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ABSTRACT
Gas path diagnostics is one of the most effective condition monitoring techniques in
supporting condition-based maintenance of gas turbines and improving availability and
reducing maintenance costs of the engines. The techniques can be applied to the health
monitoring of different gas path components and also gas path measurement sensors. One
of the most important measurement sensors is that for the engine control, also called the
power setting sensor, which is used by the engine control system to control the operation of
gas turbine engines. In most of the published research so far, it is rarely mentioned that faults
in such sensors have been tackled in either engine control or condition monitoring. The reality
is that if such a sensor degrades and has a noticeable bias, it will result in a shift in engine
operating condition and misleading diagnostic results.

In this paper, the phenomenon of a power-setting sensor fault has been discussed and a
gas path diagnostic method based on a Genetic Algorithm (GA) has been proposed for the
detection of power-setting sensor fault with and without the existence of engine component
degradation and other gas path sensor faults. The developed method has been applied to the
diagnostic analysis of a model aero turbofan engine in several case studies. The results show
that the GA-based diagnostic method is able to detect and quantify the power-setting sensor
fault effectively with the existence of single engine component degradation and single gas
path sensor fault. An exceptional situation is that the power-setting sensor fault may not be
distinguished from a component fault if both faults have the same fault signature. In addition,
the measurement noise has small impact on prediction accuracy. As the GA-based method is
computationally slow, it is only recommended for off-line applications. The introduced GA-
based diagnostic method is generic so it can be applied to different gas turbine engines.
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NOMENCLATURE
CFC Component Fault Case
EF/η isentropic efficiency
FC Flow Capacity (kg/s)
mf fuel flow rate (kg/s)
P total pressure (atm)
PCN relative rotational speed (%)
PR compressor Pressure Ratio
PSS Power-Setting Sensor
SF health parameter Scaling Factor
SFC Sensor Fault Case
T total temperature (°K)
TET Turbine Entry Temperature (°K)
⇀

x health parameter vector
⇀

y ambient and power setting parameter vector
⇀

z measurement parameter vector
ε average prediction errors

Subscripts
c compressor
deg degraded
B burner
DH Enthalpy Drop
FC Flow Capacity
LPC/HPC Low-/High-Pressure Compressor
LPT/HPT Low-/High-Pressure Turbine
PR Pressure Ratio
t turbine

Superscripts
→ vector
^ predicted

1.0 INTRODUCTION
Degradation and fault may happen to both gas path components and sensors alike in
gas turbine engines. Engine gas path component degradation may result in poor engine
performance and eventual failure of entire engines, which will have significant economic
consequences for gas turbine users. Gas path sensors are installed for engine control and
condition monitoring. If degradation happens to sensors installed for condition monitoring
only, it may result in misleading engine fault signatures (i.e., the deviation of gas path
measurements) and misleading diagnostic results. If degradation happens to sensors installed
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for engine control or power setting, such as those for the measurement of engine exhaust
temperature, shaft rotational speed or shaft power output, it will result in shifted engine
performance, shifted gas path measurements and therefore misleading fault signatures and
even complete failure of gas path diagnostic analysis.

Different gas turbine gas path diagnostic techniques have been developed in the past
and comprehensive reviews of the technology have been provided by Li,(1) Singh(2) and
Jaw(3). Typical examples of gas path diagnostic techniques for gas turbines are gas path
analysis and its derivatives,(4-9) neural network-based methods,(10-12) genetic algorithm-based
methods,(13-15) fuzzy logic-based methods,(16-18) Bayesian belief network approaches,(19)

diagnostics using transient measurements,(20-21) etc.
Most gas path sensors are used for condition monitoring purposes, some for safety

control and one for engine control. The sensor used for engine control is one of the most
important sensors and may be called the Power-Setting Sensor (PSS), and the corresponding
parameter may be called the power-setting parameter. Gas path sensor fault diagnostics have
been explored by many researchers using different methods, such as a Genetic Algorithm
(GA) approach,(13) Artificial Neural Networks (ANN),(22-24) GPA,(8) pattern recognition,(25)

Bayesian belief networks,(26) etc. These methods are able to detect gas path sensor faults,
although they have different advantages and disadvantages. For example, the GA-based
method is more robust than others but the computational load is higher; the ANN method
is a computationally fast approach but needs a large number of training samples and long
time for training; and the GPA methods use a moderate amount of computing time but may
have convergence issues. However, the exploration of sensor fault diagnostics has been limited
to gas path sensors except the power-setting sensor. In other words, it has been assumed
implicitly so far that the power setting sensor has no fault. However, this sensor is so important
that if it has a significant bias, it will result in a significant shift in engine performance
and consequently may result in a complete failure of gas path diagnostic analysis. Initial
investigation of this problem and a solution using artificial neural networks by the same
research team was carried out and published in 2016(27).

This paper presents a novel GA-based gas path diagnostic approach for the diagnosis of
engine power setting sensor fault with and without engine component and other gas path
sensor degradations. The proposed new method was applied to a model aero turbofan engine
to test the effectiveness of the method in several case studies. The results, discussions and
conclusions are provided accordingly.

2.0 METHODOLOGY
2.1 Gas turbine performance and modelling

A gas turbine engine and its control system may be schematically shown in the upper part
of Fig. 1. The thermodynamic behaviour of gas turbine engines may be mathematically
represented by Equation (1)

⇀

z = h
(

⇀

x,
⇀

y
)

(1)

where
⇀

z ∈ RN is the gas path measurement parameter vector and N is the number of the
parameters,

⇀

x ∈ RM is the engine health parameter vector and M is the number of the
parameters,

⇀

y ∈ RK is the ambient and power-setting parameter vector and K is the number
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Figure 1. (Colour online) Gas turbine and its control and diagnostic systems.

of the parameters, and h() represents a thermodynamic relationship among these parameters.
⇀

y may include
⇀

y1 representing ambient condition parameters and
⇀

y2 representing the power-
setting parameter shown in Fig. 1.

The engine operation may be instructed by a ‘power setting command’
⇀̃

y2 and controlled by
an engine control system. The actual performance of the engine is indicated by the engine gas
path measurements

⇀

z. The measured power setting parameter
⇀

y2 has a direct impact on engine
control and engine performance due to the fact that the control system always tries to keep the
power-setting parameter to its target value based on its measurement. Therefore, any power-

setting sensor (PSS) bias (
⇀

y2 − ⇀̃

y2) will result in a shifted power setting parameter and also
engine performance. This phenomenon is schematically demonstrated in Fig. 2. Of course,
the engine performance is also affected by ambient condition

⇀

y1 and engine degradation
⇀

x.
Gas turbine performance modelling is based on fundamental thermodynamics. Performance

behaviour of major gas turbine components such as compressors, combustors and turbines
are represented by empirical component characteristic maps that are normally obtained from
component rig tests. Predictions of engine steady-state off-design and degraded performance
are achieved by satisfying the continuity of mass flow and energy within engines using Newton
Raphson iteration method. More details of gas turbine performance simulation can be found
in Ref. 28. PYTHIA computer software(8) developed at Cranfield University for gas turbine
performance simulation and gas path diagnostics is used in this study, where the diagnostic
method introduced in this paper has been implemented.
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Figure 2. (Colour online) Engine controlled at constant power demand with PSS bias.

Figure 3. Compressor characteristic map [9].

2.2 Engine and sensor degradation

Gas turbine gas path component degradation results in changes of component characteristic
maps, and such phenomena can be mathematically represented by scaled component maps.
Take a compressor, for example; as shown in Fig. 3, the solid lines represent a clean
compressor map while the dotted lines represent a degraded compressor map. It is assumed
that the degraded maps of compressors, combustors and turbines keep the same shape as those
of the original maps based on the fact that their geometries do not change significantly.

The scaling of the map as shown by example in Fig. 3, is represented by three degradation
indices: flow capacity, isentropic efficiency and pressure ratio indices for compressors; a
combustion efficiency index for burners; and flow capacity, isentropic efficiency and enthalpy-
drop indices for turbines, respectively. They are defined by the ratio between the values of
corresponding points on the degraded curves (dotted lines, XB) and the original ones (solid
lines, XA)(9) in Equation (2).

SF = X B

X A
. (2)
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To simplify the representation of compressor degradation, it is assumed that the compressor
flow capacity index is equal to that of the compressor pressure ratio index in Equation (3),
based on the observation that the degradation of both pressure ratio and flow capacity result
in the speed lines shifting toward the left-hand side of their original position and therefore has
a similar effect on engine performance(9).

SF c,FC = SF c,PR (3)

A similar assumption is applied to turbines, where it is assumed that the flow capacity
degradation is equal but with an opposite sign to the enthalpy drop degradation as represented
by Equation (4).

SFt,FC = −SFt,DH (4)

Based on these assumptions, only two degradation indices are used to describe compressor
and turbine degradations: flow capacity index (SFFC) and isentropic efficiency index (SFEFF.).

Combustor degradation is represented by one index only, which is the combustion efficiency
index.

Sensor degradation can be represented by bias of measurements relative to the true values
of the corresponding parameters. When a sensor has a fault, it produces a significant bias that
is much larger than its measurement noise.

Gas turbine gas path component degradation will have a negative impact on engine
performance, such as a drop in thrust or shaft power output, an increase in turbine entry
temperature, a drop in specific fuel consumption or thermal efficiency, etc. Gas path sensor
degradation normally does not have an impact on engine performance if it is only used for
condition monitoring. However, if the measurements are used for engine control such as those
for exhaust temperature, shaft rotation speeds, shaft power output (for industrial gas turbines
only), etc., any bias of the power setting measurement may change the engine operating
condition and consequently change engine performance and other gas path measurements.

Engine degradation may result in a deviation of engine performance. Such deviation may be
indicated by so-called fault signature represented by the deviation of gas path measurements
defined by Equation (5)

�zi

zi
= ẑi − zi

zi
(5)

where zi is a measurement of a clean engine and ẑi is the measurement of the degraded engine.
Different engine degradation may result in different fault signatures; such information is used
by gas path diagnostic system to detect the degradations.

2.3 GA-based gas path diagnostics

Gas path diagnostics for gas turbine engines may be regarded as an optimisation problem
where a best possible solution of engine degradation is searched among all feasible solutions.
Different searching or optimisation methods are available, but a genetic algorithm is used
in this study due to many of its advantages described in the following. Compared with
conventional optimisation methods, GAs have several distinctive features. For example, no
derivatives are needed, so any non-smooth functions can be optimised; constraints can be
dealt with in a very different way, such as by means of penalty functions or design of special
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operations; global search is used to avoid getting stuck at a local minimum; and probabilistic
rather than deterministic transition rules are used to create the next generation of strings
from the current one. Four operators are typically used in GAs to generate strings from one
generation to the next during searching processes. More details of GAs may be found in
Ref. 29. The GA operators used in this study according to ‘survival of the fittest‘ criteria are
as follows:

� Selection – select better strings from current population and keep them only as the base
strings for the next generation.

� Crossover – randomly pick up pairs of strings based on crossover probabilities. It allows
information exchange between the pairs of strings in the form of swapping of parts of the
strings in an attempt to produce better pairs of new strings.

� Mutation – randomly pick up strings from the current population based on mutation
probabilities. Random changes are introduced to part of the selected strings in an attempt
to produce better new strings.

� Alienation – randomly introduce new strings into the current population.

The basic idea of such a diagnostic method for engine and sensor fault diagnostics is
proposed in this paper and shown in the lower part of Fig. 1. In the approach, a gas turbine
performance model representing the ‘real’ engine should be set up first. Then performance
adaptation(30,31) may be used to make the model accurate by using available test data of the
clean engine.

The engine model receives the same ambient condition
⇀

y1 and measured power setting

parameter
⇀

y2 as that of the ‘real’ engine and also the predicted engine degradations to produce

an initial predicted performance
⇀̂

z. The prediction error ε shown in Equation (6) represents
the difference between the actual measurements and the predicted measurements

ε =
N∑

i=1

1
N

∣∣∣∣ ẑi − zi

zi

∣∣∣∣ (6)

where zi is the actual measurements from the “real” engine and ẑi the predicted measurements
from the engine model. A GA fitness defined by Equation (7) represents the quality of the GA
solutions. The prediction error

⇀

ε is used as the feedback to the GA algorithm in order to search

for better estimation of sensor and engine degradations
⇀̂

x. In a genetic algorithm searching
process, the GA fitness is maximised in order to search for the optimal estimate of engine
component degradation, gas path sensor degradation and power setting sensor fault.

Fitness = 1
1 + ε

(7)

GA-based gas path diagnostic approach normally has a significant smearing effect in
the predicted degradations if all degradations are searched simultaneously, i.e. predicted
degradations may be distributed on all searched gas path components even when only few
of the components or sensors are actually degraded. Such smearing effect may results in
misleading diagnostic results. Therefore a component fault case (CFC) concept and sensor
fault case (SFC) concept introduced in(13) are adopted in this study in order to isolate degraded
components and sensors and reduce the smearing effect. In addition, a power setting sensor
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Table 1
Model engine performance specification at cruise condition (Altitude 11km and

Mach number 0.8 at standard ISA condition)

Parameter Value Unit

Turbine entry temperature (TET) 1,480 °K
Net Thrust 78924 N
Specific Fuel Consumption (sfc) 26.42 g/kN.s
Air mass flow rate 150 kg/s
LPC (fan) pressure ratio 1.6 –
HPC pressure ratio 36.5 –
Bypass ratio 5.0 –

(PSS) fault case is introduced in this study to take into account the PSS fault. In other words,
all potential fault cases, i.e., the combination of all potentially degraded gas path components
and/or sensors, will be searched by the GA algorithm and those with high values of GA fitness
would indicate most likely degraded components and/or sensors.

During the GA diagnostic searching process, CFCs, SFCs and PSS fault may be searched
individually or in combinations. From practical point of view, the following considerations
are recommended:

� Power setting sensor (PSS) faults should always be included in GA searching processes.
� Gas path sensor faults should be searched before gas path component faults are searched.
� The measurements of faulty gas path sensor(s) should be excluded from the measurement

set for engine component fault diagnosis.

The following criteria may be used to terminate GA searching process:

(1) Maximum GA Fitness of the population exceeds 0.95

(2) Generation number exceeds 50

3.0 APPLICATION, RESULTS AND DISCUSSION
3.1 Model gas turbine engine and measurements

A model aero gas turbine engine is used in this study. It is a two-shaft turbofan engine
consisting of an intake, a fan or low-pressure compressor (LPC) driven by a low-pressure
turbine (LPT), a high-pressure compressor (HPC) driven by a high-pressure turbine (HPT),
a combustor, a bypass nozzle and a core nozzle. The configuration of the model engine is
schematically shown in Fig. 4 and its performance specification is shown in Table 1.

A performance model for the model engine was created by using Cranfield’s gas turbine
performance and diagnostics software PYTHIA(8) and the model configuration is graphically
shown in Fig. 5.
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Figure 4. (Colour online) Model engine configuration.

Figure 5. (Colour online) Gas turbine performance model in PYTHIA.

It is assumed that the model engine operates at cruise condition, i.e. at altitude of 11 km and
flight Mach number 0.8 at standard ISA condition, which is regarded as a nominal operating
condition.

The gas path measurements of the model engine are shown in Table 2 where the gas path
station numbers are shown in Fig. 4. The engine operating condition is indicated by its turbine
entry temperature (TET) that is also used as the power setting parameter of the model engine.
As TET cannot be directly measured due to the hostile environment, it is normally induced
from engine exhaust temperature, so estimation errors or sensor bias of TET may exist.

3.2 Model engine component and sensor degradation

Although multiple gas path components and sensors may degrade simultaneously in gas
turbine engines, it is assumed in this study that a power-setting sensor (PSS) fault, a gas
path sensor fault and a gas path component fault may exist individually or simultaneously as
typical scenarios. The assumed sensor and engine component faults are shown in Table 3
for the purpose of demonstration of the introduced diagnostic approach. The values of
the sensor faults are chosen randomly with the consideration that they should be much
larger than measurement noise but not so large so the fault cannot be easily spotted. These
degradations are implemented into the model engine either individually or simultaneously,
and the corresponding performance change and measurement samples can be simulated.
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Table 2
Gas path measurements

Description Variable

Turbine Entry Temperature (K) TET
Fan or LPC exit total pressure (atm) P3

Fan or LPC exit total temperature (K) T3

High-pressure compressor (HPC) exit total pressure (atm) P5

High-pressure compressor (HPC) exit total temperature (K) T5

Low-pressure turbine (LPT) exit total pressure (atm) P9

Low-pressure turbine (LPT) exit total temperature (K) T9

Low-pressure shaft relative rotational speed PCN1
High-pressure shaft relative rotational speed PCN2
Fuel flow rate (kg/s) mf

Table 3
Sensor and engine degradation

Health Parameters Value

Power-Setting Sensor (PSS) fault (i.e., TET bias) (K) −10
Gas path sensor (P5) fault (times of maximum measurement noise) −5
High-pressure turbine (HPT) degradation (%) �EFHPT −1

�FCHPT −3

3.3 Simulation of fault signatures

The samples of gas path measurements (Table 2) of a clean (i.e., un-degraded) and degraded
engine are simulated by running the engine performance model with and without component
degradations (Table 3) at cruise condition. Measurement noise is not included in the simulated
measurement samples for simplicity. However, the impact of the measurement noise on the
accuracy of diagnostic results is discussed later in this paper.

Referring to the engine and its control system shown in Fig. 1, the ‘power setting command’
requests the engine to operate at TET of 1,480°K and such a command is passed to the model
engine via the control system. When a –10°K bias happens to the TET measurement, the
engine control system still keeps the engine operating at measured TET of 1,480°K based on
the PSS signal while the engine is actually operating at 1,490°K. Such a shift in power setting,
together with HPT and P5 sensor degradation, will generate fault signatures of the engine.
The fault signatures for the three fault scenarios shown in Table 4 are simulated and shown
in Fig. 6. These fault signatures are crucial input for the GA-based engine and sensor fault
diagnostics.

3.4 PSS fault case, CFCs and SFCs

The power-setting sensor fault has a special impact on engine performance and the diagnosis
of PSS fault is also the focus of this study. Therefore it is treated as a separate type of fault
case.
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Table 4
Implanted degradations in case studies

Case Study Degradation

1 PSS (TET) bias of –10°K
2 Same PSS bias + P5 bias at the magnitude of –5 times of its maximum

measurement noise
3 Same PSS bias + same P5 bias + HPT degradation (–1% efficiency

degradation and –3% flow capacity degradation)

Table 5
Component fault cases (CFCs)

Component Involved Health Parameters GA Search Domain (%)

CFC1 LPC EFLPC Index (−5.0, 0.01)
FCLPC Index (−5.0, 0.01)

CFC2 HPC EFHPC Index (−5.0, 0.01)
FCHPC Index (−5.0, 0.01)

CFC3 Burner EFB Index (−5.0, 0.01)
CFC4 HPT EFHPT Index (−5.0, 0.01)

FCHPT Index (−5.0, 5.0)
CFC5 LPT EFLPT Index (−5.0, 0.01)

FCLPT Index (−5.0, 5.0)

Figure 6. (Colour online) Fault signatures of three degradation scenarios.

To isolate degraded component(s) in different degradation scenarios, it is assumed that the
five major gas path components – i.e. the low- and high- pressure compressors (LPC and
HPC), the burner, and the high- and low-pressure turbines (LPT and HPT) – are potentially
degraded components and only one of the components may degrade significantly at a time.
Therefore, there are five component fault cases in total and they are shown in Table 5 where
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Table 6
Sensor fault cases (SFCs)

Excluded Sensor Excluded Sensor

SFC1 P3 SFC5 P9
SFC2 T3 SFC6 T9
SFC3 P5 SFC7 PCN2
SFC4 T5 SFC8 mf

Table 7
GA parameters

GA Parameter Value

Population Size 50
Number of Generations 50
Probability of Cross-Over 0.5
Probability of Mutation 0.3
Number of Alienations 2

the health parameters and the GA searching domains for the parameters are also included. In
the GA diagnostic process, each of the CFCs is searched and the CFCs with high values of
GA fitness are most likely to be true.

Similarly, sensor fault cases are identified in order to isolate and detect gas path sensor
faults. It is assumed that only one gas path sensor may fail at a time. Therefore each SFC
includes all sensors listed on Table 2 except one; these SFCs and the excluded sensors in
individual SFCs are listed on Table 6.

3.5 GA parameters

To carry out the GA diagnostic searching process based on Fig. 1, the most important GA
parameters and their values are identified and shown in Table 7. The selection of the values
of the GA parameters is a compromise between the searching accuracy and the speed of GA
calculations. Trial and error may be used to find the best values for the parameters.

3.6 Case study 1: Diagnosis of PSS degradation

In this case study, it is assumed that only the PSS bias of –10°K happens and no other gas path
sensor and engine component faults exist.

If no sensor faults are considered, the diagnostic analysis may only focus on engine gas
path components. In other words, all CFCs defined in Table 5 may be searched and the results
are shown in Fig. 7 marked as ‘Exclude PSS fault’. It can be seen that the GA Fitness for all
component fault cases are very low, between 0.4 and 0.6. This indicates that the obtained CFC
results are not correct and the searching for degradation fails.

If the PSS fault is included, the above searching process is repeated and the results are also
shown on Fig. 7 marked as ‘Include PSS fault’. It can be seen that the obtained GA fitness
are much higher (around 0.9 for all CFCs), indicating that the actual degradation may very
likely have been found in the obtained results. By comparing the predicted degradation with
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Figure 7. (Colour online) GA fitness of CFCs with and without inclusion of PSS fault in case study 1.

Figure 8. Predicted engine component and PSS faults in case study 1.

the implanted degradation in Fig. 8, it can be seen that the PSS fault has been predicted quite
satisfactorily with a small smearing effect on the LP turbine.

Based on the results shown in Fig. 8, it can be concluded that the PSS has a fault and the
PSS bias may be between –9°K and –13°K and there is a possibility of LP turbine degradation.
Based on such analysis, –10°K PSS bias is corrected and all the CFCs are searched again. The
corresponding results are shown on Figs 7 and 9 marked as ‘With PSS fault correction’. It
is obvious at this time that the GA fitness for all CFCs is close to 1.0, and the predicted
component degradations are very small and can be ignored. It clearly indicates that the true
degradation happens at PSS only and no engine components degrade.

3.7 Case study 2: Diagnosis of PSS and P5 sensor degradation

In this case study, it is assumed that PSS has a bias of –10K and P5 has a bias of –5 times of its
maximum measurement noise level. Both faults are implemented into the engine model and
the fault signature is shown on Fig. 6 marked as ‘PSS (–10°K) +P5 (-5 · Max noise) fault’.
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Figure 9. Predicted engine component degradation with PSS fault correction included in case study 1.

Figure 10. (Colour online) GA fitness of case study 2.

Sensor fault detection is normally done before engine gas path component diagnostics. If it
is assumed that the PSS has no fault, all eight single SFCs shown in Table 6 may be searched
and the results are shown in Fig. 10. It can be seen that GA fitness for all SFCs are around 0.35
and 0.45, regarded as low values. This indicates that the search for sensor faults has failed.

By including the PSS fault in the GA search, all SFCs have been searched again and the
corresponding GA fitness for all SFCs is shown on Fig. 10. It can be seen that the GA fitness
for most of the SFCs is around 0.4 and SFC3 shows exceptionally high value of GA Fitness,
around 0.9. Such results indicate that the true gas path sensor fault may very likely happen on
P5. Further results of the predicted PSS biases for all SFCs as seen in Fig. 11 show that the
predicted PSS bias of SFC3 is around –12.2°K, quite close to the true value of the PSS bias of
–10°K. The predicted PSS biases of other SFCs are regarded as not true due to corresponding
low GA fitness.
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Figure 11. (Colour online) Predicted PSS bias in case study 2.

3.8 Case study 3: Diagnostics of PSS, P5 and HPT degradation

A more complicated degradation case is demonstrated here where PSS, P5 and the HPT are
degraded simultaneously, and the fault signature of this case is shown in Fig. 6.

To include all three types of degradations in the diagnostic analysis, the following should
be considered:

� PSS fault case should be included in all GA diagnostic searches.
� Gas path SFCs should be searched first to detect and exclude a faulty gas path sensor.
� During the SFC search, a CFC has to be chosen randomly and searched simultaneously

with SFCs.

Based on the above, the randomly chosen CFC may refer to an un-degraded component
(such as HPC in CFC2) or the degraded component (such as HPT in CFC4) as the actually
degraded engine component is unknown.

To demonstrate the difference between choosing an un-degraded component and the
degraded component for sensor fault detection, two examples of the search results of all
SFCs are shown in Fig. 12 where one refers to choosing CFC2 (HPC) and the other refers
to choosing CFC4 (HPT). It can be seen in the first example that the GA fitness for all SFCs
has low values of around 0.4 except SFC3, which has a GA fitness of around 0.9 referring to
the P5 sensor. When the degraded component HPT (CFC4) is chosen in the second example,
the GA fitness for most of the SFCs increase to around 0.65, except SFC3 (P5) and SFC4
(T5) have a GA fitness close to 1.0. The increase of the average GA fitness is expected as
the actually degraded component HPT is included in the GA search. The faulty P5 sensor is
correctly picked up in SFC3, while unfortunately the high GA fitness for SFC4 is unexpected,
as T5 is not faulty. To understand the reasons for the high value of GA fitness for SFC4,
further analysis was carried out and the details are given in the following.

By looking at the details of the predicted degradations in the two examples and a
comparison with the implanted degradation shown in Table 8, the predictions from CFC4
+ SFC3 are very satisfactory, but the predicted degradations from CFC4 + SFC4 are very
different compared with those of the implanted fault. Further analysis reveals that when T5
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Table 8
Predicted degradation in case study 3

GA Fitness TET Bias (°K) EF_HPT (%) FC_HPT (%)

CFC4+SFC3 0.996 − 9.92 − 0.99 − 2.98
CFC4+SFC4 0.926 1.45 − 0.87 1.32
Implanted n/a −10 − 1.0 − 3.0

Figure 12. (Colour online) Predicted GA fitness in case study 3.

Figure 13. (Colour online) Comparison of PSS and HPT fault signatures.

is excluded in SFC4, a combination of PSS (TET) bias of 1.45°K and a HPT degradation
(−0.87% degradation in efficiency index and 1.32% degradation in flow capacity index)
produce almost an identical fault signature to that of the implanted degradation as shown in
Fig. 13. This indicates that T5 is so important in the diagnostic analysis that if the T5 sensor
is excluded, misleading diagnostic results may be predicted. In other words, the T5 sensor and
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Table 9
Range of prediction uncertainties

Due to GA Due to GA Stochastics &
Stochastics Measurement Noise

HPT EF Index (%) 0.04 0.25
HPT FC Index (%) 0.54 2.02
TET (K) 1.83 8.43

Figure 14. (Colour online) Predicted degradation from repeated GA search of CFC4 + SFC3 with and
without measurement noise in case study 3.

HPT degradation can be misdiagnosed in such a complicated degradation scenario, which
may be inevitable.

3.9 Case study 4: Prediction uncertainties

There are two major factors that may result in reduced accuracy of the GA diagnostic
predictions; one is the GA approach itself due to its stochastic nature, and the other is the
impact of measurement noise.

The prediction uncertainties are investigated by running 10 repeated GA searches of CFC4
+ SFC3 in Case Study 3 and comparing the results marked as 1–10 in Fig. 14. The range
of prediction uncertainties due to GA stochastics are shown in Table 9 where the variations
of the efficiency (EF) index and the flow capacity (FC) index are within 0.04% and 0.54%
respectively, and the variation of the TET bias is within 1.83°K, which is quite small.

Measurement noise is inevitable in real life and will have a negative impact on diagnostic
results. To analyse the impact of measurement noise on diagnostic errors, a measurement noise
model with the maximum levels of measurement noise shown in Table 10 is implemented into
measurement simulations. The measurement noise is randomly generated following Gaussian-
type distribution and is imposed on the true values of the simulated gas path measurements
to generate multiple samples. In this study, 10 sets of random samples are generated and
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Table 10
Maximum measurement noise [32]

Measurement Range Typical Error

Pressure 3–45 psia ±0.5%
8–460 psia ±0.5% or 0.125 psia whichever is greater

Temperature −65–290°C ± 3.3 °C

290–1000°C ±
√

2.52 + (0.0075 · T )2

1000–1300°C ±
√

3.52 + (0.0075 · T )2

Fuel Flow Up to 250 kg/hr 41.5 kg/hr
Up to 450 kg/hr 34.3 kg/hr
Up to 900 kg/hr 29.4 kg/hr
Up to 1360 kg/hr 23.7 kg/hr
Up to 1815 kg/hr 20.8 kg/hr
Up to 2270 kg/hr 23.0 kg/hr
Up to 2725 kg/hr 25.9 kg/hr
Up to 3630 kg/hr 36.2 kg/hr
Up to 5450 kg/hr 63.4 kg/hr
Up to 12260 kg/hr 142.7 kg/hr

Figure 15. (Colour online) Fault signatures inclusive of measurement noise.

the corresponding fault signatures are shown in Fig. 15 showing that the fault signatures are
slightly different.

The GA diagnostic searching process (Fig. 1) is applied to the search of CFC4 +
SFC3 using the 10 fault signatures shown in Fig. 15 with the inclusion of PSS fault case.
Consequently, the obtained GA fitness values of the 10 results are shown on Fig. 16 (points
11–20) and the predicted HPT degradation and the PSS bias are shown in Fig. 14 (numbered
from 11–20). Compared with similar results shown in Fig. 16 where no measurement noise is
considered, it can be seen that the average GA fitness drops from around 0.94–0.99 to around
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Figure 16. (Colour online) GA fitness from repeated GA search inclusive of measurement noise: CFC4 +
SFC3 in case study 3.

Figure 17. GA searching process – fitness vs number of generations.

0.64–0.87, i.e., becoming lower and having greater scattering. The prediction uncertainties
of the health parameters also become larger as shown in Fig. 14 and Table 9. In other words,
the prediction uncertainties increase from 0.04% to 0.25% for HPT FC index, from 0.54% to
2.02% for HPT FC index, and from 1.8°K to 8.4°K for TET bias.

3.10 Speed of calculations

A typical convergence process is shown in Fig. 17 where the maximum Fitness of the
population varies with the GA generation number. It takes about 18 seconds for a generation
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and about 15 minutes to get a solution based on the GA setting shown on Table 7 using a
typical desktop computer with a duo Intel Core i7-3770 processor and 3.4 GHz CPU. Such
a calculation is relatively slow compared with other gas path diagnostic methods and is only
suggested for off-line diagnostic analysis.

3.11 Applicability of diagnostic approach

Although gas turbine engines may have slightly different configurations, they all have similar
components, work following a similar principle, have similar gas path measurements and
are controlled in a similar way by using a power setting parameter. Therefore, the gas path
diagnostic method introduced in this paper for gas turbine power setting sensor, gas path
sensors and gas path components has no limitations in theory to be applied to any other gas
turbine engines.

4.0 CONCLUSIONS
In this paper, a GA-based gas path diagnostic approach for gas turbine power-setting sensor
faults with or without the existence of gas path component degradation and a gas path sensor
fault has been proposed. The developed diagnostic approach has been applied to the diagnostic
analysis of a model aero turbofan engine where the degradation of the power-setting sensor,
the high-pressure turbine and total pressure sensor at the exit of the high-pressure compressor
is assumed to have happened. The diagnostic results of three case studies for the model engine
show that:

� The PSS fault will shift the whole gas turbine performance. Without the inclusion of the
PSS fault case, the GA diagnostic approach is not able to perform properly when the PSS
fault happens.

� The introduced GA diagnostic method is able to detect power setting sensor fault
successfully with and without the existence of single component fault (such as HPT
degradation) and single gas path sensor fault (such as a P5 fault).

� The PSS fault may result in a fault signature similar to that of component degradation in
exceptional situations, which may cause difficulties in identifying the true degradation

� Both GA stochastics and measurement noise have a negative impact on diagnostic
accuracy. Case studies show that there are up to 0.04%, 0.54% and 1.83°K prediction
uncertainties for HPT EF index, HPT FC index and TET bias respectively due to GA
stochastics, and up to 0.25%, 2.02% and 8.4°K prediction uncertainties for the same
health parameters respectively due to both GA stochastics and measurement noise.

� The computing speed of the GA-based diagnostic approach is relatively low compared
to other gas path diagnostic methods. It takes about 15 minutes of computing time to
get a solution using a typical desktop computer, which may only be suitable for off-line
diagnostic applications.

� In theory, such diagnostic method can be applied to different gas turbine engines.
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