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It was demonstrated recently that gas–liquid interfaces, which are usually almost
perfect reflectors of acoustic waves, become anomalously transparent, and the power
flux in the wave transmitted into the gas increases dramatically, when a compact
sound source in the liquid approaches the interface within a fraction of the wavelength
(Godin, Phys. Rev. Lett., vol. 97, 2006b, 164301). Powerful underwater explosions
and certain natural sources, such as underwater landslides, generate very low-frequency
waves in water and air, for which fluid buoyancy and compressibility simultaneously
serve as restoring forces. In this paper, analysis of sound transmission through
gas–liquid interfaces is extended to acoustic-gravity waves (AGWs) and applied to the
air–water interface. It is found that, as for sound, the interface becomes anomalously
transparent for sufficiently shallow compact sources of AGWs. Depending on the
source type, the increase of a wave power flux into gas due to diffraction effects
can reach several orders of magnitude. The physical mechanisms responsible for the
anomalous transparency are discussed. Excitation of an interface wave by a point
source in the liquid is shown to be an important channel of AGW transmission into the
gas, which has no counterpart in the case of sound.
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1. Introduction
The interaction between wave processes in the ocean and atmosphere is encountered

in problems as diverse and important as the quantification of the climate implications
of energy, momentum and gas fluxes at air–sea interactions (Kemball-Cook & Wang
2001; Hristov, Miller & Friehe 2003; Sullivan & McWilliams 2010), early tsunami
detection and warning with satellite-borne instruments (Godin 2004; Artru et al. 2005;
Godin et al. 2009; Rolland et al. 2010), and infrasonic detection of underwater
explosions for the purposes of the Comprehensive Nuclear Test Ban Treaty (Evers
& Haak 2001; Drob et al. 2010).

In atmospheric and underwater acoustics and in marine seismology, air–water
interfaces are usually approximated by a perfectly reflecting boundary. It has been
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found recently (Godin 2006b, 2007, 2008a,b) that low-frequency acoustic fields in the
ocean and atmosphere are much more closely connected than was previously believed
possible.

Under normal conditions, when a monopole, point underwater sound source with a
fixed magnitude of volume velocity oscillations approaches the air–water interface, the
acoustic power flux into the air increases by a factor of ∼40 compared to the power
flux from the same source at depths of one wavelength or more. The transparency of
the interface, which is defined as the ratio of the power transmitted to the interface to
the total radiated power, increases by a factor of 3400 and closely approaches unity
(Godin 2006b, 2007, 2008b). Thus, most of the acoustic energy emitted by a shallow,
compact, underwater source is radiated into the air. More generally, the anomalous
increase in the transparency can occur when the sound source is located in a denser
fluid with a higher sound speed, such as a liquid, at a fraction of the wavelength
from a flat or rough interface with a lighter fluid with a smaller sound speed, such
as a gas. Mathematically, a fluid–fluid interface is anomalously transparent for shallow
sources provided it is characterized by two dimensionless small parameters: the ratio
of mass densities, and the ratio of sound speeds squared (Godin 2006b, 2007, 2008b).
Physically, the anomalous transparency is due, first, to the contribution of evanescent
waves in the liquid into the power flux from the source to the interface, and, second, to
the destructive interference between direct and interface-reflected waves in the liquid
(Godin 2006b, 2007; McDonald & Calvo 2007).

In acoustics, the lower the frequency, the more pronounced are the diffraction effects
responsible for the anomalous transparency (Godin 2008b). However, at sufficiently
low frequencies (below ∼1 Hz for air–water interfaces), buoyancy effects may become
significant and need to be taken into account. The question arises whether the
anomalous transparency of gas–liquid interfaces is a purely acoustical phenomenon
or does it also take place for acoustic-gravity waves (AGWs), for which fluid
buoyancy and compressibility simultaneously serve as restoring forces (Lamb 1932;
Press & Harkrider 1962; Tolstoy 1973; Lighthill 1978). Here, we consider in a simple,
idealized setting the problem of transmission into a gas of AGWs generated by a
compact source in a liquid. We will show that, as for sound, gas–liquid interfaces
become anomalously transparent, when the source is sufficiently close to the interface,
but the physical mechanisms responsible for the anomalous transparency are distinct
for sound and AGWs.

For sound, the simplest transmission problem involves a plane interface of two
homogeneous fluid half-spaces (Brekhovskikh & Godin 1998, 1999). Mass density
necessarily increases downwards in stably stratified compressible fluids in a gravity
field. A basic self-consistent environmental model suitable for AGW propagation
analysis is a fluid with a constant sound speed and an exponential stratification
of density. Such a model allows for plane-wave solutions and has been studied
extensively in the past (Lamb 1932; Eckart 1960; Pierce 1963; Tolstoy 1963; Gossard
& Hooke 1975; Adam 1977; Watada 2009). The simplest environmental model for
the AGW transmission problem consists of two fluid half-spaces, each with its own
constant sound speed and exponential density profile, separated by a horizontal plane.
AGWs in such an environment have been considered by a number of authors. Tolstoy
(1973) discussed reflection and transmission of plane waves at the interface. The
properties of surface waves supported by the interface have also been considered
(Lamb 1911, 1932; Tolstoy 1963; Thome 1968; Gossard & Hooke 1975; Savina
1997; Gasilova & Petukhov 1999). Petukhov and co-workers developed a semi-analytic
description of excitation of the surface waves by a point source (Petukhov 1992;
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Gasilova, Gordeeva & Petukhov 1992, 1993; Gasilova & Petukhov 1993, 1999).
Unlike earlier work on the subject, here we account for all waves generated by a
compact source, investigate power fluxes in the body and surface AGWs, identify
previously unknown, resonance-like dramatic increases in the interface transparency at
certain frequencies, and determine the physical causes of their origin.

Several particular types of monochromatic AGWs feature prominently in our
analysis. Plane waves with a real-valued wave vector will be referred to as
‘homogeneous’ or ‘propagating’ plane waves. Waves with a complex-valued wave
vector are known as ‘inhomogeneous’ plane waves since their amplitude is not
homogeneous along their wave front (Brekhovskikh & Godin 1998). In particular,
when considered in a bounded region and their amplitude decreases exponentially
away from the boundary, inhomogeneous waves are also called ‘evanescent’ plane
waves. AGWs that are supported by an unbounded fluid are referred to as ‘body’
waves. On the other hand, AGWs that propagate along a fluid–fluid interface and
rapidly attenuate with increasing distance from the interface will be interchangeably
called ‘surface’ or ‘interface’ waves. In the case of a gas–liquid interface, we
will encounter ‘modified Lamb waves’, which are an extension of surface waves
propagating in a gas half-space along a plane rigid boundary (Lamb 1932; Gossard
& Hooke 1975), and ‘modified surface gravity waves’, which are an extension of
surface waves in a liquid half-space with a free surface (Lamb 1932; Brekhovskikh &
Goncharov 1994).

The paper is organized as follows. Governing equations and boundary conditions
for AGWs are formulated in § 2. Reflection and transmission coefficients for plane
AGWs at a plane fluid–fluid interface are derived in § 3. Dispersion relations of surface
waves supported by a gas–liquid interface, their cutoff frequencies and excitation by a
point source are studied asymptotically in § 4 using the ratio of gas and fluid densities
as a small parameter of the theory. Energy radiated by a point source in liquid into
gas and liquid half-spaces in body and surface waves is studied in § 5. The physical
mechanisms responsible for the normal and anomalous transparency of gas–liquid
interfaces for AGWs are discussed and compared to the acoustic case in § 6. Section 7
summarizes our findings.

2. Point source in a layered fluid
Consider mechanical waves in a stationary, inhomogeneous compressible fluid in a

uniform gravity field. Linear monochromatic (continuous wave, CW) wave fields are
governed by the equations (see e.g. Tolstoy 1963; Godin 1997; Brekhovskikh & Godin
1999)

∇p− ω2ρw+ (w ·∇)∇p0 − (p+ w ·∇p0)∇p0/ρc2 = F, (2.1)
∇ ·w+ (p+ w ·∇p0)/ρc2 = iA/ω, (2.2)

where p0, c and ρ are the pressure, sound speed and mass density unperturbed by the
wave; p and w are pressure perturbations and fluid parcel displacements due to the
wave; and ω is wave frequency. Equations (2.1) and (2.2) are obtained from linearized
Euler, continuity and state equations by eliminating unknown wave-induced mass
density perturbations. The gradient of the background pressure is given by ∇p0 = ρg,
where g is the acceleration due to gravity. Wave energy dissipation through irreversible
thermodynamic processes is neglected. The wave field is generated by sources with
volume densities F of force and A of volume velocity. A time dependence exp(−iωt)
of the wave field is assumed and suppressed.
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FIGURE 1. (Colour online) Geometry of the problem.

At a fluid–fluid interface S (i.e. a surface where sound speed and/or density are
discontinuous), the boundary conditions for linear waves are (see e.g. Godin 1997;
Brekhovskikh & Godin 1999)

[w ·n]S = 0, [p+ w ·∇p0]S = 0, (2.3)

where n is a unit normal to S and [f ]S denotes the jump of a function f at a point on
the surface S. The first equation in (2.3) expresses the kinematic boundary condition of
the continuity of the normal component of the fluid velocity on the interface, while the
second equation expresses the dynamic boundary condition of the continuity of the full
pressure, p0 + p, on the perturbed interface. The quantity p+ w ·∇p0 has a meaning of
pressure perturbation in a moving fluid parcel (Lagrangian perturbation), while p is the
pressure perturbation at a given point (Eulerian perturbation). Alternatively, p+w ·∇p0

can be viewed as a linear perturbation of the full pressure at a point on the interface
deformed by the wave.

We now introduce Cartesian coordinates R= (x, y, z) with horizontal coordinates x, y
and vertical coordinate z directed upwards, so that g=−g∇z, g= const. > 0 (figure 1).
Let a point source be located at R0 = (0, 0, z0),

A= A0δ(x)δ(y)δ(z− z0), F= F0δ(x)δ(y)δ(z− z0), (2.4)

and let the unperturbed sound speed and density be independent of the horizontal
coordinates. In such a layered medium, (2.1) and (2.2) can be solved in terms
of quasi-plane waves, i.e. waves with harmonic dependence exp(iq · R), where
q = (qx, qy, 0) = const. on horizontal coordinates (see e.g. Brekhovskikh & Godin
1998, 1999). For free quasi-plane waves, equations (2.1) and (2.2) give

∂p

∂z
+ g

c2
p= ρ(ω2 − N2)wz,

∂wz

∂z
− g

c2
wz =

(
q2

ω2ρ
− 1
ρc2

)
p, (2.5)

wx = iqx

ω2ρ
p, wy = iqy

ω2ρ
p, N2 =− g

ρ

dρ
dz
− g2

c2
. (2.6)

Here, q is the magnitude of vector q, and N has the meaning of the buoyancy
frequency. Note that the vertical structure of the wave field is independent of the
direction of the horizontal vector q. By eliminating wz, (2.5) can be readily reduced to
a second-order differential equation for p.
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By applying the Fourier transform in x and y (or, alternatively, the Fourier–Bessel
transform in the horizontal plane) to (2.1) and (2.2) and taking into account (2.4), for
the field due to a point source, we find

p(R, z0) =
{(

1− N2

ω2

)[
iωρA0 + F0x

∂

∂x
+ F0y

∂

∂y

]
−F0z

[
g

c2
+
(
∂

∂z
ln ρ

(
1− N2

ω2

))
+ ∂

∂z0

]}
z=z0

P(R, z0), (2.7)

P(R, z0) =
∫ +∞
−∞

∫
p1(q, z<)p2(q, z>)

4π2Wr(q, z0)
eiq·R dq1 dq2

=
∫ +∞
−∞

p1(q, z<)p2(q, z>)

4πWr(q, z0)
H(1)

0 (qr)q dq, (2.8)

where Wr(q, z) = p1(q, z)∂p2(q, z)/∂z − p2(q, z)∂p1(q, z)/∂z, z< = min(z, z0), z> =
max(z, z0), r = (x2 + y2)

1/2 and H(1)
0 (·) is the Hankel function. Here p1 and p2 are

the solutions to (2.5) that satisfy conditions at z→−∞ (or at the lower boundary
in the case of a bounded medium) and at z→ +∞ (or at the upper boundary),
respectively. It is assumed that c, ρ and dρ/dz are continuous at z = z0. Note that q
is non-negative in the first integral in (2.8). The second integral is taken over all real
q and, with p1,2 being analytic functions of q, can be viewed as a contour integral in
the complex q plane. When g→ 0, (2.7) and (2.8) reduce to known results for acoustic
fields (Godin 2006a).

Application of the Fourier transform reduces (2.1) and (2.2) to a homogeneous
ordinary differential equation for p(q, z) at z > z0 and z < z0, with the source terms
in (2.1) and (2.2) giving matching conditions at z = z0. To ensure sufficiently rapid
decrease of the wave field with r and justify application of the Fourier transform, one
considers monochromatic waves as a limiting case of a wave field growing with time
and assigns an infinitesimal, positive imaginary part to the frequency ω. The derivation
of (2.7) and (2.8) for AGWs is analogous to the derivation in the acoustic case (g= 0),
which is discussed in detail in § 4.3.2 of Brekhovskikh & Godin (1999) for a source of
volume velocity (F= 0), and will not be reproduced here. An equation similar to (2.7)
and (2.8) has been derived by Pierce (1965) for AGWs generated by a point source of
volume velocity.

3. Reflection and transmission of plane waves
Let horizontal interface z = 0 separate fluid half-spaces with constant sound speeds

c1 and c2 and mass densities ρ1(z) and ρ2(z) at z< 0 and z> 0, respectively (figure 1).
The densities decrease exponentially with height:

ρj(z)= ρj0 exp(−2µjz), µj > 0, j= 1, 2. (3.1)

In particular, for an isothermal perfect gas, µj = γjg/2c2
j , where γ is the ratio of the

specific heats at constant pressure and constant volume (Eckart 1960). Buoyancy
frequencies Nj (2.6) are constant in both half-spaces, and (2.5) have plane-wave
solutions (Eckart 1960; Pierce 1963; Tolstoy 1963, 1973)

p(j) = exp[iq ·R± isj(q)z− µjz], w(j)
z = B(j)± exp[iq ·R± isj(q)z+ µjz], (3.2)
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where

B(j)± =
gc−2

j − µj ± isj

ρj0(ω2 − N2
j )
, N2

j = 2gµj − g2

c2
j

, (3.3)

sj(q)=
√
ω2c−2

j − µ2
j − q2(1− N2

j /ω
2), Im sj > 0, (3.4)

and sj is either non-negative or purely imaginary. Note that, in stably stratified media,
ρ10 > ρ20,N2

j > 0 (Tolstoy 1973) and, hence, µj > g/2c2
j .

Equation (3.4) is a form of the well-known dispersion relation of acoustic-gravity
waves (see e.g. Tolstoy 1963, 1973; Gossard & Hooke 1975; Lighthill 1978). Taken
with the appropriate sign, sj has the meaning of the vertical component of the wave
vector of plane waves (3.2). Propagating plane waves, i.e. waves with real q and sj,
exist at ω < Nj (the buoyancy branch of AGWs) and ω > µjcj (the acoustic branch
of AGWs). It follows from (2.6) and (3.1) that µ2

j c2
j − N2

j = (µjcj − g/cj)
2 and, hence,

µjcj > Nj. There are no propagating plane waves at Nj < ω < µjcj (which certainly
does not mean that point AGW sources generate no perturbations at such frequencies).
Below, we assume for definiteness that the stratification is stable and, unless stipulated
to the contrary, that ω > max(µ1c1, µ2c2).

The time-averaged energy density E (away from the interfaces) and power flux I in
monochromatic AGWs (Tolstoy 1973; Brekhovskikh & Godin 1999) are

E = ρ
4

(
ω2w ·w∗ + N2wzw

∗
z +

pp∗

ρ2c2

)
, I = ω

2
Im (p∗w), (3.5)

where the asterisk denotes complex conjugation. When applied to plane waves (3.2),
these equations show that the choice of the upper (lower) sign in (3.2) gives waves
that carry energy upwards (downwards) when sj > 0; when Re sj = 0, the power flux is
horizontal and only the choice of upper (lower) sign ensures finiteness of the energy
density at z→+∞ (respectively, z→−∞).

Let a plane wave p = exp[iq ·R + is1(q)z − µ1z] be incident on the interface z = 0
from below. Then pressure perturbations in the lower and upper half-spaces are

p= exp[iq ·R+ is1(q)z− µ1z] + V(q) exp[iq ·R− is1(q)z− µ1z], z< 0, (3.6a)
p=W(q) exp[iq ·R+ is2(q)z− µ2z], z> 0, (3.6b)

where V and W have the meaning of reflection and transmission coefficients (with
respect to pressure). Boundary conditions (2.3) on the interface z = 0 give two linear
algebraic equations for V and W, from which we find

V =−D+/D−, W = 2m(ω2 − N2
2)s1D−, (3.7)

D± =
(

i
g

N2
2 − iµ2 + s2

)
(ω2 − gµ1 ∓ igs1)

−m

(
i
g

N2
1 − iµ1 ± s1

)
(ω2 − gµ2 − igs2), (3.8)

where m = ρ20/ρ10 is the ratio of fluid densities at the interface. Similar equations
were derived by Tolstoy (1973). When a plane wave is incident on the interface from
the upper half-space, reflection and transmission coefficients can be obtained from
(3.7) and (3.8) by interchanging indices 1 and 2 and replacing g with −g.

When the incident wave is a propagating one (Im s1 = 0) and the refracted wave
is evanescent (Re s2 = 0), D+ = −D∗− and |V| = 1, as expected. At g→ 0, from
(3.7) and (3.8) one recovers the well-known Fresnel reflection and transmission
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coefficients, V = (ms1−s2)/(ms1+s2) and W = 2ms1/(ms1+s2) (see e.g. Brekhovskikh
& Godin 1998) for acoustic waves. In the limits m→ 0 and m→∞, equations (3.7)
and (3.8) give

V =−(ω2 − gµ1 − igs1)/(ω
2 − gµ1 + igs1), (3.9)

V = (s1 − iµ1 + iN2
1/g)/(s1 + iµ1 − iN2

1/g). (3.10)

Equations (3.9) and (3.10) do not contain parameters of the upper half-space and have
the meaning of reflection coefficients from the free and rigid boundaries, respectively.
At the free and rigid boundaries, |V| = 1 for homogeneous plane waves. At the
gas–liquid interface, m is small, the reflection coefficient V in (3.7) is close to its
value (3.9) for the free surface and |V| = 1 + O(m) as long as both the incident and
transmitted waves are propagating ones (figure 2a). At grazing incidence, when s1 = 0,
V = −1 at a gas–liquid interface. However, additional singularities of the reflection
coefficient appear when both waves are evanescent (Re s1 = Re s2 = 0) (figure 2b,c).
In § 4 we show that these singularities are a manifestation of the interface waves
supported by the gas–liquid interface but not by the free surface. The numerical values
in figure 2 and all subsequent figures refer to a water–air interface with m= 1.3×10−3,
c1 = 1500 m s−1, c2 = 330 m s−1, µ1 = 3.56 × 10−6 m−1, µ2 = 6.30 × 10−5 m−1 and
g = 9.8 m s−2. The dimensionless wave frequency is defined as f = ω/ω0, where the
reference frequency ω0 = g/c2 corresponds to 4.73 × 10−3 Hz (i.e. to a wave period
of 211 s) for the water–air interface. The physical significance of the frequency ω0 is
discussed in § 4.4.

Equations (3.3) and (3.5) show that, for plane waves with sj > 0, the directions
of the vertical component of the power flux are opposite at ω > Nj and ω < Nj.
For incident and reflected waves, this translates into opposite choices of the sign in
front of sj in (3.2) at high and low frequencies. Inspection shows that (3.6)–(3.8),
which have been derived above assuming ω > max(µ1c1, µ2c2), remain valid at all
frequencies if isj is replaced with the complex conjugate, (isj)

∗, when ω < Nj. This has
been taken into account in figure 2. Note that no changes occur when Re sj = 0.

4. Interface waves
4.1. Dispersion equation of surface AGWs at a fluid–fluid interface

Let a point source be located in the lower half-space z < 0. According to (3.2) and
(3.6), the solutions p1,2 in (2.8) can be chosen as

p1 = e−is1z−µ1z, z< 0; (4.1)

p2 = eis1z−µ1z + Ve−is1z−µ1z, z< 0; p2 =Weis2z−µ2z, z> 0. (4.2)

Here the reflection V and transmission W coefficients are given by (3.7). From (2.7),
(2.8), (4.1) and (4.2) we obtain the field due to a point source as an integral over plane
or cylindrical waves:

P(R, z0) = eµ1(z0−z)

8iπ2

∫ +∞
−∞

∫ +∞
−∞

dq1 dq2

s1
[eis1|z−z0| + Ve−is1(z+z0)]eiq·R

= eµ1(z0−z)

8iπ

∫ +∞
−∞

q dq

s1
[eis1|z−z0| + Ve−is1(z+z0)]H(1)

0 (qr), z< 0; (4.3)
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FIGURE 2. (Colour online) Reflection of plane acoustic-gravity waves from a gas–liquid
interface. Absolute value of the reflection coefficient (3.7) is shown as a function of
dimensionless frequency f = ω/ω0 for waves incident from water on a water–air interface
at (a) s1 = 0 (incident and reflected waves propagate along the interface; line 1) and q = 0
(normal incidence; line 2); and (b) s2 = 0 (refracted wave propagates along the interface).
(c) A detailed view of a segment of (b). Frequencies fj = ω(j)c /ω0, j = 1, 2, 3, 4, correspond
to the cutoff frequencies (4.11), (4.16) and (4.21) of interface waves; f5 = µ2c2/ω0. The
reflection coefficient has singularities (poles) at f = f2, f3, f4.

P(R, z0) = eµ1z0−µ2z

8iπ2

∫ +∞
−∞

∫ +∞
−∞

dq1 dq2

s1
Weiq·R−is1z0+is2z

= eµ1z0−µ2z

8iπ

∫ +∞
−∞

q dq

s1
Weis2z−is1z0H(1)

0 (qr), z> 0. (4.4)

The integrands of the right-most sides of (4.3) and (4.4) are analytic functions of
q. The contributions of poles q = qp of the integrands to P have the meaning of
interface waves generated by the source and usually provide the dominant component
of the field at sufficiently large r (Brekhovskikh & Godin 1999). When Im qp = 0, one
obtains proper surface waves, which propagate along the interface with phase speed
ω/qp.

According to (3.7) and (3.8), the locations of all poles in the complex q plane are
given by solutions of the algebraic equation D−(q)= 0, or(

i
g

N2
2 − iµ2 + s2

)
(ω2 − gµ1 + igs1)= m

(
i
g

N2
1 − iµ1 − s1

)
(ω2 − gµ2 − igs2).

(4.5)

Note that the poles of the reflection and transmission coefficients (3.7) coincide;
i.e. the same interface waves are observed in the upper and lower half-spaces. Analysis
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of the integral representation of a field due to a point source located in the upper
half-space also leads to the dispersion equation (4.5) of interface waves. Moreover, the
dispersion equation (but not the contributions of interface waves to the field due to
a point source) can also be found by considering plane-wave solutions (3.2) at z > 0
and z < 0 with energy density decaying exponentially away from the interface, and
imposing the boundary conditions (2.3) on these solutions.

It follows from the energy conservation law that Im sj(qp) > 0, j= 1, 2, for interface
waves (Brekhovskikh & Godin 1998). These inequalities ensure that the energy and
power flux densities (3.5) remain finite in the interface waves at all z. Often interface
waves exist only in a certain frequency range or ranges bounded from above and/or
from below by a cutoff frequency ωc. According to (3.4), when qp(ω) is real and
varies continuously with ω, sj(qp) ceases to have a positive imaginary part when
sj becomes equal to zero. Hence, for proper surface waves, s1s2 = 0 at each cutoff
frequency. It follows from (3.4) and (4.5) that ω2

c satisfies the following fourth-order
algebraic equation:

(−1)j(ω2
c − N2

j )

[
ω2

c

(
µ2 − N2

2

g
− mµ1 + m

N2
1

g

)
− µ1(gµ2 − N2

2)+ mµ2(gµ1 − N2
1)

]2

=
[
(ω2

c − N2
2)

(
µ2

1 −
ω2

c

c2
1

)
− (ω2

c − N2
1)

(
µ2

2 −
ω2

c

c2
2

)]
× [mj−1(ω2

c − gµj)+ m2−j(gµj − N2
j )]2, (4.6)

with either j = 1 or j = 2. For (4.6) and the results presented below in § 4 to
be valid, there is no need to restrict the frequency range by the assumuption
ω > max(µ1c1, µ2c2).

No analytic solution of the dispersion equation (4.5) is available in the general
case. However, when c1 = c2 and µ1 = µ2, we have N1 = N2 and s1 = s2. Then (4.5)
becomes a quadratic equation and gives

s1 = i
(ω2 − N2

1)(1+ m)

2g(1− m)
(1± ζ ), q2 = ω

2µ1

g
+ ω

2(ω2 − N2
1) (1+ m)2

2g2 (1− m)2
(1± ζ ),

(4.7a)

ζ =
√

1+ 4
(

1− m

1+ m

)2
(ω2 − gµ1)(N2

1 − gµ1)

(ω2 − N2
1)

2 . (4.7b)

When m→ 0, the right-hand side of (4.5) vanishes, and the dispersion equation has
two solutions:

s1 = i(ω2/g− µ1), q= ω2/g, (4.8)
s2 = i(gc−2

2 − µ2), q= ω/c2. (4.9)

The first solution, (4.8), is independent of the parameters of the upper half-space,
describes a surface wave at z< 0 provided ω2 > gµ1, and represents a familiar ‘surface
gravity wave in deep water’, i.e. a surface wave in a fluid half-space with a free upper
boundary (Lamb 1932; Brekhovskikh & Goncharov 1994). The second solution, (4.9),
is independent of the parameters of the lower half-space, describes a surface wave at
z> 0 provided µ2 < gc−2

2 , and represents a familiar Lamb wave (Lamb 1932; Gossard
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& Hooke 1975), i.e. a surface AGW in a fluid half-space with a constant sound speed
and a rigid lower boundary. When ω2 6 gµ1 or µ2 > gc−2

2 , the corresponding surface
wave does not exist. Below, we will assume that µ1 6 µ2, ω2 > gµ1 and

µj 6 gc−2
j 6 2µj (4.10)

for definiteness, and investigate how the surface waves (4.8) and (4.9) are modified
when m is small but finite. Note that strict inequalities always hold in (4.10) for
perfect gases (Lamb 1932; Gossard & Hooke 1975), and µ1� µ2 in the case of the
ocean–atmosphere interface.

4.2. Modified surface gravity wave at a gas–liquid interface
When q is given by (4.8), s2 = i|ω2/g− µ2| according to (3.4), and the right-hand side
of the dispersion equation (4.5) equals zero for all m values provided

ω(1)c < ω < ω(2)c , ω(j)c =
√

gµj, j= 1, 2. (4.11)

In the frequency range (4.11), an interface AGW with the dispersion equation ω2 = gq
propagates along the fluid–fluid interface. Frequencies ω(j)c in (4.11) satisfy (4.6), give
sj = 0 and are cutoff frequencies of the interface wave. The phase and group speeds
of the interface wave are unaffected by the presence of the upper half-space and
independent of the sound speeds in the two fluids and of the density jump, if any,
at the interface. In this interface wave, according to (2.6), (3.2), (3.5) and (4.8), the
wave energy density decreases exponentially with distance from the interface, the
vertical displacement has exponential dependence wz(z)= wz(0) exp(ω2z/g) throughout
the fluid, the horizontal displacement is wx,y(z) = iq−1qx,ywz(z), and the Lagrangian
pressure perturbation p̃ = p − ρgwz is identically zero. The independence of the
dispersion equation from the sound speed is easy to understand since the motion
in the interface wave is incompressible: ∇ · w = 0. Lamb (1911, pp. 568–571)
considered surface AGWs propagating along a horizontal interface of two isothermal
gases of different temperature. He assumed, erroneously, that the particle displacement
necessarily decreases with height at z> 0 in surface waves and, therefore, was not able
to find the surface wave with the dispersion equation (4.8).

A wave with p̃= 0, wz(z)= wz(0) exp(ω2z/g) and q= ω2/g satisfies the equations of
motion (2.5) and the boundary conditions at z = 0 at arbitrary frequencies, but carries
finite power flux only under condition (4.11). This wave is a particular case of the
incompressible wave motion of compressible fluids, which can exist in bounded and
unbounded domains with arbitrary stratification (Godin 2012a).

To solve the general dispersion equation (4.5) beyond the frequency interval (4.11),
we search for a solution in terms of a development in powers of m that reduces to
(4.8) at m= 0, and obtain

q= ω
2

g
[1+ α1m+ 2α2m2 + O(m3)], sj = i

[
ω2

g
− µj + βj1m+ βj2m2 + O(m3)

]
,

(4.12)

where j= 1, 2, ω2 > gµ2 and

α1 = 2(ω2 − gµ1)(ω
2 − gµ2)

ω2(ω2 − g2/c2
2)

, βj1 =
2(ω2 − N2

j )(ω
2 − gµ3−j)

g(ω2 − g2/c2
2)

, (4.13)

α2 = (ω2 − gµ2)
2

(ω2 − g2/c2
2)

2

(
2− g2µ2

1

ω4
− N2

1

ω2

)
− (ω

2 − N2
2)

2
(ω2 − gµ1)

2

ω2 (ω2 − g2/c2
2)

3 , (4.14)
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βj2 =
ω2(ω2 − N2

j )(α
2
1 + 4α2)− g2β2

j1

2g(ω2 − gµj)
. (4.15)

Coefficients (4.13)–(4.15) are singular at ω = ω0 ≡ g/c2, and the power expansions
(4.12) are not applicable at ω ≈ ω0. This frequency range is considered separately
in § 4.4. The coefficients, including β22, have no other singularities at ω2 > gµ2. In
the particular case where c1,2→∞ and µ1,2→ 0, the approximate dispersion relation
(4.12) agrees with the exact dispersion relation ω2 = gq(1 − m)/(1 + m) (Lamb 1932)
of the surface gravity wave propagating along an interface of two incompressible,
homogeneous fluids. It is easy to check that (4.12)–(4.15) reduce to the expansions in
powers of m of the explicit dispersion relation (4.7a) of surface AGW in the particular
case where c1 = c2 and µ1 = µ2.

According to (4.12), Im s1 > 0 in the whole frequency range ω2 > gµ2 considered.
However, at ω2 = gµ2, according to (4.12) and (4.13), β21 < 0 and Im s2 < 0. Hence,
the requirement Im s2 > 0 is met, and the interface wave (4.12) exists only at
frequencies ω > ω(3)c , where

ω(3)c =
√

gµ2

[
1+ m

µ2 − µ1

µ2
+ O(m2)

]
(4.16)

according to (4.12) and (4.13). The expression (4.16) for the cutoff frequency can
also be obtained from (4.6) (with j = 2). No modified surface gravity wave exists at√

gµ2 = ω(2)c < ω < ω(3)c . Note also that, according to (4.12), the effect of the upper
(gas) half-space on the phase and group speeds of the interface wave is of the second
order in m around the cutoff frequency ω(3)c and of the first order away from the cutoff
frequency.

As we will see below, the existence of two close cutoff frequencies of the interface
wave, ω(2)c and ω(3)c , has a profound effect on the AGW transmission through the
interface.

4.3. Modified Lamb wave at a gas–liquid interface
To determine the effect of the lower (liquid) half-space on the Lamb wave (4.9), we
search for a solution to the general dispersion equation (4.5) in terms of an expansion
in powers of m that reduces to (4.9) at m= 0, and obtain

q= ω

c2

[
1+ ν1m+ ν2m2 + O(m3)

]
, sj = i

[
aj +

ω2 − N2
j

ajc2
2

ν1m+ νj2m2 + O(m3)

]
,

(4.17)

where j= 1, 2, and

a1 =
√
µ2

1 −
ω2

c2
1

+ ω
2 − N2

1

c2
2

, a2 = g

c2
2

− µ2, ν1 = (µ1 − gc−2
1 − a1)(g− µ2c2

2)

ω2 − g(µ1 + a1)
,

(4.18)

ν2 = ν
2
1

c2
2

[
ω2 − N2

2 + g2c−2
2 − µ2

2c2
2

2 (gc−2
2 − µ2)

2 + 2 (ω2 − N2
1)

2

a1(ω2 − gµ1 − ga1)(µ1 + a1 − N2
1/g)

]
,

(4.19)

νj2 =
ω2 − N2

j

2a3
j c4

2

[
(ν2

1 + 2ν2)a
2
j c2

2 − ν2
1(ω

2 − N2
j )
]
. (4.20)
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We assume for simplicity that a2
1 > 0 (otherwise, the modified Lamb surface wave

does not exist) and c2 6 c1. Coefficients (4.18)–(4.20) are singular when a1 = ω2/g−µ1

(compare with (4.8)), which corresponds to the dispersion curves of the modified
Lamb and gravity waves closely approaching each other. This case is considered
separately in § 4.4. It is easy to check that (4.17)–(4.20) reduce to the expansions
in powers of m of the explicit dispersion relation (4.7a) of the surface AGW in the
particular case where c1 = c2 and µ1 = µ2.

The phase speed of the surface wave is supersonic when ν1 < 0 and subsonic when
ν1 > 0; see (4.17). It follows from (4.10) and (4.18) that ν1 changes sign at ω = g/c2

and becomes negative at ω > g/c2. According to (4.17), Im s1 remains positive while
Im s2 changes sign and becomes negative at high frequencies. The condition Im s2 > 0
is satisfied and the modified Lamb wave exists only at ω < ω(4)c . From (4.17)–(4.20),
for the cutoff frequency we find

ω(4)c =
gc−2

2 − µ2

m
√

c−2
2 − c−2

1

− gc−2
2 − µ1√

c−2
2 − c−2

1

+ O(m2). (4.21)

The same result is easily derived from the explicit (4.6) for cutoff frequencies (with
j = 2) by searching for a solution that tends to infinity at m→ 0. Thus, unlike the
Lamb wave over a rigid surface, the modified Lamb surface wave is not supported
by the gas–liquid interface at high frequencies. Results similar to (4.21) have been
reported earlier for a particular case where µ1 = 0 (Gasilova et al. 1992; Petukhov
1992). Note that ω(4)c is O(m−1), and therefore much larger than ω(1,2,3)c and the other
characteristic frequencies in the problem at hand. For orientation, the upper cutoff
frequency (4.21) of the modified Lamb wave is ∼1.1 Hz at the water–air interface.

4.4. Hybridization of the interface waves
When m→ 0, the dispersion curves of the surface gravity (4.8) and Lamb (4.9)
waves intersect when ω = ω0 ≡ g/c2; the approximate dispersion relations (4.12)
and (4.17) of the modified surface gravity and Lamb waves are singular at this
frequency. Physically, this reflects the fact that the fluid motion in the two surface
waves becomes nearly indistinguishable. Mathematically, the singularity arises because
the zeros of the two factors on the left-hand side of the dispersion equation (4.5)
approach each other and coincide when ω = ω0. The singularity suggests that
developments of the dispersion relations q(ω,m) in integer powers of m do not
exist at ω ≈ ω0. To find the dispersion relations of the surface waves in the
frequency band where |1− ω/ω0| � 1, we approximate sj, j= 1, 2, in (4.5) as follows:
sj(q) = sj(qj) + [∂sj(qj)/∂q](q − qj) + O((q− qj)

2), where q1 = ω2/g and q2 = ω/c2.
Retaining only the terms of leading order in the small quantities (q − qj) and m,
from (3.4) and (4.5) we obtain the quadratic equation:

(q− q1)(q− q2)= mb, b= ωc2

g2

(
g

c2
2

− µ2

)
(ω2 − gµ1). (4.22)

Its solutions

qs = 1
2

[
q1 + q2 +

√
(q1 − q2)

2+4mb

]
, qf = 1

2

[
q1 + q2 −

√
(q1 − q2)

2+4mb

]
(4.23)

define the dispersion equation of two surface waves, to be referred to as the slow
and fast wave, respectively. Since qs > qf , the phase speed of the fast wave is always

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

33
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.336


Transmission of acoustic-gravity waves through gas–liquid interfaces 325
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FIGURE 3. (Colour online) Dispersion curves of surface acoustic-gravity waves: (1) slow and
(2) fast waves supported by a gas–liquid interface, (3) Lamb wave in a gas half-space with a
rigid boundary, and (4) surface gravity wave in a liquid half-space with a free boundary. The
wavenumbers of all surface waves are normalized by the wavenumber k2 = gc−2

2 f of the Lamb
wave. Dimensionless frequency f = ω/ω0.

higher than the phase speed of the slow wave. Higher-order terms in the dispersion
equations of the slow and fast waves can be obtained by substituting (4.23) into the
right-hand side of the exact equation(

1− N2
1

ω2

)(
1− N2

2

ω2

)(
q2 − ω

2

c2
2

)(
q2 − ω

4

g2

)
= m

(
N2

1

g
− µ1 − |s1|

)
×
(

N2
2

g
− µ2 − |s2|

)(
ω2

g
− µ1 + |s1|

)(
ω2

g
− µ2 + |s2|

)
(4.24)

that follows from (3.4) and (4.5). In particular, at ω = ω0 one finds

qs,f = g

c2
2

±
√

m

(
g

c2
2

− µ1

)(
g

c2
2

− µ2

)
+ m

4(gc−2
2 − µ1)

[
g

c2
2

(
5g

c2
2

− 8µ1 − µ2

)
+ g

c2
1

(
g

c2
2

− µ2

)
+ 2µ2

1

(
1+ µ2c2

2

g

)]
+ O(m3/2). (4.25)

The dispersion curves of the slow and fast waves approach each other when
q1 − q2→ 0, i.e. ω→ ω0 (figure 3). At the point of closest approach, the distance
between the dispersion curves and, hence, the difference between the phase speeds
of the surface waves are proportional to m1/2. On the other hand, when |ω − ω0| �
c2 (mb)1/2, the square root in (4.23) can be replaced by |q1 − q2|b1+ 2mb (q1 − q2)

−2c.
Then, at ω > ω0, qs in (4.23) reduces to the dispersion equation (4.12) of the modified
surface gravity wave, while qf in (4.23) reduces to the dispersion equation (4.17)
of the modified Lamb wave. At ω < ω0, qf in (4.23) reduces to the dispersion
equation (4.12) of the modified surface gravity wave, while qs in (4.23) reduces to
the dispersion equation (4.17) of the modified Lamb wave. In all four cases, (4.23)
agrees with (4.12) and (4.17) up to terms O(m2).

Thus, the fast and slow surface waves are hybrids of the modified gravity and Lamb
surface waves. Equation (4.23) describes the ‘hybridization’ of these waves around
the frequency ω = ω0, where the modified Lamb wave strongly penetrates from the
gas half-space into the liquid, the modified surface gravity wave strongly penetrates
from the liquid half-space into the gas, and the two surface waves become nearly
indistinguishable.
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Note that the approximate dispersion equation (4.23), which has been obtained
in the vicinity of ω = ω0, and the approximate dispersion equations (4.12) and
(4.17), which hold away from ω = ω0, have an overlapping domain of validity
at c2 (mb)1/2� |ω − ω0| � ω0, and together give dispersion relations of surface gravity
waves for all ω as long as m� 1.

4.5. Generation of interface waves by a point source
A point source excites only those surface waves whose poles in the integral
representations (4.3) and (4.4) contribute to the respective integrals over complex q.
From the requirement that a wave field due to a point source is causal, it follows
that these are the poles that shift from the real axis into the upper half-plane of the
complex variable q when an infinitesimal, positive imaginary part is added to the
frequency ω (Brekhovskikh & Godin 1999). The modified surface gravity and Lamb
waves satisfy this requirement. By calculating the residues in a corresponding pole
q = qS in (4.3) and (4.4), for the field of an interface wave generated by the point
source, we find

PS(R, z0)=−0.5iω2e(µ1+|s1(qS)|)z0H(1)
0 (qSr)pS(qS, z), (4.26)

where the vertical structure of the surface wave field is given by

pS(q, z)= (ω
2 − N2

1)(µ2 − |s2| − N2
2/g)

(µ1 + |s1| − N2
1/g)D′

e(|s1|−µ1)z, z< 0, (4.27a)

pS(q, z)= m

D′
(ω2 − N2

2)e
−(|s2|+µ2)z, z> 0, (4.27b)

with

D′ ≡ ω
2

iq
∂D−
∂q
= ω

2 − N2
2

|s2| [ω
2 − mN2

1 − g(1− m)(|s1| + µ1)]

+ ω
2 − N2

1

|s1| [mω
2 − N2

2 − g(1− m)(|s2| − µ2)]. (4.28)

Note that D′→∞ and the pressure in the surface wave becomes zero at the cutoff
frequencies. In (4.26) and (4.27) and below, we use subscript S for the quantities that
refer to the field of a surface wave generated by a point source.

When the appropriate dispersion equations are substituted into (4.26)–(4.28), one
obtains the fields of fast and slow surface waves. In particular, for the modified surface
gravity wave, qS = ω2/g in the frequency range (4.11), and we obtain a simple, exact
result:

pS(qS, z)= ρ(z)|s1||s2| exp(ω2z/g)

ρ10(ω2 − N2
1)(m|s1| + |s2|) . (4.29)

Together with the density profile ρ(z), the pressure in the surface wave is
discontinuous at the interface and varies exponentially in the gas and in the liquid.
Using an approximate dispersion relation (4.12) at frequencies ω > ω(3)c (excluding a
narrow vicinity of ω = ω0), one obtains from (4.26)–(4.28) the field of the modified
surface gravity wave with accuracy to the factor 1+ O(m3). To the first order in m, the
vertical dependence of ps is again given by ρ(z) exp(ω2z/g) as in (4.29). The leading
order of the asymptotic expansions in powers of m of the pressure amplitude on the
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interface is

pS|z=−0 =
|s1||s2|/(ω2 − N2

1)

m|s1| (ω2 − N2
2)

2
(ω2 − g2/c2

2)
−2+|s2|

, pS|z=+0 =
−m(ω2 − N2

2)

ω2 − g2/c2
2

pS|z=−0.

(4.30)

Substitution of the approximate dispersion equation (4.17) into (4.26)–(4.28) gives
the field of the modified Lamb wave with accuracy to the factor 1+ O(m3) (excluding
a narrow vicinity of ω = ω0). To the leading order in m, the vertical dependence of the
field of the modified Lamb wave is

pS = m(ω2 − N2
1)|s2| exp((a1 − µ1)z)

2 (ω2 − gµ1 − ga1)
2 (z< 0), pS = m|s2| exp(−gz/c2

2)

2(ω2 − gµ1 − ga1)
(z> 0).

(4.31)

Equations (4.30) and (4.31) are not applicable when ω − g/c2 = O(m). Note that
in the liquid, the pressure in the modified Lamb wave is proportional to m
and is, therefore, much smaller than in the modified surface gravity wave. Since
(ω2 − gµ1 − ga1)/(ω

2 − g2c−2
2 )= (ω2 − N2

1)/(ω
2 − gµ1 + ga1) > 0 according to (4.18),

equations (4.30) and (4.31) show that the polarity of the pressure in the liquid in each
surface wave changes at ω ≈ ω0. The pressures in the gas and liquid in the modified
gravity (Lamb) wave are in phase at ω < ω0 (correspondingly, ω > ω0). That the
polarity change at z < 0 occurs simultaneously in the two surface waves is necessary
to satisfy the orthogonality relation∫ +∞

−∞

dz

ρ(z)
pS(qs, z)pS(qf , z)= 0, (4.32)

which follows from the general theory (Godin 2012b) of AGW normal modes in
layered fluids.

In the vicinity of ω = ω0 (specifically, at frequencies ω = ω0 + O(c2 (mb)1/2)), where
the hybridization of the modified Lamb and surface gravity waves takes place, the
amplitudes of the slow and fast surface waves become very close; the dominant
terms of their asymptotic developments coincide. The analytic calculation of the
subdominant terms requires expansions of the solutions qs and qf of the dispersion
equation to second order in the small parameters. Using (4.25), at ω = ω0 from (4.27a)
and (4.27b) we find

pS = (gc−2
2 − µ1)

2(g2c−2
2 − N2

1)

× exp

 g

c2
2

− 2µ1 ±
(

g

c2
1

+ g

c2
2

− 2µ1

)√
m

gc−2
2 − µ2

gc−2
2 − µ1

+ O(m)

 z


×
{

1± m1/2

4
(gc−2

2 − µ2)
−1/2

(gc−2
2 − µ1)

3/2

[
3g

c2
1

(
g

c2
2

− µ2

)

+ g

c2
2

(
5g

c2
2

− 12µ1 − µ2

)
+ 4µ1(µ1 + µ2)

]
+ O(m)

}
, z< 0, (4.33)
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pS =
exp

[
−
(

gc−2
2 ± 2

√
m(gc−2

2 − µ1)(gc−2
2 − µ2)+ O(m)

)
z
]

2(g2c−2
2 − N2

1)

×
{
∓
√

m

(
g

c2
2

− µ1

)(
g

c2
2

− µ2

)
− m

2(gc−2
2 − µ1)

[
g

c2
1

(
g

c2
2

− µ2

)
+ g

c2
2

(
3g

c2
2

− 6µ1 − µ2

)
+ 2µ1(µ1 + µ2)

]
+ O(m3/2)

}
, z> 0. (4.34)

Here, as in (4.25), the upper (lower) sign refers to the slow (fast) surface wave,
respectively. Compared to the equations (4.29)–(4.31) for pressure in the surface waves
away from the hybridization frequency ω = ω0 and the cutoff frequencies, equation
(4.34) predicts amplification of the pressure in the gas by the large factor O(m−1/2) in
the vicinity of the hybridization frequency. When the pressure and, consequently, the
horizontal displacement are amplified, the vertical displacement in the surface waves
remains a quantity O(m0) according to (3.3), (4.25), (4.33) and (4.34).

The fast and slow surface waves have rather similar surface amplitudes and
vertical profiles, and their interference leads to strong modulation of the AGW
field at frequencies close to the hybridization frequency ω = ω0. The spatial period
of the interference pattern, 2π/(qs − qf ), which is generally of the order of the
AGW wavelength, increases by a factor O(m−1/2) and becomes very large when
ω − ω0 = O(m) (see (4.23)). At ω = ω0 and r� m−1/2g−1c2

2, the pressure fields due to
the fast and slow surface waves interfere constructively in the liquid and destructively
in the gas, so that the pressure due to the surface waves in the gas is O(m) and is
not appreciably amplified compared to the pressure at frequencies away from ω = ω0.
Thus, the pressure amplification predicted by (4.34) is observed only at horizontal
separations r ∼ m−1/2g−1c2

2 and greater from the source.

5. Wave energy radiated by a point source
Consider a right cylinder {−H < z < H, 0 6 r < rC}, where H > −z0. The cylinder

contains the point source located in the liquid, and therefore the power flux through
the surface of the cylinder gives the total power JT radiated by the source. Generally,
both body waves (the continuous spectrum of the problem) and surface waves
(the discrete spectrum of the problem) contribute to the field and power flux at each
point of the surface of the cylinder. When rC→∞, the power flux through the lateral
surface {−H < z< H, r = rC} of the cylinder is solely due to the surface waves since
the contributions of the body waves attenuate as r−1

C or faster (Brekhovskikh & Godin
1999). When H→∞, the power flux through the bases {z = ±H, 0 6 r < rC} of the
cylinder is solely due to the propagating plane waves in the continuous spectrum, since
the evanescent waves and the surface waves attenuate exponentially with H. Thus, the
AGW power flux JG radiated into the gas can be calculated as the sum of the power
flux JG1 due to the propagating plane waves through the upper base of a sufficiently
large cylinder and the power flux JG2 due to the surface waves through the lateral
surface of the cylinder in the upper half-space. Similarly, the AGW power flux JL

radiated to infinity within the liquid equals the sum of the power flux JL1 due to
the propagating plane waves through the lower base of the cylinder and the power
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flux JL2 due to the surface waves through the lateral surface of the cylinder in the
lower half-space.

5.1. Power carried to infinity by body waves
According to (3.4), the propagating plane waves (i.e. plane waves with Im sj = 0) have
wavenumbers 0 6 q 6 q(j), where

q(j) = ω
cj

√
ω2 − µ2

j c2
j

ω2 − N2
j

(5.1)

and j = 1 and 2 for the gas and liquid, respectively. The pressure due to propagating
plane waves generated by a point source of volume velocity is given by (2.7), (4.3)
and (4.4), where F = 0 and integration is restricted to the interval −q(j) < q < q(j).
Using (3.2) and (3.3) and integrating the vertical component of the power flux density
I in (3.5) over the plane z = H, for the power flux to infinity due to the propagating
plane waves in the gas we find

JG1 = |A
2
0|ρ1(z0) (ω

2 − N2
1)

2

16πmω(ω2 − N2
2)

∫ q(2)

0

∣∣∣∣Ws1

∣∣∣∣2s2e2z0Im s1q dq. (5.2)

Derivation of (5.2) is simplified if one chooses in (4.4) the representation of the wave
field as an integral over plane rather than cylindrical waves.

Quite similarly, by integrating the vertical component of the power flux density I in
(3.5) over the plane z=−H, for the power flux to infinity due to the propagating plane
waves in the liquid we obtain

JL1 = |A
2
0|ρ1(z0)

16πω
(ω2 − N2

1)

∫ q(1)

0

q dq

s1
|1+ Ve−2is1z0 |2 . (5.3)

Note that the power fluxes due to the propagating plane waves through the planes
z = ±H are independent of H. Equations (5.2) and (5.3) show that plane (or
cylindrical) waves with different wavenumbers q make additive contributions to the
radiated power.

The boundary conditions (2.3) ensure that the normal component of the power flux
density I in (3.5) is continuous at the fluid–fluid interface. Since JG1 is independent
of H for all H > 0, the power flux can be calculated as the vertical power flux in the
liquid at z=−0. This leads to the expression

JG1 = |A
2
0|ρ1(z0)

16πω
(ω2 − N2

1)Re
∫ q(2)

0

q dq

s1
(1− |V |2+2i Im V)e2z0Im s1 . (5.4)

Equations (5.3) and (5.4) differ from the corresponding results for acoustic waves
(Godin 2006b) only by the presence of N2

1 , by the upper limits of integration, and
by the different dependences of s1,2 and V on q. While only propagating plane waves
in the liquid contribute to JL1, both propagating plane waves and those evanescent
plane waves in the liquid that become propagating plane waves in the gas after
refraction at the interface contribute to JG1. The contribution of the evanescent
waves is described by the term 2i Im V in brackets in the integrand in (5.4). The
frequency range at which the evanescent waves contribute to JG1 is determined from
the inequality q(1)(ω) < q(2)(ω). Aside from the common factor ρ1(z0) in the right-hand
side of (5.4), the contribution of the propagating plane waves in the liquid to JG1 is
independent of the source position, while the contribution of the evanescent waves
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FIGURE 4. (Colour online) Power fluxes carried from a point source by body waves.
(a) Power fluxes radiated to infinity within the gas, JG1 (1), and within the liquid, JL1 (2),
and the total power flux carried by body waves (3). (b) Numerical evaluation (solid line) and
analytic approximation (5.11) (dashed line) of the power flux into gas, JG1, in the vicinity
of its maximum. (c) Power radiated to infinity within the liquid at high frequencies. Source
depth |z0| = 500 m. All power fluxes are normalized by the power J(0)T radiated by the source
into unbounded liquid (see (5.5)). Dimensionless frequency f = ω/ω0, fmin = g1/2/ |z0|1/2 ω0,
fj = ω(j)c /ω0, where j = 2, 3 and ω(2)c and ω(3)c are cutoff frequencies of the modified surface
gravity wave.

decreases steadily with the source depth because of the factor exp(2z0 Im s1) in the
integrand. On the other hand, the power flux JL1 (5.3) to infinity in the liquid has a
non-monotonic dependence on z0 and wave frequency because of the interference of
the direct and interface-reflected propagating plane waves with the same q (figure 4).
The interference is described by the factor |1+ Ve−2is1z0 |2 in the integrand in (5.3).
Power flux JL1 has a deep minimum (figure 4a), which is caused by the destructive
interference of the direct and reflected waves that occurs in a wide range of q values at
ω ≈ (g/|z0|)1/2 (Fuks & Godin 2011).

In the particular case where the same fluid occupies half-spaces z < 0 and z > 0,
the reflection coefficient V = 0 and there are no surface waves. Then the total power
output of the point source equals JL1 + JG1, and for the power radiated by the source in
an unbounded liquid from (5.1), (5.3) and (5.4) we find

J(0)T =
ω|A2

0|ρ1(z0)

8π

√
ω2

c2
1

− µ2
1. (5.5)

Using (3.7) and (5.2), one obtains

JG1 = |A
2
0|mρ1(z0)

4πω
(ω2 − N2

1)
2
(ω2 − N2

2)

∫ q(2)

0
s2e2z0Im s1

q dq

|D2−|
. (5.6)
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As a function of source depth, JG1 tends to its minimum value J(0)G when z0→−∞;
J(0)G has the meaning of the total power radiated into the gas by a very deep source.
After some algebra, from (3.8), (5.5) and (5.6) we find

J(0)G =
|A2

0|mρ1(z0)

4πω
(ω2 − N2

1)
2
(ω2 − N2

2)

∫ q(1)

0
s2

q dq

|D2−|

= 2m(ω2 − N2
1)J

(0)
T [1+ O(m)]

(ω2 − g2c−2
2 )
√
ω2c−2

1 − µ2
1

×
[

S1

(
arctan

S2

S1
− arctan

S3

S1

)
−
(

N2
2

g
− µ2

)
×
(

arctan
gS2

N2
2 − gµ2

− arctan
gS3

N2
2 − gµ2

)]
, (5.7)

where S1 ≡ ω2/g − µ2, S2 ≡ s2(q = 0) =
√
ω2c−2

2 − µ2
2 and S3 ≡ s2(q = q(1)) =√

ω2c−2
2 − µ2

2 − (ω2c−2
1 − µ2

1)(ω
2 − N2

2)/(ω
2 − N2

1). The power flux J(0)G in (5.7) is
always non-negative and has no singularities at ω = (gµ2)

1/2 and ω = g/c2.
Generally, D− in (3.8) is O(m0), and therefore JG1 = O(m) for arbitrary z0. Then,

the power JG1 transmitted into the gas is small compared to the power J(0)T in (5.5)
radiated into an unbounded liquid, but is not necessarily small compared to the power
JL1 radiated to infinity in the liquid. A large increase in the power flux into the gas
is expected in special cases, where D− becomes small. The dominant term O(m0) in
D− vanishes when either s2 = O(m) and N2

2 = gµ2 (a situation that is impossible in
any isothermal perfect gas) or ω2 − gµ1 + igs1 = O(m) (which becomes possible at
q≈ ω2/g for frequencies ω2 ≈ gµ2). The latter possibility is investigated below.

Consider AGWs with frequencies close to (gµ2)
1/2. Then, |S1| � µ2. According to

(3.4), s2 in propagating plane waves in the gas takes values 0 6 s2 6 S2. When s2 is
small, the corresponding plane waves in the liquid (i.e. plane waves with the same q)
are evanescent: s1 = i|s1|, |s1| = ω2/g − µ1 + O(s2

2/S2). Neglecting terms of the fifth
and higher orders in the small parameters s2, S1 and m, from (3.4) and (3.8) we obtain

|D2
−| =

(ω2 − N2
1)

2

4 (µ2 − µ1)
2 (S

2
1 + s2

2){[2m(µ2 − µ1)− S1]2+s2
2} + O((|S1| + s2 + m)5). (5.8)

Equation (5.8) is consistent with the results of § 4.2, where it was shown that D− has
zeros at s2 =−iS1 (when S1 < 0) and at s2 ≈ i[S1 + 2m(µ1 − µ2)] (when 0< S1� µ2);
see (4.12) and (4.13). For the leading order of the asymptotic expansion of JG1 in
powers of S1 and m, from (5.6) and (5.8) we obtain

JG1= π−1|A2
0|mωρ1(z0) (µ2 − µ1)

2 exp(2z0(µ2 − µ1))Ψ (2m(µ2 − µ1)− S1), (5.9)

where

Ψ (χ)≡
∫ S2

0

s2
2 ds2

(S2
1 + s2

2)(χ
2 + s2

2)
= 1

S2
1 − χ 2

[
|S1| arctan

(
S2

|S1|
)
− |χ | arctan

(
S2

|χ |
)]

.

(5.10)
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Since S2 � max[|S1|, 2m(µ2 − µ1)], we replace arctangents in (5.10) with π/2 and
obtain the following approximation for the power flux JG1:

JG1 = |A2
0|ωρ1(z0)(µ2 − µ1)e2z0(µ2−µ1)

|2m(µ2 − µ1)+ µ2 − ω2/g| − |µ2 − ω2/g|
8[m(µ2 − µ1)+ µ2 − ω2/g] .

(5.11)

Equation (5.11) agrees with numerical evaluation of the integral (5.2) and describes
a high, narrow peak in the frequency dependence of the power flux JG1 into gas
(figure 4b). The peak has an unusual, flat top (plateau) at 0 6ω 2−gµ2 6 2mg(µ2−µ1),
with the maximum of the power flux exceeding the values of JG1 far from ω2 = gµ2

by a factor O(m−1). In terms of the cutoff frequencies of the modified gravity wave,
considered in § 4.2, the plateau is located at ω(2)c 6 ω 6 ω(3)c . The width of the plateau
and the frequency scale of the JG1 decrease away from the plateau are proportional
to m. The drastic increase at ω2 ≈ gµ2 of the power flux JG1 due to the propagating
plane waves in the gas occurs because the reflection and transmission coefficients (3.7)
acquire very large absolute values at q ≈ ω2/g. Note that the increase in JG1 is not
accompanied by an increase or any peculiarities of the power flux JL1 to infinity in
the liquid, since the plane waves in the liquid, unlike in the gas, are evanescent when
ω2 ≈ gµ2 and q≈ ω2/g.

5.2. Power fluxes in surface waves
Consider a power flux carried by an individual surface wave (4.26). By integrating
the flux of vector I in (3.5) through the cylindrical surface r = rC at 0 < z <∞ and
−∞ < z < 0, for the power fluxes JGS and JLS in the gas and in the liquid, we find
from (2.7), (4.26) and (4.27) that

JGS = |A
2
0|ρ1(z0)ω

4m|s2(qS)| (ω
2 − N2

1)
2 |pS(qS, z=+0) |2 exp[2z0|s1(qS)|], (5.12a)

JLS = |A
2
0|ρ1(z0)ω

4|s1(qS)| (ω2 − N2
1)

2 |pS(qS, z=−0) |2 exp[2z0|s1(qS)|]. (5.12b)

In the derivation of (5.12a) and (5.12b) we took into account that the radial
component of particle displacement equals (ω2ρ)

−1
∂p/∂r according to (2.1) and that

Im [(H(1)
0 (u))

∗
dH(1)

0 (u)/du] = 2/πu (Abramowitz & Stegun 1965, p. 360). The power
fluxes are independent of the radius rC of the cylindrical surface. The distribution of
the power flux in the surface wave between the gas and liquid half-spaces is described
by the concise equation

JGS

JLS
= |s1(qS)|

m|s2(qS)|
∣∣∣∣pS(qS, z=+0)
pS(qS, z=−0)

∣∣∣∣2. (5.13)

General expressions for the surface wave amplitude |pS(qS, z = ±0)| on the gas and
liquid sides of the interface are given by (4.27) and (4.28).

In the particular case of a modified surface gravity wave, at frequencies ω(1)c 6 ω 6
ω(2)c from (4.29), (5.12a), (5.12b) and (5.13) we find

JGg = |A
2
0|ρ1(z0)ωm |s1|2 |s2|
4 (m|s1| + |s2|)2

e2z0|s1|, JLg = JGg
|s2|

m|s1| . (5.14)

This is an exact result. Here and below, the first subscript specifies, as before, the
half-space, where the energy flux is considered, while the second subscript specifies
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FIGURE 5. (Colour online) Power fluxes carried in liquid, JLg (1), and gas, JGg (2), half-
spaces by the modified surface gravity wave. Power flux JG1 (3) radiated into the gas in body
waves is shown for comparison. Source depth |z0| = 500 m. All power fluxes are normalized
by the power J(0)T radiated by the source into unbounded liquid. Dimensionless frequency
f = ω/ω0, fj = ω(j)c /ω0, where j= 2, 3 and ω(2)c and ω(3)c are cutoff frequencies of the modified
surface gravity wave.

the surface wave (g and l stand for modified gravity and Lamb waves, respectively). At
frequencies ω > ω(3)c , from (4.30), (5.12a), (5.12b) and (5.13) we find asymptotically,
to the leading order in m, that the power fluxes are still described by (5.14), if |s2| in
(5.14) is replaced by

|s̃2| = (ω2 − N2
2)
−2
(ω2 − g2/c2

2)
2 |s2|. (5.15)

Equations (5.14) and (5.15) show that the power fluxes in the modified gravity wave
vanish, as expected, at the cutoff frequencies ω(j)c , where j = 1, 2, 3, since s1 = 0
at ω = ω(1)c and s2 = 0 at ω = ω(2)c and ω = ω(3)c . The power flux JLg carried by the
surface wave in the liquid half-space is O(m0). Depending on the sound speed in the
liquid and the source depth −z0, JLg can far exceed the power output J(0)T (5.5) of
the source in the unbounded liquid (figure 5). Except for the vicinities of the cutoff
frequencies ω(2,3)c , the power flux JGg carried by the surface wave in the gas half-space
is O(m) and is much smaller than JLg. However, when either 0 < ω(2)c − ω = O(m)
or 0 < ω − ω(3)c = O(m), JGg rapidly increases and becomes a quantity O(m0); when
|s2| < m|s1|, more energy is transported by the surface wave in the gas than in the
liquid (figure 5).

In the case of the modified Lamb wave, at frequencies below its cutoff frequency
ω(4)c in (4.21), from (4.31), (5.12a), (5.12b) and (5.13) we find asymptotically, to the
leading order in m, that

JGl = |A
2
0|ρ1(z0)ω (ω

2 − N2
1)

2 m|s2|
16 (ω2 − gµ1 − g|s1|)2

e2z0|s1|, JLl = JGl
m|s2| (ω2 − N2

1)
2

|s1| (ω2 − gµ1 − g|s1|)2
.

(5.16)

Equation (5.16) as well as (5.15) do not apply in the vicinity of the hybridization
frequency ω = g/c2. According to (5.16), the power flux carried by the modified Lamb
wave vanishes at ω = ω(4)c , as expected. Away from the cutoff frequency, the power
flux JGl in the gas is O(m), while the power flux JLl in the liquid is O(m2) and is much
smaller than JGl (figure 6). Also JLl is much smaller than the power flux in the liquid
in the modified gravity wave provided the product |z0s1| is not too large in the latter.
The relative significance of the two surface waves is reversed at high frequencies,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

33
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.336


334 O. A. Godin and I. M. Fuks

1

2

4

3

.

10–6

10–1

10–11

1 2 5 10 20 50 100 200

FIGURE 6. (Colour online) Power fluxes carried in the liquid, JLl (1) and JLg (4), and in the
gas, JGl (2) and JGg (3), by the modified Lamb (1 and 2) and modified surface gravity (3 and 4)
waves. Source depth |z0| = 500 m. All power fluxes are normalized by the power J(0)T radiated
by the source into unbounded liquid. Dimensionless frequency f = ω/ω0, f4 = ω(4)c /ω0, where
ω(4)c is the cutoff frequency of the modified Lamb wave.

where the wavelength of the modified gravity wave is much smaller than that of the
modified Lamb wave and is of the order of or smaller than |z0|. Then, JGl� JGg due to
the rapid attenuation of the gravity wave with depth (figure 6).

The power fluxes carried by the two surface waves and their distribution between
the gas and liquid half-spaces become rather similar in the vicinity ω − ω0 = O(m) of
the hybridization frequency. At ω = ω0, from (4.25), (4.33), (4.34), (5.12a) and (5.12b)
we find

JGS = J̃

[
1± m1/2

(
g

c2
2

− µ1

)−3/2( g

c2
2

− µ2

)1/2( g

c2
2

− N2
1

g

)]
[1+ O(m)], (5.17)

JLS = J̃

[
1± m1/2

(
g

c2
2

− µ1

)1/2( g

c2
2

− µ2

)−1/2
(

2− g(gc−2
2 − µ2)(c

−2
2 − c−2

1 )

2 (gc−2
2 − µ1)

2

)]
×[1+ O(m)]. (5.18)

Here

J̃ = |A
2
0|ρ1(z0)g

16c2

(
g

c2
2

− µ1

)
exp

[
2z0

(
g

c2
2

− µ1 ±
√

m

(
g

c2
2

− µ1

)(
g

c2
2

− µ2

))]
(5.19)

and, as in (4.25), the upper (lower) sign refers to the slow (fast) surface wave,
respectively. Note that the power fluxes in the gas far exceed their values away from
the hybridization frequency and remain finite in the limit m→ 0 (figure 7).

The mode orthogonality relation (4.32) ensures that the total power flux carried from
the source by waves in the discrete spectrum of the field is the sum of power fluxes
carried by the individual surface waves. However, the power fluxes carried by the
two surface waves in the gas (or liquid) half-space are not additive. By representing
the discrete spectrum of the field as a sum of the fields of two surface waves (4.26)
and integrating the flux of vector I in (3.5) through the cylindrical surface r = rC at
0< z<∞ and −∞< z< 0, for the power fluxes JG2 and JL2 in the discrete spectrum
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FIGURE 7. (Colour online) Power fluxes carried by interface waves (a) in the gas, (b) in
the liquid, and (c) in the entire medium. Individual curves refer to power fluxes in the slow
surface wave (1), in the fast surface wave (2), total power radiated by the source into surface
waves (3), and maximum (4) and minimum (5) (with respect to rC) power fluxes through the
cylindrical surface r = rC at 0 < z <∞ and −∞ < z < 0. Source depth |z0| = 500 m. All
power fluxes are normalized by the power J(0)T radiated by the source into unbounded liquid.
Dimensionless frequency f = ω/ω0.

in the gas and in the liquid, we find from (2.7), (4.26) and (4.27) that

JG2(rC)= JGl + JGg − Jin cos(qs − qf )r, JL2(rC)= JLl + JLg + Jin cos(qs − qf )r,
(5.20)

where

Jin = 2(qs + qf )

|s2(qs)| + |s2(qf )|

√
|s2(qs)s2(qf )|

qsqf
JGgJGl

= 2(qs + qf )

|s1(qs)| + |s1(qf )|

√
|s1(qs)s1(qf )|

qsqf
JLgJLl. (5.21)

While the total power flux through the cylindrical surface {r = rC, − ∞ < z <∞}
equals JG2(rC) + JL2(rC) = JGl + JGg + JLl + JLg and is independent of rC, the power
fluxes in the gas and the liquid half-spaces are periodic functions of rC. Variations
of JG2 and JL2 with range reflect the periodic power flux through the interface,
which results from the interference of the surface waves and does not happen at
frequencies ω(2)c < ω < ω(3)c and ω > ω(4)c , when only one surface wave is supported by
the interface.

The modulation of the power fluxes in the gas and liquid half-spaces by
the interference of the surface waves is most pronounced at frequencies close
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to the hybridization frequency, where the power fluxes in the individual surface
waves become very close. According to (4.25), (5.17), (5.18), (5.20) and (5.21),
max JG2 = O(m0), min JG2 = O(m1/2), max JL2 = O(m0) and min JL2 = O(m1/2) at
ω = ω0. Note that, with the increasing radius of the cylindrical surface, the
power flux in the gas half-space first reaches values of JG2 = O(m0) at rC ∼
m−1/2 (gc−2

2 − µ1)
−1/2

(gc−2
2 − µ2)

−1/2
; JG2 = O(m1/2) and tends to zero when m→ 0,

for all rC = O(m0). This could have been anticipated since the power flux in the gas
should vanish in the limit m→ 0 for all finite rC.

6. Discussion
An interface does much more to an AGW radiation by a compact source than

simply distribute the power emitted by the source between two fluids. While the power
output in an unbounded liquid, J(0)T in (5.5), provides a suitable normalization for
AGW power fluxes, it should be emphasized that, in the presence of a gas–liquid
interface, the power output of the source as well as the power fluxes radiated to
infinity in the gas and in the liquid each can be either much smaller or much larger
than J(0)T . In particular, the power fluxes in the surface waves tend to zero when
the source depth |z0| → ∞ but at moderate |z0| far exceed J(0)T in a broad range of
frequencies (figures 5–7). (This is similar to the role that surface waves play in the
case of a source of elastic waves located in a solid half-space below a gas–solid
interface (Godin 2011).) That neither the excitation of surface waves nor the AGW
radiation into the gas half-space are limited by the power emitted by the same source
in an unbounded liquid becomes evident if one considers the limiting case of an
incompressible, homogeneous liquid. All monochromatic plane waves in such a liquid
are inhomogeneous and do not carry energy away from the source. When c1→∞ and
µ1→ 0, one obtains q(1) = 0 and J(0)T = 0 from (5.1) and (5.5), but the amplitudes of
the surface waves as well as the power flux JG1 (5.2) in the body waves into the gas
remain finite.

When the source approaches the interface, the transmitted power increases and can
exceed by several orders of magnitude the power J(0)G in (5.7) radiated into the gas
half-space by a very deep source (figure 8). This is similar to the previously studied
anomalous transparency of gas–liquid interfaces for low-frequency sound (Godin
2006b, 2007, 2008b), where the transmitted power increases dramatically when a
localized sound source approaches the interface to within a fraction of the wavelength
in the gas. As for sound, the AGW transmission into the gas increases with decreasing
source depth due to the contribution of plane waves that are inhomogeneous in
the liquid but become homogeneous plane waves in the gas upon refraction at
the interface. The horizontal wavenumbers q of these waves satisfy the inequality
q(1) < q< q(2); see (5.1). Equation (5.6) shows that their contribution to the power flux
into the gas far exceeds the contribution of the homogeneous plane waves in the liquid,
for which 0 < q < q(1), when |z0| Im s1(q(2)) = O(1) and q(1) � q(2), as is usually the
case at gas–liquid interfaces.

Depending on the wave frequency and the parameters of the fluids, a large and
even dominant contribution to the power flux through the interface is due to the
excitation of the surface waves (figure 8b). This mechanism of AGW transmission
has no counterpart in the acoustic problem as long as the interface is flat. This
contribution is sensitive to the source depth, especially at higher frequencies, and
vanishes when |z0| → ∞. The power fluxes in a surface wave tend to zero when
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FIGURE 8. (Colour online) Power fluxes (a) radiated by a point source in the liquid and
(b) transmitted into the gas. Individual curves refer to the power flux in body waves (1), the
total power radiated by the source into surface waves (2), and maximum (3) and minimum (4)
(with respect to rC) power fluxes in surface waves through the cylindrical surface r = rC at
0 < z <∞. Source depth: |z0| = 100 m (solid lines) and |z0| = 500 m (dashed lines). For
comparison, 10J(0)G , i.e. ten times the power radiated into gas by a very deep source, is also
shown (5). All power fluxes are normalized by the power J(0)T radiated by the source into
unbounded liquid. Dimensionless frequency f = ω/ω0.

the wave frequency approaches a cutoff frequency of the surface wave. The cutoff
frequencies of the modified surface gravity wave ω = ω(j)c , j = 1, 2, 3, are given by
(4.11) and (4.16). At the water–air interface with parameters given in § 3, ω(1)c and
ω(2)c correspond to ∼1 mHz (wave period ∼18 min) and 3.95 mHz (wave period
253 s), while ω(3)c /ω

(2)
c − 1 ≈ 1.3 × 10−3. The modified Lamb wave exists at ω < ω(4)c ,

where the cutoff frequency ω(4)c in (4.21) corresponds to 1.12 Hz. At ω > ω(4)c , the
contribution of the surface waves to the AGW transmission is negligible.

For acoustic waves, an increase of the power flux into the gas with decreasing
source depth is accompanied by a destructive interference of direct and surface-
reflected waves at z < z0 and by a resulting near-cancellation of the sound field in
the liquid (Godin 2006b, 2007; McDonald & Calvo 2007). While the acoustic pressure
in the liquid is O(m0) for finite z0, at z0 → 0 it becomes a quantity O(m). On the
contrary, the excitation of the surface waves by a compact source ensures that no such
cancellation of the AGW field occurs. In terms of the plane-wave reflection coefficient
V in (3.7), the lack of AGW field cancellation in the liquid follows from the fact that
limm→0V 6= −1 when g 6= 0, which precludes the destructive interference of direct and
reflected waves at z0→ 0.

The most remarkable features of AGW transmission through gas–liquid interfaces
are the resonance-like enhancements of the transmission that occur at ω ≈ ω(2)c ≡
(gµ2)

1/2 and ω ≈ ω0 ≡ g/c2 (figure 8). To our knowledge, these features have not
previously been studied or identified.

A very strong, by a factor O(m–1), amplification of the power flux into the gas
occurs in and around the narrow interval of frequencies ω(2)c < ω < ω(3)c between the
cutoff frequencies ω(2)c in (4.11) and ω(3)c in (4.16) of the modified surface gravity
wave. As shown in § 4.2, this surface wave exists at ω < ω(2)c and ω > ω(3)c . The
field of the modified surface gravity wave undergoes a qualitative transformation
when the frequency increases from ω < ω(2)c to ω > ω(3)c : in the gas half-space, the
particle displacement exponentially increases with height at the lower frequencies
and exponentially decreases with height at the higher frequencies. The bandwidth of
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the ‘resonance’ in the AGW transmission is ω(2)c O(m). For the air–water interface,
the amplification occurs around 4.0 mHz frequency (wave period of 250 s) and the
maximum value of the power flux into air exceeds 22J(0)T for a source at a depth of
|z0| = 500 m (figures 4 and 5). Aside from the relatively small contribution of the
modified Lamb wave (∼0.3J(0)T for the air–water interface when |z0| 6 500 m), the
power flux into gas at ω(2)c < ω < ω(3)c is due to the body waves, while at ω < ω(2)c and
ω > ω(3)c the modified gravity wave makes an appreciable contribution (figure 5).

The sharp increase in amplitude and power flux in the refracted body waves in
the gas can be viewed as a direct consequence of the proximity of the two cutoff
frequencies of a surface wave. As shown in § 4.2, in the complex q plane (or, more
precisely, on the Riemann surface (Brekhovskikh & Godin 1999)), the denominator
of the plane-wave transmission coefficient W in (3.7) has two distinct roots, which
are defined by q = ω2/g and (4.12). The roots are located on the physical sheet
(Im s2 > 0) of the Riemann surface when ω < ω(2)c and ω > ω(3)c , respectively. The
roots are poles of the integrand in the integral representation (4.3) and (4.4) of the
field due to a point source. When located on the physical sheet, the roots correspond
to a surface wave. When ω(2)c < ω < ω(3)c , the poles are on the unphysical sheet
(Im s2 < 0) of the Riemann surface. As long as m� 1, the poles are close to each
other, to the branch cut Im s2(q) = 0 that connects the physical and unphysical sheets,
and to the real q axis. This translates into exceptionally large values of |W| and
amplitudes of the refracted plane waves with positive but small values of s2.

Similar quasi-resonance phenomena are expected to take place in open waveguides
and other wave propagation problems where the cutoff frequencies of two normal
modes approach each other.

As at ω ≈ ω(2)c , we again encounter a close approach of two poles, but of a
more familiar kind, when ω ≈ ω0 ≡ g/c2. The resonance-like amplification of the
AGW transmission at ω ≈ ω0 does not involve a continuous spectrum of the problem
(i.e. body waves) (figure 8). The dispersion curves of the Lamb and surface gravity
waves, which exist in the limit m→ 0, i.e. in a gas half-space with a rigid boundary
and in a liquid half-space with a free surface, intersect at ω = ω0. For small but finite
values of the density ratio m, the dispersion curves of the modified Lamb and surface
gravity waves split and recombine (figure 3), with the difference between the phase
speeds of the resulting fast and slow surface waves being c2O(m1/2) at ω ≈ ω0. The
amplitudes of the two surface waves also become very close at ω ≈ ω0. This leads
to a strong interference of the surface waves and deep oscillations with range in the
power fluxes carried by the surface waves in the gas and liquid (figure 7a,b). At
ω ≈ ω0, a source radiates nearly the same amount of energy into the fast and slow
surface waves, and the power fluxes carried by each surface wave are almost equally
partitioned between the gas and the liquid half-spaces. In a narrow frequency band of
width ω0O(m−1/2) around ω0, the maximum power transmitted into the gas is amplified
by a factor O(m−1) compared to its value at frequencies away from ω0. In particular,
for the air–water interface, the maximum transmitted power exceeds 26J(0)T for a source
at a depth of |z0| = 500 m (figures 7a and 8b).

7. Conclusion
Acoustic-gravity waves generated by sources within a liquid can be efficiently

transmitted into a gas despite the large contrast in mass density and, possibly, sound
speed across the gas–liquid interface. In addition to the refraction of body waves
at the interface, the generation of surface waves plays a crucial role in the AGW
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transmission. For air–water interfaces, the transmitted power can exceed the total
power emitted by the same point source in unbounded water by an order of magnitude
or more, depending on wave frequency. The simultaneous account of gravity and
fluid compressibility leads to a richer and more complex wave physics and suggests
additional mechanisms of atmospheric manifestations of underwater perturbations.

The ratio of gas and liquid densities at the interface is the small parameter
that enables a systematic asymptotic analysis of the AGW transmission problem.
The results reported here refer to a highly idealized environmental model, where
a plane interface separates gas and liquid half-spaces with different but constant
sound speeds and buoyancy frequencies. While the physical effects considered in this
paper are expected to control the AGW transmission through the air–sea interface,
further research is necessary to take into account finite ocean depth, generic density
and sound-speed stratifications, wind and other properties of the real ocean and
atmosphere.
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