RETRIAL NETWORKS WITH FINITE BUFFERS AND THEIR APPLICATION TO INTERNET DATA TRAFFIC

KOSTIA AVRACHENKOV
INRIA
Sophia Antipolis
France
E-mail: k.avrachenkov@sophia.inria.fr

URI YECHIALI
Tel Aviv University
Tel Aviv
Israel
E-mail: uriy@post.tau.ac.il

Data on the Internet is sent by packets that go through a network of routers. A router drops packets either when its buffer is full or when it uses the Active Queue Management. Currently, the majority of the Internet routers use a simple Drop Tail strategy. The rate at which a user injects the data into the network is determined by transmission control protocol (TCP). However, most connections in the Internet consist only of few packets, and TCP does not really have an opportunity to adjust the sending rate. Thus, the data flow generated by short TCP connections appears to be some uncontrolled stochastic process. In the present work we try to describe the interaction of the data flow generated by short TCP connections with a network of finite buffers. The framework of retrial queues and networks seems to be an adequate approach for this problem. The effect of packet retransmission becomes essential when the network congestion level is high. We consider several benchmark retrial network models. In some particular cases, an explicit analytic solution is possible. If the analytic solution is not available or too entangled, we suggest using a fixed-point approximation scheme. In particular, we consider a network of one or two tandem M/M/1/K-type queues with blocking and with an $M/M/1/\infty$ -type retrial (orbit) queue. We explicitly solve the models with particular choices of K, derive stability conditions for $K \geq 1$, and present several graphs based on numerical results.

1. INTRODUCTION

Data on the Internet is sent by packets that go through a network of routers. A router drops packets either when its buffer is full or when the router uses the Active Queue Management (AQM) [13]. When the AQM is used, an incoming packet is dropped by the router with a probability that is a function of the average queue size. Up to the present time, the majority of Internet routers only drop packets when their buffers are full (Drop Tail policy). The dropped packets are then retransmitted by the sender. The rate at which a user injects the data into the network is determined by the transmission control protocol (TCP) [1,14]. However, most connections in the Internet consist only of few packets and the TCP does not get an opportunity to adjust the sending rate. Thus, the data flow generated by short TCP connections appears to be a stochastic noise that cannot be correctly represented by the utility function optimization approach [15,17,18]. In the present work, we try to describe the data flow generated by short TCP connections with the help of retrial networks. We note that up to the present time most of the work on retrial models has been done on a single retrial queue (see [2,6,9,11] and references there). Networks of queues with retrials are considered also in, for example, [3,19,22,24], but the models there are different than the model we will describe in this article.

Let us model the data network as a set of links L. Let I be a set of major data flows that traverse the network. These major flows can be interpreted, for instance, as the aggregation of flows that go from some Internet Service Provider (ISP) to some major Web site or portal. We assume that each data flow $i \in I$ follows a fixed path $\pi_i = \{l_1^i, \dots, l_{n(i)}^i\}$. We also define $\pi_i(u) = \{l_1^i, \dots, u\}$; that is, $\pi_i(u)$ corresponds to the part of the path π_i from the source link l_1^i up to link u. There is a buffer of size K_l associated with each link $l \in L$, where, if needed, the packets wait for transmission. We denote the transmission capacity of link l by μ_l . We assume that the packet transmission time is exponentially distributed. Of course, we are aware of the fact that the routing in the Internet is dynamic and that packets from the same TCP connection can follow different routes if some links in the network go down. We suppose that these deficiencies are not frequent and that the routing tables in the Internet routers do not change during long periods of time, so our assumptions can hold. This has been shown to be the case in the Internet [21] when more than two-thirds of the routes persist for days or even weeks. If a packet from flow i is lost in some router either because of the buffer overflow or because of the preventive drop by AQM, it is retransmitted by the source after some random time. This random time can be modeled either by the $\cdot/M/1/\infty$ or by the $\cdot/M/\infty$ queue with retransmission rate μ_{0i} . The $\cdot/M/1/\infty$ queuing model is more appropriate for the present application, because the packets wait in the Media Access Control (MAC) FIFO (first in-first out) queue of the sender before being retransmitted. We note that the known results on retrial queues with constant retrial rate are much more limited than the available results on retrial queues with the retrial rate proportional to the number of jobs in orbit. In [5], the authors consider a retrial queue with constant retrial rate. However, the primary queue of [5] is a queue with several servers and no waiting place. We denote the nominal aggregated

sending rate of flow $i \in I$ by λ_i . By the nominal aggregated sending rate we mean the rate of flow i not counting retransmitted packets. Of course, the actual sending rate, including the rate of retransmitted packets, is higher than the nominal rate.

The exact analysis of the above network model does not seem to be feasible for the general case. Therefore, we propose and study particular cases and approximation schemes. For instance, we can assume that packets are lost in buffers with some fixed probabilities. These probabilities can, in particular, be functions of the buffer length, the average load, or the average queue length, as is the case in the AQM routers. We call this approach a fixed-point approximation. In the present work, we consider the following two particular cases: (1) a single M/M/1/K-type retrial queue with an $M/M/1/\infty$ -type orbit queue and (2) two tandem M/M/1/1-type queues with an $M/M/1/\infty$ -type orbit queue. Even for these two basic network examples the exact calculations of system characteristics are involved. Having in hand the exact solutions for the basic network schemes helps us to determine the cases when the fixed point approximation works well. We note that $M/M/\cdot$ type queues mentioned above are not strictly speaking queues with Poisson input but we still keep this notation.

In section 2 we study the case with a single M/M/1/K primary queue and a $M/M/1/\infty$ orbit queue. We derive explicit expressions for various key probabilities in the cases where K=1 and K=2 and derive the stability condition for an arbitrary value of K. We further consider a fixed-point approximation scheme where we assume that the drop probabilities are fixed (yet depending on system parameters). We exhibit various graphs showing the regions where the approximation works well. In Section 3 we consider a network with two M/M/1/1 queues in tandem and an $M/M/1/\infty$ orbit queue. We obtain explicit solutions for certain probabilities and derive the (involved) stability condition. We then analyze our fixed-point approximation (which coincides with the exact solution for the single-node case with K=1). Finally, we calculate mean queue sizes and present graphs depicting the dependence of those sizes on system parameters.

2. M/M/1/K PRIMARY QUEUE WITH AN $M/M/1/\infty$ ORBIT QUEUE

Let us consider a basic single-node example of retrial networks; namely we consider the case of one M/M/1/K primary queue with an $M/M/1/\infty$ orbit queue. Customers arriving to a full buffer in the primary queue are blocked and go to the orbit queue. Contrary to other retrial models, we consider the orbit (retrial) queue as an $M/M/1/\infty$ -type queue that dispatches customers to the primary queue. This models the process of packet retransmissions by the source after they are lost in the Internet routers. The transition rate diagram of the associated Markov chain is depicted in Figure 1, in which the horizontal axis depicts the primary queue occupancy and the vertical axis depicts the number of jobs in orbit. The present model is a particular case of the more general retrial queue BMAP/PH/N/N + R analyzed in [16]. The authors of [16] use the matrix analytic technique [20]. In order to obtain explicit analytical results, we have decided to perform a more detailed analysis of the simpler model.

$$0 \quad 1 \quad K-1 \quad K$$

$$0 \quad \lambda \quad \mu \quad \lambda \quad \mu \quad \lambda \quad \mu \quad \lambda$$

$$1 \quad \lambda \quad \mu \quad \lambda \quad \mu \quad \lambda \quad \mu \quad \lambda$$

$$2 \quad \lambda \quad \mu \quad \lambda \quad \mu \quad \lambda \quad \mu \quad \lambda$$

FIGURE 1. Transition rate diagram.

We denote the steady-state probabilities for this system by $P_i(n)$, i = 0, 1, ..., K, n = 0, 1, ..., where the index i corresponds to the number of jobs in the primary queue and the index n corresponds to the number of jobs in the orbit queue. Also, we denote the input rate to the system by λ , the service rate of the primary queue by μ , and the service rate of the orbit queue by μ_0 . We can write the following sets of balance equations:

• For i = 0:

$$\lambda P_0(0) = \mu P_1(0),$$

 $(\lambda + \mu_0) P_0(n) = \mu P_1(n), \qquad n > 1.$

• For 0 < i < K:

$$(\lambda + \mu)P_i(0) = \lambda P_{i-1}(0) + \mu P_{i+1}(0) + \mu_0 P_{i-1}(1),$$

$$(\lambda + \mu + \mu_0)P_i(n) = \lambda P_{i-1}(n) + \mu P_{i+1}(n) + \mu_0 P_{i-1}(n+1), \qquad n \ge 1.$$

• For i = K:

$$(\lambda + \mu)P_K(0) = \lambda P_{K-1}(0) + \mu_0 P_{K-1}(1),$$

$$(\lambda + \mu)P_K(n) = \lambda P_{K-1}(n) + \mu_0 P_{K-1}(n+1) + \lambda P_K(n-1), \qquad n \ge 1.$$

• The set of balance equations for the transitions of the number of jobs in the orbit queue between levels n and n + 1 is given by

$$\lambda P_K(n) = \mu_0 \sum_{i=0}^{K-1} P_i(n+1), \qquad n \ge 0.$$

Using the above sets of balance equations, we derive a system of equations for the generating functions $G_i(z) = \sum_{n=0}^{\infty} z^n P_i(n), i = 0, 1, \dots, K$:

$$(\lambda + \mu_0)G_0(z) - \mu_0 P_0(0) = \mu G_1(z),$$

$$(\lambda + \mu + \mu_0)G_i(z) - \mu_0 P_i(0) = \lambda G_{i-1}(z) + \mu G_{i+1}(z) + \frac{\mu_0}{z}(G_{i-1}(z) - P_{i-1}(0)), \quad 0 < i < K,$$

$$(\lambda + \mu)G_K(z) = \lambda G_{K-1}(z) + \frac{\mu_0}{z}(G_{K-1}(z) - P_{K-1}(0)) + \lambda z G_K(z),$$

$$\lambda G_K(z) = \frac{\mu_0}{z} \sum_{i=0}^{K-1} (G_i(z) - P_i(0)).$$

In fact, one of the last two equations is redundant.

Next, consider the particular cases of K = 1 and K = 2. The case K = 1 was analyzed in [4,10,12] and the case K = 2 was analyzed in [23]. Let us now provide relevant results for the sake of completeness.

Consider first K = 1. If we set z = 1 in the first and the last of the above equations for the generating functions, denote $P_i(\cdot) = G_i(1)$, and add the normalization condition, we get the following system of equations:

$$(\lambda + \mu_0)P_0(\cdot) - \mu P_1(\cdot) = \mu_0 P_0(0),$$

$$-\mu_0 P_0(\cdot) + \lambda P_1(\cdot) = -\mu_0 P_0(0),$$

$$P_0(\cdot) + P_1(\cdot) = 1,$$

which results in

$$\begin{split} P_0(\cdot) &= 1 - \frac{\lambda}{\mu}, \\ P_1(\cdot) &= \frac{\lambda}{\mu}, \\ P_0(0) &= 1 - \frac{\lambda}{\mu} - \frac{\lambda}{\mu_0} \frac{\lambda}{\mu} = 1 - \frac{\lambda}{\mu} \left(1 + \frac{\lambda}{\mu_0} \right). \end{split}$$

Furthermore, given $P_0(0)$, $G_0(z)$ and $G_1(z)$ are easily calculated from the above set of equations for the generating functions. Since the empty system is a regeneration point, $P_0(0) > 0$ is a necessary and sufficient condition for the system stability. Note that the primary queue is always stable. The stability issue is with regard to the orbit queue. The condition $P_0(0) > 0$ is equivalent to

$$\rho < \frac{1}{1 + \rho_0},\tag{1}$$

with $\rho = \lambda/\mu$ and $\rho_0 = \lambda/\mu_0$; that is, $\lambda < (\sqrt{\mu_0(\mu_0 + 4\mu)} - \mu_0)/2$. One can see that the stability condition for the system composed of the M/M/1/1 retrial queue and the $M/M/1/\infty$ orbit queue is more restrictive than the stability condition for the classical queue with an infinite buffer. We also note that as $\mu_0 \to \infty$, $\rho_0 \to 0$ and the above stability condition becomes the standard condition $\rho < 1$.

Next, let us analyze the case K = 2 (treated in [23]). Using again the equations for the generating functions and setting z = 1, we obtain a system of linear equations for $P_0(\cdot), P_1(\cdot), P_2(\cdot), P_0(0)$, and $P_1(0)$. Then the solution of the system gives

$$\begin{split} P_0(\cdot) &= 1 - \frac{\lambda}{\mu}, \\ P_1(\cdot) &= \frac{\lambda \mu(\mu + \mu_0) - \lambda^2(\mu_0 - \mu) - \lambda^3}{\mu^2(2\lambda + \mu + \mu_0)}, \\ P_2(\cdot) &= \frac{\lambda^2(\lambda + \mu + \mu_0)}{\mu^2(2\lambda + \mu + \mu_0)}, \\ P_0(0) &= \frac{\mu \mu_0(\mu + \mu_0) - \lambda \mu_0(\mu_0 - \mu) - 2\lambda^2 \mu_0 - \lambda^3}{\mu \mu_0(2\lambda + \mu + \mu_0)}, \\ P_1(0) &= \frac{\lambda \mu \mu_0(\mu + \mu_0) - \lambda^2 \mu_0(\mu_0 - \mu) - 2\lambda^3 \mu_0 - \lambda^4}{\mu^2 \mu_0(2\lambda + \mu + \mu_0)}. \end{split}$$

As in the case K = 1, the stability condition is given by

$$P_0(0) > 0$$
,

which is equivalent to

$$\mu\mu_0(\mu + \mu_0) - \lambda\mu_0(\mu_0 - \mu) - 2\lambda^2\mu_0 - \lambda^3 > 0.$$

Substituting $\mu = \lambda/\rho$ and $\mu_0 = \lambda/\rho_0$ into the above inequality, we obtain the stability condition in terms of ρ and ρ_0 as

$$-(1+\rho_0)^2\rho^2 + (1+\rho_0)\rho + \rho_0 > 0.$$
 (2)

Solving the above quadratic inequality, we get

$$\rho < \frac{1 + \sqrt{1 + 4\rho_0}}{2(1 + \rho_0)}. (3)$$

Since $1 + \sqrt{1 + 4\rho_0} > 2$, condition (3) gives a larger region of stability than the one in condition (1). As one would expect, the increase of the buffer space in the primary queue improves the stability of the system. In the case of fast retransmissions $(\rho_0 \to 0)$, condition (1) can be approximated as

$$\rho < 1 - \rho_0 + o(\rho_0)$$

and condition (3) can be approximated as

$$\rho < 1 - \rho_0^2 + o(\rho_0^2).$$

Next, let us derive the stability condition for arbitrary K. Let us enumerate the system states (n, i) in lexicographic order. Then the Markov chain generator for the system

has the block structure $Q = \{Q_{ij}\}_{i,j \ge 0}$, where

$$Q_{i,i-1} = \begin{bmatrix} 0 & \mu_0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & \mu_0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & \mu_0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}, \qquad i \ge 1,$$

$$Q_{i,i} = \begin{bmatrix} -\lambda - (1 - \delta_{i,0})\mu_0 & \lambda & 0 & \cdots \\ \mu & -\lambda - \mu - (1 - \delta_{i,0})\mu_0 & \lambda & \cdots \\ 0 & \mu & -\lambda - \mu - (1 - \delta_{i,0})\mu_0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \\ 0 & 0 & 0 & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ -\lambda - \mu - (1 - \delta_{i,0})\mu_0 & \lambda \\ \mu & -\lambda - \mu \end{bmatrix}, \quad i \geq 0,$$

$$Q_{i,i+1} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}, \qquad i \geq 0,$$

and the other blocks are zeros. All blocks are of dimension $(K + 1) \times (K + 1)$. Let us denote $Q_0 = Q_{i,i-1}$, $Q_1 = Q_{i,i}$, and $Q_2 = Q_{i,i+1}$ for $i \ge 1$. Then the necessary and sufficient condition for the system stability is given by the following inequality [7,20]:

$$xQ_2e < xQ_0e, (4)$$

where x is a $1 \times (K+1)$ vector that is the unique solution to the system

$$x(Q_0 + Q_1 + Q_2) = 0,$$

 $x_0 = 1.$ (5)

and where e is the vector of 1s and its dimension is $(K + 1) \times 1$. System (5) has the explicit solution

$$x_r = x_0 \left(\frac{\lambda + \mu_0}{\mu}\right)^r = x_0 \rho^r \left(\frac{1 + \rho_0}{\rho_0}\right)^r, \qquad r = 0, ..., K,$$
 (6)

with

$$x_0 = \left(\sum_{r=0}^K \left(\frac{\lambda + \mu_0}{\mu}\right)^r\right)^{-1}.$$

Substituting (6) into (4), we obtain the following stability condition in terms of ρ and ρ_0 .

PROPOSITION 1: The M/M/1/K retrial queue with an $M/M/1/\infty$ orbit queue is stable if and only if

$$1 + \sum_{r=1}^{K-1} \rho^r \left(\frac{1 + \rho_0}{\rho_0} \right)^r - \rho_0 \rho^K \left(\frac{1 + \rho_0}{\rho_0} \right)^K > 0.$$
 (7)

First, we note that conditions (1) and (2) are indeed particular cases of the general condition (7). Then let us study the limiting case $K \to \infty$. Denote $\xi = \rho(1 + \rho_0)/\rho_0$. Using this new notation, condition (7) can be rewritten as

$$1 + \sum_{r=1}^{K-1} \xi^r - \rho_0 \xi^K > 0$$

or, equivalently,

$$\frac{\xi^K - 1}{\xi - 1} - \rho_0 \xi^K > 0.$$
 (8)

Next consider two cases $0 < \xi < 1$ and $\xi > 1$. We note that the conditions $0 < \xi < 1$ and $\xi > 1$ are equivalent to the conditions $\rho < \rho_0/(1 + \rho_0)$ and $\rho > \rho_0/(1 + \rho_0)$, respectively. When $0 < \xi < 1$, condition (8) is equivalent to

$$\xi^K - 1 - \rho_0 \xi^K (\xi - 1) < 0.$$

Since $0 < \xi < 1$, one can always find a sufficiently large K such that the above condition is satisfied. Thus, the system is always stable in the case $\rho < \rho_0/(1 + \rho_0)$.

In the second case, $\xi > 1$, condition (8) is equivalent to

$$\xi^K - 1 - \rho_0 \xi^K (\xi - 1) > 0.$$

We can rewrite the above condition as

$$(1+\rho_0) - \rho_0 \xi - \frac{1}{\xi^K} > 0.$$

For the limiting case $K \to \infty$, the above condition reduces to

$$\xi < \frac{1 + \rho_0}{\rho_0}$$

or, equivalently,

$$\rho < 1$$
.

Since $\rho_0/(1+\rho_0) < 1$, we can combine the two separate cases $0 < \xi < 1$ and $\xi > 1$ to produce a single stability condition: $\rho < 1$. This condition is expected, because in the system with large buffer size K, the retrials are seldom and the system behaves similarly to the standard M/M/1 queue.

Now, let us consider an approximate model where we assume that packets are dropped with a fixed probability *P*. It was shown in [6] that the approximate model with fixed probabilities approximates well the exact retrial model when the nominal load is small.

Taking into account retransmissions, the actual load on the primary queue is given by

$$\hat{\rho} = \frac{\rho}{1 - P},\tag{9}$$

where $\rho = \lambda/\mu$ is the nominal load.

Assuming that the packets arrive to the primary queue according to a Poisson process, one can use the classical M/M/1/K queuing model for the approximation. Thus, the drop probability is given by

$$P = \frac{\hat{\rho}^K (1 - \hat{\rho})}{(1 - \hat{\rho}^{K+1})},\tag{10}$$

where *K* is the total buffer size in packets.

PROPOSITION 2: If $\rho < 1$, the system of (9) and (10) has a unique solution. This solution can be found by fixed-point iterations

$$\hat{\rho}^{(n+1)} = \rho \frac{1 - (\hat{\rho}^{(n)})^{K+1}}{1 - (\hat{\rho}^{(n)})^{K}},\tag{11}$$

which converge for any initial value $\hat{\rho}^{(0)} \in [0, \infty)$.

PROOF: We substitute the expression for the packet loss probability (10) into (9) to get

$$\hat{\rho} = \frac{\rho(1 - \hat{\rho}^{K+1})}{1 - \hat{\rho}^K}.$$

We can rewrite it as follows:

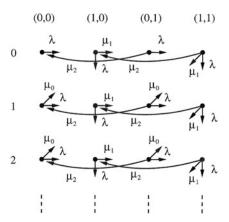
$$\frac{\hat{\rho}(1-\hat{\rho}^K)}{1-\hat{\rho}^{K+1}} = \rho, \quad \frac{\hat{\rho}+\hat{\rho}^2+\dots+\hat{\rho}^K}{1+\hat{\rho}+\hat{\rho}^2+\dots+\hat{\rho}^K} = \rho, \quad 1-\frac{1}{1+\hat{\rho}+\hat{\rho}^2+\dots+\hat{\rho}^K} = \rho.$$

Now, let us consider the left-hand side of the above equation. Clearly, this function of $\hat{\rho}$ is strictly increasing on the interval $[0, \infty)$. Moreover, it has a horizontal asymptote y = 1. Hence, if $\rho \ge 1$, there is no solution and if $\rho < 1$, there is a unique solution.

Next, we show that the fixed-point iterations (11) converge to the solution of (9) and (10). Since the above considerations demonstrate that there is a unique fixed point (of course, we are now interested only in the case $\rho < 1$), we only need to prove that the fixed-point iterations converge. To prove this, it is enough to show that the derivative of the right-hand side of (11) is less than 1 (see, e.g., [8, Thm. 1.12]):

$$\begin{split} &\frac{d}{d\hat{\rho}} \left[\rho \frac{1 - \hat{\rho}^{K+1}}{1 - \hat{\rho}^{K}} \right] = \frac{d}{d\hat{\rho}} \left[\rho \left(1 + \frac{\hat{\rho}^{K}}{1 + \hat{\rho} + \dots + \hat{\rho}^{K-1}} \right) \right] \\ &= \rho \frac{K \hat{\rho}^{K-1} + (K-1)\hat{\rho}^{K} + \dots + 2\hat{\rho}^{2K-3} + \hat{\rho}^{2K-2}}{(1 + \hat{\rho} + \dots + \hat{\rho}^{K-1})^{2}} \\ &= \rho \frac{K \hat{\rho}^{K-1} + (K-1)\hat{\rho}^{K} + \dots + 2\hat{\rho}^{2K-3} + \hat{\rho}^{2K-2}}{1 + 2\hat{\rho} + \dots + K\hat{\rho}^{K-1} + (K-1)\hat{\rho}^{K} + \dots + 2\hat{\rho}^{2K-3} + \hat{\rho}^{2K-2}} < \rho < 1. \end{split}$$

This completes the proof.


3. TWO M/M/1/1 QUEUES IN TANDEM WITH AN $M/M/1/\infty$ ORBIT QUEUE

As another particular case of the network of finite queues with retrials, let us consider two M/M/1/1 queues in tandem with an $M/M/1/\infty$ orbit queue. We denote the steady-state probabilities for this system by $P_{ij}(n)$, i,j=0,1 and $n=0,1,\ldots$, where the indexes i and j correspond to the number of jobs in the first and the second queues, respectively, and n corresponds to the number of jobs in the orbit queue. We denote the input rate to the system by λ , the service rate of queue k by μ_k , k=1,2, and the service rate of the orbit queue by μ_0 . The transition rate diagram is depicted in Figure 2. We can write the following five sets of balance equations:

• For the (0,0) column:

$$\lambda P_{00}(0) = \mu_2 P_{01}(0),$$

$$(\lambda + \mu_0) P_{00}(n) = \mu_2 P_{01}(n), \qquad n > 1.$$
(12)

FIGURE 2. Transition rate diagram.

• For the (1,0) column:

$$(\lambda + \mu_1)P_{10}(0) = \lambda P_{00}(0) + \mu_0 P_{00}(1) + \mu_2 P_{11}(0),$$

$$(\lambda + \mu_1)P_{10}(n) = \lambda P_{00}(n) + \mu_0 P_{00}(n+1) + \lambda P_{10}(n-1) + \mu_2 P_{11}(n),$$

$$n \ge 1.$$

• For the (0, 1) column:

$$(\lambda + \mu_2)P_{01}(0) = \mu_1 P_{10}(0),$$

 $(\lambda + \mu_2 + \mu_0)P_{01}(n) = \mu_1 P_{10}(n) + \mu_1 P_{11}(n-1), \qquad n \ge 1.$

• For the (1, 1) column:

$$(\lambda + \mu_1 + \mu_2)P_{11}(0) = \lambda P_{01}(0) + \mu_0 P_{01}(1),$$

 $(\lambda + \mu_1 + \mu_2)P_{11}(n) = \lambda P_{01}(n) + \mu_0 P_{01}(n+1) + \lambda P_{11}(n-1), n > 1.$

• Taking a "cut" between levels n and n + 1 of the number of jobs in orbit yields

$$\lambda P_{10}(n) + (\lambda + \mu_1)P_{11}(n) = \mu_0 P_{00}(n+1) + \mu_0 P_{01}(n+1), \qquad n \ge 0.$$

Using the above sets of balance equations, we derive a system of equations for the generating functions $G_{ij}(z) = \sum_{n=0}^{\infty} z^n P_{ij}(n)$, i, j = 0, 1:

 $\mu_0 G_{00}(z) - \lambda z G_{10}(z) + \mu_0 G_{01}(z) - (\lambda + \mu_1) z G_{11}(z)$

$$(\lambda + \mu_0)G_{00}(z) - \mu_2 G_{01}(z) = \mu_0 P_{00}(0), \tag{13}$$

$$(\lambda z + \mu_0)G_{00}(z) - z(\lambda(1-z) + \mu_1)G_{10}(z) + \mu_2 zG_{11}(z) = \mu_0 P_{00}(0),$$
 (14)

$$-\mu_1 G_{10}(z) + (\lambda + \mu_2 + \mu_0) G_{01}(z) - \mu_1 z G_{11}(z) = \mu_0 P_{01}(0),$$
 (15)

$$(\lambda z + \mu_0)G_{01}(z) - z(\lambda(1-z) + \mu_1 + \mu_2)G_{11}(z) = \mu_0 P_{01}(0),$$
 (16)

$$=\mu_0 P_{00}(0) + \mu_0 P_{01}(0). \tag{17}$$

Next, we denote $P_{ij}(\cdot) = G_{ij}(1)$ for i,j=0,1 and set z=1 in (13)–(15), and (17), and add (12) and the normalization equation $P_{00}(\cdot) + P_{10}(\cdot) + P_{01}(\cdot) + P_{11}(\cdot) = 1$. This results in the following system of linear independent equations:

$$(\lambda + \mu_0)P_{00}(\cdot) - \mu_2 P_{01}(\cdot) = \mu_0 P_{00}(0),$$

$$(\lambda + \mu_0)P_{00}(\cdot) - \mu_1 P_{10}(\cdot) + \mu_2 P_{11}(\cdot) = \mu_0 P_{00}(0),$$

$$-\mu_1 P_{10}(\cdot) + (\lambda + \mu_2 + \mu_0)P_{01}(\cdot) - \mu_1 P_{11}(\cdot) = \mu_0 P_{01}(0),$$

$$\mu_0 P_{00}(\cdot) - \lambda P_{10}(\cdot) + \mu_0 P_{01}(\cdot) - (\lambda + \mu_1)P_{11}(\cdot) = \mu_0 P_{00}(0) + \mu_0 P_{01}(0),$$

$$\lambda P_{00}(0) = \mu_2 P_{01}(0),$$

$$P_{00}(\cdot) + P_{10}(\cdot) + P_{01}(\cdot) + P_{11}(\cdot) = 1.$$

The solution of the above system of linear equations leads to the following result:

PROPOSITION 3: The probabilities $P_{ij}(\cdot)$ and $P_{ij}(0)$ for i,j=0,1 are given by

$$P_{00}(\cdot) = 1 - \frac{\lambda}{\mu_1} - \frac{\lambda}{\mu_2},$$

 $P_{10}(\cdot) = \frac{\lambda}{\mu_1},$

in particular, implying that

$$\begin{split} P_{01}(\cdot) + P_{11}(\cdot) &= \frac{\lambda}{\mu_2}, \\ P_{01}(\cdot) &= \frac{\lambda(\mu_1\mu_2(\mu_1 + \mu_2 + \mu_0) - \lambda(\mu_0(\mu_1 + \mu_2) - \mu_1\mu_2) - \lambda^2(\mu_1 + \mu_2))}{\mu_1\mu_2^2(2\lambda + \mu_1 + \mu_2 + \mu_0)}, \\ P_{11}(\cdot) &= \frac{\lambda^2(\lambda(\mu_1 + \mu_2) + \mu_0(\mu_1 + \mu_2) + \mu_1\mu_2)}{\mu_1\mu_2^2(2\lambda + \mu_1 + \mu_2 + \mu_0)}, \\ P_{00}(0) &= \frac{1}{\mu_0\mu_1\mu_2(2\lambda + \mu_1 + \mu_2 + \mu_0)} \\ &\times \left(\mu_0\mu_1\mu_2(\mu_1 + \mu_2 + \mu_0) - \lambda[\mu_0^2(\mu_1 + \mu_2) + \mu_0(\mu_1^2 + \mu_2^2)] - \lambda^2[\mu_1^2 + \mu_2^2 + \mu_1\mu_2 + 2\mu_0(\mu_1 + \mu_2)] - \lambda^3[\mu_1 + \mu_2]\right), \\ P_{01}(0) &= \frac{\lambda}{\mu_2}P_{00}(0), \\ P_{10}(0) &= \frac{\lambda(\lambda + \mu_2)}{\mu_1\mu_2}P_{00}(0), \\ P_{11}(0) &= \frac{\lambda^2(\lambda^2 + \lambda(\mu_1 + \mu_2 + \mu_0) + \mu_0(\mu_1 + \mu_2) + \mu_1\mu_2)}{\mu_1\mu_2^2(2\lambda + \mu_1 + \mu_2 + \mu_0)}P_{00}(0). \end{split}$$

Again, as in the case of a single M/M/1/1 retrial queue, once $P_{00}(0)$ and $P_{01}(0)$ are determined, the generating functions $G_{ij}(z)$ are uniquely determined by the system of linear equations (13)–(16).

Let us now investigate the stability of the system. We argue that the empty system is a regeneration point and, hence, $P_{00}(0) > 0$ is a necessary and sufficient condition for the system stability. The condition $P_{00}(0) > 0$ is equivalent to

$$\mu_0 \mu_1 \mu_2 (\mu_1 + \mu_2 + \mu_0) - \lambda \left[\mu_0^2 (\mu_1 + \mu_2) + \mu_0 (\mu_1^2 + \mu_2^2) \right] - \lambda^2 \left[\mu_1^2 + \mu_2^2 + \mu_1 \mu_2 + 2\mu_0 (\mu_1 + \mu_2) \right] - \lambda^3 [\mu_1 + \mu_2] > 0.$$
 (18)

As the above expression seems to be too complex to analyze in the general case, we consider two important particular cases: the case of large μ_0 and the case of $\mu_1 = \mu_2$.

We note that for large values of μ_0 , the probability $P_{00}(0)$ has a simple asymptotics; namely we have

$$P_{00}(0) \to 1 - \frac{\lambda}{\mu_1} - \frac{\lambda}{\mu_2},$$

as $\mu_0 \to \infty$. Thus, if

$$\frac{\lambda}{\mu_1} + \frac{\lambda}{\mu_2} < 1,\tag{19}$$

then there always exists a large enough value of μ_0 that ensures the stability of the system.

Next, let us consider the case $\mu_1 = \mu_2 =: \mu$. Without loss of generality, we can take $\lambda = 1$. The stability condition (18) becomes

$$(\mu - 2)\mu_0^2 + 2[\mu(\mu - 1) - 2]\mu_0 - 3\mu - 2 > 0.$$
 (20)

We first note that if $\mu < 2$, then $\mu - 2 < 0$ and $\mu(\mu - 1) - 2 < 0$, and, consequently, the stability condition cannot be satisfied by any choice of μ_0 . Thus, a necessary condition for stability in this particular case is $\mu > 2$. Once this condition is guaranteed, the parameter μ_0 has to be chosen greater than the positive root of the left-hand side of (20); namely

$$\mu_0 > \frac{\sqrt{\mu^3(\mu-2)} - [\mu(\mu-1)-2]}{\mu-2}.$$

We note that the right-hand side of the above inequality has the asymptotics $3/(2\mu)$ as $\mu \to \infty$. Indeed, when μ becomes very large, (almost) every job passes through queues 1 and 2 without blocking. If there are a few jobs that get blocked, a (very) small value of $\mu_0 > 3/(2\mu)$ will ensure stability.

Next, let us analyze the fixed-point approximation model described by the following set of equations:

$$\hat{\rho}_1 = \frac{\rho_1}{(1 - P_1)(1 - P_2)},\tag{21}$$

$$\hat{\rho}_2 = \frac{\rho_2}{(1 - P_2)},\tag{22}$$

$$P_1 = \frac{\hat{\rho}_1}{1 + \hat{\rho}_1},\tag{23}$$

$$P_2 = \frac{\hat{\rho}_2}{1 + \hat{\rho}_2}. (24)$$

Note that (22) and (24) correspond exactly to the single-node case with K = 1. Hence, we have

$$P_2 = \rho_2$$
,

and

$$\hat{\rho}_2 = \frac{\rho_2}{1 - \rho_2}.$$

Then to get P_1 and $\hat{\rho}_1$, we substitute $P_2 = \rho_2$ and P_1 from (23) into (21),

$$\hat{\rho}_1 = \frac{\rho_1}{(1 - P_1)(1 - \rho_2)},\tag{25}$$

which results in

$$\hat{\rho}_1 = \frac{\rho_1}{1 - \rho_1 - \rho_2}$$

and, consequently, we have

$$P_1 = \frac{\rho_1}{1 - \rho_2}.$$

Note that the system of equations (21)–(24) has a unique and positive solution if and only if $\rho_1 + \rho_2 < 1$. It is interesting that this condition coincides with the stability condition (19) for the limiting case when $\mu_0 \to \infty$.

Let us now study the average number of jobs in the system. Differentiating (13)–(15) and (17) then setting z = 1 and denoting $L_{ij} := G'_{ij}(1)$, i, j = 0, 1, we obtain a system of linear equations:

$$(\lambda + \mu_0)L_{00} - \mu_2 L_{01} = 0, (26)$$

$$(\lambda + \mu_0)L_{00} - \mu_1 L_{10} + \mu_2 L_{11} = -\lambda P_{00}(\cdot) - (\lambda - \mu_1)P_{10}(\cdot) - \mu_2 P_{11}(\cdot),$$
 (27)

$$-\mu_1 L_{10} + (\lambda + \mu_2 + \mu_0) L_{01} - \mu_1 L_{11} = \mu_1 P_{11}(\cdot),$$
 (28)

$$\mu_0 L_{00} - \lambda L_{10} + \mu_0 L_{01} - (\lambda + \mu_1) L_{11} = \lambda P_{10}(\cdot) + (\lambda + \mu_1) P_{11}(\cdot).$$
 (29)

PROPOSITION 4: The average number of jobs in orbit is given by

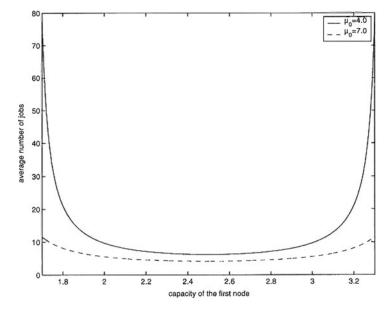
$$L_{\text{orbit}} = L_{00} + L_{10} + L_{01} + L_{11}, \tag{30}$$

the average number of jobs in the system is given by

$$L_{\text{system}} = L_{\text{orbit}} + P_{10}(\cdot) + P_{01}(\cdot) + 2P_{11}(\cdot),$$
 (31)

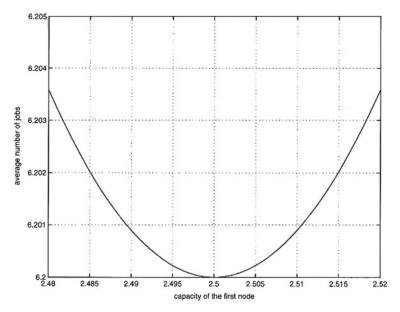
and the average time spent by a job in the system is given by

$$T_{\text{system}} = L_{\text{system}}/\lambda,$$
 (32)


where L_{ij} , i, j = 0, 1 are provided by the solution of the system of equations (26)–(29) and the probabilities $P_{ij(\cdot)}$ are given in Proposition 3. Moreover, denoting by L_1 and L_2 the mean queue size in the first and the second M/M/1/1 queues, respectively, we have

$$L_1 = P_{10}(\cdot) + P_{11}(\cdot),$$

 $L_2 = P_{01}(\cdot) + P_{11}(\cdot),$


and

$$L_{\text{system}} = L_{\text{orbit}} + L_1 + L_2.$$

Let us consider a numerical example. We fix $\lambda=1$ and the total network capacity $\mu_1+\mu_2=5$. In Figure 3, we plot the average number of jobs in the system $L_{\rm system}$

FIGURE 3. L_{system} as a function of μ_1 given $\mu_1 + \mu_2 = 5$.

FIGURE 4. L_{system} as a function of μ_1 given $\mu_1 + \mu_2 = 5$ (detailed plot for $\mu_0 = 4.0$).

as a function of the first node capacity μ_1 . We study two cases: $\mu_0 = 4$ and $\mu_0 = 7$. First, we observe that in the middle of the capacity value range, the value of L_{system} becomes less sensitive when μ_0 increases. Second, it seems that the minimal value of L_{system} is achieved when $\mu_1 = \mu_2$. This observation is further confirmed by the more detailed Figure 4.

4. CONCLUSIONS AND FUTURE RESEARCH

We have proposed a model for networks of finite-buffer queues with retrials. The construction of the present model is motivated by the need to describe the behavior of the Internet traffic generated by short TCP connections. The traffic generated by short TCP connections cannot be described adequately by the utility optimization-based approach. We have provided analytical solutions for some particular examples of networks with one node and with two nodes in tandem, where the retrial queue is an $M/M/1/\infty$ system. For the networks with more complex topologies, we propose using a fixed-point approximation. It is shown that the fixed-point iterations converge in the case of a single node. A future research topic is to investigate the convergence of the fixed-point iterations for any network topology. For the two-node tandem network (with retrials), we have shown numerically that equal allocation of transmission capacity between the two nodes minimizes the expected number of customers in the system. The optimal capacity allocation in the case of more complex networks is another future research direction.

Acknowledgments

We would like to thank A. N. Dudin and V. I. Klimenok for drawing our attention to the necessary and sufficient condition for stability of quasi-Toeplitz Markov chains. We also would like to acknowledge the support of the EuroNGI Network of Exellence and the France Telecom R&D (grant "Modélisation et Gestion du Trafic Réseaux Internet" No. 42937433).

References

- 1. Allman, M., Paxson, V., & Stevens, W. (1999). TCP congestion control. *RFC 2581*. Available at http://www.ietf.org/rfc/rfc2581.txt.
- Artalejo, J.R. (1999). Accessible bibliography on retrial queues. Mathematical and Computer Modelling 30: 223–233.
- 3. Artalejo, J.R. & Economou, A. (2005). On the non-existence of product-form solutions for queueing networks with retrials, *Electronic Modeling* 27: 13–19.
- 4. Artalejo, J.R. & Gómez-Corral, A. (1997). Steady state solution of a single-server queue with linear request repeated. *Journal of Applied Probability* 34: 223–233.
- 5. Artalejo, J.R., Gómez-Corral, A., & Neuts, M.F. (2001). Analysis of multiserver queues with constant retrial rate. *European Journal of Operational Research* 135: 569–581.
- 6. Cohen, J.W. (1957). Basic problems of telephone traffic theory and the influence of repeated calls. *Philips Telecommunication Review* 18: 49–100.
- Dudin, A.N. & Klimenok, V.I. (1999). Multi-dimensional quasi-Toeplitz Markov chains. *Journal of Applied Mathematics and Stochastic Analysis* 12: 393–415.
- 8. Elaydi, S.N. (1999). An introduction to difference equations, 2nd ed. New York: Springer-Verlag.
- 9. Falin, G.I. (1990). A survey of retrial queues. Queueing Systems 7: 127–167.
- Falin, G.I. & Gómez-Corral, A. (2000). On a bivariate Markov process arising in the theory of singleserver retrial queues. Statistica Neerlandica 54: 67–78.
- 11. Falin, G.I. & Templeton, J.G.C. (1997). Retrial queues. Boca Raton, FL: CRC Press.
- 12. Fayolle, G. (1986) A simple telephone exchange with delayed feedbacks. In: O.J. Boxma, J.W. Cohen and H.C. Tijms (eds.), *Teletraffic analysis and computer performance evaluation*, pp. 245–253. Amsterdam: Elsevier Science Publishers.
- Floyd, S. & Jacobson V. (1993). Random early detection gateways for congestion avoidance. *IEEE/ACM Transactions on Networking* 1: 397–413.
- Jacobson, V. (1988). Congestion avoidance and control. In *Proceedings* of ACM SIGCOMM'88, pp. 314–329.
- Kelly, F.P., Maulloo, A., & Tan, D. (1998). Rate control for communication networks: Shadow prices, proportional fairness and stability. *Journal of Operational Research Society* 49: 237–252.
- 16. Kim, C.S., Klimenok, V.I., & Orlovsky, D.S. (2004). The BMAP/PH/N/N + R retrial queuing system with different disciplines of retrials. In Proceedings of ASMTA'04.
- Kunniyur, S. & Srikant, R. (2000). End-to-end congestion control schemes: Utility functions, random losses, ECN marks. In *Proceedings of IEEE INFOCOM'00*. An extended version has appeared in *IEEE/ACM Transactions on Networking* 11: 689–702, 2003.
- 18. Low, S.H. & Lapsley, D.E. (1999). Optimization flow control I: Basic algorithm and convergence. *IEEE/ACM Transactions on Networking* 7: 861–874.
- 19. Moutzoukis, E. & Langaris, C. (2001). Two queues in tandem with retrial customers. *Probability in the Engineering and Informational Sciences* 15: 311–325.
- Neuts, M. (1989). Structured stochastic matrices of M/G/1 type and their applications. New York: Marcel Dekker.
- Paxson, V. (1996). End-to-end routing behavior in the Internet. In Proceedings of ACM SIGCOMM'96, pp. 25–38. An extended version appeared in IEEE/ACM Transactions on Networking 5: 601–615, 1997.
- 22. Pourbabai, B. (1990). Tandem behavior of a telecommunication system with finite buffers and repeated calls. *Queueing Systems* 6: 89–108.

- 23. Ramalhoto, M.F. & Gómez-Corral, A. (1998). Some decomposition formulae for M/M/r/r + d queues with constant retrial rate. *Communications in Statistics—Stochastic Models* 14: 123–145.
- 24. Takahara, G.K. (1996). Fixed point approximations for retrial networks. *Probability in the Engineering and Informational Sciences* 10: 243–259.