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This paper analyzes the existence of Hopf bifurcation and establishes the conditions under
which the equilibrium path converges toward periodic solutions in a one-sector optimal
growth model with delay. We establish the limits and the possibilities of nonlinear
dynamics (i.e., cycles) vis-à-vis delays. In particular, we formulate a new method to
further comprehend the root distribution of the characteristic equation of a standard
optimal growth model with delayed investment structure. We show that nonmonotonic
dynamics (limit cycles, persistent oscillations) occurs when the delayed investment causes
permanent adjustment failures among the economic variables in the economy.
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1. INTRODUCTION

Cycles have been on the agenda of researchers in economics for at least two
centuries. Cycles are shown to be welfare-costly, and thus their stabilization has
always been a major political and academic topic. This leads to an evergreen
interest of economists in theoretical studies that enlighten the cycle-inducing
mechanisms in economic models, as well as empirical studies that test or link
firm-level or country-level data with theoretical findings. Their existence, ampli-
tudes, frequencies (or periods), qualities (persistent or decaying cycles), stability,
optimality or suboptimality, etc. remain to be fully comprehended.

The main purpose of our paper is to show the existence of Hopf bifurcation
and to establish the conditions under which the equilibrium path converges toward
the periodic solution in an optimal growth model (OGM) with capital delay.
In particular, we contribute to the literature by extending the existing tools in
economics to understand and present mechanisms for cycle-inducing investment
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delays and their implications for the macroeconomic dynamics. In other words, we
try to establish the limits and possibilities of nonlinear dynamics (i.e., cycles) vis-
à-vis delays. The interesting dynamics (limit cycles, i.e., persistent cycle behavior)
occurs when delayed investment causes permanent adjustment failures among the
economic variables in the economy.

This literature is often presented as a complementary analysis to real business
cycle theory, which states that economic fluctuations are only produced by ex-
ogenous stochastic shocks [see Kydland and Prescott (1982); Long and Plosser
(1983) for further details]. The real business cycle theory falls short of meeting
the necessary shock in terms of the magnitude to match the data. The observed
fluctuations, on the other hand, are not regular enough to be explained by periodic
cycles. Chaotic solutions are studied to meet this end; however, focus is limited
to two-sector models. Hence, to consider cycle-inducing endogenous mechanisms
as a complement to the theories resorting to stochastic shocks would enhance the
explanatory power of both models.

The question of the effects of delay in economic models has not been exhaus-
tively studied in economic theory. However, the history of such analysis can be
roughly separated into two phases, which are determined by the then-current state
of economic theory and the elaboration of mathematical tools at hand. Michał
Kalecki was the first to introduce a rigorous economic model1 and show that
business cycles may depend endogenously on production (investment) delays
[Kalecki (1935)]. In order to show that cycles are intrinsic to economic behavior,
he employs2 a linear delay differential equation in the evolution of investment
variables.3 Kaleckian models exhibit endogenous cycles by employing simple
time delays in a linear delay differential equation. Time delays is consistent in the
sense that (i) delay structure is empirically significant4 and (ii) the first-order linear
ordinary differential equations are known to be unable to give cyclic solutions,
whereas linear delay differential equations may exhibit endogenous cycles. Zak
(1999) employs a production delay in a basic one-sector Solowian model [see
Solow (1956)] and, by employing the Hopf bifurcation theorem, shows that the
solution path is cyclic under certain conditions, confirming the Kaleckian insight.5

The Solow–Kalecki idea has been revived and extended to the Ramsey (1927)-
type optimal growth model by Asea and Zak (1999), who determine the steady state
characteristics of an optimal growth model with capital delay. Asea and Zak (1999)
claim that the root distribution of the related characteristic equation contains a pair
of pure imaginary eigenvalues and that the model exhibits Hopf cycles. Subsequent
research, however, focuses correctly on a system of delay and advance types of
differential equations for the first-order conditions for optimal control problems
with investment delay and fails to detect analytical cyclic solutions. As Collard
et al. (2008) aptly state, “unfortunately, as soon as the dynamics of these models
are characterized by a forward looking component, the lack of numerical methods
to solve these problems makes the quantitative evaluation of their transitional
dynamics difficult.”

The complexity of the characteristic equation prevents analytical results, and
thus some researchers incline to numerical simulations. Winkler et al. (2004),
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Brandt-Pollmann et al. (2008), and Collard et al. (2008) perform numerical
simulations to comprehend the dynamic behavior of optimal growth models with
delay. The main findings are summarized by Winkler et al. (2004), who states that
“both the frequency and the amplitude of the cycles depend on the length of the
investment period,” and by Collard et al. (2008), who state that “for a large
delay the economy converges to the steady state by oscillations, but consumption
smoothing mitigates the induced echo effects through an advanced Euler-type
differential.” Furthermore, Collard et al. (2006) numerically show that the
advanced term in Euler equation governing the dynamic system dampens
the fluctuations caused by the delays through a kind of smoothing effect
(“time-to-build echo”). Collard et al. (2008) study the short-run dynamics for
the convex economy via numerical simulations; Winkler et al. (2004) provide
numerical solutions of models of time-delay optimal growth models for a
linear limitational production function; Winkler et al. (2005) give a numerical
analysis of a time-delayed capital accumulation optimal growth model with a
Leontief-type production function; and Brandt-Pollmann et al. (2008) extend the
numerical solutions to objective functions with state externalities.

Note that the deficiency of numerical simulations in searching for cyclic so-
lutions is that Hopf bifurcation depends on the precise calibration of the Hopf
parameter, and without such calibration it may be impossible to hit the limit
cycle solution simply by the randomization of parameters.6 Moreover, the quasi-
polynomial associated with the characteristic equation naturally contains infinitely
many complex roots that would result in cyclic behavior. Considering the condi-
tions that exclude completely unstable solutions, such as the transversality con-
dition, it is natural that a random choice of parameters would result in decaying
cycles, which is, for the most part, in accordance with the results and interpretation
of Collard et al. (2008).

Bambi (2008) exploits the simplified characteristic equation under the AK
production function and characterizes a Hopf cycle. In a similar attempt, Winkler
(2009) proposes a different approach and associated open-form solutions. Bambi
and Gori (2013) introduce indivisible labor supply and Winkler (2011) assumes
irreversible investment to the otherwise convex economies7 and show that a certain
delay parameter causes Hopf cycles. Although these approaches enable analytical
results, the main question of whether there exists a limit cycle under a convex
economy without any distortions remains unanswered.

In this paper, we formulate a new method for further comprehending the root
distribution of the characteristic equation of a standard optimal growth model
with delayed investment structure. We extend the analysis of Asea and Zak (1999)
and introduce a new technique for the identification of the eigenvalues of the
characteristic equation associated with this type of models in a generalized frame-
work. Our method, which employs theoretical as well as numerical techniques, is
interdisciplinary in the sense that it exploits substitution of variables to shift and
translate the roots of the characteristic equation; Padé approximation to obtain a
rational approximation of the exponential time delay component in the charac-
teristic equation; root locus method (control theory) to determine the parameters
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that lead to the pure imaginary eigenvalues of the characteristic equation; grid
search (numerical methods) to exactly pin down the parameters; and finally, the
Hopf bifurcation theorem (theory of differential equations) to identify the cyclic
solution paths.

We show that a one-sector optimal growth model with time-to-build delay admits
Hopf cycles, contrary to the conventional results in the literature. Specifically,
for a standard optimal growth model with logarithmic utility and Cobb–Douglas
production function, the economy is driven into a limit cycle for a sufficiently large
production delay. This is in a similar vein to Bambi (2008), where an economically
(empirically) questionable but physically viable delay parameter induces cycles.
We also reproduce the (numerical) results of Bambi (2008) as a special case.

The paper is organized as follows. To address the effects of delay in reduced-
form macroeconomic models, we summarize the mathematical instruments in
Section 2. Section 3 introduces the model and our approach. Section 4 proposes an
algorithm to find the pure imaginary roots for the characteristic equation resulting
from optimal growth models with time delay. Finally, Section 5 concludes.

2. MATHEMATICAL PRELIMINARIES

The first-order conditions of an economic model with time delay are a (set of)
difference–differential equation(s). In Kalecki (1935), this is a one-variable delay
differential equation. Inspired by this model per se, Frisch and Holme (1935) first
analyze the roots of difference–differential equations of this form. Kalecki is a pio-
neer in characterizing endogenously driven cycles in the economy as opposed to the
cycles determined by exogenous shocks, and his study triggered the development
and elaboration of mathematical techniques for the characterization of the stability
properties in linear delay differential equations. James and Belz (1938) suggest
that “a solution of a difference-differential equation might be developed in terms of
an infinite series of characteristic solutions” and investigate “the conditions under
which such a development is possible.” Hayes (1950) partially closes the literature
on roots by giving the properties of the roots of transcendental characteristic
equations that frequently occur in dynamic economic systems with delays.8 The
first thorough analyses of a general class of delay differential equations were by
Bellman and Cooke (1963) and Hale (1977).

Early studies are based on the complete root distribution (thus, the resulting
dynamics) of the characteristic equation of the model under study given the pa-
rameters, whereas contemporary techniques try to determine specific conditions
under which specific complex dynamics (such as limit cycles or chaotic behavior)
can (or cannot) occur.9 Frisch and Holme (1935), James and Belz (1938), and
Hayes (1950) are examples of the former approach, whereas Hopf bifurcation10 as
the main tool for the detection of limit cycles in current studies is an example for the
latter. The theorem that characterizes the sufficient conditions under which periodic
orbits occur from stationary states is called the Poincaré–Andronov–Hopf theorem.

THEOREM 1 [Poincaré–Andronov–Hopf (Hale and Koçak, 1991, Thm. 11.12,
p. 344)]. Let

.
x = A(μ)x + F(μ, x) be a Ck , with k ≥ 3, planar vector field
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depending on a scalar parameter μ such that F(μ, 0) = 0 and DxF(μ, 0) = 0 for
all sufficiently small |μ|. Assume that the linear part A(μ) at the origin has the
eigenvalues α(μ)±iβ(μ) with α(0) = 0 and β(0) �= 0. Furthermore, suppose that
the eigenvalues cross the imaginary axis with nonzero speed, that is, dα

dμ
(0) �= 0.

Then, in any neighborhood U of the origin in R2 and any given μ0 > 0, there is
a μ with |μ| < μ0 such that the differential equation

.
x = A(μ̄)x + F(μ̄, x) has a

nontrivial periodic orbit in U .
According to the Hopf theorem, one can summarize the sufficient conditions

for Hopf bifurcation as follows:

— (H.1) A(μ), namely, the Jacobian11 of the nonlinear system, has only one
pair of pure imaginary eigenvalues (pre-Hopf condition).

— (H.2) Pure imaginary eigenvalues cross the imaginary axis with nonzero
speed, i.e., dα

dμ
(0) �= 0 (transverse crossing).

In other words, the roots (eigenvalues) of the Jacobian should lose stability at
the critical level of the parameter μ, which is called the Hopf parameter.

As Kind (1999) points out, it is generally easy to prove the existence of Hopf
bifurcation because it requires no information on the nonlinear parts of the equation
system. Moreover, in systems with dimension higher than two, Hopf bifurcation
may be the only tool for the analysis of the cyclical equilibria,12 because the
Poincaré–Bendixson theorem is not applicable. Furthermore, when the conditions
of Hopf bifurcation are satisfied, it guarantees both the existence and the unique-
ness of periodic trajectories [Krawiec and Szydłowski (1999)]. However, the Hopf
theorem gives no information on the number or the stability of closed orbits. On the
other hand, nonlinear parts can be used for the calculation of a stability coefficient
in order to determine the stability properties of the closed orbits [Kind (1999)].
Guckenheimer and Holmes (1983, Thm 3.4.2, pp. 151–153) provide both the
theory and an example in that direction.

3. HOPF CYCLES IN OPTIMAL GROWTH MODELS WITH TIME DELAY

Consider an economy that is inhabited by infinitely lived households with unit
aggregate measure. The representative individual’s preferences are represented by
a twice continuously differentiable, strictly increasing, and strictly concave utility
function u(c) and a subjective discount rate r > 0. In this economy, it takes
τ ≥ 0 periods to install new capital equipment. The production function f (k) is
strictly concave and twice continuously diffferentiable. We assume that the utility
function and the production function satisfy Inada conditions. The infinite horizon
planning problem is given by

max{c(t)}∞t=0

∞∫
0

e−rtu(c(t))dt

subject to
.

k (t) = f (k(t − τ)) − δk(t − τ) − c(t),

k (t) = φ(t), t ∈ [−τ, 0],

(1)
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where 0 < c(t) < f (k(t − τ)), δ ∈ [0, 1] is the capital depreciation rate, k(t −τ)

is the productive capital stock at time t , and φ(t) is the initial capital function. We
employed a modified version of the Maximum Principle [see Kolmanovskii and
Myshkis (1992)] to identify the first-order necessary conditions:

.
c (t) = r

u′(c(t))
u′′(c(t))

− e−rτ u′(c(t + τ))

u′′(c(t))
[
f ′(k(t)) − δ

]
, (2)

.

k (t) = f (k(t − τ)) − δk(t − τ) − c(t). (3)

Note that the first-order conditions have delayed terms as well as advanced terms.
The optimizing household takes the investment delay into account when consid-
ering consuming today or tomorrow.13 In other words, the marginal productivity
of capital available at time t + τ is weighted by the ratio of the marginal utility of
consumption at t + τ to the marginal utility of consumption at t [see also Collard
et al. (2008, p. 132)]. Also note that, as τ → 0, the first-order conditions converge
to those of the standard neoclassical growth model, and as α → 1, the production
schedule becomes AK, and the first-order conditions are the same as those of
Bambi (2008). The steady state equations are

r = e−rτ (f ′(kss) − δ) and css = f (kss) − δkss.

Assuming that f is strictly concave, there is a negative relation between the time-
to-build delay and the steady state level of capital. This is because the lower the
delay is, the higher is the effective capital used in production. The characteristic
equation associated with the first-order conditions (2) and (3) around the steady
state is

h(λ;�) ≡ (
r − reλτ − λ

) (
rerτ e−λτ − λ

) − e−rτ�2 = 0, (4)

where �2 = u′(c)
u′′(c)f

′′(k)
∣∣∣
css ,kss

∈ R. Under the standard assumptions of convex

preferences and convace production, we have14 �2 ≥ 0.
As h(λ;�) is a quasi-polynomial, it can be generalized as

H(λ) := A(λ) + B(λ)eλτ + C(λ)e−λτ ,

where A(.), B(.), and C(.) are real coefficient polynomials of various degrees
themselves. Note that the roots of a quasi-polynomial, and thus of the equation
(4), come in complex conjugate pairs.

PROPOSITION 1. Solutions λ to the equation (4) are symmetric with respect
to Reλ = r

2 . In other words, λ is a solution to the equation (4) if and only if r − λ

is a solution.

Proof. Define λ∗ = r − λ. Then

h(λ;�) = h(r − λ;�) = h(λ∗;�)

concludes the proof.
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Proposition (1) is crucial for various aspects. The symmetry implies that an
optimal growth model with time delay problem is governed by the infinite number
of stable and unstable complex eigenvalues. This already explains the decaying
cycle solutions for the numerical simulations so far presented. With the appropriate
parameter and initial condition adjustments, the unstable solutions are suppressed
and stable decaying cyclic solutions remain.

Recall that the strategy for finding Hopf cycles is to find a pure imaginary pair
of eigenvalues. Suppose such a pair ±jω exists. Then, by symmetry, r ∓ jω is
also a solution. Proposition (1) verifies that the eigenvalues {±jω, r ∓ jω} are
symmetric around Re λ = r

2 . Defining λ̄ = λ + r
2 , the roots of the equation

(4) are shifted to the left by Re λ = r
2 . In other words, the roots of the shifted

characteristic equation,

h(λ̄;�) ≡
( r

2
− re

rτ
2 eλ̄τ − λ̄

) (
re

rτ
2 e−λ̄τ − λ̄ − r

2

)
− e−rτ�2 = 0, (5)

are symmetric with respect to the imaginary axis and equation (4) has a pair of
pure imaginary roots if and only if equation (5) has a pair of complex roots with
Re λ̄ = ± r

2 . Further define

σ = rτ

2
,

s = λ̄τ,

γ = �τ,

so that every parameter is scaled with respect to τ . Then, after substitution and
multiplication of (5) by −1, we obtain

g(s; σ, γ ) ≡ (
σ + s − 2σeσ−s

) (
σ − s − 2σeσ+s

) + γ 2e−2σ = 0. (6)

Note that equation (5) has a pair of complex roots with Reλ̄ = ± r
2 if and only if

equation (6) has a pair of complex roots with Re s = ±σ . Define

G(s) =
(

σ − s

σ + s − 2σeσ−s

) (
e−σ

σ + s

)
.

Then g(s; σ, γ ) = 0 can be restated as

1 + γ 2G(s)G(−s) = 0. (7)

In control theory, G(s) can be seen as the transfer function of a retarded time delay
system [Michiels and Niculescu (2007)]. A transfer function G(s) is further called
proper if it satisfies lim|s|→∞ |G(s)| < ∞, and strictly proper if lim|s|→∞ |G(s)| =
0. If G−1(s) is also proper, then G(s) is called bi-proper. G(s) is called stable
if complex poles reside in the open left half of the complex plane, that is, it has
no poles in C̄+. Note that the first component of G(s), namely ( σ−s

σ+s−2σeσ−s ), is

https://doi.org/10.1017/S1365100516000018 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100516000018


1894 HITAY ÖZBAY ET AL.

stable15 and bi-proper; and the second component of G(s), ( e−σ

σ+s
), is stable and

strictly proper.

4. ROOTS

In what follows, we employ numerical methods to evaluate the existence of com-
plex conjugate roots of equation (7). Simply, we will follow the following algo-
rithm: We approximate the exponential terms using Padé approximation. Varying
γ 2, we trace the solutions in the complex plane using the root locus method. We
identify the roots that cross Re s = ±σ. We then fine tune the precision errors due
to Padé approximation and use grid search to sort out the exact value of γ 2 that
admits roots with Re s = ±σ. Then we discuss the supportability of such values
with respect to economic parameters.

The solutions to the equation (7) can be analyzed by employing the root locus
method well known in control theory. Root locus “primarily deals with finding the
roots of a characteristic polynomial that is an affine function of a single parameter,
say K ,

χ(s) = D(s) + KN(s),

where D(s) and N(s) are fixed monic polynomials” [Özbay (2000, pp. 64–65)].
We can restate the problem as

1 + KG∗(s) = 0, (8)

by defining G∗(s) = N(s)
D(s)

[Özbay (2000, p. 66)]. In other words, the root locus
technique can be used to “examine how closed-loop system poles change as K

varies from 0 to +∞, or from 0 to −∞” [Özbay (2000, p. 66)]. Equation (7) is
exactly equation (8) when G∗(s) = G(s)G(−s) and K = γ 2. Thus, if a pair of
complex conjugate roots (or more) cross(es) the vertical line Re s = ±σ as K

(= γ 2) varies, it can be ensured that equation (7) has a pair of complex conjugate
roots (or more) with Re s = ±σ for some value of K (= γ 2), because there is a
continuous relation between the roots of equation (7) and the coefficient K .

For a given value of σ, G∗(s) contains exponential terms. These terms appear
because of the time delay in the model. Padé approximation is employed for a
rational approximation of the time delay component. The exponential term e−τs

can be Padé approximated as

e−τs ≈ Pd(s) =

n∑
k=0

(−1)kϑkτ
ksk

n∑
k=0

ϑkτ ksk

,

where the coefficients ϑk are

ϑk = (2n − k)!n!

2n!k!(n − k)!
, k = 0, 1, . . . , n.
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FIGURE 1. Root locus for 1 + γ 2G(s)G(−s) = 0 when σ = 0.8.

The degree of approximation, n = 20, is assumed to be sufficiently high for the
numerical analysis carried out in the paper16 [for Padé approximation, as well as
its approximation errors, subsequent discussions and examples, see Özbay (2000,
Sect. 7)].

We temporarily set σ = 0.8 for illustrative purposes. Figure 1 presents the
movement of the roots of equation (7) in the complex plane as K (= γ 2) changes.
When K (= γ 2) is close to zero, the roots are given by a cross sign, and as K

(= γ 2) goes to infinity, they move toward the ones given with zero sign.
We are specifically interested in whether there exists a root with Re s = ±σ .

Figure 2 focuses on the roots around Re s = ±σ = ±0.8.
It is obvious from Figure 2 that a symmetric couple of roots cross the line

Re s = ±σ . According to the analysis carried out so far, when σ = 0.8, equation
(7) admits roots at s = ±0.8±4.88j when γ 2 = 56.8. A grid search around these
values confirms that when

γ 2 = 56.413919919919920,

the value of 1 + γ 2G(s)G(−s) at

s = ±0.8 ± 4.867024361111118j

is close to zero, with an error of 6.9094 × 10−6 in absolute value.17 Rearranging
the characteristic equation (4) in terms of σ and γ 2, we obtain

h(σ, λ; γ 2) ≡ (
2σ − 2σe2σ − λτ

) (
2σe2σ e−λτ − λτ

) − γ 2e−2σ = 0.

For a given γ 2, the values attained by h(σ, λ; γ 2) in absolute value for different
values of σ and λ = jω are plotted in Figure 3. The σ and λ = jω values at
which h(σ, λ; γ 2) attains its minimum give the corresponding σ at which the pure
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FIGURE 2. Root locus for 1 + γ 2G(s)G(−s) = 0 when σ = 0.8 [−2 < Re s < 2].

FIGURE 3. h(σ, λ; γ 2) in absolute value for different values of σ and λ = jω [γ 2 =
56.413919919919920]. The minimizing σ and λ = jω pair is shown on the graph.

imaginary eigenvalue occurs and the corresponding pure imaginary eigenvalue.
The minimizing σ(= 0.8) and λ = jω(= 4.86702425j) pair is shown on the
graph. Point Z on the graph is the value of h(σ, λ; γ 2) and is 3.701645 × 10−6. In
other words, for the given combination of (σ, λ; γ 2), the characteristic equation
h(σ, λ; γ 2) is close to zero, with an error on the order of 10−6’s.

At this point, we have to go back to the original economy to see whether there
exist plausible parameters that support the Hopf cycle inducing γ 2. Recall that
γ 2 = τ 2 u′(c)

u′′(c)f
′′(k)|css ,kss

. Thus, γ 2 depends on the parameters of the economy
as well as the time-to-build delay.18 In Example 4, we give numerical values of
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a convex economy that exhibits Hopf cycles,19 in which the parameters of the
economy are physically plausible (whereas economically questionable).

Example 1

Assume logarithmic utility and Cobb–Douglas production technology with capital
elasticity α, i.e., f (k) = Akα . Consider the following parameterization:

r = 0.05, δ = 0.05, τ = 32.

Then, for αHopf = 0.59156291 ≈ 0.6, equation (4) has a pair of pure imaginary
roots such that

λ = ±4.867024361111118

32
j = ±0.152094511285j.

Also note that the period T of the Hopf cycle is 2π
ω

τ = 1.29097τ(= 41.311).

It is important to note that given any ±σ ∈ R, the existence of complex
conjugate roots s with Re s = ±σ , i.e., s = ±σ ± jω, is independent of the
form of the utility and production functions as long as these functions are twice
continuously differentiable and their second derivatives are both negative. In other
words, the analysis that leads to Example 4 can be separated into two distinct parts:
(i) given any ±σ = ± rτ

2 ∈ R, find a γ̄ 2 such that there exist a pair of complex
conjugate roots s with Re s = ±σ ; and (ii) calibrate the parameters of the economy
so that γ 2(r, δ, τ, α) meets γ̄ 2. Proposition 2 summarizes the numerical results
that constrain ±σ = ± rτ

2 ∈ R, allowing a pair of complex conjugate roots s with
Re s = ±σ.

PROPOSITION 2. For every σ = rτ
2 ∈ (0.646564819216, 0.903122510938)

there exists a pair of complex conjugate roots s with Re s = ±σ , i.e., s = ±σ±jω,

with (±ω, γ̄ 2) ≈ (±4.71238898038, 0) at the lower bound and (±ω, γ̄ 2) =
(±4.94346026026, 133.032532533) at the upper bound.

One important result is that the results presented in Proposition 2 match those
of Bambi (2008, pp. 1,038–1,039). As γ̄ 2 tends to 0, we should have the capital
elasticity of production technology α tending to 1 so that the production function
should converge to an AK technology. Adopting AK technology and letting σ =
W( 3π

2 )/2 = 0.646564818939690, where W(s) is a Lambert function, Bambi
(2008) characterizes the Hopf-inducing pure imaginary root as ω = ± 3π

2 j =
±4.712388980384690j . Note that Bambi (2008) and Proposition 2reciprocally
verify each other. Moreover, the 2π periodicity of the Lambert function implies
that we can further characterize other solutions for γ̄ 2 = 0. In Figure 4 we plot
the first 20 solutions for ω = 2(n − 1)π ± 3π

2 j as n = 1, 2, . . . , 20.
Note that the first solution indicates that the Hopf-inducing (σ, ω) ≈

(0.6466, 4.712) couple is in accordance with the preceding findings.
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FIGURE 4. Pure imaginary solutions to the characteristic equation for different parameter
combinations when γ̄ 2 = 0, i.e., AK production.

5. CONCLUSION

In this paper we formulate a new method to further comprehend the root distribu-
tion of the characteristic equation of a standard optimal growth model with delayed
investment structure. We conclude that a one-sector convex optimal growth model
with time-to-build lag admits Hopf cycles, contrary to the conventional results in
the literature. The Hopf-inducing delay parameters are economically (empirically)
questionable but physically viable.

NOTES

1. A brief exposition of the Kalecki (1935) model and its properties can be found in Zak (1999)
and Szydłowski (2002). These texts reproduce Kalecki’s results with contemporary techniques, which
are also employed in this paper.

2. Michał Kalecki studied the underlying forces of cycles in economy throughout his life, and his
theories vary from linear difference differential equation systems to exogenous factors. As Besomi
(2006) pointed out, in his study of Kalecki’s business cycle theories, Kalecki “either failed to provide
a rigorous proof of the stability of the cycle when the model was endogenous or failed to provide
an explanation of the cycle relying on the properties of the economic system, resorting instead to
exogenous shocks to explain the persistence of fluctuations.” Kalecki interpreted cycles as the dynamic
expression of the “intrinsic antagonism of capitalism”; however, he “acknowledged the existence of
disturbing factors, from which he abstracted in order to isolate a pure cycle.” Besomi (2006) also reports
that “Kalecki’s models describes damped fluctuations around a line of stationary equilibrium and rely
for the persistence of fluctuations on exogenous shocks” and, moreover, all his models “crucially
depend for cyclicality upon one or more reaction lags.”

3. The exact linear delay differential equation studied by Kalecki (1935, p. 332) is
.

J (t) = m
θ
J (t)−

m+nθ
θ

J (t − θ), where m and n are constant.
4. Kalecki (1935, pp. 337–338) estimates the lag between the curves of beginning and termination

of building schemes (dwelling, industrial, and public buildings) as 8 months and lags between orders
and deliveries in the machinery-making industry as 6 months, based on data supplied by the German
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Institut fuer Konjunkturforschung. He assumes that “the average duration of θ is 0.6 years” [Kalecki
(1935)].

5. Yüksel (2011) introduces a matrix method to identify the pure imaginary roots in a Solowian–
Kaleckian economy with endogenous population growth.

6. Kaldor (1940) also criticizes Kalecki (1935) by pointing out that the drawback of the model is
that “the existence of an undamped cycle can be shown only as a result of a happy coincidence, of a
particular constellation of the various time-lags and parameters assumed” and “the amplitude of the
cycle depends on the size of the initial shock.”

7. By the term “convex,” we mean the standard neoclassical assumptions of convex preferences
and concave production.

8. The particular form of equations in Hayes (1950) is τ(s) = ses − a1e
s − a2 = 0. This type of

transcendental equations are called quasi-polynomials.
9. See among others, Medio (1998), Barnett et al. (2015), and Barnett and Guo (2015) for detailed

surveys on nonlinear and complex dynamics and bifurcations in economic models.
10. “In 1942, Hopf published the ground-breaking work in which he presented the conditions

necessary for the appearance of periodic solutions, represented in phase space by a limit cycle”
[Szydłowski (2002)]. The original article is in German [see Hopf (1942)]. An English translation, with
comments, is included as Section 5 in Marsden and McCracken (1976).

11. Note that this is nothing but the Jacobian matrix that results from linearization of the system, if
the system is nonlinear. If x̄ is the equilibrium point of ẋ = f(x), i.e., f(x̄) = 0, then the linear differential
equation ẋ = Df(x̄)x = (

∂fi
∂xj

(x̄))|i,j x is the linear variational equation or the linearization of the

vector field f at the equilibrium point x̄ [Hale and Koçak (1991, Def. 9.4, p. 267)].
12. Asea and Zak (1999, p. 1164, footnote 13) mention other ways in which periodic orbits may

arise. Heteroclinic orbits are given as an option, yet these are stated to be “rare.”
13. The first-order conditions in Asea and Zak (1999) are only delayed type because “the co-state

variable has the same timing convention as the time the decision is made” (p. 1166). In other words, the
consumer in Asea and Zak (1999) does not take the future shadow price of capital into consideration.
In that respect, our consumer has “deeper” perfect foresight [see also Bambi (2008, footnote 2)].

14. The square notation is used for practical consistency and will be clear in the sections to come.
15. It can be easily shown that the only root of (σ + s − 2σeσ−s ) in C+ is at s = σ , which is

canceled by the numerator polynomial.
16. In fact the error due to Padé approximation is not of primary concern, because we further our

analysis beyond the results of the Padé approximation using a grid search method to find the exact
root with Re s = ±σ and the exact value of γ 2 that allows for this root. Padé approximation is only
employed to narrow down the area of the complex plane that should be grid-searched.

17. The degree of error is within acceptable limits considering the precision errors of the numerical
computing environment due to rounding.

18. For an economy with logarithmic utility [u(c) = ln c] and Cobb–Douglas production technology
with capital elasticity α, i.e., f (k) = Akα , we have

γ 2 = (1 − α)

α
τ 2 (

δ + rerτ
) (

(1 − α) δ + rerτ
)
.

The analysis starts with the choice of σ . By rearranging the terms, we obtain

γ 2 = (1 − α)

α

(
δτ + σeσ

) (
(1 − α) δτ + σeσ

)
.

Thus, γ 2 is only a function of α, δ and τ(= 2σ
r

).
19. Hopf bifurcation analysis boils down to finding a pair of pure imaginary roots, sincebecause the

nonzero speed condition is not actually necessary. To be more specific: “[the nonzero speed condition]
is expressed by saying that the pair of complex conjugate eigenvalues crosses the imaginary axis with
nonzero speed. This is also a generic requirement, though it is not absolutely necessary: the existence
part of the theorem remains valid even in the degenerate case when this derivative is zero [etc.]” [see
Farkas (1994, p. 418)].
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