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Axial creeping flow in the gap between a rigid
cylinder and a concentric elastic tube
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(Received 2 September 2015; revised 19 June 2016; accepted 1 September 2016;
first published online 10 October 2016)

We examine transient axial creeping flow in the annular gap between a rigid cylinder
and a concentric elastic tube. The gap is initially filled with a thin fluid layer. We
employ an elastic shell model and the lubrication approximation to obtain governing
equations for the elastohydrodynamic interaction. At long axial length scales viscous
forces are balanced by elastic tension, while at shorter length scales the viscous–elastic
balance is achieved by means of an interplay between elastic bending, tension and
shear stresses. Based on a viscous gravity current analogy in the tensile–viscous
regime, we devise propagation laws for displacement flows which are induced by
a variety of boundary conditions and examine different limits of the prewetting
thickness. Next we focus on the moving elastohydrodynamic contact line at the
edge of a penetrating film. A uniform matched asymptotic solution connecting the
interior tension-based region with a boundary layer region near the propagation
front is presented. Finally, a constructive example is shown in which isolated
moving deformation patterns are created and superimposed to form a travelling
wave displacement field. The presented interaction between viscosity and elasticity
may be applied to fields such as soft robotics and micro-scale or larger swimmers by
allowing for the time-dependent control of an axisymmetric compliant boundary.

Key words: low-Reynolds-number flows

1. Introduction

We examine the effect of elasticity on transient axial creeping flow in the annular
gap between a rigid cylinder and a concentric elastic tube. The gap between the
cylinder and tube is assumed small compared with the radius and length of the
cylinder. The flow field is modelled by applying the lubrication approximation, while
the external elastic tube is modelled by thin shell theory. We focus on viscous–elastic
time scales and nonlinear dynamics, where elastic deformation significantly modifies
the boundaries of the fluidic region.

A previous work (Elbaz & Gat 2014) examined viscous flow through a slender
elastic cylindrical shell, subjected to an external stress field, as a simple model of a
soft robot. Under an assumption of small elastic deformations, the analysis yielded
a governing inhomogeneous linear diffusion equation and several solutions were
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Creeping flow in the gap between a rigid cylinder and an elastic tube 581

examined in the context of soft-robotic applications. Compressibility of the shell
material was shown to strongly affect the flow and deformation regimes.

The annular configuration examined in the current work allows for solid deforma-
tions to be small compared with the elastic scale but significant in the fluidic domain,
thus enabling the use of thin shell theory to study nonlinear viscous–elastic interaction.
A similar configuration was examined by Paidoussis (1998) who focused on high
Reynolds numbers. The interaction of elastic tubes and thin viscous flows, at the limit
of low Reynolds numbers, has been studied by Halpern & Grotberg (1992) and White
& Heil (2005) who, among others, analysed the dynamics of a liquid film coating the
inner surface of an elastic tube in the context of flows in small airways in the lungs.
Other studies involving a thin creeping flow between a rigid surface and an elastic
surface focused on planar configurations. These include Chauhan & Radke (2002),
who modelled the dynamics of a contact lens during blinking as a thin viscous film
contained between an elastic shell and a flat rigid surface. Pihler-Puzović et al. (2012)
and Al-Housseiny, Christov & Stone (2013) studied the effect of elasticity on the onset
of Taylor–Saffman fingering instability in Hele-Shaw cells. Pihler-Puzović, Juel & Heil
(2014) related the patterns of viscous fingering to patterns of wrinkling in an elastic
Hele-Shaw cell. Trinh, Wilson & Stone (2014a) and Trinh, Wilson & Stone (2014b)
studied rigid and elastic plates, either pinned or free floating, moving over a viscous
film laying on a flat rigid surface. Carlson, Mandre & Mahadevan (2015) studied the
deformation and flow field created by a propagating adhesion front attaching an elastic
sheet to a rigid surface, where the gap between the elastic sheet and rigid surface is
filled with a viscous fluid.

For the case in which there is initially a small gap between the rigid cylinder and
the elastic tube, the examined problem can be viewed as a cylindrical version of the
peeling problem (McEwan & Taylor 1966; Hosoi & Mahadevan 2004; Lister, Peng
& Neufeld 2013). In this regard, the peeling formation of the current study bears
mathematical proximity to a viscous gravity current (e.g. Buckmaster 1977; Huppert
1982; Momoniat 2006). Gravity currents have also been studied in geophysical
contexts when coupled with elastic surfaces (Howell, Robinson & Stone 2013;
Balmforth, Craster & Hewitt 2015; Hewitt, Balmforth & De Bruyn 2015).

The suggested configuration may have bearing on models of compliant boundaries
(Gad-el Hak 2002), axisymmetric swimmers (Setter, Bucher & Haber 2012;
Toppaladoddi & Balmforth 2014) and soft-robotic applications (Rus & Tolley 2015).
The structure of this work is as follows: in § 2 the geometry, relevant parameters
and physical assumptions are defined. In § 3 elastic shell theory and the lubrication
approximation are employed to obtain governing equations for the elastohydrodynamic
interaction. Section 4 presents closed-form solutions of the governing equations. The
interior tensile–viscous regime is described in § 4.1, where we devise propagation
laws for different types of boundary conditions and prewetting scales. The dynamics
near the propagation front is described in § 4.2, where a uniform matched asymptotic
solution connecting the interior region far from the front with a boundary layer
region near the front is presented. Section 4.3 examines isolated moving deformations
for the case of relative axial speed between the rigid cylinder and the elastic tube.
Concluding remarks are presented in § 5.

2. Problem formulation

We study Newtonian, incompressible, axial creeping flow in the annular gap
between a rigid cylinder and a concentric elastic tube, under the limitations of linear
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FIGURE 1. (Colour online) Schematic illustration of the elastic tube and annular fluid
layer enclosing a rigid cylinder. We define the cylindrical coordinates (r, z). Radial and
axial solid deformations are denoted dr, dz, respectively. The radius of the cylinder is rb.
The dynamic inner and outer surfaces of the elastic tube resulting from the displacement
flow are ri+dr(z, t) and ro+dr(z, t), respectively. The wall thickness of the tube is denoted
by w= ro− ri. The penetrating film also causes axial displacement of the tube: a material
point z shifts to z+dz(z, t). The unperturbed (prewetting) layer is denoted h0. The dynamic
annular gap, between the cylinder and the elastic tube, is h0 + dr(z, t). Inlet pressures
denoted p0(t) (left) and pl(t) (right) are arbitrary functions of time t.

elasticity. The cylindrical coordinate system is defined in figure 1 with the axial
direction along z and radial direction along r. A prewetting layer is contained in
the gap between the cylinder and the tube and is assumed sufficient so that van der
Waals forces can be neglected. Viscous flow due to time-varying inlet pressure as
well as relative axial speed between the cylinder and tube will create both radial and
axial deformation of the tube. The height of the film contained in the gap, measured
radially from the cylinder to the displaced tube, is assumed small compared to the
radius and length of the cylinder. We focus on viscous–elastic interaction regimes,
where the elastic shell is sufficiently soft that it is deformed significantly by the fluid
flow.

Hereafter, normalized variables are denoted by uppercase letters and characteristic
parameters are denoted by lowercase letters with asterisks (e.g. if a is a dimensional
variable, a∗ is the characteristic value of a and A = a/a∗ is the corresponding
normalized variable).

The relevant variables and parameters are time t, axial coordinate z, radial
coordinate r, axial liquid speed uz, radial liquid speed ur, liquid pressure p, liquid
viscosity µ, liquid density ρ, solid axial deformation dz, solid radial deformation dr,
solid strain eij and stress σij (acting on the plane normal to coordinate i and in the
direction of coordinate j), tube inner radius ri and outer radius ro (see figure 1), tube
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Creeping flow in the gap between a rigid cylinder and an elastic tube 583

midsection, rm = (ri + ro)/2, rigid cylinder radius rb and the length l of the cylinder
and tube in the z direction.

The prewetting layer is defined as the gap between the cylinder and inner tube
radius, h0 = ri − rb, when at rest. We define an auxiliary radial coordinate, s= r− rb.
The slenderness ratio of the cylinder and tube is defined as

ε = rb

l
. (2.1)

The ratio of prewetting thickness to characteristic radial deformation is defined by

λh = h0

d∗r
. (2.2)

Small parameters in the analysis include the ratio between the characteristic radial
deformation d∗r and the length of the cylinder and tube in the z direction,

d∗r
l
= ε1� 1, (2.3)

ratio of wall thickness w= ro − ri to inner tube radius ri,

w
ri
= ε2� 1 (2.4)

and small elastic deformations, expressed by the ratios,

d∗r
ri
∼ d∗z

l
= ε3� 1, (2.5)

where d∗z is the corresponding characteristic axial deformation. We assume negligible
inertia,

d∗r
l
ρu∗z d∗r
µ
� 1, (2.6)

where u∗z is characteristic axial liquid velocity (a detailed discussion of the condition
of negligible inertia is presented in § 3.3).

3. Analysis
In order to obtain governing equations for the elastohydrodynamic interaction, we

apply the lubrication approximation for the flow field and the Kirchhoff–Love thin
shell approximation for the solid deformation field, under the requirement of similar
time scales of both elastic and fluidic dynamics.

3.1. The elastic problem
The deformation field of axisymmetric linearly elastic material with negligible inertia
is governed by the momentum equations,

∂

∂r
(rσrr)+ ∂

∂z
(rσzr)− σθθ = 0,

∂

∂r
(rσzr)+ ∂

∂z
(rσzz)= 0, (3.1a,b)
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584 S. B. Elbaz and A. D. Gat

the strain–displacement relations,

err = ∂dr

∂r
, eθθ = dr

r
, ezz = ∂dz

∂z
, ezr = 1

2

(
∂dr

∂z
+ ∂dz

∂r

)
, (3.2a−d)

and Hooke’s law,

Eezr = (1+ ν)σzr, Eerr = σrr − ν(σzz + σθθ), Eeθθ = σθθ − ν(σrr + σzz), (3.3a−c)

Eezz = σzz − ν(σrr + σθθ), (3.3d)

where E is Young’s modulus and ν is Poisson’s ratio. The boundary conditions for
the stress applied by the liquid at r= ri + dr are

σrr(r= ri + dr)=−p+ 2µ
∂ur

∂r
, σzr(r= ri + dr)=µ

(
∂uz

∂r
+ ∂ur

∂z

)
, (3.4a,b)

and at r= ro + dr the stress vanishes

σrr(r= ro + dr)= 0, σzr(r= ro + dr)= 0. (3.4c,d)

We define normalized coordinates, (R, Z) = (r/rb, z/l), normalized radial and axial
deflections, (Dr,Dz)= (dr/d∗r , dz/d∗z ) and normalized liquid pressure, P= p/p∗, where
p∗ is the characteristic pressure representing the order of magnitude of the inlet
pressure. As we shall see it is related to the characteristic radial deformation by
p∗ = d∗r Eε2/rb. However, the configuration may also be actuated by forced initial
deformation of the shell, in which case d∗r should be chosen to represent the
characteristic initial deformation and p∗ is then obtained by the appropriate relation.
Following elastic shell theory (Mollmann 1981), we define stress resultants for the
forces nij and moments mij as

nij =
∫ ro

ri

σij dr, mij =
∫ ro

ri

σijr dr. (3.5a,b)

We first integrate the axial momentum equation with respect to r, from ri to ro, to
obtain an axial force balance,

σzr(ri)∼ ∂nzz

∂z
. (3.6)

We now multiply the axial momentum equation by r − rm and integrate once more
over r to obtain a resultant form. We then differentiate with respect to z in order to
relate to the radial momentum equation (3.1). This yields

∂nzr

∂z
∼ ∂

2mzz

∂z2
+
(ε2rm

2
− ri

) ∂σzr(ri)

∂z
, (3.7)

where we’ve also substituted (3.6).
Substituting into the resultant form of the radial momentum equation,

nθθ ∼ rip+ ri

(
∂2mzz

∂z2
+
(ε2rm

2
− ri

) ∂σzr(ri)

∂z

)
. (3.8)
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Creeping flow in the gap between a rigid cylinder and an elastic tube 585

The normal and shear stress scale as σrr ∼ p and σzr ∼ ε1p (this is obtained from the
fluidic problem, see § 3.2). Order of magnitude analysis of (3.6) yields the following
scaling relations,

nzz ∼ drp, σzz ∼ p
ε2
ε3, (3.9a,b)

and order of magnitude analysis of (3.8) yields

nθθ ∼ rbp, σθθ ∼ p
ε2
. (3.10a,b)

Taking note that mzz ∼ rbnzz, normalizing (3.8) yields,

Nθθ ∼ P+ ε1ε

[
∂2Mzz

∂Z2
+ (ε2 − 1)

∂Σzr(1, Z)
∂Z

]
, (3.11)

where we’ve retained the higher derivative of the bending moment Mzz and the
shear stress at the fluid interface ∂Σzr(1, Z)/∂Z. We normalize Hooke’s law (3.3)
according to the above characteristic values and attain a reduced form of Love’s first
approximation (Love 1888),

ε3Σzz ∼ ε2E
p∗(1− ν2)

(ezz + νeθθ) (3.12)

Σθθ ∼ ε2E
p∗(1− ν2)

(eθθ + νezz). (3.13)

We apply (Dugdale & Ruiz 1971) the Kirchhoff hypothesis and describe the
displacement field in terms of the radial d̄r and axial d̄z displacements of the
midsection, denoted by overbars,

d̄z = dz + (r− rm)
∂dr

∂z
, d̄r = dr, (3.14a,b)

and thus we can represent the strain as a function of the deformation by

ezz = ∂ d̄z

∂z
− (r− rm)

∂2d̄r

∂z2
, eθθ = d̄r

r
. (3.15a,b)

Integrating (3.12), (3.13) over r into resultant form and evaluating the moment Mzz,
we find that

Nzz ∼ Eε2

p∗(1− ν2)

(
∂D̄z

∂Z
+ νD̄r

)
, (3.16)

Nθθ ∼ Eε2ε3

p∗(1− ν2)

(
ν
∂D̄z

∂Z
+ D̄r

)
, (3.17)

and

Mzz ∼ Eε2

p∗(1− ν2)

[
∂D̄z

∂Z
− ε

2ε2
2

12
∂2D̄r

∂Z2
+ νD̄r

]
, (3.18)
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586 S. B. Elbaz and A. D. Gat

where D̄r, D̄z are the non-dimensional displacements of the midsection. The term
∂D̄z/∂Z can be evaluated between (3.6) and (3.16). We can now express (3.11) in
terms of fluid pressure and radial deformation,

ε4ε2
2

12(1− ν2)

∂4D̄r

∂Z4
− εε1ε2

2
∂Σzr(1, Z)

∂Z
+ D̄r ∼ P. (3.19)

The leading order of (3.19) is a tensile regime in which D̄r ∼ P. However, the small
term (ε4ε2

2/12(1− ν2))∂4D̄r/∂Z4 may become dominant in a boundary layer near the
location of a fixed end of the tube or near a peeling front, as the fluid layer thickness
goes to zero at the edge of a penetrating film. The small term (εε1ε2/2)∂Σzr(1,Z)/∂Z,
as we shall see, increases inversely with the fluid layer thickness near the peeling front
and thus will undergo rescaling in the contact line analysis (see § 4.2).

The corresponding relation between radial and axial deformations reads

D̄z(Z, T)− D̄z(Z = 0, T)∼−ν
∫ Z

0
D̄r(ζ , T) dζ , (3.20)

which simply describes the stretching of the tube as it expands; a result of Poisson’s
effect. We conclude the elastic analysis with the relation between the characteristic
radial deformation and characteristic pressure, representing the dominant elastic
tension to viscous force balance,

p∗

Eε2
= d∗r

rb
= ε3� 1. (3.21)

Equation (3.21) provides limitation on the maximal allowed pressure for which the
assumption of small deformations is valid. Hereafter the midsection overbars are
omitted for simplicity.

3.2. The fluidic problem
We assume an axisymmetric incompressible Newtonian flow, governed by the
momentum equations,

ρ

(
∂ur

∂t
+ ur

∂ur

∂r
+ uz

∂ur

∂z

)
=−∂p

∂r
+µ

[
1
r
∂

∂r

(
r
∂ur

∂r

)
+ ∂

2ur

∂z2
− ur

r2

]
, (3.22)

ρ

(
∂uz

∂t
+ ur

∂uz

∂r
+ uz

∂uz

∂z

)
=−∂p

∂z
+µ

[
1
r
∂

∂r

(
r
∂uz

∂r

)
+ ∂

2uz

∂z2

]
+ ρg, (3.23)

and conservation of mass,

1
r
∂

∂r
(rur)+ ∂uz

∂z
= 0. (3.24)

The relevant boundary conditions are no slip and no penetration at r= ri + dr,

ur(r= rb + h0 + dr)= ∂dr

∂t
, uz(r= rb + h0 + dr)= ∂dz

∂t
, (3.25a,b)

and at the rigid cylinder boundary, r= rb,

ur(r= rb)= 0, uz(r= rb)= u0. (3.26a,b)
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Pressure at the inlet and outlet may be governed by

p(z= 0)= p0(t), p(z= l)= pl(t), (3.27a,b)

where p0(t) and pl(t) are arbitrary functions of time having order of magnitude p∗.
We define normalized liquid velocities (Ur, Uz) = (ur/u∗r , uz/u∗z ), and normalize the
coordinate s= r− rb, defined in the gap 0 6 s 6 h0 + dr(z, t), by d∗r ,

S= s
d∗r
, 0 6 S 6 λh +Dr(Z, T). (3.28)

Order of magnitude analysis of (3.24) yields

u∗r
u∗z
∼ d∗r

l
= ε1, u∗z =

ε1d∗r p∗

µ
. (3.29)

We require u0∼ u∗z so that the viscous stresses resulting from the motion of the rigid
cylinder scale as µu0/d∗r . We focus on negligible gravity, G= ρgl/p∗� 1, and define
the Reynolds number, Re= ρu∗z d∗r /µ and the Womersley number, W2= ρd∗2r /µt∗. We
transform (3.22)–(3.24) from R→ S and employ (3.29). The result is the following
reduced system for the fluidic domain,

∂P
∂Z
= ∂

2Uz

∂S2
+O(W2, ε3, ε1Re, ε2

1,G), (3.30a)

∂P
∂S
=O(W2, ε3

1Re, ε2
1), (3.30b)

∂Ur

∂S
+ ∂Uz

∂Z
=O(ε3). (3.30c)

The boundary conditions (3.25), (3.26) take the normalized form,

Ur(S= λh +Dr)= ∂Dr

∂T
, Uz(S= λh +Dr)= d∗z

t∗u∗z

∂Dz

∂T
, (3.31a,b)

and

Ur(S= 0)= 0, Uz(S= 0)=U0, (3.31c,d)

with U0= u0/u∗z and T = t/t∗, where t∗∼ d∗r /u
∗
r is the time scale of the viscous–elastic

interaction to be defined shortly (see (3.35)). We solve (3.30a), (3.30b) imposing
conditions (3.31). The resulting leading-order axial speed Uz reads

Uz ∼ 1
2
∂P
∂Z
[S2 − (λh +Dr)S] + S

(λh +Dr)

d∗z
t∗u∗z

∂Dz

∂T
+U0

[
1− S

(λh +Dr)

]
, (3.32)

and is defined for λh +Dr > 0. Addressing mass conservation (3.30c), we install (3.32)
and integrate with respect to S across the film layer to produce a reduced Reynolds
equation relating fluidic pressure to elastic deformations,

∂Dr

∂T
− 4

∂

∂Z

{
∂P
∂Z
(λh +Dr)

3
}
+ 24U0

∂Dr

∂Z

∼ ε3

2

[
∂Dr

∂Z
∂Dz

∂T
− (λh +Dr)

∂2Dz

∂Z∂T

]
. (3.33)

Equation (3.33) is valid for λh +Dr > 0. The residual axial speed correction terms (of
order O(ε3)) have been included for reference.
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3.3. The fluidic–elastic problem
Equations (3.19) and (3.33) yield a coupled set in pressure and deformation which
governs the elastohydrodynamic interaction (for the corresponding dimensional
equations see (A 1)),

ε4ε2
2

12(1− ν2)

∂4Dr

∂Z4
− εε1ε2

2

[
(λh +Dr)

2
∂2P
∂Z2
+
(

U0

(λh +Dr)
2 −

1
2
∂P
∂Z

)
∂Dr

∂Z

]
+Dr ∼ P,

(3.34a)
∂Dr

∂T
∼ 4

∂

∂Z

{
∂P
∂Z
(λh +Dr)

3
}
− 24U0

∂Dr

∂Z
. (3.34b)

The shear term of (3.19) was evaluated via the lubrication approximation (3.30).
Equation (3.34a) implies an outer regime in which bending and shear stresses can be
neglected and a balance between elastic tension and viscous forces dominates. Near
boundaries such as a fixed connection to a rigid wall or near the moving peeling
front, elastic bending may become part of the dominant balance inside a boundary
layer region. The middle term of (3.34b) represents the effect of competing elastic
forces on the pressure driven Poiseuille flow of the film. The motion of the rigid
cylinder also drives a Couette flow which transports deformations along the axis
(right-hand term of (3.34b)). The characteristic time scale t∗ is evaluated via relations
(3.21) and (3.29) (an extra factor of 48 is included for convenience),

t∗ = 48(Eε2)
2µ

p∗3ε2
= 48(Ew)2l2µ

p∗3r4
b

, (3.35)

and is written in terms of the characteristic driving pressure. This dependence stems
from the nonlinearity of (3.34b). Equation (3.35) enables us to estimate an upper
limit on the characteristic pressure beyond which the assumption of negligible inertia
(3.30a)–(3.30b) will no longer be valid, representing the range of validity of the
analysis. Substituting (3.35) into (3.30a), we demand that both W2 and ε1Re terms
be negligible and derive the condition that

p∗�
(
µ

εrb

)2/5
(Eε2)

4/5

ρ1/5
= (µl)2/5(Ew)4/5

r8/5
b ρ1/5

. (3.36)

We note that for the case of small deformations compared with the prewetting
thickness (dr � h0), bending and shear stresses can be neglected, and hence (3.34a)
reduces to Dr ∼P. Substituting back into (3.34b) and setting Dr� λh in the diffusion
coefficient yields the linearized form

∂Dr

∂T
∼ 4

∂2Dr

∂Z2
, (3.37)

where the transport effect of the rigid cylinder motion vanishes at the presence of
a thick intermediate layer. For the linear case, the appropriate time scale instead of
t∗ is r2

bl2µ/Ewh3
0 and shows exclusive dependence in solid–liquid material properties

and the geometry of the configuration. A result which is consistent with the linear
interaction time scale of the full cross-section cylindrical shell (Elbaz & Gat 2014).
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4. Results
4.1. The tensile–viscous regime

In the following analysis we shall assume that the viscous dissipation near the
apparent contact line is negligible compared with the viscous dissipation in the bulk
of the fluid. Consequently, we shall first seek a solution in the form of an interior
profile, balancing elastic tension and viscous forces in (3.34) under an assumption
of a small, lower bounded, λh. In § 4.2 we rescale the governing equations and
examine the behaviour near the contact line, assuming conditions in the interior
remain unchanged. We in turn discuss several lower bounds on λh which emanate
from the analysis at the front.

4.1.1. Deformation significantly larger than prewetting
For axial length scales of Z = O(1) bending and shear stresses can be neglected

and hence (3.34a) reduces to Dr ∼ P. At the limit of large defection compared with
prewetting, λh� 1 (for stationary rigid cylinder U0 = 0), (3.34b) then reduces to the
well-known porous medium equation (PME) in fourth power,

∂Dr

∂T
∼ ∂

2D4
r

∂Z2
. (4.1)

We transform to self-similar variables,

Dr = T−αf (η), η= ZT (3α−1)/2, (4.2)

and follow Huppert (1982) in light of the close analogy to a viscous gravity current
propagating under a density gradient.

F(ξ)= η−2/3
F

f (η), η= ηFξ . (4.3)

Here ηF describes a propagating peeling front for which the solution is supported
in the region Z < ZF(T), prior to boundary interaction ZF(T) < 1. We install (4.2),
(4.3) into (4.1) which then reduces to the following ordinary differential equation
(ODE) in F,

F4′′ ∼
(

3α − 1
2

)
ξF′ − αF. (4.4)

The eigenvalue α describes the height of the film at the inlet,

Dr(0, T)= T−α, (4.5)

which equivalently represents inlet pressure in this regime. Boundary conditions are
restated in F,

F(0)= η−2/3
F

, F(ξ > 1)= 0. (4.6a,b)

We complete the formulation with integral mass conservation represented in
non-dimensional form by∫ ZF (T)

0
Dr(Z, T) dZ =QT (1−5α)/2, Q= η5/3

F

∫ 1

0
F(ξ) dξ . (4.7)
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590 S. B. Elbaz and A. D. Gat

Both ηF and Q are functions of the eigenvalue α. Contrary to a viscous gravity current
where the interface is induced by a given flux input, in which case the flux rate Q
may be set constant for all α, in the current study the flux rate derives from the inlet
conditions.

We first consider the specific case α= 1/5 for which equation (4.4) may be solved
analytically. The solution is a particular case of the source solution of the PME,
known as the ZKB solution as it was first obtained by Zel’dovich & Kompaneets
(1950) and Barenblatt (1952). The underlying boundary and initial conditions are

Dr(Z, 0)=Qδ(Z),
∂Dr(0, T)

∂Z
= 0, (4.8a,b)

representing a sudden input of mass, Q, into the interface at T = 0, after which the
inlet is sealed. The amplitude decay at the inlet, as the front spreads through the
interface, is then given by (4.5). The solution reads

Dr(Z, T)= T−1/5

[
1− 3

40
Z2T−2/5

]1/3

+
, Q=

√
10π

3
Γ

(
4
3

)
Γ

(
11
6

) , ηF =
√

40
3
, (4.9a−c)

where (s)+ = max(s, 0) and Γ is Euler’s gamma function. The velocity field
corresponding to (4.9) can be attained via (3.32) and (3.30c). The dimensional
solution corresponding to (4.9) is given by (A 2). For all other physical values of α
(α < 1/5) (4.4), along with conditions (4.6) and (4.7), must be solved numerically.
In the range α 6 0 the underlying initial condition is Dr(Z, 0) = 0. Figure 2(a)
presents the self-similar displacement profiles F(ξ), analogous to a two-dimensional
viscous gravity current. Figure 2(b) depicts the flux rate Q, the front locus ηF and
the time it takes the front to reach the opposite boundary, denoted Tb, as a function
of α. The time Tb represents the limit of validity of the self-similar analysis when
adapted to a finite domain. Figure 2(c,d) depict the resulting deformation regime,
Dz and Dr, respectively, for the case of constant inlet height (α = 0). The peeling
front enters from the left (Z = 0) while the tube is set stationary at the right end
Dr(1, T) = Dz(1, T) = 0. The axial deformation is attained via (3.20). As the front
propagates the interface, the free left end of the tube retracts towards the right; during
this process we assume the inlet remains sealed.

The propagation laws for an inlet signal of type (4.5), according to self-similarity,
are written in terms of the front location ZF , accumulated mass in the interface M and
time to boundary Tb,

ZF = ηF(α)T
(1−3α)/2, M =Q(α)T (1−5α)/2, Tb = ηF(α)

−2/(1−3α). (4.10a−c)

The corresponding dimensional propagation laws are given in (A 3). Relations
(4.10) illustrate the dependence of the spread rate in the inlet conditions for large
displacements compared with the prewetting thickness dr � h0. This is not the case
for small displacements dr� h0, governed by (3.37), for which the spread rate O(t1/2)

(heat equation) is constant for all inlet conditions.
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FIGURE 2. Self-similar solutions of the tensile–viscous regime, corresponding to λh� 1,
U0 = 0 and inlet conditions Dr(0, T)= T−α . (a) Displacement profile F(ξ) corresponding
to eigenvalues: α = 1/5 (analytic – solution (4.9)) – dashed line, α = 0, −1, −2, −3 –
solid lines (obtained numerically). (b) Flux rate Q(α) – solid line, front locus ηF (α) –
dashed-dotted line, time to boundary Tb(α)= tb/t∗ – dashed line (Q, ηF and Tb obtained
numerically). Panel (b) is plotted in the range α 6 0 (the range 0<α 6 1/5 is irrelevant
for comparison due to the change in boundary and initial conditions). (c,d) Constant-inlet-
height (α= 0) propagation in time with 1T = 1/30, between 06T 6 1/3, tube clamped at
Z = 1, Dr(1, T)=Dz(1, T)= 0. (c) Axial deformation Dz(Z, T)/ν. (d) Radial deformation
Dr(Z, T).

4.1.2. Deformation comparable to prewetting
When the deformation is of similar magnitude as the prewetting layer, we cannot

neglect λh as in (4.1), but must consider the more general case,

∂Dr

∂T
∼ 4

∂

∂Z

{
∂Dr

∂Z
(λh +Dr)

3
}
. (4.11)
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We note that propagation over a non-negligible prewetting layer in the current
configuration is analogous to the propagation of a viscous gravity current at a fluid
interface (Lister & Kerr 1989). We transform back to PME form in film height
H = λh +Dr,

∂H
∂T
∼ ∂

2H4

∂Z2
, (4.12)

and note that similarity solutions exist only for the case where there is a fixed height
scale in addition to the prewetting thickness. We thus consider the case of constant-
inlet-height propagation, analogous to α = 0 in (4.5) but for general λh,

H(0, T)= 1+ λh, H(Z, 0)= λh. (4.13a,b)

We substitute H = f̃ (η), η= ZT−1/2 and derive the following boundary value problem
in f̃ (analogous to (4.4)–(4.7)),

f̃ 4′′ ∼− 1
2ηf̃ ′, (4.14a)

f̃ (0)= 1+ λh, f̃ (∞)= λh, (4.14b,c)∫ ∞
0

Dr(Z, T) dZ = Q̃T1/2, Q̃=
∫ ∞

0
[f̃ (η)− λh] dη. (4.14d)

We have used the tilde symbol to denote λh dependency. The numerical solution of
(4.14) is presented in figure 3(a) and starts from the inner profile of Dr(η) previously
attained for λh� 1. Subsequent profiles correspond to 0.1 6 λh 6 1 in 0.1 increments.
The resulting axial deformation profile Dz(η)/ν for T = 1, in the case where the tube
is clamped ahead of any displacement, is plotted in figure 3(b); its intersection with
the axis η= 0 yields the flux rate, Q̃(λh).

For non-negligible λh (4.11) is no longer parabolic degenerate for Dr = 0, causing
the edge to trail to infinity. The fluid displacement travels as O(T1/2) but is no longer
compactly supported. The accumulated mass in the interface excluding the base layer
is given by M̃ = Q̃(λh)T1/2. We would like to emphasize that this unified self-similar
law of O(t1/2) for all prewetting thicknesses is a unique property of fixed-inlet-height
propagation. Note, for example, that source-type boundary conditions transition from
O(t1/5) propagation for λh � 1 (solution (4.9)) to O(t1/2) for λh →∞ (solution of
(3.37)). For intermediate values of λh a numerical solution is required and is illustrated
below. We solve (4.11) along with appropriate boundary conditions,

Dr(Z, 0)= δ(Z), ∂Dr(0, T)
∂Z

= ∂Dr(1, T)
∂Z

= 0. (4.15a,b)

A no-flux condition at the right boundary has been added to demonstrate the
interaction of the front with the opposing wall. Propagation in time is shown in
3 snapshots in figure 4(a,b,c) corresponding to T = 0.012, 0.12, 0.6, respectively, and
for varying base layer thickness 0 6 λh 6 3/2. The solution was obtained via a finite
difference scheme and was validated on the basis of (4.9). A faster advancement of
the front as well as its spreading are observed for thicker base layers. For λh > 1 the
solution is presented in the nonlinear time scale normalization (3.35) for comparison
and converges rapidly to the behaviour of (3.37).
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FIGURE 3. Self-similar solutions of the tensile–viscous regime for non-negligible
prewetting, corresponding to 0 6 λh 6 1, U0 = 0 and constant inlet displacement/pressure
Dr(0, T) = 1. (a) Radial deformation profile Dr(η) in 1λh = 0.1 increments (obtained
numerically) 06 λh 6 0.5 – solid lines, 0.66 λh 6 1 – dashed lines. (b) Axial deformation
profile Dz(η)/ν at T = 1 in 1λh= 0.1 increments; yields the flux rate Q̃(λh) at η= 0 (tube
clamped ahead of any displacement: Dz = 0 at η→∞).

4.2. The elastohydrodynamic front

While solution (4.9) describes a moving contact line, it neglects higher-order terms
which may be dominant in its vicinity. In the following analysis we examine the
viscous–elastic dynamics near the propagation front. We assume a small, lower
bounded, prewetting layer λh � 1 and a shortening of the axial length scale to
Z = O(δ) near the contact line. We transform (3.34) (U0 = 0) to the self-similar
variable ξ = Z/ZF , and rescale to the boundary layer coordinate ξ = 1 − ζ δ.
Equations (3.34) can be uncoupled and the result is the following ODE in the
boundary layer variable D̂r(ζ ), written prior to balance,

ε4ε2
2

12(1− ν2)Z4
F

1
δ4

∂4D̂r

∂ζ 4
+ D̂r ∼ δ

∫ ζ

0

ZFŻFD̂r(ζ̃ )

4(λh + D̂r(ζ̃ ))
3 dζ̃ + εε1ε2

16δ
ŻF

ZF

λh − 3D̂r

(λh + D̂r)
3

∂D̂r

∂ζ
,

(4.16)
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FIGURE 4. (Colour online) Source-type propagation over a prewetting layer in the tensile–
viscous regime. Numerical solution corresponding to 0 6 λh 6 3/2, U0 = 0, 0 6 T 6 1/80.
Radial deformation plotted versus axial coordinate. Boundary conditions of type (4.15).
λh = 0, 1/3, 2/3, 1, 3/2 from dark to light reds respectively. (a) Solution at time T =
1/4000, (b) solution at time T = 1/400, (c) solution at time T = 1/80.

where we have denoted the time derivative of the front location ZF by ŻF. The
contributions of the terms of (4.16) are on the left-hand side: bending and tension
forces, and on the right-hand side: viscous pressure drop and shear forces.

4.2.1. The bending–tension regime λh� (ε
√
ε2)

1/3

When λh � (ε
√
ε2)

1/3 a dominant balance is achieved between the bending and
tension terms of (4.16) on the length scale of δ ∼ ε√ε2 =√rbw/l. In the prewetting
thickness range (ε

√
ε2)

1/3 � λh � 1 a uniform approximation matching the interior
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profile (4.9) to the boundary layer solution can be attained in closed form. To this end
we define D̂r = T−1/5D̂r,1 and δ = ε√ε2Z−1

F /[12(1− ν2)]1/4. Equation (4.16) reduces
to,

d4D̂r,1

dζ 4
+ D̂r,1 ∼ β

∫ ζ

0
D̂r,1, (4.17)

where β = δZFŻF/4λ3
h� 1. The right-hand side of (4.17) must be retained in order to

meet the boundary conditions at the front. These will be assumed as follows: P =
D̂r,1 = dD̂r,1/dζ = 0 at ζ = 0. For large ζ , D̂r,1 must be bounded and satisfy the
matching condition,

lim
ζ→∞

D̂r,1(ζ )= lim
ξ→1

η2/3
F

F(ξ), (4.18)

where F and ηF correspond to the self-similar profile of (4.9) defined in (4.3). The
asymptotic solution of (4.17) reads,

D̂r,1 ∼ (2δ)1/3eβζ − (2δ)1/3 exp
[
−
(

1√
2
+ β

4

)
ζ

]
×
[
(1+√2β) sin

(
ζ√
2

)
+ cos

(
ζ√
2

)]
. (4.19)

We cannot match the boundary layer and interior profiles in a straightforward manner
due to the difference in functional form. In order to pursue a matched uniform solution
we define the auxiliary problem,

d4D̂a
r,1

dζ 4
+ D̂a

r,1 ∼ (2δ)1/3ζ 1/3, (4.20)

which differs from (4.17) by the small orders O(β, δ1/3). The solution of (4.20) reads,

D̂a
r,1 = F̂p(ζ )− e−ζ/

√
2

[(
F̂p(0)+

√
2

dF̂p(0)
dζ

)
sin

ζ√
2
+ F̂p(0) cos

ζ√
2

]
, (4.21)

and the particular solution F̂p is given in appendix B. The auxiliary variable D̂a
r,1

satisfies (4.18) exactly and can be matched in closed form to the interior profile. A
leading-order uniform approximation Du

r can be written in the original variables,

Du
r (Z, T)= T−1/5

[(
1− L2

1

4

)1/3

+
− (2− L1)

1/3
+

]
+ T−1/5F̂p(KL2)

−T−1/5 exp
(
−KL2√

2

) [
(F̂p(0)+

√
2F̂p

′(0)) sin
(

KL2√
2

)
+ F̂p(0) cos

(
KL2√

2

)]
, (4.22)

where L1 = √3/10ZT−1/5, L2 = √40/3T1/5 − Z and K = [12(1− ν2)]1/4/(ε√ε2).
The solution is plotted in figure 5 at T = Tb(α = 1/5), where transition from a
tension dominant to a bending–tension regime is illustrated for two axial length
scales δ = 0.005, 0.01 (wall thickness and aspect ratios are adjusted accordingly).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

58
7 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.587


596 S. B. Elbaz and A. D. Gat

0

1

2

3

4

0.5 0.6 0.7 0.8 0.9 1.0 0.9 1.0

Z Z

Uniform 
Boundary layer 
Interior 

0

1

2

(b)

(a) (b)

FIGURE 5. (Colour online) Uniform closed-form solution of a propagating
elastohydrodynamic front for impulse-type boundary condition (4.8) and δ1/3 � λh � 1.
Snapshot of Du

r (Z, Tb) for δ = 0.01 (red), δ = 0.005 (coral) and corresponding boundary
layer solutions (4.21) (dashed lines). The interior profile η5/3

F
F(Z) (4.9) is plotted in

black.

0.4

0.8

1.2

1.6

2.0

10 2 3

10

 0.5
(a)

(b)

FIGURE 6. (Colour online) Convergence of the uniform solution (4.22) to the unmatched
boundary layer solution (4.19) near the contact line. (a) The self-similar profile
Du

r (ζ )/T
−1/5δ1/3 (solid red) is plotted against the boundary layer coordinate ζ for β = 0.1

(dashed), β = 0.12 (dotted). (b) Magnification of the region 0 6 ζ 6 1, Du
r (ζ )/T

−1/5δ1/3

(solid red) versus ζ for β = 0.1 (dashed), β = 0.05 (dashed-dotted).

The uniform solution converges to the ZKB profile (4.9) as T→∞. The convergence
of the uniform solution (4.22) to the exact unmatched boundary layer solution (4.19)
near the contact line is shown in figure 6 for various values of β.

At larger prewetting scales the effect of the boundary layer adjustment will diminish
but will still impose shape modifications near the edge, due to the change in regime. A
numerical solution and matching of the interior (e.g. (4.14)) and boundary layer (4.17)
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regions is required to describe this behaviour. A similar problem was addressed in the
late time spreading of an elastic plated gravity current (Hewitt et al. 2015).

4.2.2. Smaller scales of the prewetting thickness λh� (ε
√
ε2)

1/3

We return to the dominant balance of equation (4.16). When ε5
1ε2/ε

3 � λh �
(ε
√
ε2)

1/3 bending forces will balance viscous forces on the length scale of
δ ∼ (ε4ε2

2λ
3
h)

1/5 while shear forces remain negligible. This regime describes the
early stages of fluid injection at the inlet, for which ZF�√rbw/l, and is analogous
to the early time spreading of an elastic Hele-Shaw cell (Lister et al. 2013) or the
pure bending regime of an elastic plated gravity current as described by Hewitt et al.
(2015). We note that the assumptions on the boundary conditions near the contact
line (solution of (4.17)) no longer hold at smaller prewetting thicknesses as discussed
herein.

When λh� ε5
1ε2/ε

3 bending forces will balance shear forces while viscous forces
become negligible relative to these. However, the resulting axial length scale δ ∼
ε(ε2λ

2
h/ε1)

1/3 is comparable with the shell thickness and hence we have reached the
limit of the thin shell elastic model used in the analysis.

4.3. Designing deformation patterns with application to soft actuators
In this section we illustrate the use of the transport term U0 · ∂Dr/∂Z of (3.34b) and
the relation between the speed of displacement propagation and the gap (λh), in order
to obtain isolated moving deformations. The linear transport term may represent a
relative motion of the rigid cylinder, or alternatively, U0(T) can be thought of as a
slip velocity condition induced by an electric zeta potential or a similar mechanism.

The transported ZKB profile can be used as a building block for creating complex
deformation patterns. Such mechanism may be useful for micro-swimmers (replacing
complex mechanisms such as in Setter et al. 2012), as well as for soft-actuator and
soft-robotic applications. Current soft robots commonly use multiple pressure inlets
to compress various internal cavities and deform different parts of the robot (Tolley
et al. 2014; Marchese & Rus 2015). In a previous work (Elbaz & Gat 2014) we
suggested applying a viscous fluid to increase the possible modes of deformation for
a given channel geometry. In this section we suggest a soft actuator with an initially
closed embedded cavity, where viscous peeling dynamics advancing into the channel
will limit the deformation to the region behind the peeling front, thus isolating
the deformed region. Furthermore, applying the transport term in combination with
the inlet pressure enables the design of moving isolated deformation patterns, thus
allowing to temporally activate and deactivate different regions of the actuator.

We incorporate a small prewetting layer λh� 1, and focus on the tensile–viscous
regime, neglecting boundary layer regularization for the moment. Equation (3.34b) is
then simply,

∂Dr

∂T
+ 24U0

∂Dr

∂Z
∼ 4

∂

∂Z

{
∂Dr

∂Z
(λh +Dr)

3
}
. (4.23)

At the left boundary we employ an impulse sequence of the form,

Dr(0, T)=
N∑

n=0

An

[
Θ

(
T + 1Tn

2
− τn

)
−Θ

(
T − 1Tn

2
− τn

)]
, (4.24)
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where Θ is the Heaviside function. The signal is modulated in amplitude, An, and in
width 1Tn and can be sequenced non-uniformly by τn. We set a zero initial condition
and a no-flux condition at the right boundary,

Dr(Z, 0)= 0,
∂Dr(1, T)

∂Z
= 0. (4.25a,b)

Under the above conditions, a sequence of symmetric ZKB profiles will propagate
through the interface. Assuming sufficiently small λh, each pulse will propagate
independently. The rate of diffusion of the profiles decays strongly beneath a certain
amplitude (determined by (3.35)) and is significantly slower than the rate of their
transport, that is, they maintain their forms as they are transported. Using this
approach, isolated fluid segments can be generated arbitrarily and transported along
the interface independent of the pressure gradient and having limited or negligible
communication with each other. In particular, the boundary sequence (4.24) can be
modulated to form a moving wave signal, as illustrated in figure 7 via numerical
solution of (4.23)–(4.25). A prewetting layer of λh = 0.15 was used with a constant
rigid cylinder motion of U0 = 2. Figure 7(b) shows 3 progressive snapshots of the
resulting radial deformation wave as it propagates the interface. The corresponding
contour plot is given in figure 7(a) and shows the uniformity of the sequence beyond
an early generation time, T > 7 × 10−3. The obtained solution closely approximates
the waveform,

Dr(Z, T)≈ A
2
[1+ sin(KZ −ΩT)], Ω

K
= U0

2
, (4.26a,b)

where A= 0.1 and K =Ω = 10π.

5. Concluding remarks

The analysis presented here assumes several small parameters, including geometric
requirements such as ε2=w/ri� 1 and dynamic physical requirements such as small
deformations ε3 = d∗r /rb � 1 and negligible inertia ε1Re = ρε2r2

bp∗5/µ2(Eε2)
4 � 1.

While the geometric requirements are given and constant for a specific configuration,
the physical requirements depend on, and limit, the magnitude of the characteristic
driving pressure. To illustrate the maximal allowable pressures and characteristic time
scales we examine several configurations with constant geometric ratios ε = ε2 = 0.1.
For water (µ=10−3 (Pa s), ρ=103 (Kg m−3)) as the liquid and rubber (E=109 (Pa))
as the tube, we obtain p∗ = 104 (Pa), t∗ = 104 (s) in the case of rb = 1 (m) and p∗ =
6.3× 104 (Pa), t∗= 4 (s) in the case of rb= 10−2 (m). For silicon oil (µ= 10 (Pa s),
ρ = 7.5 × 102 (Kg m−3)) and rubber (E = 109 (Pa)), we obtain p∗ = 4.2 × 105 (Pa),
t∗ = 102 (s) in the case of rb = 1 (m) and p∗ = 2.6 × 106 (Pa), t∗ = 0.5 (s) in the
case of rb = 10−2 (m). Hence, a wide range of characteristic driving pressures and
time scales can be achieved by varying the properties of the configuration. Unlike
the linear elastohydrodynamics examined in Elbaz & Gat (2014), the assumption of
creeping flow in the current problem can be achieved for any configuration, as long
as p∗ and λh are sufficiently small.

Future research may include the effect of varying tube wall thickness, which is
similar to spatially varying surface tension, and may allow for transport of isolated
deformations without external mechanisms such as presented in § 4.3.
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FIGURE 7. (Colour online) Moving wave deformation pattern generated via a modulated
impulse sequence (4.24). A prewetting layer of λh = 0.15 is used upon constant
rigid cylinder motion of U0 = 2. Modulation laws in the interval 0 6 T 6 0.02:
An = [0.37, 0.54, 0.54, 0.54, 0.54], τn = [0.8, 5.0, 9.3, 13.8, 18.3] × 10−3, 1Tn =
[0.125, 0.65, 0.9, 1.1, 1.25] × 10−3, n = 1 . . . 5. (a) Fluid pressure contour in space
and time. (b) Three progressive snapshots of the radial deformation wave at times T =
[18.8, 19.2, 19.6] × 10−3, as it propagates the interface.
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Appendix A. Summary of results in dimensional form
Governing equations of the elastohydrodynamics in fluid pressure p and elastic

radial deformation dr, corresponding to (3.34),
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Ew3

12(1− ν2)

∂4dr

∂z4
− 1

2

[
µwu0

(h0 + dr)
2 −

w
2
∂p
∂z

]
∂dr

∂z
+ Ew

r2
b

dr − w(h0 + dr)

4
∂2p
∂z2
∼ p, (A 1a)

∂dr

∂t
− 1

12µ
∂

∂z

{
∂p
∂z
(h0 + dr)

3
}
+ u0

2
∂dr

∂z
∼ 0. (A 1b)

Interior tensile–viscous regime solution of impulse driven propagation according to
self-similarity, corresponding to (4.9),

dr(z, t)= p∗2/5r
6/5

b (48µl2)
1/5

(Ew)3/5
t−1/5

[
1− 3

40

(
48(Ew)2µ

p∗3l3r4
b

)2/5

z2t−2/5

]1/3

+
, (A 2)

where (s)+ =max(s, 0).
Self-similar propagation laws for inlet signals of type (4.5), corresponding to (4.10),

zF(t, α)= l
(

p∗3r4
bt

48µl2(Ew)2

)(1−3α)/2

ηF(α), (A 3a)

v(t, α)= 2πr2
bl(48)(5α−1)/2

(
Ew
rb

)5α−2

p∗(5−15α)/2
(

t
µ

)(1−5α)/2

Q(α), (A 3b)

tb(α)= 48µl2(Ew)2

p∗3r4
b

ηF(α)
−2/(1−3α). (A 3c)

Here, v is the interface volume.

Appendix B. Particular solution of (4.20)

F̂p(ζ ) = δ1/3

√
2

{
(−1+ i)(−1− i)2/3 exp

(
− ζ√

2

)
cos
(
ζ√
2

)
Γ̂

(
4
3
,−(1+ i)ζ√

2

)
+ (−1− i)(−1+ i)2/3 exp

(
− ζ√

2

)
cos
(
ζ√
2

)
Γ̂

(
4
3
,−(1− i)ζ√

2

)
+ (1+ i)(1− i)2/3 exp

(
ζ√
2

)
cos
(
ζ√
2

)
Γ̂

(
4
3
,
(1− i)ζ√

2

)
+ (1− i)(1+ i)2/3 exp

(
ζ√
2

)
cos
(
ζ√
2

)
Γ̂

(
4
3
,
(1+ i)ζ√

2

)
− (1+ i)5/3 exp

(
− ζ√

2

)
sin
(
ζ√
2

)
Γ̂

(
4
3
,−(1+ i)ζ√

2

)
− (1− i)5/3 exp

(
− ζ√

2

)
sin
(
ζ√
2

)
Γ̂

(
4
3
,−(1− i)ζ√

2

)
+ (1− i)5/3 exp

(
ζ√
2

)
sin
(
ζ√
2

)
Γ̂

(
4
3
,
(1− i)ζ√

2

)
+ (1+ i)5/3 exp

(
ζ√
2

)
sin
(
ζ√
2

)
Γ̂

(
4
3
,
(1+ i)ζ√

2

)}
(B 1)

where δ = ε√ε2
√

3/40T−1/5/[12(1− ν2)]1/4 and Γ̂ is the upper incomplete gamma
function.
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