numbers of vacuolated macrophages filled with amastigotes (arrows); (Sirius Red). (D) Type III collagen deposits

around parasitized macrophages (arrows) providing support for these cells (Gordon and Sweet’s method for reticulin).
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amastigotes. Three animals of each group were

killed in accordance with guidelines for experimental

procedures of Fundação Oswaldo Cruz (Process no.

P0062-00), at 20, 60 and 90 days post-infection.

Normal uninfected mice were used as controls. The

results presented here are representative of 3 inde-

pendent experiments that gave essentially the same

results.

Histopathology

Skin fragments from the inoculation site and drain-

ing lymph node were collected during necropsy and

fixed in 10% neutral-buffered formalin, routinely

processed for paraffin embedding and stained with

one of the following reagents: Haematoxylin-Eosin

(H&E), Sirius Red (Direct Red 80, Aldrich, Mil-

waukee, WI 53233, USA), Gordon and Sweet’s

method for reticulin fibres, and Weigert’s resorcin-

fucsin for elastic tissue. Cell types were scored based

on their characteristic morphology.

Immunocytochemistry

For confocal laser-scanning microscopy, fragments

collected in parallel were embedded in tissue-

freezing medium (OCT Compound-embedding

medium for frozen specimens, Milles Inc., USA)

and immediately frozen. Five mm thick cryosections

were obtained and fixed in cold acetone for 15 min.

For double labelling procedures, sections were

blocked in PBS containing 0.2% gelatin, 0.1% NaN3,

and 0.1% saponin (PGN-saponin), incubated with

human polyclonal anti-Leishmania serum diluted

1 : 600, washed 3 times with PBS and then incubated

with secondary antibodies conjugated with Cy3

(Sigma). After this, the material was washed again.

The slides were subsequently incubated with poly-

clonal antibodies (PharMingen, San Diego, CA,

USA) to the ECM proteins fibronectin (FN) and

laminin (LN) diluted 1 : 200. Secondary goat anti-

rabbit FITC-conjugated antibodies were used. All

incubations were performed for 40 min with anti-

bodies diluted in PGN-saponin. The nuclei were

stained with 4,6-di-amino-2-phenylindole fluor-

escent DNA-binding probe (DAPI, Molecular

Probes, Eugene, OR). After the washes in PBS, the

slides were mounted in glycerol containing 0.1%

p-phenylenediamine (Sigma). The slides were ex-

amined on a BioRad 1024 (UV) confocal scanning

system coupled to a Zeiss Axiovert 100 microscope,

using a 40r 1.2 N.A. PlanApochromatic water

immersion objective.

RESULTS

Histochemical analysis

At the early phase of infection there was a pre-

dominance of type I collagen (thick red fibres) in the

primary lesion of all mouse strains studied, which

was evidenced by Sirius Red staining under polar-

ized light (data not shown). Also, in uninfected
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Fig. 2. Confocal analysis of lymph node and primary

footpad lesion of BALB/c (A, B, C, D) and DBA/2 (E, F,

G, H) mice infected with 104 Leishmania (L.) amazonensis

amastigotes (H21 MHOM/BR/76/MA-76). (A) Laminin

distributed mainly around blood vessels and in the basal

membrane (green-FITC) of lymph node. (B) Unaltered

laminin distribution in the draining lymph node of

infected mice (green-FITC). (C) Skin of control group

footpad shows normal LN distribution (green-FITC).

(D) Normal laminin distribution in primary footpad lesion

(green-FITC). (E) Laminin distribution mainly around

blood vessels and in the basal membrane (green-FITC)

of the draining lymph node from uninfected mouse.

(E) Unaltered laminin distribution in the lymph node of

infected mice (green-FITC). (G) Laminin distribution

in skin of control group footpads (green-FITC).

(H) Unaltered laminin distribution in primary footpad

lesion (green-FITC).
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control animals, type I collagen was highly abundant

(Fig. 1A). The relative abundance of type I collagen

gradually decreased and type III collagen (thin and

greenish fibres) was a major component at 90 days

post-infection (Fig. 1B). In BALB/c mice, however,

these changes were more evident and lesions con-

tained an intense inflammatory infiltrate composed

mainly of heavy parasitized macrophages, culmi-

nating in substantial loss of the normal dermal

architecture (Fig. 1C). The presence of type III

collagen deposited around the parasitized macro-

phages (Fig. 1D) was confirmed by Gordon and

Sweet’s method for reticulin impregnation. No alter-

ations in the lymph nodes of all mice strains were

observed, except where parasites have been detected

(not shown).

Immunocytochemical analysis

Confocal analysis of skin and lymph node material

revealed that, regardless of the infection stage or

mouse strain, the expression of laminin did not show

substantial alterations, even in those animals that

presented severe lesions (Fig. 2B, D, F and H). On

the other hand, the expression of fibronectin was

variable in susceptible and resistant mice. It was

discrete in DBA/2 and moderate in BALB/c and

C57BL/6 mice, particularly in areas where amasti-

gotes were found in large numbers (Fig. 3B, D, F

and H).

No changes could be found in control animals

throughout the experiments (Figs 1A, 2A, C, G, E

and 3A, C, G, E).

DISCUSSION

Three different mouse strains with distinct resist-

ance profiles to L. (L.) amazonensis infection were

used in this study. BALB/c and C57BL/6 mice were

highly susceptible, whereas DBA/2 was the most

resistant mouse, being able to control the infection,

avoiding the spread of parasites to internal organs.

Some cases of self-cure were also reported in DBA/

2 mice at 3 months post-infection (Abreu-Silva,

2003).

Our results showed that in the strains examined

here, changes in ECM organization pattern were

more evident in areas of high parasite load. This

occurred mainly in BALB/c mice that developed

severe tissue destruction presenting areas rich in

type III collagen associated with parasitized macro-

phages. The expression of type I collagen seemed to

decrease concomitant with the time-course of infec-

tion in these animals, whereas type III collagen fibres

became more abundant. Type III collagen fibres

were found chiefly around the parasitized histiocytes.

It was reported that L. (L.) mexicana promastigotes

can bind to type I collagen, indicating that this

interaction could be important in the pathogenesis

of the infection at the onset of specific parasite tro-

pism for host skin (Lira et al. 1997). However, our

data suggest that in chronic murine experimental

infection, type III collagen provides support to

inflammatory cells, predominantly vacuolated and

parasitized histiocytes. The occurrence of collagen

type III was also demonstrated in hepatic granuloma

of mice infected with Leishmania donovani (Leite

& Croft, 1996; Ghosh et al. 1996). By contrast, in

hepatic granuloma induced by Schistosoma mansoni

the reverse occurs and type III collagen is replaced

by type I fibres that give support to preserve the

structural integrity of the granuloma (Al Adnani,

1985).

Neither the expression nor the overall distribution

of laminin in the footpad lesions, as well as lymph

nodes, was affected in experimental murine L. (L.)

amazonensis infection in the three different mouse

strains. A slight decrease in fibronectin expression

was observed in areas with high amastigote loads in

lesions of DBA/2 mice, a strain that usually presents

lower parasite burdens when compared to BALB/c

or C57BL/6 mice. These results could suggest that a

reduced fibronectin expression might be more de-

pendent on the local parasite burden, in spite of the

host strain. It is tempting to speculate that amasti-

gotes could be directly involved in the degradation

of extracellular matrix components as recent studies

have suggested (McGwire, Chang & Engman, 2003).

Severe tissue damage observed in Entamoeba histo-

lytica infection also appears to be associated with its

ability to degrade extracellular matrix (particularly

glycoproteins and collagen components) through re-

leased cysteine proteases (Rhoads & Fetterer, 1996).

The presence of laminin bound to the parasite

surface seems to enhance macrophage infectivity,

while both laminin and anti-LBP (Laminin Binding

Fig. 3. Confocal analysis of BALB/c (A, B, C, D) and C57BL/6 (E, F, G, H) mice of lymph node and primary lesion

infected with 104 Leishmania (L.) amazonensis amastigotes (H21 MHOM/BR/76/MA-76). (A) Well-preserved fibronectin

(green-FITC) in samples of lymph nodes of control mice. (B) Unaltered fibronectin in the lymph node of infected mice

(green-FITC). (C) Normal fibronectin distribution in footpad skin of the control group (green-FITC). (D) Unaltered

fibronectin distribution in the skin enclosing the primary lesion (green-FITC). (E) Control group lymph nodes with

well-preserved fibronectin distribution (green-FITC). (F) Decreased fibronectin expression (green-FITC) in the

draining lymph node of infected mice with visible parasites (red-Cy3). (G) Normal fibronectin distribution in the

footpad skin of control mice (green-FITC). (H) Large number of parasites (red-Cy3) and moderate decrease of fibronectin

(green-FITC) in footpad.
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Fig. 3. See opposite page for legend.
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Protein – GP63) antibodies have decreased the in-

fectivity in the BALB/c mouse model, apparently

by blocking laminin-binding protein sites on the

host cell surface. These findings represent evidence

in favour of the notion that Leishmania migration

through the ECM network, prior to macrophage

attachment and entry, is mediated in part by

the interaction of cell–parasite (Ghosh et al. 1999;

Bandyopadhyay et al. 2001, 2002).
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