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Given an undirected graph G, let us randomly orient G by tossing independent (possibly

biased) coins, one for each edge of G. Writing a → b for the event that there exists a

directed path from a vertex a to a vertex b in such a random orientation, we prove that for

any three vertices s, a and b of G, we have P(s → a ∩ s → b) � P(s → a)P(s → b).
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1. Introduction

A very natural notion of a random directed graph is that of a random orientation of

a fixed undirected graph. Random orientations of graphs often exhibit counter-intuitive

properties. For example, Alm and Linusson [3] showed that in a random orientation of

any sufficiently large complete graph, the event that there is a directed path from a to s

and the event that there is a directed path from s to b are positively correlated for any

three distinct vertices s, a and b; this is surprising since conditioning on the existence of

a path from a to s would intuitively suggest that edges are typically ‘oriented towards s’,

and that it should consequently be harder to walk from s to b. Random orientations in

general, and the correlations between connection events in particular, have been studied

by a number of authors; see, for instance, [2, 7, 9].

Given a finite undirected graph G = (V , E) and a collection of probabilities p = (pe)e∈E ,

we orient the edges of G independently by tossing a pe-biased coin to decide the orientation

of an edge e ∈ E. More formally, given G = (V , E) and p as above, suppose that V ⊂ N

and define �G(p) to be a random orientation of G where an edge e = {a, b} ∈ E with a < b

is oriented from a to b with probability pe and from b to a otherwise, independently of the

other edges. We call �G(p) a p-biased orientation of G and write PG,p for the corresponding

probability measure. Note that �G(p) is an unbiased, uniformly random orientation of G

when pe = 1/2 for every e ∈ E.
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For a pair of vertices a and b of G, let a → b denote the connection event that there is

a directed path from a to b in a random orientation of G. Our aim in this short paper is

to establish the following correlation inequality.

Theorem 1.1. Let G = (V , E) be an undirected graph. For any three vertices s, a, b ∈ V and

any collection of probabilities p = (pe)e∈E , we have

PG,p(s → a ∩ s → b) � PG,p(s → a)PG,p(s → b).

The motivation for considering biased orientations in Theorem 1.1 comes from our lack

of understanding of biased orientations of a number of natural graphs, the most important

of which is perhaps the square lattice. For 0 � p � 1, let �Z2(p) denote a random orientation

of the square lattice obtained as follows: orient a horizontal edge, independently of the

other edges, rightwards with probability p and otherwise leftwards, and similarly, orient a

vertical edge, independently of the other edges, upwards with probability p and otherwise

downwards. The following conjecture is due to Grimmett [5] and remains wide open.

Conjecture 1.2. For each p �= 1/2, �Z2(p) almost surely contains an infinite directed path.

Let us mention that while we state and prove Theorem 1.1 for finite graphs, the result

also holds for any graph on a countably infinite vertex set (such as the square lattice);

indeed, this follows from a standard limiting argument. We also remark that the challenge

in establishing Theorem 1.1 arises entirely from having to deal with genuinely biased

orientations.

Indeed, the main difficulty in working with random orientations is that a connection

event a → b is not ‘up-closed’ in general. In other words, it is not necessarily true that

one can find a ‘good’ orientation for each edge with the property that the event a → b is

closed under the operation of changing the orientation of an edge from ‘bad’ to ‘good’.

For example, it is clear from Figure 1 that connection events in a (large) finite grid are

neither closed under the operation of changing the orientation of a horizontal edge to the

left, nor closed under the operation of changing the orientation of a horizontal edge to

the right.

This ‘up-closedness’ issue however disappears when we restrict ourselves to unbiased

orientations. Indeed, in this case, as was observed by McDiarmid [9], the distribution of

the set of vertices reachable from a vertex s in an unbiased orientation of G is identical to

the distribution of the connected component of s in the standard percolation model (at

density 1/2) on G. Therefore, as noted by Linusson [8], our result follows instantly from

Harris’s Lemma [6] in this case. However, we see no simple way of deducing Theorem 1.1

from Harris’s Lemma in general; instead, our proof relies on the powerful four-functions

theorem of Ahlswede and Daykin [1].

The proof of Theorem 1.1 is given in Section 2. We make a few remarks and conclude

this note in Section 3.
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Figure 1. Left-to-right connection events in the grid are not ‘up-closed’.

2. Proof of the main result

To prove Theorem 1.1, we shall require the four-functions theorem of Ahlswede and

Daykin [1]; see [4] for a proof and several related results.

Theorem 2.1. Let S be a finite set and let α, β, γ and δ be functions from the set of all

subsets of S to the non-negative reals. If we have

α(X1)β(X2) � γ(X1 ∪ X2)δ(X1 ∩ X2)

for any two subsets X1, X2 ⊂ S , then∑
X⊂S

α(X)
∑
X⊂S

β(X) �
∑
X⊂S

γ(X)
∑
X⊂S

δ(X).

Before we proceed further, let us introduce some additional notation. For a set of

vertices A and a vertex b, we write A → b for the union of all the events a → b with a ∈ A.

Theorem 1.1 is a special case of the following result.

Theorem 2.2. Let G = (V , E) be an undirected graph. For any non-empty set S ⊂ V , any

pair of vertices a, b ∈ V and any collection of probabilities p = (pe)e∈E , we have

PG,p(S → a ∩ S → b) � PG,p(S → a)PG,p(S → b).

Proof. We prove the theorem by induction on the number of vertices. Clearly, the result

holds trivially when G has only one vertex. Therefore, suppose that G has more than one

vertex and that we have proved the result for all graphs with fewer vertices than G. The

inequality is also trivial if either a ∈ S or b ∈ S , so suppose that neither a nor b belongs

to S .

Let H denote the graph obtained by deleting S from G. Let T denote the set of those

vertices of H that are adjacent to some vertex of S in G. We write OS ⊂ T for the
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(random) set of those vertices v ∈ T for which there exists an edge oriented from S to v

in �G(p).

In what follows, to reduce clutter, we write P for the measure PG,p and P̂ for the measure

induced by P on the graph H . For a subset X ⊂ T , let us define

α(X) = P(OS = X)P̂(X → a),

β(X) = P(OS = X)P̂(X → b),

γ(X) = P(OS = X)P̂(X → a ∩ X → b), and

δ(X) = P(OS = X).

Note that

P(S → a) =
∑
X⊂T

P(OS = X)P(S → a |OS = X) =
∑
X⊂T

P(OS = X)P̂(X → a),

so we have
∑
X⊂T

α(X) = P(S → a),

∑
X⊂T

β(X) = P(S → b),

∑
X⊂T

γ(X) = P(S → a ∩ S → b), and

∑
X⊂T

δ(X) = 1.

Therefore, by Theorem 2.1, to prove our result, it suffices to show that

α(X1)β(X2) � γ(X1 ∪ X2)δ(X1 ∩ X2)

for any two subsets X1, X2 ⊂ T . We may inductively assume that we have established

Theorem 2.2 for H . Hence, it follows that

P̂(((X1 ∪ X2) → a) ∩ ((X1 ∪ X2) → b)) � P̂((X1 ∪ X2) → a)P̂((X1 ∪ X2) → b)

� P̂(X1 → a)P̂(X2 → b).

Therefore, it suffices to show that

P(OS = X1)P(OS = X2) � P(OS = X1 ∪ X2)P(OS = X1 ∩ X2).

This is easy to check. Indeed, each v ∈ T belongs to OS with some probability pv ,

independently of the other vertices of T . Hence, we have

P(OS = X1)P(OS = X2) =
∏

v∈X1∩X2

p2
v

∏
v∈X1	X2

pv(1 − pv)
∏

v /∈X1∪X2

(1 − pv)
2

= P(OS = X1 ∪ X2)P(OS = X1 ∩ X2).

The conditions of Theorem 2.1 have been verified; Theorem 2.2 now follows by induction.
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3. Conclusion

The correlation inequality proved in this paper is ‘intuitively obvious’, and it therefore

feels somewhat unsatisfactory that our proof must rely on the four-functions theorem.

Finding a more elementary proof of our main result remains an interesting problem.
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