
TLP 10 (3): 291–329, 2010. C© Cambridge University Press 2010

doi:10.1017/S1471068410000104

291

Querying incomplete data
over extended ER schemata

ANDREA CALÌ

Computing Laboratory, University of Oxford, Eagle House, Walton Well Road, Oxford OX2 6ED, UK

(e-mail: andrea.cali@comlab.ox.ac.uk)

DAVIDE MARTINENGHI

Dipartimento di Elettronica e Informazione, Politecnico di Milano

Piazza Leonardo 32, 20133 Milano, Italy

(e-mail: davide.martinenghi@polimi.it)

submitted 24 April 2009; revised 15 November 2009; accepted 1 January 2010

Abstract

Since Chen’s Entity-Relationship (ER) model, conceptual modeling has been playing a

fundamental role in relational data design. In this paper we consider an extended ER

(EER) model enriched with cardinality constraints, disjointness assertions, and is a relations

among both entities and relationships. In this setting, we consider the case of incomplete

data, which is likely to occur, for instance, when data from different sources are integrated. In

such a context, we address the problem of providing correct answers to conjunctive queries

by reasoning on the schema. Based on previous results about decidability of the problem,

we provide a query answering algorithm that performs rewriting of the initial query into

a recursive Datalog query encoding the information about the schema. We finally show

extensions to more general settings.

KEYWORDS: Extended ER model, dependencies, chase, incomplete data

1 Introduction

Conceptual data models, and, in particular, the Entity-Relationship (ER) model

(Chen 1976), have long been playing a fundamental role in database design. With

the emerging trends in data exchange, information integration, semantic web, and

web information systems, the need for dealing with inconsistent and incomplete data

has arisen. In this context, it is important to provide correct answers to queries posed

over inconsistent and incomplete data (Arenas et al. 1999). It is worth noticing here

that inconsistency and incompleteness of data is considered with respect to a set

of constraints (a.k.a. data dependencies). Such constraints, rather than expressing

properties that hold on the data, are used to represent properties of the domain of

interest.

We address the problem of answering queries over incomplete data, where queries

are conjunctive queries expressed over particular relational schemata, called

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

292 A. Cal̀ı and D. Martinenghi

conceptual schemata, that are derived from conceptual models. As for the conceptual

models, we follow Chen (1976), and we adopt an extension of the well-known

ER model, which we call Extended Entity-Relationship (EER) Model, along with

Thalheim (2000) and the many variants of the classical ER Model. Such an extension

is widely adopted in practice and is able to represent classes of objects with their

attributes, relationships among classes, cardinality constraints in the participation

of entities in relationships, and is a relations among both classes and relationships.

We provide a formal semantics to our conceptual model in terms of the relational

database model, similarly to what is done in Markowitz and Makowsky (1990).

This allows us to formulate conjunctive queries over EER schemata. We do this

by providing a translation from EER into relational, whose purpose is to obtain

a precise characterization of the relational dependencies that are derived from an

EER schema in a design process.

In the presence of data that are incomplete w.r.t. to a set of constraints, we need

to reason about the dependencies in order to provide certain answers; we do this in

a model-theoretic fashion, following the approach of Arenas et al. (1999) and Calı̀

et al. (2001). Intuitively, we start from a given, incomplete database for the relational

schema associated with the EER schema; such data, together with the constraints,

are interpreted as a logical theory, with a (possibly infinite) set of models, also called

solutions in the literature. We adopt the so-called sound semantics (see, e.g., Calı̀

et al. 2003a): a database is a model if it is a superset of the initial data, and satisfies

the constraints. Given a query, the certain answers are those that are true in all

models.

In this paper we address the problem of answering conjunctive queries over

schemata derived from EER schemata in the presence of incomplete data with

respect to the schema under the sound semantics. We present an algorithm, based

on encoding the information about the conceptual schema and the instance into a

rewriting of the conjunctive query in Datalog, which computes the certain answers to

queries posed in such a context. The algorithm reasons on the integrity constraints

and the query.

The problem at hand can be sketchily stated as follows:

• We have a conceptual EER schema. From it, a relational schema S is

obtained through a translation mechanism that also produces a set of integrity

constraints Σ consisting of key and inclusion dependencies.

• We also have an instance D for S . D may be inconsistent with respect to Σ

and incomplete.

• Consider all the S-instances that extend D and satisfy Σ. The certain answers

to a conjunctive query Q over S are those that are true of all those instances.

• The problem is how to compute the certain answers to Q.

• The solution we propose is to translate Q into a new query Q∗ and pose it to

D. The answers to Q∗ are the certain answers to Q.

More specifically, our contribution is summarized as follows:

(a) We define a class of relational dependencies, which we call conceptual dependen-

cies (CDs) that is able to represent EER schemata; our class is constituted by

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 293

a subset of the well-known key dependencies (KDs) and inclusion dependencies

(IDs). A broad class of KDs and IDs for which the query answering problem

under incomplete data is known to be decidable is the class of KDs (at

most one per relational predicate) and nonkey-conflicting inclusion dependences

(NKCIDs), which was introduced in Calı̀ et al. (2003a). The problem of

answering incomplete data under general KDs and IDs is known to be

undecidable (Calı̀ et al. 2003a).

(b) We tackle the problem of query answering under CDs in the presence of

incomplete information, under the sound semantics. After reviewing how, also

under CDs, the chase is a useful tool for query answering, we solve the problem

by means of query rewriting, in the same fashion as in Calı̀ et al. (2003b), where

a rewriting for KDs and NKCIDs is presented. We show an algorithm that,

given a query, rewrites it into another one that encodes relevant information

about the relational constraints, so that the evaluation of the rewritten query

over the initial incomplete data returns the certain answers. The rewritten

query is in (positive) Datalog.

Note that the chase (which we, however, do not construct in our query answering

technique) is a conceptual tool whose construction amounts to repairing violations

of IDs and KDs, the former by adding tuples, and the latter by merging tuples.

However, repairing is not always possible, and in such cases the chase does not exist

and query answering becomes trivial. In such cases the repair would require tuple

deletions: this is captured by semantics such as those in Bertossi and Bravo (2005)

and (Calı̀ et al. 2003b).

It is important to notice that the class of CDs does not fall into the class of

KDs and NKCIDs. A strong indication (though there is no formal proof) of the

decidability, which we show in this paper, of the query answering problem under

CDs (and under the sound semantics) is found in Calvanese et al. (1998), where it is

shown that query containment in a description logic, capable of representing EER

schemata, is decidable. However, the technique of Calvanese et al. (1998) does not

give any indication on the algorithm that may be used to check containment (or, in

our case, to answer queries). Differently, our technique gives a direct tool for query

answering that, under certain conditions on the data, provides a low computational

complexity with respect to the size of the data.

This paper extends the work in Calı̀ (2007) and is organized as follows. We give

necessary preliminaries in Section 2; we introduce the EER model in Section 3; in

Section 4 we show how to answer queries with the chase, a formal tool to deal with

dependencies; the query rewriting technique is described in 5, together with exten-

sions to more general cases. Section 6 concludes the paper, discussing related works.

2 Preliminaries and notation

In this section we give a formal definition of the relational data model, database

constraints, conjunctive queries and answers to queries on incomplete data.

In the relational data model (Codd 1970), predicate symbols are used to denote

the relations in the database, whereas constant symbols denote the objects and

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

294 A. Cal̀ı and D. Martinenghi

the values stored in relations. We assume to have two distinct, fixed, and infinite

alphabets Γf and Γ of fresh constants and nonfresh constants respectively, and we

consider only databases over Γ ∪ Γf . We note that fresh constants are introduced

as a technical construct that allows us to build some representatives of databases,

as will be explained when introducing the chase. In particular, fresh constants are

similar to labeled nulls (Fagin et al. 2005) in that they allow representing existentially

quantified variables and will thus later be associated with Skolem terms. Indeed, fresh

constants play a role analogous to that of Skolem terms. For nonfresh constants,

which represent the proper constants of the universe, we adopt the so-called unique

name assumption, i.e., we assume that different nonfresh constants denote different

objects. Instead, fresh constants can be thought of as place holders for nonfresh

constants. Therefore, distinct fresh constants can also represent the same object.

Furthermore, we shall make use of variables from a set ΓV .

A relational schema R consists of an alphabet of predicate (or relation) symbols,

each with an associated arity denoting the number of arguments of the predicate (or

attributes of the relation). When a relation symbol r has arity n, it can be denoted

by r/n; in general, the arity of r can also be indicated by arity(r).

A relational database (or simply database) D over a schema R is a set of relations

with constants as atomic values. We have one relation of arity n for each predicate

symbol of arity n in the alphabet R. The relation rD in D corresponding to the

predicate symbol r consists of a set of tuples of constants, which are the tuples

satisfying the predicate r in D.

When, given a database D for a schema R, a tuple t = (c1, . . . , cn) is in rD ,

where r ∈ R, we say that the fact r(c1, . . . , cn) holds in D. Henceforth, we will

interchangeably use the notion of fact and tuple.

Integrity constraints. Integrity constraints are assertions on the symbols of the

alphabet R that are intended to be satisfied in every database for the schema. The

notion of satisfaction depends on the type of constraints defined over the schema.

The database constraints of interest are IDs and KDs (see, e.g., Abiteboul et al.

1995). We denote with over-lined uppercase letters (e.g., X̄) both sequences and

sets of attributes of relations, and enclose them between vertical bars to denote the

number of attributes in the set or sequence (e.g., |X̄|). Given a tuple t in relation

rD , i.e., a fact r(t) in a database D for a schema R, and a sequence of attributes X̄

of r, we denote with t[X̄] the projection (see e.g. Abiteboul et al. 1995) of t on the

attributes in X̄.

(i) Inclusion dependencies (IDs). An ID σI between relational predicates r1 and r2
is denoted by r1[X̄] ⊆ r2[Ȳ]. Given a database D with values only in Γ, such

a constraint is satisfied in D, written D |= σI , iff, for each tuple t1 in rD1 , there

exists a tuple t2 in rD2 such that t1[X̄] = t2[Ȳ]. An ID is said to be a full-width

ID if every attribute of r1 occurs in X̄ exactly once and every attribute of r2
occurs in Ȳ exactly once.

(ii) Key dependencies (KDs). A KD σK over a relational predicate r with arity(r) �
2 is denoted by key(r) = K̄ , where K̄ is a nonempty subset of the attributes

of r. Given a database D with values only in Γ, such a constraint is satisfied

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 295

in D, written D |= σK , iff, for each t1, t2 ∈ rD such that t1 �= t2, we have

t1[K̄
∗] �= t2[K̄

∗], where K̄∗ is any sequence of |K̄| attributes where each

attribute in K̄ occurs exactly once. Observe that KDs are a special case of

functional dependencies (FDs) (Abiteboul et al. 1995). Note also that we

restricted our definition to predicates with arity at least 2, since for predicates

of smaller arity keys would be always satisfied (under set semantics).

Above, we specified when dependencies are satisfied in databases with values only

in Γ. For databases with values in Γ ∪ Γf , we define satisfaction of dependencies

as follows. Given a (key or inclusion) dependency σ and a database D with values

in Γ ∪ Γf , let B be a database obtained from D by replacing every distinct fresh

constant with a distinct nonfresh constant that does not appear elsewhere in D. We

have that σ is satisfied in D, written D |= σ, iff B |= σ.

A database D over a schema R is said to satisfy a set of integrity constraints Σ

expressed over R, written D |= Σ, if every constraint in Σ is satisfied by D.

We now briefly introduce the basics of logic programming and Datalog and refer

to Lloyd (1987) for further details.

Logic programs. Logic programs are formulated in a language L of predicates

and functions of nonnegative arity; 0-ary functions are constants. A language L is

function-free if it contains no functions of arity greater than 0. A term is inductively

defined as follows: each variable X and each constant c is a term, and if f is an

n-ary function symbol and t1, . . . , tn are terms, then f(t1, . . . , tn) is a term. A term is

ground if no variable occurs in it. The Herbrand universe of L, denoted UL, is the

set of all ground terms that can be formed with the functions and constants in L.

An atom is a formula p(t1, . . . , tn), where p is a predicate symbol of arity n and each

ti is a term; the atom is ground if all ti are ground. The Herbrand base of a language

L, denoted BL, is the set of all ground atoms that can be formed with predicates

from L and terms from UL. A definite clause is a rule of the form

A0 ← A1, . . . , Am (m � 0),

where each Ai is an atom. The parts on the left and on the right of “←” are called

the head and the body of the rule, respectively. For a rule ρ, we also denote its head

by head (ρ), and its body by body(ρ). A rule whose body is empty (m = 0) and whose

head is ground is called a fact. A logic program is a set of definite clauses. A clause

or logic program is ground if it contains no variables. A clause is range-restricted if

every variable in it also occurs in its body. A program is range-restricted if all its

clauses are.

Each logic program Π is associated with the language L(Π) consisting of the

predicates, functions, and constants occurring in Π. If no constant occurs in Π, we

add some constant to L(Π) to have a nonempty domain. We simply write UΠ and

BΠ for UL(Π) and BL(Π), respectively. A Herbrand interpretation of a logic program

Π is any subset I ⊆ BΠ of its Herbrand base. Intuitively, the atoms in I are true,

and all others are false. A Herbrand model of Π is a Herbrand interpretation of Π

such that for each rule A0 ← A1, . . . , Am in Π, this interpretation satisfies the formula

∀X1 . . . ∀Xn(A1 ∧ · · · ∧ Am)→ A0, where X1, . . . , Xn are all the variables in the rule.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

296 A. Cal̀ı and D. Martinenghi

Let Π be a logic program; the immediate consequence operator TΠ on Π is a

function from the set of all Herbrand interpretations of Π into itself, defined as

TΠ(I) = {A0 ∈ BΠ | there is (A0 ← A1, . . . , Am) in Π and {A1, . . . , Am} ⊆ I}.

The sequence T 0
Π = ∅, T i+1

Π = TΠ(T i
Π), i � 0 always admits a limit, denoted by T∞Π ,

which coincides with the least Herbrand model of Π, i.e., the unique minimal model

of Π (a model being minimal if no proper subset thereof is also a model). For a set

of (ground or nonground) clauses Π, the immediate consequence operator is defined

as TΠ = Tgr(Π), where gr(Π) is the set of all clauses obtained from any clause in

Π by substituting elements of UΠ for the variables. A ground atom A is called a

consequence of a set Π of clauses if A ∈ T∞Π , and we write Π |= A.

An n-ary query Πq over a schema R consists of an n-ary predicate q (called query

predicate) and a finite set Π of definite clauses such that

(1) q is the head predicate for at least one rule in Π;

(2) the predicate symbols of the head atoms are not relation symbols in R;

(3) the predicate symbols of the body atoms are either relation symbols in R or

one of the head predicates of a rule in Π.

The evaluation, called answer, of a query Πq over a database D (which is a set of

facts), written Πq(D), is the restriction to q over the least Herbrand model M of

the logic program Π ∪ D, i.e., the largest subset of M containing only atoms with

predicate q. It will be made clear by the context whether by Πq(D) we refer to the

set of facts or to the set of tuples in the answer.

A Datalog clause is a range-restricted definite clause whose terms are either

variables or constants (no function symbols). A Datalog program is a set of Datalog

clauses. The notion of query given above also applies to Datalog, since Datalog

programs are a specialization of logic programs.

Conjunctive queries. In general, a relational query is a formula that specifies a set

of data to be retrieved from a database. In the following we will refer to the class

of conjunctive queries. A conjunctive query (CQ) of arity n over a schema R is a

Datalog query Πq such that Π consists of a single rule in which

(1) the head is of the form q(X̄), where X̄ is a sequence of distinct variables;

(2) the constants occurring in the body are from Γ;

(3) the predicate symbols of the atoms in the body are in R (q does not occur

in the body).

The variables occurring in the head of a conjunctive query are called distinguished

variables, the others variables occurring in the body are the nondistinguished variables.

For simplicity, the answer to a conjunctive query q over a database D for R is more

compactly denoted as q(D) (rather than Πq(D)).

The answers we are mainly interested in are those that contain no fresh constants,

because fresh constants merely represent existentially qualintied variables, in the

same way as Skolem terms and labeled nulls (Fagin et al. 2005). Therefore we

introduce the notation q[Γ](D) for a CQ q to indicate the largest subset of q(D)

whose tuples contain no fresh constants.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 297

Homomorphism. A mapping from one set of symbols, S1, to another set of symbols,

S2, is a function μ : S1 → S2 defined as follows: (i) ∅ (empty mapping) is a mapping;

(ii) if μ0 is a mapping, then μ0∪{X → Y }, where X ∈ S1 and Y ∈ S2 is a mapping if

μ0 does not already contain some X → Y ′ with Y �= Y ′. If X → Y is in a mapping

μ, we write μ(X) = Y . A homomorphism from a set of atoms D1 to another set of

atoms D2, both over the same relational schema R, is a mapping μ from Γ∪Γf ∪ΓV

to Γ ∪ Γf ∪ ΓV such that the following conditions hold: (1) if c ∈ Γ then μ(c) = c;

(2) if c ∈ Γf then μ(c) ∈ Γ ∪ Γf; (3) if the atom r(c1, . . . , cn) is in D1, then the

atom r(μ(c1), . . . , μ(cn)) is in D2. In the following, sometimes a homomorphism may

have a codomain different from Γ ∪ Γf ∪ ΓV ; for instance, it could contain terms

from the Herbrand universe of a logic program: in such cases, this will be made

explicit.

The notion of homomorphism is naturally extended to atoms as follows. If F =

r(c1, . . . , cn) is an atom and μ a homomorphism, we define μ(F) = r(μ(c1), . . . , μ(cn)).

For a set of atoms, F = {F1, . . . , Fm}, we define μ(F) = {μ(F1), . . . , μ(Fm)}. The

set of atoms {μ(F1, . . . , μ(Fm)} is also called image of F with respect to μ. In this

case, we say that μ maps F to μ(F). For a conjunction of atoms Φ = F1, . . . , Fn, we

use μ(Φ) to denote the set of atoms μ({F1, . . . , Fn}). An isomorphism is a bijective

homomorphism.

Querying incomplete data. In the presence of incomplete data, a natural way of

considering the problem of query answering is to adopt the so-called sound semantics

or open-world assumption (Reiter 1978; Lenzerini 2002). In this approach, the data

are considered sound but not complete, in the sense that they constitute a piece

of correct information, but not necessarily all the relevant information. In such a

case, we need to reason in the presence of incomplete information, thus considering

a theory (given by the schema and constraints) having multiple models. In our

context, under relational constraints, it often happens that the data do not satisfy

the constraints, especially in information integration, where heterogeneous data are

represented by a single schema. Reasoning with incomplete information allows us to

address those constraint violations that are caused by the absence of elements from

the database (such as IDs). (Note that violations of other kinds of constraints, such

as KDs, cannot be addressed in this way.) More formally, we restrict our attention

to the so-called certain answers to a query: given a finite database D, the answers

we consider are those that are true in all models, i.e., in all the databases that

contain D and satisfy the dependencies. In the following, we shall always assume

that the initial database has finite size, while no finiteness assumptions is made on the

models.

Definition 1 (Certain answer)

Consider a relational schema R with a set of dependencies Σ, and a finite database

D for R. Let q be a conjunctive query of arity n over R. A n-tuple t is a certain

answer to q w.r.t. D and Σ if and only if, for every database B for R such that

B |= Σ and B⊇D, we have t ∈ q(B), and t consists of constants in Γ. The set of

certain answers is denoted by ans(q,Σ, D).

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

298 A. Cal̀ı and D. Martinenghi

Example 1

Consider a relational schema R, here inspired by Calı̀ et al. (2003b), with the

relations player/2 (player-team pairs) and team/2 (team-city pairs), a set of IDs Σ =

{player[2]⊆ team[1]}, and a database D consisting of the facts player(pirlo, acMilan),

player(totti , roma), team(acMilan ,milan).

The ID in Σ tells us that roma is the name of some team in every database B ⊇ D

such that B |= Σ, i.e., each such database B must contain at least a fact of the form

team(roma , c), where c is some value in Γ.

Consider now the query q(X)← team(X,Y), asking the names of the teams in the

database. By the above considerations, the set of certain answers is {acMilan , roma}.
Let F be the fact team(roma , α), where α is a value in Γf . As we will show

in Section 4, there is a homomorphism from D ∪ {F} to every database B′ ⊃ D

such that B′ |= Σ. Consider, e.g., such a database B′ = {player(pirlo, acMilan),

player(totti , roma), team(acMilan ,milan), team(roma , rome), team(psg , paris)}. There

is a homomorphism λ from D ∪ {F} to B′ such that (i) λ(α) = rome, (ii) λ(F) =

team(roma , rome), (iii) λ sends all facts in D into themselves, and (iv) B′ =

λ(D ∪ {F}) ∪ {team(psg , paris)}.

We will see that, under the database dependencies we consider in this paper, the

problem of query answering is mainly complicated by two facts: (i) the number of

databases that satisfy Σ and that include D can be infinite; (ii) there is no bound to

the size of such databases.

Definition 2 (Querying incomplete databases)

Consider a relational schema R with a set of dependencies Σ, and a finite database

D for R. Let q be a conjunctive query of arity n over R. The problem of querying

incomplete databases under Σ is the problem of determining all tuples in ans(q,Σ, D).

The corresponding decision problem is determining, given also a tuple t of arity n,

whether t ∈ ans(q,Σ, D).

3 The conceptual model

In this section we present the conceptual model we shall deal with in the rest of

the paper, and we give its semantics in terms of relational database schemata with

constraints.

Such model incorporates the basic features of the ER model (Chen 1976) and

OO models, including subset (or is-a) constraints on both entities and relationships.

It is an extension of the one presented in Calı̀ et al. (2001), and here we use a

notation analogous to that of Calı̀ et al. (2001). Henceforth, we will call such a

model EER model, and we will call schemata expressed in the EER model EER

schemata.

An EER schema consists of a collection of entity, relationship, and attribute

definitions over an alphabet Sym of symbols. The alphabet Sym is partitioned into

a set of entity symbols (denoted by Ent), a set of relationship symbols (denoted by

Rel), and a set of attribute symbols (denoted by Att).

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 299

An entity definition has the form

entity E

isa: E1, . . . , Eh

participates(� 1): R1 : c1, . . . , R� : c�
participates(� 1): R′1 : c′1, . . . , R

′
�′ : c

′
�′

where: (i) E ∈ Ent is the entity to be defined; (ii) the isa clause specifies a set of

entities to which E is related via is-a (i.e., the set of entities that are supersets of e);

(iii) the participates(� 1) clause specifies those relationships in which an instance

of E must necessarily participate; and for each relationship Ri, the clause specifies

that E participates as ci-th component in Ri; (iv) the participates(� 1) clause

specifies those relationships in which an instance of E cannot participate more than

once (components are specified as in the previous case). The isa, participates(� 1)

and participates(� 1) clauses are optional. Every relationship mentioned in the

participates(� 1) and participates(� 1) clauses must then be defined accordingly,

by mentioning the participating entity as one of the entities of the relationship in a

relationship definition. A relationship definition has the form

relationship R among E1, . . . , En

isa: R1[j1 1, . . . , j1 n], . . . , Rh[jh 1, . . . , jh n]

where: (i) R ∈ Rel is the relationship to be defined; (ii) the n entities of Ent , with

n � 2, listed in the among clause are those among which the relationship is defined

(i.e., component i of R is an instance of entity Ei); (iii) the isa clause specifies a set of

relationships to which R is related via is-a; for each relation Ri, we specify in square

brackets how the components [1, . . . , n] are related to those of ei, by specifying a

permutation [ji 1, . . . , ji n] of the components of Ei; (iv) the number n of entities in

the among clause is the arity of R. The isa, clause is optional. An attribute definition

has the form

attribute A of X

qualification

where: (i) A ∈ Att is the attribute to be defined; (ii) X is the entity or relationship

with which the attribute is associated; (iii) qualification consists of none, one, or

both of the keywords functional and mandatory, specifying respectively that each

instance of X has a unique value for attribute A, and that each instance of X needs

to have at least a value for attribute A. If the functional or mandatory keywords

are missing, the attribute is assumed by default to be multivalued and optional,

respectively.

For the sake of simplicity, and without any loss of generality, we assume that

in our EER model attributes of entities or relationships have unique names in a

schema. We also assume that every attribute or entity takes values from an infinite

domain.

The semantics of an EER schema C is defined by (i) associating a relational

schema R to it, and (ii) specifying when a database for R satisfies all constraints

imposed by the constructs of the schema C.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

300 A. Cal̀ı and D. Martinenghi

We now formally define the relational schema associated with an EER diagram.

Such a relational schema is defined in terms of predicates, which represent the

so-called concepts (entities, relationships, and attributes) of the EER schema.

(a) Each entity E in C has an associated predicate e of arity 1. Informally, a fact

of the form e(c) asserts that c is an instance of entity E.

(b) Each attribute A for an entity E in C has an associated predicate a of arity 2.

Informally, a fact of the form a(c, d) asserts that d is the value of attribute A

associated with c, where c is an instance of entity E.

(c) Each relationship R involving the entities E1, . . . , En in C has an associated

predicate r of arity n. Informally, a fact of the form r(c1, . . . , cn) asserts that

(c1, . . . , cn) is an instance of relationship R, where c1, . . . , cn are instances of

E1, . . . , En respectively.

(d) Each attribute A for a relationship R among the entities E1, . . . , En in C has an

associated predicate a of arity n+1. Informally, a fact of the form a(c1, . . . , cn, d)

asserts that d is a value of attribute A associated with the instance (c1, . . . , cn)

of relationship R.

Notice that, in our particular relational representation, entities are represented by

unary predicates, which can be thus seen as “surrogate keys,” i.e., attributes that

are identifiers and do not have any real-world meaning. With this representation,

user-defined key attributes are not necessary.

In the following, the expression “query over an EER schema C” will indicate a

query over the relational schema associated wih C according to the above points (a)

to (d).

Example 2

Consider the EER schema C defined as follows.

entity Employee

participates(� 1): Works in : 1

participates(� 1): Works in : 1

entity Manager

isa: Employee

participates(� 1): Manages : 1

participates(� 1): Manages : 1

entity Dept

relationship Works in among Employee,Dept

relationship Manages among Manager,Dept

isa: Works in[1, 2]

attribute emp name of Employee

attribute dept name of Dept

attribute since of Works in

Figure 1 depicts C in the usual graphical notation for the ER model (components

are indicated by integers for the relationships). The relational schema R associated

with C consists of the predicates manager/1, employee/1, dept/1, works in/2,

manages/2, emp name/2, dept name/2, since/3. The schema describes employees

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 301

Employee Dept

Manager

dept nameemp name

Manages

Works in
1 2

since
[1, 2]

1 2

(1, 1)

(1, 1)

Fig. 1. EER schema for Example 2.

working in departments of a firm, and managers that are also employees, and

manage departments. Managers who manage a department also work in the same

department, as imposed by the is-a among the two relationships; the permutation

[1, 2] labeling the arrow denotes that the is-a holds considering the components in the

same order (in general, any permutation of (1, . . . , n) is possible for an is-a between

two n-ary relationships). The constraint (1, 1) on the participation of Employee

in Works In imposes that every instance of Employee participates at least once

(mandatory participation) and at most once (functional participation) in Works In;

the same constraints hold on the participation of Manager in Manages. Suppose we

want to know the names of the managers who manage the toy department (named

toy dept). The corresponding conjunctive query over C is

q(Z) ← manager(X), emp name(X,Z),manages(X,Y), dept(Y),

dept name(Y , toy dept)

The intended semantics of an EER schema is immediately captured by a transla-

tion into the relational model that imposes additional constraints to the associated

relational schema. Once we have defined the relational schema R for an EER

schema C, we give the semantics of each construct of the EER model; this is done

by specifying what databases (i.e., extensions of the predicates of R) satisfy the

constraints imposed by the constructs of the EER diagram. We do that by making

use of the relational database constraints introduced in Section 2. We remind the

reader that each entity E in C has an associated relational predicate e in R, denoted

with the same letter, lowercase instead of uppercase; similarly, an attribute A has

associated a predicate a and a relationship R a predicate r.

(1) For each attribute A/2 for an entity E in an attribute definition in C, we have

the ID a[1] ⊆ e[1].

(2) For each attribute A/(n + 1) for a relationship R/n in an attribute definition

in C, we have the ID a[1, . . . , n] ⊆ r[1, . . . , n].

(3) For each relationship R involving an entity Ei as i-th component according to

the corresponding relationship definition in C, we have the ID r[i] ⊆ ei[1].

(4) For each mandatory attribute A/2 of an entity E in an attribute definition in

C, we have the ID e[1] ⊆ a[1].

(5) For each mandatory attribute A/(n + 1) of a relationship R/n in an attribute

definition in C, we have the ID r[1, . . . , n] ⊆ a[1, . . . , n].

(6) For each functional attribute A/2 of an entity E in an attribute definition in

C, we have the KD key(a) = {1}, since there cannot be more than one value

for attribute A that is assigned to a single instance of E.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

302 A. Cal̀ı and D. Martinenghi

(7) For each functional attribute A/(n + 1) of a relationship R/n in an attribute

definition of C, we have the KD key(a) = {1, . . . , n}, since there cannot be

more than one value for attribute A that is assigned to a single instance of R.

(8) For each is-a relation between entities E1 and E2, in an entity definition in C,

we have the ID e1[1] ⊆ e2[1], since the is-a relation specifies a set containment

between entities E1 and E2.

(9) For each is-a relation between relationships R1 and R2, where components

1, . . . , n of R1 correspond to components j1, . . . , jn, in a relationship definition

in C, we have the ID: r1[1, . . . , n] ⊆ r2[j1, . . . , jn], since the is-a relation specifies

a set containment between relationships R1 and R2.

(10) For each mandatory participation (participation with minimum cardinality 1)

as c-th component of an entity E in a relationship R, specified by a clause

participates� 1: R : c in an entity definition in C, we have the ID e[1] ⊆ r[c].

(11) For each participation with maximum cardinality 1 as c-th component of an

entity E in a relationship R, specified by a clause participates� 1: R : c in an

entity definition in C, we have the KD key(r) = {c}.

Definition 3 (Conceptual dependencies)

Consider a schema R and a set of dependencies Σ = ΣI ∪ ΣK , where ΣI is a set of

IDs and ΣK is a set of KDs expressed over R. We say that Σ is a set of CDs if

there exists an EER schema C with associated relational schema R such that Σ is

obtained from C by applying the above points (1)–(11).

Example 2 (cont.)

Consider again the EER schema shown in Figure 1. The set of CDs associated

with the EER schema C to be imposed on the schema R consists of the following

dependencies.

σ1 : dept name[1] ⊆ dept[1] (by rule 1)

σ2 : emp name[1] ⊆ employee[1] (by rule 1)

σ3 : since[1, 2] ⊆ works in[1, 2] (by rule 2)

σ4 : works in[1] ⊆ employee[1] (by rule 3)

σ5 : works in[2] ⊆ dept[1] (by rule 3)

σ6 : manages[1] ⊆ manager[1] (by rule 3)

σ7 : manages[2] ⊆ dept[1] (by rule 3)

σ8 : manager[1] ⊆ employee[1] (by rule 8)

σ9 : manages[1, 2] ⊆ works in[1, 2] (by rule 9)

σ10 : employee[1] ⊆ works in[1] (by rule 10)

σ11 : manager[1] ⊆ manages[1] (by rule 10)

σ12 : key(works in) = {1} (by rule 11)

σ13 : key(manages) = {1} (by rule 11)

Now we characterize the form of relational dependencies resulting from the en-

coding of EER schemata into relational schemata, the proof of which is

straightforward.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 303

Proposition 1

Consider a schema R and a set of dependencies Σ = ΣI ∪ ΣK , where ΣI is a set of

IDs and ΣK is a set of KDs expressed over R. Then, Σ is a set of CDs if and only

if we can partition R in three sets RR , RE , and RA such that the following holds.

(a) All predicate symbols in RE are unary.

(b) All predicate symbols in RR and RA have arity at least 2.

(c) The dependencies in ΣK have one of the following forms

(1) key(r) = {i}, with 1 � i � arity(r), where r ∈ RR .

(2) key(a) = {1, . . . , n}, where a ∈ RA and n = arity(a)− 1.

(d) The dependencies in ΣI have one of the following forms

(1) e1[1] ⊆ e2[1], where {e1, e2} ⊆ RE .

(2) e[1] ⊆ r[i], where e ∈ RE , r ∈ RR , and 1 � i � arity(r).

(3) r[i] ⊆ e[1], where r ∈ RR , e ∈ RE , and 1 � i � arity(r).

(4) r1[1, . . . , k] ⊆ r2[i1, . . . , ik], where {r1, r2} ⊆ RR , arity(r1) = arity(r2) = k,

and (i1, . . . , ik) is a permutation of (1, . . . , k).

(5) a[1] ⊆ e[1], where a ∈ RA and e ∈ RE .

(6) a[1, . . . , n] ⊆ r[1, . . . , n], where a ∈ RA, r ∈ RR , and n = arity(r) = arity(a)−
1.

(7) e[1] ⊆ a[1], where e ∈ RE and a ∈ RA.

(8) r[1, . . . , n] ⊆ a[1, . . . , n], where r ∈ RR , a ∈ RA, and n = arity(r) = arity(a)−
1.

(e) For every predicate r ∈ RR and for 1 � i � arity(r), there exists an ID r[i] ⊆ ei[1]

in ΣI such that ei ∈ RE and there is no e′i ∈ RE , with ei �= e′i, such that r[i] ⊆ e′i[1]

is in ΣI .

(f) For every predicate a ∈ RA, there exists an ID a[1, . . . , n] ⊆ p[1, . . . , n] in ΣI such

that p ∈ RR ∪RE and n = arity(p) = arity(a)− 1, and there is no p′ ∈ RR ∪RE ,

with p �= p′, such that a[1, . . . , n] ⊆ p′[1, . . . , n] is in ΣI .

(g) For every ID e[1] ⊆ r[i] in ΣI , with e ∈ RE , r ∈ RR , and 1 � i � arity(r), there

is an ID r[i] ⊆ e[1] in ΣI .

(h) For every ID r[1, . . . , n] ⊆ a[1, . . . , n] in ΣI , with r ∈ RR , a ∈ RA, and n =

arity(r) = arity(a)− 1, there is an ID a[1, . . . , n] ⊆ r[1, . . . , n] in ΣI .

(i) For every ID e[1] ⊆ a[1] in ΣI , with e ∈ RE , a ∈ RA, and arity(a) = 2, there is

an ID a[1] ⊆ e[1] in ΣI .

Being able to encode EER schemata into relational ones, henceforth we will deal

with relational schemata only.

The problem of querying incomplete databases under KDs and IDs is in general

undecidable (Calı̀ 2003; Calı̀ et al. 2003a). The largest subclass of functional

dependencies1 and IDs for which query answering is known to be decidable is

the class of keys and nonkey conflicting inclusion dependencies (Calı̀ 2003; Calı̀

et al. 2003a). The main contribution of the present paper is a technique for solving

the problem of querying incomplete databases under CDs. This is relevant because

1 Functional dependencies are a generalization of KDs (Abiteboul et al. 1995).

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

304 A. Cal̀ı and D. Martinenghi

EER schemata are very important in practice and CDs are able to capture them.

Our solution consists in a technique for rewriting the given query such that the

evaluation of the rewritten query returns the certain answers.

Note that our definition of certain answer, defined in Section 2, considers databases

that may also be of infinite size. In the database literature, interest is typically devoted

to databases of finite size only. In particular, the certain answers under finite models

can be defined as follows.

Definition 4 (Certain answer under finite models)
Consider a relational schema R with a set of dependencies Σ, and a finite database

D for R. Let q be a conjunctive query of arity n over R. A n-tuple t is a certain

answer under finite models to q w.r.t. D and Σ if and only if, for every finite database

B for R such that B |= Σ and B ⊇ D, we have t ∈ q(B), and t consists of constants

in Γ. The set of certain answers under finite models is denoted by ansf(q,Σ, D).

We now show that under CDs, in general, ans(q,Σ, D) �= ansf(q,Σ, D).

Example 3
Consider the following EER schema:

entity B

participates(� 1): R : 2

entity A

isa: B

participates(� 1): R : 1

relationship R among A,B

This corresponds to the following set of CDs:

Σ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

r[1] ⊆ a[1],

r[2] ⊆ b[1],

a[1] ⊆ b[1],

b[1] ⊆ r[2],

key(r) = {1}.
It can be straightforwardly seen that, for every finite database B ⊇ D such that

B |= Σ, we have a(c) ∈ B. Consequently, 〈c〉 ∈ ansf(q,Σ, D), where q is the query

q(x)← a(x). On the other hand, consider the following database D∞.

D∞ = { b(c), r(c1, c), a(c1), b(c1), r(c2, c1), a(c2), b(c2), r(c3, c2), . . .

. . . , a(ci), b(ci), r(ci+1, ci), . . . }.

We have that D∞ ⊇ D and D∞ |= Σ, but a(c) �∈ D∞ and thus 〈c〉 /∈ ans(q,Σ, D),

therefore we immediately have ans(q,Σ, D) �= ansf(q,Σ, D).

Henceforth, we shall not restrict our attention to finite databases only, thus allowing

for models of infinite size.

4 Query answering with the chase

In this section we introduce the notion of chase, which is a fundamental tool for

dealing with database constraints (Maier et al. 1979; Maier et al. 1981; Vardi 1983;

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 305

Johnson and Klug 1984); then we show some relevant properties of the chase under

CDs regarding conjunctive query answering, which will pave the way for the query

rewriting technique that will be presented in the next section.

The chase (Maier et al. 1979; Johnson and Klug 1984) is a key concept in

particular in the context of functional and IDs. Intuitively, given a database, its

facts in general do not satisfy the dependencies; the idea of the chase is to convert

the initial facts into a new set of facts constituting a database that satisfies the

dependencies, possibly by collapsing facts (according to KDs) or adding new facts

(according to IDs). When new facts are added, some of the constants need to be

fresh, as we shall see in the following. The technique to construct a chase is well

known for functional and IDs (see, e.g., Johnson and Klug 1984); however we detail

this technique here, since we have adapted it to the simpler case of KDs instead of

FDs.

4.1 Construction of the chase

In order to construct the chase for a database for a relational schema R with

dependencies Σ = ΣI ∪ΣK , where ΣI is a set of IDs and ΣK is a set of KDs, we use

the following rules for IDs and KDs, which apply to a set of facts (i.e., a database

instance) and produce a new set of facts. We indicate as D the set of facts before

the application of a rule.

Inclusion Dependency Chase Rule. Let r, s be relational symbols in R. Suppose

there is a tuple t in rD , and there is an ID σ ∈ ΣI of the form r[X̄r] ⊆ s[X̄s]. If

there is no tuple t′ in sD such that t′[X̄s] = t[X̄r] (in this case we say the rule is

applicable), then we add a new tuple tchase in sD such that tchase[X̄s] = t[X̄r], and

for every attribute Ai of s such that Ai /∈ X̄s, tchase[Ai] is a fresh value in Γf that

follows, according to lexicographic order, all the values already present in the chase.

Note also that we assume that all the values in Γf follow, according to lexicographic

order, all the values in Γ.

Key Dependency Chase Rule. Let r be a relational symbol in R. Suppose there

is a KD κ of the form key(r) = X̄. If there are two distinct tuples t, t′ ∈ rD such

that t[X̄] = t′[X̄] (in this case we say the rule is applicable), make the symbols in

t and t′ equal in the following way. Let Ȳ = Y1, . . . , Y� be the attributes of r that

are not in X̄; for all i ∈ {1, . . . , �}, make t[Yi] and t′[Yi] merge into a combined

symbol according to the following criterion: (i) if both are constants in Γ and they

are not equal, the rule fails to apply and the chase construction process is halted;

(ii) if one is in Γ and the other is a fresh constant in Γf , let the combined symbol

be the nonfresh constant; (iii) if both are in Γf , let the combined symbol be the one

preceding the other in lexicographic order. Finally, replace all occurrences in D of

t[Yi] and t′[Yi] with their combined symbol.

Now we come to the formal definition of the chase, which uses the notion of

level of a tuple; intuitively, the lower the level of a tuple, the earlier the tuple has

been constructed in the chase. In order to make all steps in the construction of the

chase univocally determined by the definition, we assume that all facts can be sorted

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

306 A. Cal̀ı and D. Martinenghi

according to lexicographic order (e.g., by using a string comprising the predicate

name and the names of all constants in the fact), and so can all pairs of facts as

well as all dependencies (e.g., also by using strings that encode them).

Definition 5 (Chase)

Let D be a database for a schema R, and Σ a set of CDs. We call chase of D

according to Σ, denoted chaseΣ(D), the database constructed from D by repeatedly

executing the following steps, while the KD and ID chase rules are applicable;

every tuple t ∈ chaseΣ(D) is also assigned a level, denoted by level (t); if t ∈ D, then

level (t) = 0.

(1) While there are pairs of facts on which the KD chase rule is applicable, take

the pair t1, t2 such that min(level (t1), level (t2)) is minimal (if there is more than one,

take the pair that comes first in lexicographic order) and apply the KD chase rule

on t1, t2 w.r.t. a KD κ (if there is more than one KD for which the KD chase rule

is applicable on t1, t2, take the KD that comes first in lexicographic order) so that

t1, t2 collapse into a fact t3; if the rule fails, the chase cannot be constructed and,

thus, does not exist; else we define level (t3) = min(level (t1), level (t2)).

(2) If there are facts on which the ID chase rule is applicable w.r.t. a full-width

ID, choose the one (say t′) at the lowest level that lexicographically comes first and

apply the ID chase rule on t′ w.r.t. a full-width ID σ (if there is more than one

full-width ID for which the ID chase rule is applicable on t′, take the full-width ID

that comes first in lexicographic order) to generate a new fact t;′′ else, if there are

facts on which the ID chase rule is applicable, choose the one (say t′) at the lowest

level that lexicographically comes first and apply the ID chase rule on t′ w.r.t. an

ID σ (if there is more than one ID for which the ID chase rule is applicable on t′,

take the ID that comes first in lexicographic order) to generate a new fact t.′′ We

define level (t′′) = level (t′) + 1.

Note that, according to Definition 5, the chase is constructed by applying the KD

chase rule as long as possible, then the ID chase rule exactly once, then the KD

chase rule as long as possible, etc., until no more rule is applicable. Also, the

particular sequence of chase rules to be applied is determined according to a precise

lexicographic order, so that there is exactly one chase for a given initial database

and set of CDs.

As we pointed out before, the aim of the construction of the chase is to make

the initial database satisfy the KDs and the IDs, by repairing the violations of

the constraints. The obtained (possibly infinite) instance is a representative of all

databases that are a superset of the initial database and satisfy the constraints.

Notice that KD violations cannot be repaired by constructing a chase, but would

require an explicit treatment, as explained in Section 5.4; in such a case the chase

does not exist. It is easy to see that chaseΣ(D) can be infinite only if the set of IDs in

Σ is cyclic (Johnson and Klug 1984; Abiteboul et al. 1995), i.e., if there is a sequence

of IDs in Σ of the form r1[X̄1] ⊆ r2[X̄
′
1], r2[X̄2] ⊆ r3[X̄

′
2], . . . , rn[X̄n] ⊆ rn+1[X̄

′
n] and

rn+1 = r1. In the following we will show how the chase can be used in computing

the answers to queries over incomplete databases under dependencies.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 307

4.2 Query answering and the chase

In their milestone paper (Johnson and Klug 1984), Johnson and Klug proved that,

under certain subclasses of KDs and IDs, a containment between two conjunctive

queries q1 and q2 can be tested by verifying the existence of a so-called query

homomorphism. Roughly speaking, such a homomorphism has to map the body

of q2 to the chase of the body of q1, and the head of q2 to the head of q1.

Johnson and Klug proved that, in order to test containment of CQs under IDs

alone or key-based dependencies (a special class of KDs and IDs), it is sufficient

to consider a finite, initial portion of the chase. The result of Johnson and Klug

(1984) was extended in Calı̀ et al. (2003a) to a broader class of dependencies, strictly

more general than keys with foreign keys: the class of KDs and nonkey-conflicting

inclusion dependencies (NKCIDs) (Calı̀ 2003), which behave like IDs alone because

NKCIDs do not interfere with KDs in the construction of the chase. The above

results about query containment (see, e.g., Calı̀ et al. 2008) can be straightforwardly

adapted to solve the decision problem of answering on incomplete databases, since,

as it will be shown later, the chase is a representative of all databases that satisfy

the dependencies and are a superset of the initial data.

In a set of CDs, IDs are not nonkey-conflicting (or better key-conflicting), therefore

the decidability of query answering cannot be deduced from (Johnson and Klug

1984; Calı̀ et al. 2003a), (though it can be derived from (Calvanese et al. 1998), as

we shall discuss later). In particular, under CDs, the construction of the chase has to

face interactions between KDs and IDs; this can be seen in the following example,

taken from (Calı̀ 2006).

Example 4

Consider again the EER schema of Example 2. Suppose we have an initial (incom-

plete) database, with the facts manager(m) and works in(m, d). If we construct the

chase, we obtain the facts employee(m), manages(m, α1), works in(m, α1), dept(α1),

where α1 is a fresh constant. Observe that m cannot participate more than once

in works in, so we deduce α1 = d. We must therefore replace α1 with d in the

rest of the chase, including the part that has been constructed so far. Therefore,

chaseΣ(D) = {manager(m),works in(m, d), employee(m),manages(m, d), dept(d)}.

In spite of the potentially harmful interaction between IDs and KDs, analogously

to the case of IDs alone (Calı̀ et al. 2004), it can be proved that, in the presence of

CDs, the chase is a representative of all databases that are a superset of the initial

(incomplete) data, and satisfy the dependencies; therefore, it serves as a tool for

query answering, as shown in Theorem 1 below.

As was made explicit in Definition 5, the chase may not exist if some application

of the KD rule fails. This may happen even when the database satisfies the KDs, as

shown in the next example.

Example 5

Consider two binary predicates r and s, derived from two binary relationships R

and S , for which there is an is-a relation (that generates the ID r[1, 2] ⊆ s[1, 2])

and a participation with maximum cardinality 1 for the first component of s (that

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

308 A. Cal̀ı and D. Martinenghi

generates the KD key(S) = {1}). The mentioned ID and KD are a fragment of a

set of CDs that is sufficient to show that the chase may not exist even if the initial

database satisfies the dependencies. Let the initial database be D = {r(a, b), s(a, c)}.
Although D satisfies the KD, the chase rule for the ID generates a tuple s(a, b),

which triggers a (failing) KD chase rule application on s(a, b) and s(a, c). Therefore

the chase for this database and constraints does not exist.

Since the chase may be of infinite size, it would seem that checking whether a chase

exists is semi-decidable. Indeed, in the general case of IDs and KDs it is not known

whether it is decidable to check whether the chase exists.

However, the following lemma shows that termination of the chase under CDs is

decidable; we will then use it to state some of our results.

Lemma 1

Let D be a database for a relational schema R and Σ a set of CDs over R. Then,

checking whether chaseΣ(D) exists is decidable in time polynomial in the size of D.

Proof

We start by observing that the application of a unary ID (i.e., an ID that involves

a single attribute) cannot cause a failure of the chase by violation of a KD: indeed,

considering a generic unary ID r1[k1] ⊆ r2[k2], the only possible violation of a KD

due to the application of this ID is when we have the KD key(r2) = {k2}; however,

such violation never causes a failure of the chase, since all values in the added tuple

that are in positions different from k2 are all fresh constants. Now, let us indicate

with ΣR the IDs in Σ that derive from is-a relations among relationships; they are

IDs of the form r1[1, . . . , n] ⊆ r2[j1, . . . , jn], where j1, . . . , jn is a permutation of 1, . . . n

and both r1 and r2 have arity n. It is immediately seen that:

(i) Facts in the chase of the form r(c1, . . . , cn), where r is a relation belonging to

the set RR of n-ary relationships in the conceptual schema, contain

• only nonfresh constants,

• only fresh constants, or

• exactly one nonfresh constant (possibly occurring more than once).

No other case is possible. This can be shown by induction on the number of

application of chase rules. Consider also that

• Facts regarding (unary) predicates associated with entities may either

contain a fresh or a nonfresh constant.

• For facts regarding predicates associated with n-ary attributes, we have

that the last position may be occupied by either a fresh or a nonfresh

constant, and the first n positions behave like a fact for a relation in RR

(i.e., they contain only nonfresh constants, only fresh constants, or exactly

one nonfresh constant).

In the base case (no application), we only have facts in D, which only contain

nonfresh constants. Suppose now, by inductive hypothesis, that, after i applications

of the chase rules, the facts are only of the forms mentioned above. The inductive

step consists in showing that no new application of a chase rule produces facts that

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 309

are not in one of the forms mentioned above. To see this, it suffices to verify this for

all forms (1)–(11) of dependencies that may occur in CDs, as described in Section 4.

This is immediate for (1)–(10). As for (11), consider that a KD rule can be applied

on two tuples t1 and t2 for a relation r ∈ RR in two cases:

• t1 and t2 both have in the position of the key the same nonfresh constant.

In this case the inductive step immediately follows, by either a failure of

the chase or the generation of a new tuple containing exactly one nonfresh

constant (possibly occurring more than once).

• t1 and t2 both have in the position of the key the same fresh constant. The

inductive step follows immediately, unless t1 contains exactly one nonfresh

constant, say c, and t2 contains exactly one nonfresh constant, say d, with

d �= c, because then the KD rule could produce a tuple containing two

different nonfresh constants. However, this case cannot occur. To see this, it

suffices to show that if two tuples t1 and t2 for r ∈ RR have a fresh constant in

common, then they cannot have different nonfresh constants. This can, again,

be shown by induction on the applications of chase rules for dependencies of

the forms (1)–(11). Basically, the only way for tuples of relations in RR to

have fresh constants in common is to apply chase rules on dependencies of

the forms (9)–(11).

— With form (9), the application of the ID chase rule on a cycle of is-a

relations between relationships may generate two tuples sharing a fresh

constant. However, only permutations of the positions can take place, but

the constants are unchanged.

— Two applications of the ID chase rule on two different IDs of form (10) for

the same entity and the same relationship but on two different components

can generate two tuples sharing a fresh constant. However, all the other

constants will also be fresh.

— The application of a KD chase rule for a KD of form (11) is now trivially

harmless by inductive hypothesis.

(ii) All facts of the form r(c1, . . . , cn), with r ∈ RR , which contain only nonfresh

constants are obtained by applying (possibly several times) the ID chase

rule for IDs in ΣR to facts in the initial database (constituted in turn by

tuples containing only nonfresh constants).

(iii) By what stated in point (i) above, the only way of causing a failure in the

chase construction (apart from violations of key constraints already in D)

is to apply an ID in ΣR to a tuple having only nonfresh constants, thus

introducing a (nonrepairable) violation of some KD due to the presence

of another tuple having only nonfresh constants; in all other cases, every

violation of a KD is repaired by applications of the KD chase rule.

This said, it follows that if there is no failure in chaseΣR
(D), there is no failure

in chaseΣ(D). It remains to check whether chaseΣR
(D) is finite: it is easily seen

that it indeed cannot be infinite, since every tuple in chaseΣR
(D) is of the form

r(c1, . . . , cn), with r ∈ RR , and where c1, . . . , cn are obtained by a permutation of

d1, . . . , dn, where the fact r′(d1, . . . , dn), with r′ ∈ RR , is in the initial database D.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

310 A. Cal̀ı and D. Martinenghi

The maximum depth of chaseΣR
(D) is W !, where W is the maximum arity of

predicates in R. It is also straightforward to see that the size of chaseΣR
(D) is

polynomial in |D| (size of D, i.e., number of tuples of D), and that chaseΣR
(D)

can be constructed in time polynomial in |D|. By the above considerations,

it is immediately seen that chaseΣR
(D) fails iff chaseΣ(D) fails. The thesis

follows. �

Lemma 2

Let D be a database for a relational schema R and Σ a set of CDs over R such that

chaseΣ(D) exists. Then chaseΣ(D) |= Σ.

Proof

Trivial, by the construction of Definition 5. �

The following lemma is a technical result that will be used in the proof of

Theorem 1. Informally, it shows that the chase of a database D, when it exists,

is a powerful tool for answering queries: for every solution B (database that is a

superset of the given incomplete database D and that satisfies the constraints), there

is a homomorphism that sends the chase of D onto B. This result follows from the

results in Fagin et al. (2005) and (Deutsch et al. 2008), but we provide a direct proof

for the sake of completeness.

Lemma 3

Let D be a database for a relational schema R and Σ a set of CDs over R such that

chaseΣ(D) exists. Then, for every database B for R such that B |= Σ and B ⊇ D, we

have that there exists a homomorphism from chaseΣ(D) to B.

Proof

Similarly to what is done for the analogous result in Calı̀ et al. (2004), we proceed

by induction on the applications of the (ID or KD) chase rules. We define a

homomorphism μ inductively, and we simultaneously show that for each relation

r of arity n in R, and each tuple (c1, . . . , cn) constituted by elements in Γ ∪ Γf , if

(c1, . . . , cn) ∈ rchaseΣ(D), then (μ(c1), . . . , μ(cn)) ∈ rB .

(1) Base case. After 0 applications of a chase rule, the constructed part of the

chase coincides with D. Since B ⊇ D, the mapping μ that maps each constant in D

into itself is a homomorphism from the constructed part of the chase to B.

(2) Inductive step. First case: the applied rule is the ID chase rule. Suppose that in

the application of the rule, we are inserting the tuple t∗ = (α1, . . . , αn) in chaseΣ(D),

where r has arity n, αi ∈ Γf for each i �= k, αk ∈ Γ ∪ Γf , and the tuple is inserted in

rchaseΣ(D) because of the ID w[j] ⊆ r[k] (other forms of IDs among those described

in points (1)–(11) in Section 3 are dealt with similarly). Since we are applying the

rule because of the dependency w[j] ⊆ r[k], there is a tuple t in wchaseΣ(D) such that

t[j] = αk . By inductive hypothesis, there is a constant ck in Γ such that μ(αk) = ck ,

and there is a tuple t′ ∈ wB such that for each i, t′[i] = μ(t[i]), with t′[j] = μ(αk) = ck .

Because of the constraint w[j] ⊆ r[k], and because B satisfies the constraints, there

is a tuple t′′ in rB with t′′[k] = ck; let then t′′ = (c1, . . . , cn). Then, we set μ(αi) = ci
for each i �= k, and we can conclude that μ(t∗) ∈ rB .

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 311

Second case: the applied rule is the KD chase rule. By inductive hypothesis, there

exists a homomorphism μ mapping the two tuples t, t′ on which the KD rule is

applied into tuples μ(t) and μ(t′) in B. Note that, since the KD rule is applicable to

t, t′ and B |= Σ, we must have μ(t) = μ(t′). In the chase, t and t′ are then replaced by

a new tuple, say t,′′ which contains (in the same positions) all the nonfresh constants

of t, t′ and a subset of the fresh constants of t, t′ (some of which may disappear by

the KD chase rule), but no new fresh constant. Therefore, μ trivially also maps t,′′

as well as all other tuples in the chase, into facts of B. �

The following theorem is the main result of this section, and it characterizes the

chase as a formal tool for query answering under KDs and IDs. In particular, the

theorem states that the answers to a query q, posed on an incomplete database

D under a set Σ of CDs, can be obtained by evaluating q over the chase of D

w.r.t. Σ, chaseΣ(D), and discarding the result tuples that contain at least one fresh

value.

Theorem 1

Let D be a database for a relational schema R and Σ a set of CDs over R such

that chaseΣ(D) exists. Then, for every conjunctive query q over R, we have that

q[Γ](chaseΣ(D)) = ans(q,Σ, D).

Proof

The theorem is proved by considering a generic database B such that B |= Σ and

B ⊇ D.

By Lemma 3 we derive the existence of a homomorphism μ that sends the facts

of chaseΣ(D) to facts of B; if t ∈ q(chaseΣ(D)), there is a homomorphism λ from the

atoms of body(q) to chaseΣ(D) that sends head (q) to t; therefore, the composition λ◦μ
is a homomorphism from the atoms of body(q) to B that sends head (q) to t, which

proves q(chaseΣ(D)) ⊆ ans(q,Σ, D), and, a fortiori, q[Γ](chaseΣ(D)) ⊆ ans(q,Σ, D).

For the other inclusion, consider that chaseΣ(D) ⊇ D and chaseΣ(D) |= Σ. Then,

by Definition 1 we have that a tuple t is a certain answer to q in D under Σ only

if it is an answer to q in chaseΣ(D) with no fresh constant; hence q[Γ](chaseΣ(D)) ⊇
ans(q,Σ, D). �

Notice that Theorem 1 does not lead to an algorithm for query answering (apart

from special cases), since the chase may have infinite size.

5 Answering queries by rewriting

In this section we present an efficient technique for query answering on incomplete

data in the presence of CDs; such technique is based on query rewriting; in particular,

the answers to a query are obtained by evaluating a new query, obtained by rewriting

the original one according to the dependencies, over the initial incomplete data.

For the sake of simplicity, in the remainder of this section we shall disregard

attributes from our treatment, since attributes are acyclic and therefore can be

added without changing the results.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

312 A. Cal̀ı and D. Martinenghi

5.1 Query rewriting

Query answering under CDs can be decided by checking an initial segment of the

chase of a database. We show that the certain answers to a CQ q over a database D

can be computed by evaluating q over the initial segment of the chase of D, whose

size, defined by a maximum level δM , depends on the query, on the dependencies,

and on the size λD of the largest connected part of the join graph of database D.

The join graph of a database D is an undirected graph that has as nodes the atoms

of D and has an arc (A,B) iff A and B share a constant.

Theorem 2

Let R be a relational schema, Σ a set of CDs over R, q a conjunctive query over

R, and D a database for which chaseΣ(D) exists. Then, there is a number δM that

depends on q, Σ, R, and λD such that for every tuple t ∈ q[Γ](chaseΣ(D)), there exists

a homomorphism μ sending body(q) to facts of chaseΣ(D) and head (q) to t such

that all the atoms in μ(body(q)) are in the first δM levels of chaseΣ(D).

Proof

First of all, we introduce the chase forest for chaseΣ(D) given a database D and a

set of CDs Σ. The nodes of the forest are the atoms in chaseΣ(D), and there is an

arc (A1, A2) iff A2 is generated from A1 by an application of the ID chase rule. The

roots in the forest are the atoms in D, and they are at level 0. If there is an arc

(A1, A2) and A1 is at level �, then A2 is at level �+ 1. In order to carry on the proof,

we now prove that a constant can be propagated in the chase for at most a fixed

number of levels that does not depend on D.

Lemma 4

Let D be a database for a relational schema R, Σ a set of CDs over R such

that chaseΣ(D) exists, and q a conjunctive query over R. Let a be a constant in Γ

occurring in an atom in D. Then a never occurs in any fact with level greater than

δD = δC · λD in chaseΣ(D), where δC = |R| · (1 + |R| ·W !).

Proof

We start by considering the IDs. First, observe that, in a set of CDs, the only

nonunary IDs in Σ are the IDs encoding is a arcs between relationships (which are

full-width IDs) and the IDs regarding attributes of a relationship. Clearly, a can

be propagated to other atoms by applications of an ID chase rule, starting from

the atom θ ∈ D in which it occurs, then from the atom generated from θ by the

application, and so forth. The propagation can be done for up to |Σ| more levels if

there are no cycles in the IDs, but also for more, if there are cycles.

Whenever there is an application of an n-ary ID (n � 2) on an atom A, the

generated atom A′ contains a permutation of the constants occurring in A; both the

involved predicates have the same arity n (except in the case of an ID regarding

attributes of a relationship, where one predicate has arity n + 1, but the (n + 1)-th

argument is never used in the IDs). Then, a sequence of consecutive applications of

n-ary IDs can go on for at most n!·|R| levels, since there are n! possible permutations

of the constants in A and there are at most |R| relations involved in n-ary IDs. All

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 313

constants occurring in A (except at most the last one, if A regards an attribute of a

relationship) are propagated throughout the sequence.

All other applications regard unary IDs. At least one of the two predicates

involved in a unary ID must be unary, and the only way to retain a in a unary atom

is that it be of the form e(a), where e is a unary predicate; clearly such fact can be

generated only once in the chase, and there are at most |R| unary predicates in R.

Any path in the chase starting from θ consists of sequences of consecutive

applications of n-ary IDs (n � 2) interleaved by applications of unary IDs. According

to the previous considerations, there can be at most |R|+1 sequences of consecutive

applications of n-ary IDs (with n � 2 and n � W). Given the maximum lengths of

such sequences, a can be propagated for at most δC = |R| · (1 + |R| ·W !).

We now consider the KDs. To prove the claim, we first state the following lemma.

Lemma 5

Let A be the first atom (of the form r(. . . , z0, . . .), where r is n-ary, n � 2) in which a

constant z0 ∈ Γ∪Γf occurs, with � = level (A) > δC . Let B be the closest predecessor

of atom A of the form e(w0) (e unary). Let B′ be an atom of the form e(z1),

z1 ∈ Γ ∪ Γf , with level (B′) > � + δC such that there is an atom C of the form e′(z0)

(e′ unary) in the path between A and B′. Then no constant occurring in A other

than z0 occurs in any of the descendants of B′.

Proof

Atom C may well have a child (or a descendant obtained by consecutive applications

of the ID chase rule for nonunary IDs from the child) D of the form r′(. . . , z1, . . .)

such that it agrees on the key of r′ (on value z1) with some descendant D′ of B′

of the same form, so that the constants in D (possibly including z0) will replace

the corresponding constants of D′ in all the descendants of B′. Note that B′ is

necessarily a descendant of C with the same constants as D. This shows that z0 may

well occur in some descendant of B′. Let us indicate with z′0 the constant that is

replaced by z0 after the application of the KD chase rule. Assume, by contradiction,

that one of the constants in A other than z0 occurs in some descendant of B′. Then,

there must be a descendant A′ of B′ of the form r(. . . , z′0, . . .) that, once z′0 is replaced

by z0, fires the application of a KD chase rule between A and A′. There are two

cases: (i) A′ generates D′ via a sequence of nonunary IDs. Then z1 is replaced by

w0, then the subtree rooted in B′ gets to have the same root as the subtree rooted

in B and therefore it disappears as a consequence of the KD application. (ii) A′

is a descendant of C ′ along a path that contains at least an application of the ID

chase rule for a unary ID, where C ′ is obtained from B′ by the same sequence

of applications of ID chase rules as those generating C from B. Again, the KD

chase rule makes C ′ become equal to C , therefore the whole subtree rooted in C ′

disappears, as easily seen, as above. �

Consider the proof of Lemma 5 and assume z0 ∈ Γ. Then, after at most δC levels

z0 will not appear together with any of the other constants in A. Also, z0 cannot

be propagated indefinitely in the chase by applications of ID chase rules, since this

requires using z0 with a unary predicate, which can be done only once per unary

predicate. However, if z0 appears in an atom in D together with another constant

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

314 A. Cal̀ı and D. Martinenghi

c, then c could appear together with z0 in a descendant of B′, and propagate

through further δC levels. By the same principle, this can go on for every sequence

of constants c1, . . . , cn such that ci occurs in the same atom in D together with ci+1.

Since the maximum sequence of this kind can have length |λD|, and the sequences

in D are not altered by the chase construction, the claim follows. �

Lemma 4 is the key property for stopping the construction of the chase at a given

level δM without altering query answering. We first prove the claim for the simple

but important subclass of conjunctive queries called nonboolean (i.e., with at least

one distinguished variable) connected queries. A set of atoms n is connected if the

undirected graph (n,A) is connected, where n is the set of nodes, and A is the

set containing exactly all arcs between any two atoms in n that share a variable

or a constant. A CQ q is connected if body(q) is. Every maximal subset of body(q)

that is connected is called a connected part of q. Assume μ is a homomorphism

sending head (q) to a nonempty tuple t of constants in Γ and body(q) to atoms of

chaseΣ(D). Since the query has at least one distinguished variable, then there is at

least one atom A in body(q) such that μ(A) contains a constant c1 of t, which then

is in Γ. By Lemma 4, the constants in Γ cannot occur at levels greater than δD; then

level (μ(A)) � δD . If a query is connected and nonboolean, then among the other

body atoms there is at least another atom A′ sharing a variable with A, and thus

such that μ(A′) shares a constant with μ(A). Note now that μ(A) contains c1 plus

possibly other constants. If such constants are in Γ, then also μ(A′) has a level at

most δD . Else, they are all fresh and have been created in the subtree rooted in the

closest unary predecessor B of μ(A); B has the form e1(c1). Now we show that all

the constants different from c1 (say, z1, . . . , zn) in μA occur within the first δC levels

of μA, and therefore μ(A′) also occurs at a level at most level (μA) + δC . To see this,

we simply reapply Lemma 5 by considering μA alone as the starting database for

the subsequent propagation of constants. Indeed, for 1 � i, j � n, the longest path

from an atom containing zi (but not zj) to an atom containing zj (but not zi) in

the join graph is 1. This process can be iterated for all the remaining atoms in the

query. Since the size of the longest path in the graph of q is |q|, it follows that

all the images of the atoms of the query are in the first δM = δD + δC · (|q| − 1)

levels.

If the query is not connected, but each connected part is nonboolean, the same

argument as before applies to each connected part, with the same final δM .

If the query has at least a boolean connected part, we can reason as follows. Let A

be the atom in the connected part whose image μ(A) is at the lowest level among the

query atoms. If level (μ(A)) > δD , then there is another homomorphism μ′ sending

body(q) to atoms of chaseΣ(D) such that level (μ′(A)) � δD , because all types occur

within the first δD levels, where two atoms have the same type if they share the same

predicate and agree on all the positions where a constant of Γ appears. With the

same argument as before, all the images via μ′ are at a level at most δM . �

The previous theorem suggests a naive strategy for query answering: first, compute

the initial segment of chaseΣ(D), i.e., its first δM levels, and then evaluate the query

q on such a segment. To do that, we also need the following Lemma.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 315

Lemma 6

Consider the application of a KD chase rule on two atoms A1 and A2 with level (A1) =

�1 > δD and level (A2) = �2 > δD . Consider also all subsequent applications of

KD chase rules before the next application of an ID chase rule. Then, after all

these applications, no atom in the chase is affected that has level lower than

min{�1, �2} − δC .

Proof

By definition of the chase, when a KD chase rule is applied, the affected constants

are the more recent ones in the chase construction. Then, it easily follows that they

may only occur at most δC levels before min{�1, �2}. Indeed, A1 and A2 have at

least a constant in common. Two cases are possible: (i) they share a constant in

Γ, therefore they may only occur within the first δD levels by Lemma 5, against

the hypotheses; (i) they share a constant in Γf . In the latter case, they have a

common unary predecessor A0 within δC levels before min{�1, �2}. In this case, the

replacement of constants has an impact only on the subtree T rooted in A0 since all

other constants in T are by construction newer than the one occurring in A0. Ditto

for the subsequent applications. �

By Lemma 6, it is immediate to see that the application of the KD chase rule does

not affect any facts whose depth is smaller by at least δC levels than the level of

the facts involved in the KD; therefore, to compute the first δM levels of chaseΣ(D)

means to apply the chase rules of Definition 5 until no chase rule is applicable on

facts at a level smaller than δM + δC . However, it is easy to see that such a strategy

would not be efficient in real-world cases, where D has a large size. Our plan of

attack is then to rewrite q according to the CDs on the schema and on the size λD
of the largest connected part of the join graph, and then to evaluate the rewritten

query over the initial data. This turns out to be more efficient in practice, if λD
is bounded or known to be reasonably small, since it does not involve the entire

database D in the query processing, except for the last evaluation step, so most of

the computation is kept at the intensional level. In particular, the rewritten query

is expressed in Datalog, and it is the union of two sets of rules, denoted ΠΣI and

ΠΣK , which take into account IDs and KDs respectively, plus a set of rules Πeq that

simulates equality. Finally, function symbols present in the rules will be eliminated

to obtain a Datalog rewriting.

Consider a relational schema R with a set Σ of CDs, with Σ = ΣI ∪ΣK , where ΣI

and ΣK are sets of IDs and KDs respectively. Let q be a CQ over R; we construct

Πeq , ΠΣI and ΠΣK in the following way.

Encoding equalities. We introduce a binary predicate eq/2 that simulates the

equality predicate; to enforce reflexivity, symmetry and transitivity respectively, we

introduce in Πeq the rules

(a) eq(Xi,Xi)← r(X1, . . . , Xn) for all r/n in R and for all i ∈ {1, . . . , n}
(b) eq(Y ,X)← eq(X,Y)

(c) eq(X,Z)← eq(X,Y), eq(Y ,Z)

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

316 A. Cal̀ı and D. Martinenghi

Similar rules for encoding equalities are found, for instance, in Duschka and Levy

(1997) and (Gottlob and Nash 2008).

Encoding key dependencies. For every KD key(r) = {k} (notice from Section 3

that in the case of CDs all keys are unary if the original EER schema contains no

attributes), with R of arity n, we introduce in ΠΣK the rule

eq(Xi, Yi) ← r(X1, . . . , Xk−1, Xk, Xk+1, . . . , Xn),

r(Y1, . . . , Yk−1, Yk, Yk+1, . . . , Yn), eq(Xk, Yk)

for all i s.t. 1 � i � n, i �= k.

Encoding inclusion dependencies. The encoding of a set ΣI of IDs into a set ΠΣI

of rules is done in two steps. Similarly to (Calı̀ et al. 2001; Calı̀ 2003), every ID

is encoded by a logic programming rule ΠΣI with function symbols, appearing in

Skolem terms that replace existentially quantified variables in the head of the rules;

intuitively, they mimic the fresh constants that are added in the construction of the

chase. We consider the four cases that are possible for an ID σ in a set of CDs

coming from an EER schema without attributes:

(1) σ is of the form r1[1] ⊆ r2[1], with r1/1, r2/1: we add to ΠΣI the rule

r2(X)← r1(X).

(2) σ is of the form r1[k] ⊆ r2[1], with r1/n, r2/1, 1 � k � n: we add to ΠΣI the

rule r2(Xk)← r1(X1, . . . , Xn).

(3) σ is of the form r1[1, . . . , n] ⊆ r2[j1, . . . , jn], with r1/n, r2/n, and where (j1, . . . , jn)

is a permutation of (1, . . . , n): we add to ΠΣI the rule

r2(Xj1 , . . . , Xjn)← r1(X1, . . . , Xn).

(4) σ is of the form r1[1] ⊆ r2[k], with r1/1, r2/n, 1 � k � n: we add to ΠΣI the

rule r2(fσ,1(X), . . . , fσ,k−1(X), X, fσ,k+1(X), . . . , fσ,n(X))← r1(X).

Note that in (4) we have used subscripts of the form σ, j so as to indicate that for

every dependency and for every attribute of r2 there is a different function symbol.

Example 6

Consider the dependencies that do not involve attributes (σ4–σ13) from Example 2.

They can be encoded as follows.

σ4 : employee(X) ← works in(X,Y)

σ5 : dept(Y) ← works in(X,Y)

σ6 : manager(X) ← manages(X,Y)

σ7 : dept(Y) ← manages(X,Y)

σ8 : employee(X) ← manager(X)

σ9 : works in(X,Y) ← manages(X,Y)

σ10 : works in(X, fσ10 ,2(X)) ← employee(X)

σ11 : manages(X, fσ11 ,2(X)) ← manager(X)

σ12 : eq(Y1, Y2) ← works in(X1, Y1),works in(X2, Y2), eq(X1, X2)

σ13 : eq(Y1, Y2) ← manages(X1, Y1),manages(X2, Y2), eq(X1, X2)

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 317

Query maquillage. Since we need to deal with equalities among values in a uniform

way, we need some maquillage (that we call equality maquillage) on q: replace every

term t in body(q), with a new variable X not occurring elsewhere in q, and add (as

a conjunct) to body(q) the atom eq(X, t). Henceforth, we shall denote with qeq the

query after the equality maquillage. For example, the query q(X) ← r(X, c, Y), s(Y)

becomes q(X)← r(A,B, C), s(D), eq(A,X), eq(B, c), eq(C, Y), eq(D, Y).

We shall now state that the encoding of CDs by means of the above rules

captures the correct manipulation of facts that is done in the chase (that, we remind

the reader, represents the inference of information done starting from the initial

data and the CDs, under the sound semantics). In order to do that, in Theorem 3

below, we first need to introduce a few auxiliary constructions and lemmata.

We introduce a variant of the chase with equality predicates, denoted chaseeq
Σ(D),

which is built as follows from a database D and a set of CDs Σ.

(1) Add all atoms of the form eq(c, c), at level 0, where c is a constant occurring

in D.

(2) Include all the facts in D and proceed as for chaseΣ(D), but

(a) A KD is applicable if there is a key constraint key(r) = {k1, . . . , kn}
and the chase result constructed so far contains the facts r(t), r(t′), and

eq(α1, β1), . . . , eq(αn, βn), with αi = t[ki] and βi = t′[ki]. When applying the

KD rule, instead of merging tuples by replacing the two constants αi and

βi by a combined symbol, add the atoms eq(αi, βi), eq(βi, αi) and all the eq

atoms that can be derived from the existing ones by transitivity; the level

of these eq atoms is the same as the lower of the two facts that fired the

rule.

(b) An ID rule is applicable if there is an ID r[k1, . . . , kn] ⊆ s[j1, . . . , jn] such

that the chase result constructed so far contains the fact r(t) but there is

no fact s(t′) such that, for every i such that 1 � i � n, eq(t[ki], t
′[ji]) is in

the chase result constructed so far. When applying the ID rule, add the

atom eq(α, α) for each new fresh constant α in the newly introduced fact;

the level of eq(α, α) is the same as the level of the new fact.

(c) Whenever an atom of the form eq(c1, c2) is added, where c1, c2 ∈ Γ, and

c1 �= c2, stop the chase procedure (the chase fails).

Example 7

Consider again the EER schema of Example 2 and the initial (incomplete) database

D = {manager(m),works in(m, d)} given in Example 4. Then chaseeq
Σ(D) consists

of D plus the following facts:

• eq(m,m), eq(d, d) (constants at level 0)

• employee(m), manages(m, α1), works in(m, α1), dept(α1), where α1 is a fresh

constant (applications of ID chase rules)

• eq(α1, α1) (new fresh constants)

• eq(α1, m), eq(m, α1) (application of a KD chase rules)

It is straightforwardly seen that chaseΣ(D) exists if and only if chaseeq
Σ(D) exists.

Clearly, as stated in the following lemma, an isomorphism can be established between

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

318 A. Cal̀ı and D. Martinenghi

the atoms in chaseeq
Σ(D) and those in the least Herbrand model of the program

consisting of D plus the rules encoding IDs, KDs, and equality.

Lemma 7

Consider a database D over a relational schema R with a set of CDs Σ = ΣI ∪ ΣK ,

where ΣK and ΣI are sets of KDs and IDs respectively, such that chaseΣ(D) exists.

Let Π be the program ΠΣI ∪ΠΣK ∪Πeq ∪D and M its least Herbrand model. Then,

there is an isomorphism μ : Γ ∪ Γf → UΠ, where UΠ is the Herbrand universe2 of

Π, such that: (i) μ(chaseeq
Σ(D)) = M; (ii) if α ∈ Γf then μ(α) is a Skolem ground

term in UΠ.

Proof

We exhibit the construction of a homomorphism with the desired properties. The

construction will be inductive on the applications of the immediate consequence

operator in the construction of M. We start from D, and we take the identity

isomorphism mapping D (as a subset of chaseeq
Σ(D)) into D (as a subset of M).

Now we consider the following cases of application of the immediate consequence

operator, on different kind of rules.

(1) Rule in ΠΣI . Assume we are adding a fact s(̄ts) because of a rule ρ of the form

s(·) ← r(·) encoding a dependency σ of the form r[·] ⊆ s[·], where r(̄tr) is a fact in

the part M∗ of M constructed at a certain point. Since, by induction hypothesis, μ

(so far) maps a subset of chaseeq
Σ(D) to M∗, we take μ−1(r(̄tr)), which is of the form

r(ūr): by application of the ID chase rule on σ (encoded by ρ), we get the addition

of a fact s(ūs). Now extend μ by adding to it {ūs[i]→ t̄s[i]} for every i such that ūs[i]

is a newly introduced fresh constant (or, equivalently, the corresponding argument

in ρ’s head contains a Skolem term).

(2) Rule in ΠΣK . The construction is the same as above, where the added fact in

M∗ is of the form eq(t1, t2), with {t1, t2} ⊆ UΠ, and the one in chaseeq
Σ(D) is of the

form eq(u1, u2), with {u1, u2} ⊆ Γ ∪ Γf .

(3) Rule in Πeq . It is straightforwardly seen that rules in Πeq introduce equality

atoms, whose corresponding atoms in chaseeq
Σ(D) are introduced by enforcing

reflexivity, symmetry and transitivity of the predicate eq , as described in the

construction of chaseeq
Σ(D). The homomorphism μ is extended accordingly in an

obvious way.

It is immediate to see that the isomorphism μ constructed as above is such

that values in Γf are mapped to Skolem terms (containing function symbols) and

vice-versa, and that μ(chaseeq
Σ(D)) = M. �

The previous lemma shows an isomorphism between the chase with equalities and

the least Herbrand model of the program comprising the rules for IDs, KDs,

equalities, and the database. Notice that this result holds for general IDs and KDs,

2 Usually, the Herbrand universe is constructed with respect to a language, but often we can talk about
the Herbrand universe of a logic program, intending the Herbrand universe constructed with the
constants and function symbols present in that program. The same holds for the notion of Herbrand
base.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 319

and not only for CDs: in fact, arbitrary IDs and KDs can be encoded in the same

way we did for CDs.

We then use Lemma 7 to extend the notion of level to the atoms of the least

Herbrand model: the level of such an atom is defined as the level of the corresponding

(via the isomorphism) atom in the chase with equalities.

Next, we show that, if we exclude the tuples containing fresh constants, the

answers to a query over the chase coincide with the answers to the query after

maquillage over the chase with equalities.

Lemma 8

Consider a conjunctive query q over a relational schema R with a set of CDs

Σ = ΣI ∪ΣK , where ΣK and ΣI are sets of KDs and IDs respectively, and a database

D for R, such that chaseΣ(D) exists. Then the tuples in q[Γ]
eq (chaseeq

Σ(D)) coincide

with those in q[Γ](chaseΣ(D)).

Proof

By construction of chaseeq
Σ(D), if we eliminate all atoms of the form eq(α, β) from

chaseeq
Σ(D) and replace α with β (or β with α, provided that the replacing one is the

fresh constant that lexicographically comes first), we obtain chaseΣ(D). We call this

process equality elimination. Suppose that tuple t consisting of nonfresh constants is

in qeq (chaseeq
Σ(D)). Then there exists a homomorphism μ sending body(qeq) to atoms

of chaseeq
Σ(D) and head (qeq) to t. By applying equality elimination to μ(body(qeq))

we then obtain atoms in chaseΣ(D). These are, in turn, an image for a homomorphism

μ′ from body(q) to atoms of chaseΣ(D). This can be seen as follows. Consider an

atom of the form eq(X, u) in body(qeq) such that μ(body(qeq)) = eq(c1, c2), where X

is a variable, u a term, and c1, c2 ∈ Γ∪Γf . Each time an atom of the form eq(c1, c2) is

eliminated by equality elimination from μ(body(qeq)), remove eq(X, u) from qeq and

replace in it all occurrences of the variable X with the term u. At each step of the eq

elimination process, the two structures are isomorphic; at the end, qeq is transformed

into a variant of q (i.e., the same as q modulo variable renaming), which proves

that q is isomorphic to the result of the equality elimination applied to μ(body(qeq)),

i.e., there is the homomorphism μ′ we were looking for. By construction of qeq , if t

contains no fresh constant, then μ′ necessarily maps head (q) to t.

For the other inclusion, consider a homomorphism μ′ sending body(q) into atoms

of chaseΣ(D) and head (q) into t. If the atoms in μ′(body(q)) are in D, these are

necessarily also in chaseeq
Σ(D), so all non-eq atoms in body(qeq) can also be mapped

to them by some homomorphism μ; then, the eq atoms require the equality of

constants in D, which are necessarily present in chaseeq
Σ(D). Then t is also an

answer in qeq (chaseeq
Σ(D)). By construction of the chaseeq

Σ(D), for every fact f

in chaseΣ(D) there is a subset S of chaseeq
Σ(D), containing only one non-eq fact

f′, such that equality elimination on S yields f; we say that f′ corresponds to f.

If some atom in μ′(body(q)) is not in D, it may have been generated by an ID

rule or by a KD rule. In the case of an application of an ID rule on a fact f in

the chase, then there is a corresponding fact f′ ∈ chaseeq
Σ(D) on which the same

application is made; note that no tuple merging caused by KD rules in the chase

causes new applications of an ID rule. For a KD rule, in the chase an application

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

320 A. Cal̀ı and D. Martinenghi

instantiates fresh constants to other constants from two starting tuples; in the chase

with equalities, the new tuple is not generated, but the two starting tuples remain,

and eq atoms are generated for all merged constants. This means that if an atom in

q is mapped into such a merged fact, the corresponding (non-eq) atom in qeq can

still be mapped into any of the two starting tuples. By construction of qeq , the body

of qeq contains one eq atom per term in q, so that each such term can be equalled to

the replacing constant in the KD rule application (or be left unchanged by mapping

the eq atom to one that equals the term to itself). �

With an argument similar to the one used in the proof of Theorem 2, it can

be shown that, also for the chase with equality, δM levels are sufficient for query

answering. This result is stated below as a corollary of Theorem 2.

Corollary 1

Let D be a database for a relational schema R, Σ a set of CDs over R such

that chaseΣ(D) exists, and q a conjunctive query over R. Then, for every tuple

t ∈ q[Γ](chaseeq
Σ(D)), there exists a homomorphism μ sending body(q) to facts of

chaseeq
Σ(D) and head (q) to t such that all the atoms in μ(body(q)) are in the first

δM levels of chaseeq
Σ(D), where δM is as in Theorem 2.

Now we can show the main result of this subsection as a consequence of the

previous results. This result validates our encoding of IDs, KDs and equalities into

ΠΣI , ΠΣK , Πeq and the query maquillage that returns qeq from q. Indeed, if we put

together ΠΣI , ΠΣK , Πeq and qeq into a program Πqeq
, and we evaluate it over a set

D of ground atoms, discarding the answer tuples that contain function symbols, we

get exactly the certain answers to q, evaluated over D under ΣI ∪ ΣK .

Theorem 3

Consider a conjunctive query q over a relational schema R with a set of CDs

Σ = ΣI ∪ ΣK , where ΣK and ΣI are sets of KDs and IDs respectively, and a

database D for R, such that chaseΣ(D) exists. Let Π be the set of Horn clauses

qeq ∪ΠΣI ∪ΠΣK ∪Πeq and let Πff

qeq
(D) be the largest function-free subset of Πqeq

(D).

Then Πff

qeq
(D) = ans(q,Σ, D).

Proof

By Lemma 7, we know that, if we exclude the atoms with predicate qeq , the least

Herbrand model M of Π ∪ D coincides with chaseeq
Σ(D) modulo an isomorphism

that sends the fresh constants into Skolem terms, and the nonfresh constants

into themselves. Therefore, Πqeq
(D) coincides with the answers in qeq (chaseeq

Σ(D)),

modulo this isomorphism; moreover, Πff

qeq
(D) coincides with q[Γ]

eq (chaseeq
Σ(D)), since,

because of the bijection, atoms with fresh constants correspond to atoms with

Skolem terms, and vice versa.

By Lemma 8, we know that q[Γ]
eq (chaseeq

Σ(D)) = q[Γ](chaseΣ(D)).

Finally, Theorem 1 guarantees that q[Γ](chaseΣ(D)) = ans(q,Σ, D), which concludes

the proof. �

The above result is crucial because it shows the correctness and completeness of

the encoding of the constraints into logic programming rules.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 321

In the next subsection we show how to eliminate the function symbols from Π,

thus obtaining a program expressed in pure Datalog.

5.2 Elimination of function symbols

Now, we want to transform the set of rules Π of Theorem 3 into another set which

has pure Datalog rules without function symbols. The reason to do so is that in

this way we can take advantage of efficient Datalog engines, while evaluating logic

programs with function symbols would certainly be an overkill.

To do that, we adopt a strategy somehow inspired by the elimination of function

symbols in the inverse rules algorithm (Duschka and Genesereth 1997) for answering

queries using views. The problem here is more complicated, due to the fact that

function symbols may be arbitrarily nested in the least Herbrand model of the

program. The idea here is to rely on the fact that there is a finite number δM of

levels in the chase that is sufficient to answer a query, as stated in Theorem 2. We

shall construct a Datalog program that mimics only the first δM levels of the chase,

so that the function symbols that it needs to take into account are nested up to δM
times. The strategy is based on the “simulation” of facts with function symbols in

the least Herbrand model of Π ∪ D (where D is an initial incomplete database) by

means of ad-hoc predicates that are annotated so as to represent facts with function

symbols.

Definition 6 (Annotation, annotated predicate, annotated version of an atom)

Let A be an atom of the form r(t1, . . . , tn), where every term ti is of the form

fi,1(fi,2(. . . fi,mi
(θi) . . .)), every fi,j is a unary function symbol, and every θi is either

a constant in Γ ∪ Γf or a variable. The sequence η̄ = η1, . . . , ηn, with ηi =

fi,1(fi,2(. . . fi,mi
(•) . . .)), is called the annotation of A. The new n-ary predicate rη̄

is called the annotated predicate for A, and the function-free atom rη̄(θ1, . . . , θn) is

called the annotated version of A.

Example 8

The annotated version of the atom works in(X, fσ10 ,2(X)) occurring in the head of

rule σ10 in Example 6 is works in•,fσ10 ,2
(•)(X,X).

Now, to have a program that yields function-free facts as described above, we

construct suitable rules that make use of annotated predicates. The idea here is that

we want to take control of the nesting of function symbols in the least Herbrand

model of the program, by explicitly using annotated predicates that represent facts

with function symbols; this is possible since we do that only for the (ground) atoms

that mimic facts that are in the first δM levels of the chase of the incomplete

database. Here we make use of the fact, proved in Lemma 7, that the least Herbrand

model of ΠΣI ∪ΠΣK ∪Πeq ∪D coincides with chaseeq
Σ(D), modulo renaming of the

Skolem terms into fresh constants. Therefore, we are able to transform a (part of a)

chase into the corresponding (part of the) least Herbrand model.

To do so, we construct a “dummy chase,” and transform it, in the following

way.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

322 A. Cal̀ı and D. Martinenghi

Definition 7 (Dummy database, dummy chase, dummy chase rules)

Consider a relational schema R with a set ΣI of IDs.

(1) Let B be a database for R consisting of exactly one fact of the form r(c1, . . . , cn)

for every relation r/n ∈ R, where c1, . . . , cn are distinct constants such that no

constant occurs in more than one fact3; B is called the dummy database for R.

(2) Let chaseδMΣI
(B) denote the initial segment of chaseΣI

(B) consisting of the first

δM levels; chaseδMΣI
(B) is called the dummy chase for R and ΣI .

(3) Let H be as chaseδMΣI
(B), but where each fact (possibly containing fresh

constants) is replaced with the corresponding atom (possibly containing function

symbols) in the least Herbrand model of ΠΣI ∪ B; note that such a correspondence

exists by Lemma 7, because without KDs, if we exclude the eq atoms, chaseΣI
(B)

and chaseeq
ΣI

(B) coincide.

(4) LetH′ be asH, but where every atom is replaced with its annotated version.

(5) We denote with ΠDC the set of all rules of the form A′2 ← A′1 such that (a) there

is an arc (A1, A2) in H′, and (b) by replacing every distinct constant with a distinct

variable in (A1, A2), we obtain (A′1, A
′
2). The rules in ΠDC are called dummy chase rules.

Example 9

Consider Example 2; in the dummy chase, we introduce, among the others, the

fact employee(c). This fact generates, according to the ID σ10 : employee[1] ⊆
works in[1], the fact works in(c, fσ10 ,2(c)) (after the transformation of the fresh con-

stants into Skolem terms). Its annotated version is works in•,fσ10 ,2
(•)(c, c). Therefore,

ΠDC contains, among the others, the rule works in•,fσ10 ,2
(•)(X,X)← employee•(X).

The dummy chase determines all possible nesting sequences of function symbols

that may occur in the first δM levels of the least Herbrand model of the program

ΠΣI ∪ ΠΣK ∪ Πeq ∪ D: only IDs generate function symbols, and the dummy chase

produces all possible function symbol sequences that may occur for every relation.

We next show how to generate a new annotated, function-free program from

ΠΣI ∪ ΠΣK ∪ Πeq . Preliminarily, we need some notation: we denote with X̄[h] the

h-th term of a sequence X̄, and with η̄[h] the h-th element of an annotation η̄ (which

is in turn a sequence).

Definition 8 (Function-free rewriting for CDs)

Consider a conjunctive query q over a relational schema R with a set of CDs Σ =

ΣI ∪ΣK , where ΣK and ΣI are sets of KDs and IDs respectively. Let Πba be the set

of all rules, called base annotation rules, of the form r•,...,•(X1, . . . , Xn)← r(X1, . . . , Xn)

for every predicate r ∈ R ∪ {eq}.
We define Πq,Σ as the set of rules ΠDC ∪Πba plus all possible rules of the form

p
η̄0

0 (̄t0)← p
η̄1

1 (̄t1), . . . , p
η̄k
k (̄tk) such that:

(1) There is a rule p0(̄t0)← p1(̄t1), . . . , pk (̄tk) in ΠΣK ∪Πeq ∪ qeq .

(2) Each annotation element η̄i[j] occurs in some rule in ΠDC .

(3) If t̄i[j] = t̄i′[j
′] then η̄i[j] = η̄i′ [j

′].

3 It does not matter whether they are fresh or nonfresh, since they will disappear at the end of the
process.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 323

Base annotation rules are just a convenient renaming that allows us to refer to

the annotation •,...,• to capture also the facts in the database. Note that ΠΣI is

not included in the program since it is already encoded in ΠDC in a function-free

fashion.

Example 10

Consider the dependency

σ13 : eq(Y1, Y2)← manages(X1, Y1),manages(X2, Y2), eq(X1, X2)

encoding the KD key(manages) = {1} from Example 2. Among the annotations

occurring in ΠDC , we have fσ10 ,2(•) and • (note that • necessarily does), as shown

in Example 9. Then Πq,Σ will include, among others, the rules

eq•,•(Y1, Y2)← manages•,•(X1, Y1),manages•,•(X2, Y2), eq
•,•(X1, X2)

eq•,•(Y1, Y2)← managesfσ10 ,2
(•),•(X1, Y1),manages•,•(X2, Y2), eq

fσ10 ,2
(•),•(X1, X2)

eq•,•(Y1, Y2)← manages•,•(X1, Y1),managesfσ10 ,2
(•),•(X2, Y2), eq

•,fσ10 ,2
(•)(X1, X2)

eqfσ10 ,2
(•),•(Y1, Y2)← manages•,fσ10 ,2

(•)(X1, Y1),manages•,•(X2, Y2), eq
•,•(X1, X2)

eq•,fσ10 ,2
(•)(Y1, Y2)← manages•,•(X1, Y1),manages•,fσ10 ,2

(•)(X2, Y2), eq
•,•(X1, X2)

eq•,•(Y1, Y2)← managesfσ10 ,2
(•),•(X1, Y1),managesfσ10 ,2

(•),•(X2, Y2), eq
fσ10 ,2

(•),fσ10 ,2
(•)

(X1, X2)
...

Now we can state our central theorem.

Theorem 4

Let D be a database for a relational schema R, Σ a set of CDs over R such that

chaseΣ(D) exists, and q a conjunctive query over R. Then, Πq,Σ

q
•,...,•
eq

(D) = ans(q,Σ, D).

Proof

The proof is based on the fact that the least Herbrand model M of Πq,Σ ∪ D

is a representation of the first δM levels of the least Herbrand model Mf of

qeq ∪Πeq ∪ΠΣI ∪ΠΣK ∪ D. By Lemma 7, the first δM levels of Mf are isomorphic

with the first δM levels of chaseeq
Σ(D). By Corollary 1, the (nonfresh) answers

to qeq over the first δM levels of chaseeq
Σ(D) coincide with those found over the

whole chaseeq
Σ(D). By Lemma 8, the (nonfresh) answers to qeq over chaseeq

Σ(D)

coincide with the (nonfresh) answers to q over chaseΣ(D), which, by Theorem 1,

coincide with ans(q,Σ, D). Hence, to prove the thesis, we need to show that there is

a correspondence between the facts in M and those in the first δM levels of Mf .

We then represent the atoms in M and those in the first δM levels of Mf as two

isomorphic structures. Consider therefore the atoms in Mf as being disposed in levels

(as in the corresponding chase with equalities). Every two atoms corresponding to

an ID rule application are connected by an arc. An eq atom has an incoming arc

for each corresponding atom in the first rule (in ΠΣK or Πeq) that produced it via

the immediate consequence operator. If we exclude eq atoms, Mf is a forest whose

roots are the atoms in D; if we include the eq atoms, we have a directed acyclic

graph, since eq atoms may have several parents. We now show that, for each atom

A of the form p(θ1, . . . , θn) in the first δM levels of Mf there is an atom B of the

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

324 A. Cal̀ı and D. Martinenghi

form pη1 ,...,ηn (c1, . . . , cn) in M, where each ηi is the annotation element corresponding

to θi and ci its innermost constant. Consider all the ancestors of A in Mf .

If p is not the eq predicate, there is a path A0, . . . , Am = A in Mf , such that Ai is at

level i and Ai is Ai+1’s parent. We prove the claim by induction. As base case, we show

that there is an atom B0 in M corresponding to A0 and an annotation corresponding

to A0’s predicate and terms in Πq,Σ; but this is obvious, since A0 ∈ D and all atoms

in D are also in M; besides, they also exist in M with a •,...,• annotation, because of

the base annotation rules in Πba . As inductive step, assume the claim holds for all

Aj with j � i and an annotation corresponding to Ai’s predicate and terms is in Πq,Σ

(let it be r
η̄
i); we show that it also holds for Ai+1. There is an ID that generates Ai+1

from Ai. By inductive hypothesis, since we are within the first δM levels, there must

be a rule in ΠDC corresponding to the ID in question, with an atom with predicate

r
η̄
i in the body. The application of the immediate consequence operator on that rule

will produce, by construction, an atom whose predicate annotation matches Ai+1’s

predicate and terms, and whose constants match Ai+1’s innermost constants.

If p is eq , the proof is as above, but instead of a single path, there may be multiple

paths of the form A0, . . . , Am = A; the above argument can be applied to any of

them. The only difference is that, instead of ID rules, eq atoms are generated either

by KD rules in ΠΣK or by the equality rules in Πeq . For all such rules (and for all

the atoms they are applied to) there are the corresponding annotated counterparts

in Πq,Σ that have been added by the algorithm for rule annotation.

This proves that, apart from the qeq atoms, all the atoms in the first δM levels

of Mf have a corresponding annotated atom in M. Now, the algorithm for rule

annotation has added to Πq,Σ all possible versions of qeq in which the head is

annotated q•,...,•eq and the positions in which the same variable occurs in the query

are annotated in the same way, with all possible annotations occurring in the first

δM levels of Mf . Therefore the qeq tuples in Mf are contained in the q•,...,•eq tuples

in M.

For the other inclusion, we simply need to dispose the atoms in M according to

levels, as we did for the atoms in Mf . Starting from the atoms of D in M and the

eq atoms on constants in D, by the base annotation rules we obtain the same atoms

with annotation •,...,•; these annotated atoms are at level 0 in M; the nonannotated

atoms are never used by any other rule in Πq,Σ and can be disregarded. Every other

rule in Πq,Σ, when used by the immediate consequence operator, generates an atom

(in the head) starting from other atoms (in the body); when the generated atom is

new, we draw an arc from each body atom to the head atom, and give it the level

� + 1, where � is the maximum level of the body atoms. The resulting structure

is again a directed acyclic graph, and from this we can proceed as for the other

inclusion and prove that for each atom in M, a corresponding nonannotated atom

exists in Mf , since every rule produced by the algorithm for rule annotation, apart

from Πba , is a syntactic variant of rules in qeq ∪Πeq ∪ΠΣK , and the rules in ΠDC

mimic the rules in ΠΣI . �

The above theorem suggests our final strategy for computing the answers to a

conjunctive query q expressed over an EER schema, given a database D.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 325

(1) We derive a set Σ of CDs that represent the EER schema.

(2) We check whether chaseΣ(D) exists, as described in the proof of Lemma 1, in

time polynomial in |D|.
(3) Then, we derive a Datalog rewriting that computes all certain answers to q,

according to Theorem 4.

(4) Finally, we evaluate the Datalog rewriting on D.

5.3 Considerations on complexity

We focus here on data complexity, i.e., the complexity w.r.t. the size of the data, that

is the most relevant, since the size of the data is usually much larger than that of

the schema.

Proposition 2

The complexity of computing the certain answers to a CQ over an EER schema is

polynomial in the size of the data if the size λD of the largest connected part in the

join graph of the instance of the EER schema is bounded.

Proof

From a CQ q over an EER schema, given a database D, we can proceed as follows.

(1) We check whether the chase exists, which can be done in polynomial time

in the size of D by Lemma 1; if it does not, then query answering is trivial (all

n-tuples are in the answer to the query q, where n is the arity of q); (2) we construct

a Datalog rewriting for q, according to what was explained in the previous pages,

which does not depend on D but only on λD , which is assumed to be bounded; (3)

we evaluate the rewriting on the data. Since the evaluation of a Datalog program is

polynomial in data complexity (Dantsin et al. 2001), the thesis follows. �

5.4 Extensions of results

Dealing with inconsistencies. First of all, as we mentioned in Section 4.2, we have

always assumed that the initial, incomplete database satisfies the KDs derived from

the EER schema. This assumption does not limit the applicability of our results,

since violations of KDs can be treated in different ways. (1) Data cleaning (see,

e.g., Hernández and Stolfo 1998): a preliminary cleaning procedure would eliminate

the KD violations; then, the results from (Calı̀ 2006) ensure that no violations will

occur in the chase, and we can proceed with the techniques presented in the paper.

(2) Strictly sound semantics: according to the sound semantics we have adopted,

from the logical point of view, strictly speaking, a single KD violation in the

initial data makes query answering trivial (any tuple is in the answer, provided

it has the same arity of the query); this extreme assumption, not very usable in

practice, can be encoded in suitable rules, which make use of inequalities, and that

can be added to our rewritings. We refer the reader to (Calı̀ et al. 2003b) for the

details. (3) Loosely-sound semantics: this assumption is a relaxation of the previous

one, and is reasonable in practice. Inconsistencies are treated in a model-theoretic

way, and suitable Datalog¬ rules (that we can add to our programs without any

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

326 A. Cal̀ı and D. Martinenghi

trouble, obtaining a correct rewriting under this semantics) encode the reasoning

on the constraints. Again, we refer the reader to (Calı̀ et al. 2003b) for further

details.

Adding disjointness. Disjointness between two classes, which is a natural addition

to our EER model, can be easily encoded by exclusion dependencies (EDs) (see,

e.g. Lembo 2004). The addition of EDs to CDs is not problematic, provided that we

preliminarily compute the closure, w.r.t. the implication, of KDs and EDs, according

to the (sound and complete) implication rules that are found in Lembo (2004). After

that, we can proceed as in the absence of EDs.

6 Discussion

Summary of results. In this paper we have employed a conceptual model based on

an extension of the ER model, which we called Extended Entity-Relationship, and

we have given its semantics in terms of the relational database model with integrity

constraints. We have thus carved out a relevant class of relational constraints, which

is a subclass of the well-known key and IDs; such a class is important, because in

real-world database design the constraints are directly derived from an ER schema.

In fact, the focus of our contribution is on querying incomplete data under an

interesting class of relational constraints, rather than on proposing another query

language for EER schemata. Moreover, we argue that our results are independent

of the translation from EER to relational.

We have considered conjunctive queries expressed over EER conceptual schemata,

and we have tackled the problem of providing the certain answers to queries in such a

setting, when the data are incomplete w.r.t. the constraints that encode the conceptual

schema. We have characterized a class of relational constraints, namely CDs, which

are able to represent EER schemata. This class is a subclass of KDs and IDs (in the

general case the query answering problem is undecidable Calı̀ et al. 2003a). In this

way, we have reduced the query answering problem under EER constraints into the

equivalent problem of query answering under CDs.

We have provided a query rewriting algorithm that transforms a conjunctive query

q into a new (recursive Datalog) query that, once evaluated on the incomplete data,

returns the certain answers to q.

Finally, we have shown how our results can be extended to more general settings,

in particular: (1) EER schema with class disjointness; (2) the so-called loosely-sound

semantics for incomplete data, which overcomes the limitations of the strictly sound

one.

Related work. Several works propose query languages for different flavors of EER

schemata (Hohenstein and Engels 1992; Grant et al. 1993; Lawley and Topor 1994;

Thalheim 2000). Our query language, which does not introduce novel features or

characteristics, relies on a standard translation of EER schemata into relational

ones.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 327

As pointed out earlier, query answering in our setting is tightly related to

containment of queries under constraints, which is a fundamental topic in database

theory (Johnson and Klug 1984; Chan 1992; Calvanese et al. 1998; Kolaitis and

Vardi 1998). (Calı̀ et al. 2001) deals with conceptual schemata in the context of

data integration, but the cardinality constraints are more restricted than in our

approach, since they do not include functional participation constraints and is-a

among relationships.

Other works that deal with dependencies similar to those presented here are

(Calvanese et al. 2005; Calvanese et al. 2006), which deal with a formalism called

DL-Lite and based on Description Logic; it is easy to establish a correspondence

between EER entities and DL-lite concepts, and between EER relationships and

DL-lite (binary) roles. However, the set of constraints considered in the above works

is not comparable to CDs: while it contains some constructs not expressible in EER,

on the other hand it is unable to represent, for instance, the is-a among relationships,

which we believe is the major source of complexity in the query answering problem.

Also (Ortiz et al. 2006) addresses the problem of query containment using a

formalism for the schema that is more expressive than the one presented here;

the problem is proved to be coNP-hard. In Calvanese et al. (1998), the authors

address the problem of query containment for queries on schemata expressed in a

formalism that is able to capture our EER model; in this work it is shown that

checking containment is decidable and its complexity is exponential in the number

of variables and constants of q1 and q2, and doubly exponential in the number of

existentially quantified variables that appear in a cycle of the tuple-graph of q2 (we

refer the reader to the paper for further details). Since the complexity is studied by

encoding the problem in a different logic, it is not possible to analyze in detail the

complexity w.r.t. |q1| and |q2|, which by the technique of Calvanese et al. (1998) is

in general exponential. If we export the results of Calvanese et al. (1998) to our

setting, we get an exponential complexity w.r.t. the size of the data for the decision

problem4 of answering queries over incomplete databases. In our work we provide

a technique that also serves the purpose of computing all answers to a query in the

presence of incomplete data.

Our technique for dealing with the nonrepairable violations in the chase is the same

as in Calı̀ et al. (2003a). This is along the lines of consistent query answering (Arenas

et al. 1999); a similar approach is found in Chomicki and Marcinkowski (2005).

Future work. As future work, we plan to extend the EER model with more

constraints which are used in real-world cases, such as covering constraints or

more sophisticated cardinality constraints. We also plan to further investigate the

complexity of query answering, providing a thorough study of complexity, including

lower complexity bounds. Also, we are working on an implementation of the query

rewriting algorithm, so as to test the efficiency of our technique on large data sets.

4 The decision problem of query answering amounts to deciding whether, given a query q and a tuple t,
t belongs to the answers to q.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

328 A. Cal̀ı and D. Martinenghi

Acknowledgments

Andrea Calı̀ was supported by the EPSRC project EP/E010865/1 “Schema Map-

pings and Automated Services for Data Integration and Exchange.” Davide Mar-

tinenghi was supported by the “Search Computing” (SeCo) project, funded by the

ERC under the 2008 Call for “IDEAS Advanced Grants.”

References

Abiteboul, S., Hull, R. and Vianu, V. 1995. Foundations of Databases. Addison Wesley

Publishing Co.

Arenas, M., Bertossi, L. E. and Chomicki, J. 1999. Consistent query answers in inconsistent

databases. In Proc. of PODS’99, 68–79.

Bertossi, L. E. and Bravo, L. 2005. Consistent query answers in virtual data integration

systems. In Inconsistency Tolerance, L. E. Bertossi, A. Hunter and T. Schaub, Eds. Lecture

Notes in Computer Science, vol. 3300. Springer, 42–83.

Calı̀, A. 2003. Query answering and optimisation in information integration. PhD thesis,

Universit di Roma “La Sapienza.”

Calı̀, A. 2006. Containment of conjunctive queries over conceptual schemata. In Proc. of

DASFAA 2006, 270–284.

Calı̀, A. 2007. Querying incomplete data with logic programs: Er strikes back. In ER,

C. Parent, K.-D. Schewe, V. C. Storey and B. Thalheim, Eds. Lecture Notes in Computer

Science, vol. 4801. Springer, 245–260.

Calı̀, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. 2001. Accessing data integration

systems through conceptual schemas. In Proc. of ER 2001, 270–284.

Calı̀, A., Calvanese, D., De Giacomo, G. and Lenzerini, M. 2004. Data integration under

integrity constraints. Information Systems 29, 147–163.

Calı̀, A., Gottlob, G. and Kifer, M. 2008. Taming the infinite chase: Query answering

under expressive relational constraints. In Proc. of the 12th International Conference on the

Principles of Knowledge Representation and Reasoning (KR 2008), 70–80.

Calı̀, A., Lembo, D. and Rosati, R. 2003a. On the decidability and complexity of query

answering over inconsistent and incomplete databases. In Proc. of PODS 2003, 260–271.

Calı̀, A., Lembo, D. and Rosati, R. 2003b. Query rewriting and answering under constraints

in data integration systems. In Proc. of IJCAI 2003, 16–21.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. 2005. DL-Lite:

Tractable description logics for ontologies. In Proc. of AAAI 2005, 602–607.

Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M. and Rosati, R. 2006. Data

complexity of query answering in description logics. In Proc. of the 10th International

Conference on the Principles of Knowledge Representation and Reasoning (KR 2006), 260–

270.

Calvanese, D., De Giacomo, G. and Lenzerini, M. 1998. On the decidability of query

containment under constraints. In Proc. of PODS’98, 149–158.

Chan, E. P. F. 1992. Containment and minimization of positive conjunctive queries in OODB’s.

In Proc. of PODS’92, 202–211.

Chen, P. 1976. The Entity-Relationship model: Toward a unified view of data. ACM Trans.

on Database Systems 1, 1 (March), 9–36.

Chomicki, J. and Marcinkowski, J. 2005. Minimal-change integrity maintenance using tuple

deletions. Information and Computation 197, 1–2, 90–121.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

Querying incomplete data over extended ER schemata 329

Codd, E. F. 1970. A relational model of data for large shared data banks. Communications of

the ACM 13, 6, 377–387.

Dantsin, E., Eiter, T., Gottlob, G. and Voronkov, A. 2001. Complexity and expressive

power of logic programming. ACM Computing Surveys 33, 3, 374–425.

Deutsch, A., Nash, A. and Remmel, J. B. 2008. The chase revisited. In PODS, 149–158.

Duschka, O. M. and Genesereth, M. R. 1997. Answering recursive queries using views. In

Proc. of PODS’97, 109–116.

Duschka, O. M. and Levy, A. Y. 1997. Recursive plans for information gathering. In Proc.

of IJCAI’97, 778–784.

Fagin, R., Kolaitis, P. G., Miller, R. J. and Popa, L. 2005. Data exchange: semantics and

query answering. Theoretical Computer Science 336, 1, 89–124.

Gottlob, G. and Nash, A. 2008. Efficient core computation in data exchange. Journal of the

ACM 55, 2.

Grant, J., Ling, T. and Lee, M. 1993. ERL: Logic for entity-relationship databases. Journal

of Intelligent Information Systems 2, 2, 115–147.

Hernández, M. A. and Stolfo, S. J. 1998. Real-world data is dirty: Data cleansing and the

merge/purge problem. J. of Data Mining and Knowledge Discovery 2, 1, 9–37.

Hohenstein, U. and Engels, G. 1992. SQL/EER – syntax and semantics of an entity-

relationship-based query language. Information Systems 17, 3, 209–242.

Johnson, D. S. and Klug, A. C. 1984. Testing containment of conjunctive queries under

functional and inclusion dependencies. Journal of Computer and System Sciences 28, 1,

167–189.

Kolaitis, P. G. and Vardi, M. Y. 1998. Conjunctive-query containment and constraint

satisfaction. In Proc. of PODS’98, 205–213.

Lawley, M. and Topor, R. 1994. A query language for EER schemas. In Proceedings of

ADC 1994, 292–304.

Lembo, D. 2004. Dealing with inconsistency and incompleteness in data integration. PhD

thesis, Dip. di Inf. e Sist., Univ. di Roma “La Sapienza.”

Lenzerini, M. 2002. Data integration: A theoretical perspective. In Proc. of PODS 2002,

233–246.

Lloyd, J. W. 1987. Foundations of Logic Programming (Second, Extended Edition). Springer,

Berlin.

Maier, D., Mendelzon, A. O. and Sagiv, Y. 1979. Testing implications of data dependencies.

ACM Transactions on Database Systems 4, 455–469.

Maier, D., Sagiv, Y. and Yannakakis, M. 1981. On the complexity of testing implications

of functional and join dependencies. Journal of the ACM 28, 4, 680–695.

Markowitz, V. M. and Makowsky, J. A. 1990. Identifying extended entity-relationship object

structures in relational schemas. IEEE Transactions on Software Engineering 16, 8, 777–790.

Ortiz, M., Calvanese, D. and Eiter, T. 2006. Characterizing data complexity for conjunctive

query answering in expressive description logics. In Proc. of the 21st National Conference

on Artificial Intelligence (AAAI 2006), 275–280.

Reiter, R. 1978. On closed world data bases. In Logic and Databases, H. Gallaire and

J. Minker, Eds. Plenum Publishing Co., 119–140.

Thalheim, B. 2000. Entity Relationship Modeling – Foundations of Database Technology.

Springer.

Vardi, M. 1983. Inferring multivalued dependencies from functional and join dependencies.

Acta Informatica 19, 305–324.

https://doi.org/10.1017/S1471068410000104 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068410000104

