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SUMMARY
This paper presents a modified passive dynamic walking
model with hip friction. We add Coulomb friction to the hip
joint of a two-dimensional straight-legged passive dynamic
walker. The walking map is divided into two parts – the
swing phase and the impact phase. Coulomb friction and
impact make the model’s dynamic equations nonlinear and
non-smooth, and a numerical algorithm is given to deal with
this model. We study the effects of hip friction on gait and
obtain basins of attraction of different coefficients of friction.
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1. Introduction
The bipedal robot is one of the hottest points in the field of
robotics for its better adapting to human living environments
and more human-like walking gaits than other robots. The
study of bipedal robot has achieved some results, such as
QRIO1 made by Sony and Asimo2,3 presented by Honda.
But these robots have lower energy efficiency compared with
human walking and need higher requirements of controlling
frequency and precision than required by human muscle.4

Thus, new ideas are needed for the study of bipedal robots
and understanding of human walking.

McGeer5 first of all brought forward the concept of passive
dynamic walking, which means bipedal walking without con-
trol and actuation. He represented a series of two-dimensional
(2D) bipedal walkers that can walk down a gentle slope
only powered by gravity. McGeer5 proved that passive
dynamic walking is feasible through numeral simulation
and experiments. Garcia7 demonstrated the simplest walking
model and studied the relationship between the gait and the
slope angle. Liu9,11 made a systematic study of the gait of
a straight leg planar passive walking model through simula-
tions and experiments. Wisse8 and Borzova and Hurmuzlu,12

respectively, proved that the walking models with upper body
could also walk stably. Qi et al.13 presented a new planar
passive dynamic model with contact between the feet and the
ground. Based on insights of 2D prototypes, researchers6,14

studied 3D passive dynamic walking machines.
Damping is unavoidable in engineering, but the influence

of damping at the hip and knees of a passive dynamic
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walker has not been studied thoroughly. McGeer5 introduced
a walking model with linear damping at the hip joint and got
a rough idea that even a small amount of friction in the hip
joint can destroy the walking cycle. Goswami et al.10 added
a quadratic damper to a walking model by placing a motor
implementing the same physical law. Goswami et al.’s10

results reported that a walking model can possess extremely
large limit-cycle attraction basins and can deal with steep
slopes. Goswami et al.10 and McGeer5 got different results
with different models. Compared with viscous and quadratic
damping, Coulomb friction is closer to actual situations but
harder to handle because the dynamical equations of the
passive walker with Coulomb friction are non-smooth. We
consider that it is significant to design a modified walking
model with Coulomb friction at its hip and to study the
friction’s effects on the gait.

In this paper we present a planar, straight leg, passive
dynamic walking model with Coulomb friction at the hip
joint. After a detailed description of the model in Section 2,
we give dynamical equations and numerical algorithm in
Section 3. Next, simulation results and discussions are
presented in Section 4. Finally, conclusions are made in
Section 5.

2. The Model
We introduced Coulomb friction to the hip joint of a 2D
straight-legged passive dynamic walking model (see Fig. 1).
This passive walking model consists of two identical legs
jointed by a hinge, which is not frictionless at the hip. The
mass is concentrated at two points – on each leg, m, at a
distance c from the hip. The leg of length l equals to 0.4 m
whereas the length ratio, rc = c

l
. Each leg has a round foot

of radius R and the length ratio, rR = R
l
. This mechanism

walks on a gentle ramp of slope γ .
Each step of this model is divided into two phases – the

swing phase and the impact phase. During the swing phase,
the stance leg rotates like an inverted pendulum.5 The stance
leg is in contact with the slope, while the other leg (the swing
leg) is swinging around the hip joint (see Fig. 4). When the
swing leg impacts the slope in front of the stance leg, it is
the impact phase (see Fig. 3). We assume that the impact
phase occurs instantaneously and the collision is inelastic.
Our model is a modified version of the 2D straight-legged
passive dynamic walking model presented by McGeer.5
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Fig. 1. The passive walking model.

Fig. 2. The pivot force analysis.

3. The Walking Map

3.1. Coulomb friction of the hip joint
The hip joint with Coulomb friction is the modification that
makes our model different from the former ones. We consider
the joint as a barrel hinge with Coulomb friction. The barrel
connects to one leg and the pivot connects to the other. We
mainly focus on the friction because of its prolonged effects
on gait, so we think the clearance between the barrel and
the pivot is negligible if the joint is processed precisely.
Therefore, the hinge has only one degree of freedom (1
DOF). The force analysis of the pivot is shown in Fig. 2(a).
The barrel and the pivot contact at point A. The normal
force Fn and the tangent force Ft consist of the action of the
barrel on the pivot. Radial load causes normal force (Fn).
The tangent force, Ft, exists because of friction. According
to the Coulomb friction model, |Ft | ≤ μ|Fn|, where μ is the
coefficient of friction.

Reduce Fn and Ft to the pivot center H (see Fig. 2(b)),
principal vector

∑
F and principal moment Mf are obtained.

The moment Mf caused by friction should satisfy

Mf = rFt , (1)

where r is the radius of the barrel. The principle vector
∑

F

has two components – Fhx parallel with the slope, and Fhy

vertical to the slope. Thus, the following equation should be
satisfied:

∑
F = Fn + Ft = Fhx + Fhy. (2)

The maximum frictional force Fmax can be expressed as

Fmax = μ|Fn|. (3)

Fig. 3. The impact phase.

Fig. 4. The swing phase.

Correspondingly, we have the maximum frictional
moment Mf max = rFmax. The moment of friction Mf is
always exerted in a direction that opposes movement or
potential movement between the barrel and the pivot. It can
be expressed as follows:

Mf =

⎧⎪⎨
⎪⎩

Mf maxsgn(θ̇r )θ̇r �= 0(a)

Mf maxsgn(θ̈r )θ̇r = 0 and θ̈r �= 0(b)(−Mf max, Mf max
)
θ̇r = 0 and θ̈r = 0(c)

. (4)

The relative angular velocity, θ̇r = θ̇2 − θ̇1, and the relative
angular acceleration, θ̈r = θ̈2 − θ̈1. If the relative angular
velocity θ̇r �= 0, the moment Mf is caused by kinetic friction.
If the relative angular velocity θ̇r = 0, the moment of friction
is static.

When Eqs. (4a) and (4b) are satisfied, we have |Ft | =
μ|Fn|. Note that Fn⊥Ft and Fhx⊥Fhy and using Eqs. (2) and
(3) it is not hard to obtain the following equation:

Fmax = μ√
1 + μ2

√
F 2

hx + F 2
hy. (5)

3.2. Dynamic equations of the impact phase
When θ1 + θ2 = 0, foot strike occurs. Angular momentum
of the whole machine about the point of collision Lf

is conservative, which is the same as that of McGeer’s
model.5 Lf is a function of θ1, θ2, θ̇1, θ̇2. This can be
mathematically expressed as

L−
f (θ1, θ2, θ̇−

1 , θ̇−
2 ) = L+

f (θ1, θ2, θ̇+
1 , θ̇+

2 ). (6)

Pre- and post-impacts are denoted by “−” and “+”
respectively. But angular momentum of the tailing leg about
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Fig. 5. Swing force analysis.

the hip is not conservative anymore. The reason is that the
friction moment Mf is directly proportional to the principle
vector

∑
Fn, which is a considerably huge magnitude force

when heel strike happens. So Mf is non-ignorable, and the
angular momentums of the tailing leg about the hip Lh pre-
and post-impacts are not the same.

Study the momentum of the tailing leg during the impact
phase, the only force non-ignorable acting on the tailing leg
is

∑
F . According to the theorem of momentum,

{
P +

x − P −
x = Ix

P +
y − P −

y = Iy
, (7)

where Px and Py are the projections of the tailing leg’s
momentum on x and yaxes respectively. Ix and Iy consist
of the impulse of the principle vector

∑
F . Assuming

that impact happens in a very short time �t , which is
infinitesimal, then Ix and Iy can be expressed as

{
Ix = Fhx�t

Iy = Fhy�t
. (8)

Angular momentum of the tailing leg about the hip Lh

satisfies

L+
h (θ1, θ2, θ̇+

1 , θ̇+
2 ) − L−

h (θ1, θ2, θ̇−
1 , θ̇−

2 ) = −Mf �t.

(9)

Substituting Eqs. (5) and (8) into Eq. (9),

L+
h (θ1, θ2, θ̇

+
1 , θ̇+

2 ) − L−
h (θ1, θ2, θ̇

−
1 , θ̇−

2 )

= − μr√
1 + μ2

sgn(θ̇+
r − θ̇−

r ). (10)

Equations (6), (7) and (10) are all nonlinear equations
about θ̇+

1 , θ̇+
2 , Ix and Iy. The Newton–Raphson method

can be used to deal with these nonlinear algebraic equations
numerically.

3.3. Dynamic equations of the swing phase
The force analysis of each leg during the swing phase is
shown in Fig. 5.

Table I. Unknown parameters.

Number 1 2 3 4 5 6 7 8 9 10

Parameters ẍc1 ÿc1 ẍc2 ÿc2 θ̈1 θ̈2 Fhx Fhy Ff x Ffy

The dynamic equations are

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

mẍc1 = mg sinγ + Ff x + Fhx

mÿc1 = −mg cosγ + Ffy + Fhy

Jcθ̈1 = Mf + Ff x[R + (l − c − R) cos θ1]
+ Fy1(l − c − R) sin θ1 − Fhxc cosθ1 − Fhyc sinθ1,

mẍc2 = mg sinγ − Fhx

mÿc2 = −mg cosγ − Fhy

Jcθ̈2 = −Mf + Fhxc cosθ2 + Fhyc sinθ2

(11)

where Jc is the moment of inertia of each leg with respect
to its mass center. xci and yci(i = 1, 2) denote the position
of mass center of leg i. The constraint force offered by
the slope to the stance leg consists of Ff x and Ffy . The
mathematical expression of Mf is Eq. (4). In the swing
phase, the stance foot rolls on the slope without slip, thus
the following constraint equations are satisfied:

⎛
⎜⎝

xc1 = −(l − c − R)sinθ1 − Rθ1 + x0

yc1 = (l − c − R)cosθ1 + R + y0

xc2 = −(l − R)sinθ1 − Rθ1 + c sinθ2 + x0

yc2 = (l − R)cosθ1 + R − c cosθ2 + y0

. (12)

Let the stance foot and the slope contact at point G. (x0, y0)
is the position of G when the stance leg is vertical to the slope
(θ1 = 0).

It is necessary to make a detailed description of the
algorithm method that we used for simulation because the
dynamic equations of the swing phase are nonlinear and
non-smooth. We mainly use Eqs. (4) and (11) and the
second derivative of Eq. (12) to simulate this walker’s swing
phase. The unknown parameters are listed in Table I. The
following three conditions have to be considered: (a) When
Eq. (4a) is satisfied, Mf is a function of Fhx , Fhy , θ̇1 and
θ̇2. The Newton–Raphson method can be used to deal with
the nonlinear algebraic equations. (b) When Eq. (4b) is
satisfied, Mf is a function of Fhx , Fhy , θ̈1 and θ̈2. But θ̈1

and θ̈2 are unknown parameters. Note that sign function
sgn(θ̈r ) = sgn(θ̈2 − θ̈1) is the only function using θ̈1 and θ̈2,

we use try-and-error method. First, assume sgn(θ̈2 − θ̈1) = 1
(or sgn(θ̈2 − θ̈1) = −1), then use Newton–Raphson’s method
to obtain the value of θ̈1 and θ̈2. Check whether numerical
results agree with the assumptions. If the answer is negative,
change another assumption; if the answer is positive, stop
trying. (c) When Eq. (4c) is satisfied, it means the walker
has only 1 DOF, and new dynamic equations which are
easier than the equations of conditions (a) and (b) are
needed.
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Table II. Value of parameters.

Model
parameters l(m) rc rR m (kg) Jc(kg m2) g (m/s2) r (m)

Value 0.4 0.25 0.25 1 0.008 9.8 0.005

Fig. 6. (Colour online) The time history of θi and θ̇i (i = 1, 2).

Fig. 7. The phase diagram of leg 1.

4. Results and Discussions

4.1. Existence of stable gait
The values of model parameters used for simulation are listed
in Table II. The other parameters, such as angle of the slope,
initial conditions and the coefficient of friction, will be listed
in later simulation examples.

Let the angle of the slope γ = 0.01 rad, the coefficient
of friction μ = 0.05 and the initial condition [θ1, θ2, θ̇1,

θ̇2] = [0.254, −0.2541, −1.954, −1.118], then a stable
gait is obtained. The time history of two legs is shown in
Fig. 6. Figure 7 is the phase diagram of one leg. A few steps
after start, the leg’s phase trajectory converges to a stable
limit circle. That means the walker does have a one-period

Fig. 8. (Colour online) The time history of angles and angular
velocities with different friction coefficients.

stable gait even introducing Coulomb friction (μ = 0.05) to
its hip.

The gait in Fig. 6 is one of the typical stable gaits that we
found via numerical simulation, and it is necessary to explain
how these gaits are obtained. For a given γ , the existence of
stable gaits has been studied by former researchers5,9,10 with
μ = 0 (frictionless hip joint). We increase μ from 0 to a very
small positive number �μ and set the initial condition as the
stable gait of μ = 0, the stable gait of the walker with small
hip friction (μ = �μ) is obtained after a few steps. Then we
rise μ to a larger number and set the initial condition as the
stable gait of μ = �μ, another stable gait will be found soon.
This cyclic process until the stable gait disappears. Then we
can find a range of μ to study the effects of friction on the
stable gait. Two different coefficients of friction, μ = 0 and
0.077, are chosen for comparison. The time history of angles
of different coefficients of friction is shown in Fig. 8. The
comparison of limit cycles of these two stable gaits is shown
in Fig. 9. The maximum step amplitude and period decrease
with increasing coefficient of friction (see Fig. 10). Goswami
et al.10 also got similar results.

With rise of μ from 0.077 to 0.085, the walker has no
stable gait on the slope of angle γ = 0.01 rad (Fig. 11). The
reason is that friction and impact cost more energy than the
amount of gravitational potential energy that the walker loses
per step. With increase of γ from 0.01 to 0.015 rad, we again
find a stable gait. The simulation results of the newly found
stable gait are shown in Figs. 12 and 13. When μ = 0.085,

Fig. 14 shows the average speed of the stable gait versus
γ. Stable gaits exit when γ ≥ 0.013 rad. Friction makes the
walker unable to walk on slopes of smaller angles.

4.2. Basin of attraction
The existence of a stable gait does not guarantee that every
time a passive walker can walk on a slope, the initial condition
should also be considered. If a walker starts walking with a
bad initial condition, its gait will not converge to the stable
gait and will finally fall. On the other hand, if a proper
initial condition is given, the walker will walk permanently

https://doi.org/10.1017/S0263574713000398 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000398


A passive walking model with Coulombic hip friction 1225

Fig. 9. (Colour online) The limit cycles of different gaits with
different friction coefficients.

Fig. 10. (Colour online) The plots of amplitude and period as a
function of μ.

Fig. 11. (Colour online) The time history of θi and θ̇i (i = 1, 2).

Fig. 12. (Colour online) The time history of θi and θ̇i (i = 1, 2).

Fig. 13. The phase diagram of leg 1 with μ = 0.085.

Fig. 14. (Colour online) The average velocity of stable gait versus
γ .
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on the condition that the slope is long enough. All proper
initial conditions in the phase space consist of the basin of
attraction of a passive walker. The size of a walker’s basin
of attraction reflects its sensitivity to initial conditions. The
basin of attraction of a walking model with Coulomb friction
at the hip is also studied in this paper.

We use cell mapping method to determine the basin of
attraction of our new walking model. The cell mapping
method was originally presented by Hsu.15 Using the cell
mapping method, portion of phase space, which may include
feasible initial conditions of a nonlinear system, is discrete
into a finite number of cells. Then the dynamics of the
system can be expressed in the form of a mapping sequence
from one cell to another. This method indeed reduces
some computation but cuts down the accuracy within the
acceptable range. Schwab and Wisse16 have used the cell
mapping method to study the simplest passive model and
find that the basin of attraction is a small, thin area.

Considering that all feasible gaits have the same special
state θ1 = −θ2, we chose the Pioncaré section at the moment
right after heel strike. Then the dimension of the phase

Fig. 15. (Colour online) The basin of attraction with μ = 0.

space that we focus on reduces from four (θ1, θ2, θ̇1, θ̇2)
to three (θ1, θ̇1, θ̇2) and we can spend much less time on
computation. Another thing we have pointed out is that not
all the phase space is significant for us, for example it is
impossible that the angle of the stance leg is greater than
π
2 . So the basin’s position and size have to be considered
when choosing which part of the phase space should be
studied. Calculating work is another thing that affects our
decision of the range of significant phase space. The size
of a cell must be small enough, or the results’ accuracy
will be unacceptable. Thus, the larger the phase space to be
studied, the more the calculating work to be done. The range
we chose to study is θ1 ∈ (0, 1) (rad), θ̇1 ∈ (−3, 1) (rad/s),
θ̇2 ∈ (−3, 1) (rad/s), and the size of the cell is 0.01 (rad) ×
0.04 (rad/s) × 0.04 (rad/s).

The basin of attraction with μ = 0 and its projections
are shown in Fig. 15. Choose any point in the basin as
the initial condition, the walker can converge to the fixed
point (0.1936, −1.4355, −1.1179). Set the initial condition
as (0.54, −3, −2.72), then the walker represents a stable
gait after 21 steps of adjustment (see Table III). In order to
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Table III. Adjusting steps.

Step θ1 (rad) θ̇1 (rad/s) θ̇2 (rad/s)

0 0.54 −3 −2.72
1 0.2256 −1.5453 −0.2296
2 0.2119 −1.5655 −1.0302
3 0.2115 −1.5507 −1.1490
. . . . . . . . . . . .

4 0.1936 −1.4356 −1.1178
5 0.1936 −1.4355 −1.1179
6 0.1936 −1.4355 −1.1179

Fig. 16. (Colour online) The volume of basin V versus μ.

study the effects of friction on the basin of attraction, we use
a generalized volume V = θ × θ̇1 × θ̇2 to stand for the size
of the basin. The generalized volume, V decreases with the
rise of μ (see Fig. 16). The hip friction plays a negative role
to the walker’s robustness. It is contrary to Goswami et al.’s
results.10 On the other hand, the stable gait is not as sensitive
as claimed by McGeer.5

5. Conclusions and the Future Work
In this paper we introduced Coulomb friction to the hip joint
of a 2D straight-legged passive walker. The main aim of
the research was to analyze the effects of the hip friction
on the gait. The Newton–Raphson method and the try-and-
error method were used to deal with the nonlinear and non-
smooth dynamical equations. With the aid of the cell mapping
method, we obtained basins of attraction for different μ.

We can conclude as follows:
� A passive walker with Coulomb friction at hip does have

stable gaits when μ belongs to an appropriate range.
� The maximum step amplitude and period decrease when

the friction coefficient increases.

� Because of hip friction the walker is unable to walk on
slopes of smaller angles.

� The basin of attraction becomes smaller when μ becomes
bigger. Hip friction makes the walker more sensitive to
initial conditions.

In the future work, knees with friction can be added to the
present model and the effects of knee friction will be studied.
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