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Abstract

Let X1, . . . , Xn be independent random points drawn from an absolutely continuous
probability measure with density f in R

d . Under mild conditions on f , we derive
a Poisson limit theorem for the number of large probability nearest-neighbour balls.
Denoting by Pn the maximum probability measure of nearest-neighbour balls, this
limit theorem implies a Gumbel extreme value distribution for nPn − ln n as n → ∞.
Moreover, we derive a tight upper bound on the upper tail of the distribution of
nPn − ln n, which does not depend on f .
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1. Introduction

Let X, X1, . . . , Xn be independent, identically distributed (i.i.d.) random vectors taking
values in R

d. We assume throughout the paper that the distribution of X, which is denoted
by μ, has a density f with respect to Lebesgue measure λ.

Writing ‖ · ‖ for the Euclidean norm on R
d, set

Ri,n := min
j �=i,j≤n

‖Xi − Xj‖,

and let
Pn := max

1≤i≤n
μ{S(Xi, Ri,n)}

denote the maximum probability of the nearest-neighbour balls, where S(x, r) := {y ∈R
d : ‖y −

x‖ ≤ r} stands for the closed ball with centre x and radius r. In this paper we deal with both the
finite sample and the asymptotic distribution of

nPn − ln n as n → ∞.

Received 12 December 2018; revision received 1 April 2019.
∗ Postal address: Department of Computer Science and Information Theory, Budapest University of Technology and
Economics, Magyar Tudósok krt. 2., Budapest, H-1117, Hungary.
∗∗ Postal address: Institute of Stochastics, Karlsruhe Institute of Technology (KIT), Englerstr. 2, D-76133 Karlsruhe,
Germany.
∗∗∗ Postal address: Institute of Stochastics and Applications, University of Stuttgart, Pfaffenwaldring 57, D-70569
Stuttgart, Germany.

574

https://doi.org/10.1017/jpr.2019.37 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2019.37
http://www.appliedprobability.org
https://doi.org/10.1017/jpr.2019.37


Limit distribution of the maximum probability nearest-neighbour ball 575

There is a large related literature on the Poisson sample size. Let N be a random variable
that is independent of X1, X2, . . . and has a Poisson distribution with E(N) = n. Then

X1, . . . , XN (1.1)

is a nonhomogeneous Poisson process with intensity function nf . For the nuclei X1, . . . , XN ,

Ãn(Xj) :=
{

y ∈R
d : ‖Xj − y‖ ≤ min

1≤i≤n,i �=j
‖Xi − y‖

}

denotes the Voronoi cell around Xj, and r̂j and R̂j denote the inscribed and circumscribed radii
of Ãn(Xj), respectively, i.e. we have

r̂j = sup{r > 0: S(Xj, r) ⊂ Ãn(Xj)}
and

R̂j = inf{r > 0: Ãn(Xj) ⊂ S(Xj, r)}.
If X1, X2, . . . are i.i.d. uniformly distributed on a convex set W ⊂R

d with volume 1, then
(2a) and (2c) of Theorem 1 of [5] read

lim
n→∞ P

(
2dnλ

{
S
(

0, max
1≤j≤N

r̂j

)}
− ln n ≤ y

)
= G(y)

and

lim
n→∞ P

(
nλ

{
S
(

0, max
1≤j≤N

R̂j)
)}

− ln (αdn( ln n)d−1) ≤ y
)

= G(y)

for y ∈R. Here αd > 0 is a universal constant, and

G(y) = exp (− exp (−y))

denotes the distribution function of the Gumbel extreme value distribution. In the sequel
we consider a related problem, namely that of finding the limit distribution of the largest
probability content of nearest-neighbour spheres in a nonhomogeneous i.i.d. setting such that
the support W can be arbitrary. Such a generality is important for designing and analysing
wireless networks; see [1] and [2].

The paper is organized as follows. In Section 2 we study the distribution of nPn − ln n.
Theorem 2.1 is on a universal and tight bound on the upper tail of nPn − ln n. Under mild
conditions on the density, Theorem 2.2 shows that the number of exceedances of nearest-
neighbour ball probabilities over a certain sequence of thresholds has an asymptotic Poisson
distribution as n → ∞. As a consequence, the limit distribution of nPn − ln n is the Gumbel
extreme value distribution. Theorem 3.1 is the extension of Theorem 2.1 for a Poisson sample
size. All proofs are presented in Section 4. The main tool for proving Theorem 2.2 is a novel
Poisson limit theorem for sums of indicators of exchangeable events, which is formulated as
Proposition 4.1. The final section sheds some light on a technical condition on f that is used
in the proof of the main result. We conjecture that our main result holds without any condition
on the density f .

Although there is a weak dependence between the probabilities of nearest-neighbour balls,
a main message of this paper is that one can neglect this dependence when looking for the limit
distribution of the maximum probability.
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2. The maximum nearest-neighbour ball

Under the assumption that the density f is sufficiently smooth and bounded away from 0,
Henze ([13], [12]) derived the limit distribution of the maximum approximate probability
measure

max
1≤i≤n

f (Xi)R
d
i,nvd (2.1)

of nearest-neighbour balls. Here vd = πd/2/�(1 + d/2) denotes the volume of the unit ball
in R

d.
In the following, we consider the number of points among X1, . . . , Xn for which the

probability content of the nearest-neighbour ball exceeds some (large) threshold. To be more
specific, we fix y ∈R and consider the random variable

Cn :=
n∑

i=1

1{nμ{S(Xi, Ri,n)} > y + ln n},

where 1{·} denotes the indicator function. Writing ‘
D−→’ to denote convergence in distribution,

we will show that, under some conditions on the density f ,

Cn
D−→ Z as n → ∞,

where Z is a random variable with the Poisson distribution Po(exp (−y)). Now Cn = 0 if and
only if nPn − ln n ≤ y, and it follows that

lim
n→∞ P(nPn − ln n ≤ y) = P(Z = 0) = G(y), y ∈R. (2.2)

Since 1 − G(y) ≤ exp (−y) if y ≥ 0, (2.2) implies that

lim sup
n→∞

P(nPn − ln n ≥ y) ≤ e−y, y ≥ 0. (2.3)

Our first result is a nonasymptotic upper bound on the upper tail of the distribution of
nPn − ln n. This bound holds without any condition on the density and thus entails (2.3)
universally.

Theorem 2.1. Without any restriction on the density f , we have

P(nPn − ln n ≥ y) ≤ exp

(
− n − 1

n
y + ln n

n

)
1{y ≤ n − ln n}, y ∈R. (2.4)

Theorem 2.1 implies a nonasymptotic upper bound on the mean of nPn − ln n since

E[nPn − ln n] ≤E[(nPn − ln n)+]

=
∫ ∞

0
P(nPn − ln n ≥ y) dy

≤
∫ ∞

0
exp

(
− n − 1

n
y + ln n

n

)
dy

= n

n − 1
exp

(
ln n

n

)
.
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Note that this upper bound approaches 1 for large n, and that the mean of the standard Gumbel
distribution is the Euler–Mascheroni constant, which is − ∫ ∞

0 e−y ln y dy = 0.5772 . . . .
Recall that the support of μ is defined by

supp(μ) := {x ∈R
d : μ{S(x, r)} > 0 for each r > 0},

i.e. the support of μ is the smallest closed set in R
d having μ-measure one.

Theorem 2.2. Assume that β ∈ (0, 1), cmax < ∞, and δ > 0 such that, for any r, s > 0 and any
x, z ∈ supp(μ) with ‖x − z‖ ≥ max{r, s} and μ(S(x, r)) = μ(S(z, s)) ≤ δ, we have

μ(S(x, r) ∩ S(z, s))

μ(S(z, s))
≤ β (2.5)

and

μ(S(z, 2s)) ≤ cmaxμ(S(z, s)). (2.6)

Then

n∑
i=1

1{nμ{S(Xi, Ri,n)} > y + ln n} D−→ Po(exp (−y)), y ∈R, (2.7)

and, hence,

lim
n→∞ P(nPn − ln n ≤ y) = G(y), y ∈R. (2.8)

Remark 2.1. It is easy to see that (2.5) and (2.6) hold if the density is both bounded from
above by fmax and bounded away from 0 by fmin > 0. Indeed, setting

β := 1 − 1

2

fmin

fmax
, cmax := 2d fmax

fmin
,

we have

μ(S(x, r) ∩ S(z, s))

μ(S(z, s))
= 1 − μ(S(z, s) \ S(x, r))

μ(S(z, s))

≤ 1 − fmin λ(S(z, s) \ S(x, r))

fmaxλ(S(z, s))

≤ β,

because ‖x − z‖ ≥ max{r, s}. Moreover,

μ(S(z, 2s)) ≤ fmaxλ(S(z, 2s)) = fmax2dλ(S(z, s)) ≤ cmaxμ(S(z, s)).

A challenging problem left is to weaken the conditions of Theorem 2.2 or to prove that
(2.7) and (2.8) hold without any conditions on the density. We believe that such universal
limit results are possible because the summands in (2.7) are identically distributed, and their
distribution does not depend on the actual density. Further discussion of condition (2.5) is given
in Section 5.
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3. The maximum nearest-neighbour ball for a nonhomogeneous Poisson process

In this section we consider the nonhomogeneous Poisson process X1, . . . , XN defined by
(1.1). Setting

R̃i,n := min
j �=i,j≤N

‖Xi − Xj‖ and P̃n = max
1≤i≤N

μ{S(Xi, R̃i,n)},

the following result is the Poisson analogue to Theorem 2.1.

Theorem 3.1. Without any restriction on the density f , we have

P(nP̃n − ln n ≥ y) ≤ e−y exp

(
(y + ln n)2

n

)
, y ∈R.

4. Proofs

Proof of Theorem 2.1. Since the right-hand side of (2.4) is larger than 1 if y < 0, we take
y ≥ 0 in what follows. Moreover, in view of Pn ≤ 1 the left-hand side of (2.4) vanishes if
y > n − ln n. We therefore assume without loss of generality that

y + ln n

n
≤ 1. (4.1)

For a fixed x ∈R
d, let

Hx(r) := P(‖x − X‖ ≤ r), r ≥ 0, (4.2)

be the distribution function of ‖x − X‖. By the probability integral transform (cf. [3, p. 8]), the
random variable

Hx(‖x − X‖) = μ{S(x, ‖x − X‖)}

is uniformly distributed on [0, 1]. We thus have

μ{S(x, H−1
x (p))} = p, 0 < p < 1, (4.3)

where H−1
x (p) = inf{r : Hx(r) ≥ p}. It follows that

P(nPn − ln n ≥ y) = P(n max
1≤i≤n

μ{S(Xi, Ri,n)} − ln n ≥ y)

≤ n P(nμ{S(X1, R1,n)} − ln n ≥ y)

= n P

(
μ{S(X1, R1,n)} ≥ y + ln n

n

)

= n P

(
min

2≤j≤n
μ{S(X1, ‖X1 − Xj‖)} ≥ y + ln n

n

)
.
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Now (4.1) and (4.3) imply that

P(nPn − ln n ≥ y) ≤ n E

[
P

(
min

2≤j≤n
μ{S(X1, ‖X1 − Xj‖)} ≥ y + ln n

n

∣∣∣∣ X1

)]

= n

(
1 − y + ln n

n

)n−1

≤ n exp

(
− (y + ln n)(n − 1)

n

)

= exp

(
− n − 1

n
y + ln n

n

)
. �

Proof of Theorem 3.1. We again assume that (4.1) holds in what follows. By conditioning
on N, we have

P(nP̃n − ln n ≥ y) =
∞∑

k=1

P(nP̃n − ln n ≥ y | N = k)P(N = k)

=
∞∑

k=1

P(nPk − ln n ≥ y)P(N = k).

Setting yn := (y + ln n)/n, we obtain

P(nPk − ln n ≥ y) = P(kPk − ln k ≥ kyn − ln k),

and Theorem 2.1 implies that

P(kPk − ln k ≥ kyn − ln k) ≤ exp

(
− k−1

k
(kyn − ln k) + ln k

k

)

= exp(−(k − 1)yn + ln k).

It follows that

P(nP̃n − ln n ≥ y) ≤
∞∑

k=1

exp(−(k − 1)yn + ln k)P(N = k)

= eyn−n
∞∑

k=1

k(e−yn)k nk

k!

= eyn−n
∞∑

k=1

(ne−yn)k

(k − 1)!
= neyn−n−yn exp (ne−yn )

= n exp (−n(1 − e−yn)).

Since z ≥ 0 entails e−z ≤ 1 − z + z2, we finally obtain

P(nP̃n − ln n ≥ y) ≤ n exp (−n(yn − y2
n)) = e−y exp

(
(y + ln n)2

n

)
. �
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The main tool in the proof of Theorem 2.2 is the following result. A similar result has been
established in the context of random tessellations; see Lemma 4.1 of [6].

Proposition 4.1. For each n ≥ 2, let An,1, . . . , An,n be exchangeable events, and let

Yn :=
n∑

j=1

1{An,j}.

If, for some ν ∈ (0, ∞),

lim
n→∞ nk

P(An,1 ∩ · · · ∩ An,k) = νk for each k ≥ 1, (4.4)

then
Yn

D−→ Y as n → ∞,

where Y has the Poisson distribution Po(ν).

Proof. The proof uses the method of moments; see, e.g. [4, Section 30]. Setting

Sn,k =
∑

1≤i1<···<ik≤n

P(An,i1 ∩ · · · ∩ An,ik ), k ∈ {1, . . . , n},

and writing Z(k) = Z(Z − 1) · · · (Z − k + 1) for the kth descending factorial of a random
variable Z, we have

E[Y (k)
n ] = k! Sn,k.

Since An,1, . . . , An,n are exchangeable, (4.4) implies that

lim
n→∞ E[Y (k)

n ] = νk, k ≥ 1.

Now νk =E[Y (k)], where Y has the Poisson distribution Po(ν). We thus have

lim
n→∞ E[Y (k)

n ] =E[Y (k)], k ≥ 1. (4.5)

Since

Yk
n =

k∑
j=0

{
k

j

}
Y (j)

n ,

where
{k

0

}
, . . . ,

{k
k

}
denote Stirling numbers of the second kind (see, e.g. [10, p. 262]),

(4.5) entails limn→∞ E[Yk
n] =E[Yk] for each k ≥ 1. Since the distribution of Y is uniquely

determined by the sequence of moments (E[Yk]), k ≥ 1, the assertion follows. �
Proof of Theorem 2.2. Fix y ∈R. In what follows, we will verify (4.4) for

An,i := {nμ{S(Xi, Ri,n)} ≥ y + ln n}, i ∈ {1, . . . , n},
and ν = exp (−y). Throughout the proof, we tacitly assume that

0 < yn := y + ln n

n
< 1.
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This assumption entails no loss of generality since n tends to ∞. With Hx(·) given in (4.2),
we set

R∗
i,n := H−1

Xi

(
y + ln n

n

)
, i ∈ {1, . . . , n}.

For the special case k = 1, conditioning on X1 and (4.3) yield

nP(An,1) = nP(μ(S(X1, R1,n)) ≥ yn)

= nE[P(μ(S(X1, R1,n)) ≥ yn | X1)]

= nE[(1 − μ(S(X1, H−1
X1

(yn))))n−1]

= n

(
1 − y + ln n

n

)n−1

.

Using the inequalities 1 − 1/t ≤ ln t ≤ t − 1 gives limn→∞ n P(An,1) = e−y. Thus, (4.4) is
proved for k = 1, remarkably without any condition on the underlying density f . We now
assume that k ≥ 2. The proof of (4.4) for this case is quite technical, but the basic reasoning is
clear-cut: the main idea for showing that nk

P(An,1 ∩ · · · ∩ An,n) ≈ (nP(An,1))k ≈ exp (−ky) –
which yields the Poisson convergence (2.7) and the Gumbel limit (2.8) – is to prove that
the radii have the same behaviour as if they were independent. To this end, we consider two
subcases: in the first subcase, which leads to independent events, the balls are sufficiently
separated from one another, with the opposite subcase shown to be of asymptotically negligible
probability. To proceed, set

R̃i,k,n := min
k+1≤j≤n

‖Xi − Xj‖, ri,k := min
j �=i,j≤k

‖Xi − Xj‖.

Then Ri,n = min{̃Ri,k,n, ri,k}. Note that, on a set of probability 1, we have Ri,n = R̃i,k,n for each
i ∈ {1, . . . , k} if n is large enough.

Conditioning on X1, . . . , Xk we have

P

( k⋂
i=1

An,i

)
= P

( k⋂
i=1

{μ(S(Xi, min{̃Ri,k,n, ri,k})) ≥ yn}
)

= P

( k⋂
i=1

{μ(S(Xi, R̃i,k,n)) ≥ yn, μ(S(Xi, ri,k)) ≥ yn}
)

=E

[
P

( k⋂
i=1

{μ(S(Xi, R̃i,k,n)) ≥ yn, μ(S(Xi, ri,k)) ≥ yn}
∣∣∣∣ X1, . . . , Xk

)]

=E

[
P

( k⋂
i=1

{μ(S(Xi, R̃i,k,n)) ≥ yn}
∣∣∣∣ X1, . . . , Xk

)
1n,k

]
,

where

1n,k :=
k∏

i=1

1{μ(S(Xi, ri,k)) ≥ yn}.
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Furthermore, we obtain

P

( k⋂
i=1

{μ(S(Xi, R̃i,k,n)) ≥ yn}
∣∣∣∣ X1, . . . , Xk

)

= P

( k⋂
i=1

{̃Ri,k,n ≥ H−1
Xi

(yn)}
∣∣∣∣ X1, . . . , Xk

)

= P

( k⋂
i=1

{̃Ri,k,n ≥ R∗
i,n}

∣∣∣∣ X1, . . . , Xk

)

= P

(
Xk+1, . . . , Xn /∈

k⋃
i=1

S(Xi, R∗
i,n)

∣∣∣∣ X1, . . . , Xk

)

=
(

1 − μ

( k⋃
i=1

S(Xi, R∗
i,n)

))n−k

.

Note that we have the obvious lower bound

nk
(

1 − μ

( k⋃
i=1

S(Xi, R∗
i,n)

))n−k

1n,k ≥ nk
(

1 −
k∑

i=1

μ(S(Xi, R∗
i,n))

)n−k

1n,k

= nk
(

1 − k
y + ln n

n

)n−k

1n,k.

Since the latter converges almost surely to e−ky as n → ∞, Fatou’s lemma implies that

lim inf
n→∞ nk

P

( k⋂
i=1

An,i

)
= lim inf

n→∞ E

[
nk

(
1 − μ

( k⋃
i=1

S(Xi, R∗
i,n)

))n−k

1n,k

]

≥E

[
lim inf
n→∞ nk

(
1 − μ

( k⋃
i=1

S(Xi, R∗
i,n)

))n−k

1n,k

]

≥ e−ky.

It thus remains to show that

lim sup
n→∞

nk
P

( k⋂
i=1

An,i

)
≤ e−ky. (4.6)

Let Dn be the event that the balls S(Xi, R∗
i,n), i = 1, . . . , k, are pairwise disjoint. We have

lim sup
n→∞

nk
P

( k⋂
i=1

An,i

)

= lim sup
n→∞

nk
E

[(
1 − μ

( k⋃
i=1

S(Xi, R∗
i,n)

))n−k

1n,k

]

≤ lim sup
n→∞

nk
E

[
exp

(
− (n − k)μ

( k⋃
i=1

S(Xi, R∗
i,n)

))
1n,k

]
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≤ lim sup
n→∞

nk
E

[
exp

(
− (n − k)k

y + ln n

n

)
1{Dn}

]

+ lim sup
n→∞

nk
E

[
exp

(
− (n − k)μ

( k⋃
i=1

S(Xi, R∗
i,n)

))
1{Dc

n}1n,k

]

≤ e−ky + lim sup
n→∞

nk
E

[
exp

(
− (n − k)μ

( k⋃
i=1

S(Xi, R∗
i,n)

))
1{Dc

n}1n,k

]
.

It thus remains to show that

lim
n→∞ nk

E

[
exp

(
− (n − k)μ

( k⋃
i=1

S(Xi, R∗
i,n)

))
1{Dc

n}1n,k

]
= 0. (4.7)

Under some additional smoothness conditions on the density, Henze [13] verified (4.7) for
the related problem of finding the limit distribution of the random variable figuring in (2.1).
By analogy with his proof technique, we introduce an equivalence relation on the set {1, . . . , k}
as follows. An equivalence class consists of a singleton {i} if

S(Xi, R∗
i,n) ∩ S(Xj, R∗

j,n) =∅

for each j �= i. Otherwise, i and j are called equivalent if there is a subset {i1, . . . , i	} of
{1, . . . , k} such that i = i1, j = i	, and

S(Xim , R∗
im,n) ∩ S(Xim+1 , R∗

im+1,n) �=∅

for each m ∈ {1, . . . , 	 − 1}. Let P = {Q1, . . . , Qq} be a partition of {1, . . . , k}, and denote
by Eu the event that Qu forms an equivalence class. For the event Dn, the partition
P0 := {{1}, . . . , {k}} is the trivial partition, while on the complement Dc

n any partition P is
nontrivial, which means that q < k. In order to prove (4.7), we have to show that

lim sup
n→∞

nk
E

[
exp

(
− (n − k)μ

( k⋃
i=1

S(Xi, R∗
i,n)

))
1n,k

q∏
u=1

1{Eu}
]

= 0 (4.8)

for each nontrivial partition P. Since balls that belong to different equivalence classes are
disjoint, we have

μ

( k⋃
i=1

S(Xi, R∗
i,n)

) q∏
u=1

1{Eu} = μ

( q⋃
u=1

⋃
i∈Qu

S(Xi, R∗
i,n)

) q∏
u=1

1{Eu}

=
q∑

u=1

μ

( ⋃
i∈Qu

S(Xi, R∗
i,n)

) q∏
u=1

1{Eu}.
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Writing |B| for the number of elements of a finite set B, it follows that

nk exp

(
− (n − k)μ

( k⋃
i=1

S(Xi, R∗
i,n)

)) k∏
i=1

1{μ(S(Xi, ri,k)) ≥ yn}
q∏

u=1

1{Eu}

≤ ek
q∏

u=1

n|Qu|
q∏

u=1

e−nμ(
⋃

i∈Qu S(Xi,R∗
i,n))

q∏
u=1

∏
i∈Qu

1{μ(S(Xi, ri,k)) ≥ yn}
q∏

u=1

1{Eu}

= ek
q∏

u=1

(
n|Qu|e−nμ(

⋃
i∈Qu S(Xi,R∗

i,n))
∏
i∈Qu

1{μ(S(Xi, ri,k)) ≥ yn}1{Eu}
)

.

Note that the inequality above comes from the trivial inequality

exp

(
kμ

( k⋃
i=1

S(Xi, R∗
i,n)

))
≤ ek

and the fact that k = ∑q
u=1 |Qu|. Thus, (4.8) is proved if we can show that

lim
n→∞ E

[
n|Qu|e−nμ(

⋃
i∈Qu S(Xi,R∗

i,n))
∏
i∈Qu

1{μ(S(Xi, ri,k)) ≥ yn}1{Eu}
]

= 0

for each u with 2 ≤ |Qu| < k. Without loss of generality, assume that Qu = {1, . . . , |Qu|}. Then

|Qu|⋂
i=1

{μ(S(Xi, ri,k)) ≥ yn} ⊂
|Qu|⋂
i=1

{
μ(S(Xi, min

j �=i,j≤|Qu|
‖Xi − Xj‖)) ≥ yn

}

=
|Qu|⋂
i=1

{
min

j �=i,j≤|Qu|
μ(S(Xi, ‖Xi − Xj‖)) ≥ yn

}

=
|Qu|⋂
i=1

⋂
j �=i,j≤|Qu|

{μ(S(Xi, ‖Xi − Xj‖)) ≥ yn}

=
|Qu|⋂
i=1

⋂
j �=i,j≤|Qu|

{‖Xi − Xj‖ ≥ H−1
Xi

(yn)}

=
⋂

i,j≤|Qu|,i �=j

{‖Xi − Xj‖ ≥ max (R∗
i,n, R∗

j,n)}.

Note that the last equality follows from the fact that
⋂

i,j Ai,j = ⋂
i,j (Ai,j ∩ Aj,i) for any family

of events (Ai,j)i,j. We now obtain

n|Qu|e−nμ(
⋃

i∈Qu S(Xi,R∗
i,n))

∏
i∈Qu

1{μ(S(Xi, ri,k)) ≥ yn}1{Eu}

≤ n|Qu|e−nμ(
⋃|Qu|

i=1 S(Xi,R∗
i,n))1

{ ⋂
i,j≤|Qu|,i �=j

{‖Xi − Xj‖ ≥ max{R∗
i,n, R∗

j,n}}
}

1{Eu}

≤ n|Qu|e−nμ(
⋃2

i=1 S(Xi,R∗
i,n))1

{ ⋂
i,j≤|Qu|,i �=j

{‖Xi − Xj‖ ≥ max{R∗
i,n,R

∗
j,n}}

}
1{Eu}.
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We now use the fact that μ(S(Xi, R∗
i,n)) = yn for each i. Moreover, on the event {‖Xi − Xj‖ ≥

max{R∗
i,n, R∗

j,n}}, condition (2.5) implies that

nμ

( 2⋃
i=1

S(Xi, R∗
i,n)

)

= nμ(S(X1, R∗
1,n)) + nμ(S(X2, R∗

2,n)) − nμ(S(X2, R∗
2,n) ∩ S(X1, R∗

1,n))

= n
y + ln n

n

(
2 − μ(S(X2, R∗

2,n) ∩ S(X1, R∗
1,n))

μ(S(X2, R∗
2,n))

)
≥ (y + ln n)(2 − β)

= :(y + ln n)(1 + ε) (say).

Note that ε > 0 since 0 < β < 1. Thus,

n|Qu|E
[

e−nμ(
⋃

i∈Qu S(Xi,R∗
i,n))

∏
i∈Qu

1{μ(S(Xi, ri,k)) ≥ yn}1{Eu}
]

≤ n|Qu|e−(y+ln n)(1+ε)
E

[
1
{ ⋂

i,j≤|Qu|,i �=j

{‖Xi − Xj‖ ≥ max{R∗
i,n, R∗

j,n}}
}

1{Eu}
]

= O(n|Qu|−1−ε)P(Eu).

In order to bound P(Eu), we need the following lemma (recall that Qu = {1, . . . , |Qu|}).
Lemma 4.1. On Eu there is a random integer L ∈ {1, . . . , |Qu|} depending on X1, . . . , X|Qu|
such that Qu \ {L} forms an equivalence class.

Proof. Let m := |Qu|. Regard X1, . . . , Xm as vertices of a graph in which any two vertices
Xi and Xj are connected by a node if S(Xi, R∗

i,n) ∩ S(Xj, R∗
j,n) �=∅. Since Qu = {1, . . . , m} is an

equivalence class, this graph is connected. If there is at least one vertex Xj (say) with degree
1, set L := j. Otherwise, the degree of each vertex is at least 2, and we have m ≥ 3. If m = 3,
the graph is a triangle, and we can choose L arbitrarily. Now suppose that the lemma holds
for any graph having m ≥ 3 vertices, in which each vertex degree is at least 2. If we have an
additional (m + 1)th vertex Xm+1, this is connected to at least two other vertices Xi and Xj (say).
Of the graph with vertices X1, . . . , Xm we can delete one vertex, and the remaining graph is
connected. But Xm+1 is then connected to either Xi or Xj, and we may choose L = i or L = j.
Note that, for d = 1, the proof is trivial since

⋃
i∈Qu

S(Xi, R∗
i,n) is an interval, and L can be

chosen as the index of either the smallest or the largest random variable. �
By induction, we now show that

P(Eu) = O

((
ln n

n

)|Qu|−1)
(4.9)

as n → ∞ for each m := |Qu| ∈ {2, . . . , k − 1}. We start with the base case m = 2. Note that
P(Eu) ≤ P(‖X2 − X1‖ ≤ R∗

2,n + R∗
1,n) and

P(‖X2 − X1‖ ≤ R∗
2,n + R∗

1,n | X1)

= P(‖X2 − X1‖ ≤ R∗
2,n + R∗

1,n, R∗
2,n ≤ R∗

1,n | X1)

+ P(‖X2 − X1‖ ≤ R∗
2,n + R∗

1,n, R∗
2,n > R∗

1,n | X1)

≤ P(‖X2 − X1‖ ≤ 2R∗
1,n | X1) + P(‖X2 − X1‖ ≤ 2R∗

2,n | X1).
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Now condition (2.6) entails

P(‖X2 − X1‖ ≤ 2R∗
1,n | X1) = μ(S(X1, 2R∗

1,n))

≤ cmaxμ(S(X1, R∗
1,n))

= cmax
y + ln n

n
.

Setting R̃2,n := H−1
X2

(cmax(y + ln n)/n), a second appeal to (2.6) yields

μ(S(X2, 2R∗
2,n)) ≤ cmaxμ(S(X2, R∗

2,n)) = cmax
y + ln n

n
= μ(S(X2, R̃2,n)),

and, thus, 2R∗
2,n ≤ R̃2,n. Consequently,

P(‖X2 − X1‖ ≤ 2R∗
2,n | X1) ≤ P(‖X2 − X1‖ ≤ R̃2,n | X1).

Let γd be the minimum number of cones of angle π/3 centred at 0 such that their union
covers R

d. Fritz [9] mentioned that γd is the minimal number of spheres with radius less
than 1

2 whose union covers the surface of the unit sphere. This constant is roughly 2dd log d,
while, according to Lemma 5.5 of [8], we have γd ≤ 4.9d. Further upper and lower bounds on
γd are given in [14]. We refer the reader to Section 20.7 of [3] for more information and further
bounds. The cone covering lemma (cf. Lemma 10.1 of [7] and Lemma 6.2 of [11]) says that,
for any 0 ≤ a ≤ 1 and any x1, we have

μ({x2 ∈R
d : μ(S(x2, ‖x2 − x1‖)) ≤ a}) ≤ γda. (4.10)

Now (4.10) implies that

μ({x2 ∈R
d : ‖x2 − x1‖ ≤ H−1

x2
(a)}) ≤ γd a;

whence,

P(‖X2 − X1‖ ≤ R̃2,n | X1) ≤ γdcmax
y + ln n

n
.

We thus obtain

P(‖X2 − X1‖ ≤ R∗
2,n + R∗

1,n | X1) = O

(
ln n

n

)
, (4.11)

and so (4.9) is proved for m = 2. For the induction step, assume that (4.9) holds for |Qu| =
m ∈ {2, . . . , k − 2}. If Qu with |Qu| = m + 1 is an equivalence class then, by Lemma 4.1, there
are random integers L1 and L2 taking values in {1, . . . , m + 1} such that Qu \ {L1} forms an
equivalence class, and

‖XL1 − XL2‖ ≤ R∗
L1,n + R∗

L2,n.

It follows that

P(Eu) ≤ (m + 1)mP(Eu ∩ {L1 = m + 1, L2 = 1})
≤ k(k − 1)P({Qu \ {m + 1} forms an equivalence class}

∩ {‖Xm+1 − X1‖ ≤ R∗
m+1,n + R∗

1,n})
= k(k − 1)E[1{Qu \ {m + 1} forms an equivalence class}

× P(‖Xm+1 − X1‖ ≤ R∗
m+1,n + R∗

1,n | X1, . . . , Xm)]
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= k(k − 1)E[1{Qu \ {m + 1} forms an equivalence class}
× P(‖Xm+1 − X1‖ ≤ R∗

m+1,n + R∗
1,n | X1)]

≤ O

(
ln n

n

)
P(Qu \ {m + 1} forms an equivalence class)

= O

(
ln n

n

)
O

((
ln n

n

)m−1)

= O

((
ln n

n

)m)
.

Note that the penultimate equation follows from the induction hypothesis, and the last ‘≤’ is a
consequence of (4.11). Note further that these limit relations imply (4.9); whence,

n|Qu|E
[

e−nμ(
⋃

i∈Qu S(Xi,R∗
i,n))

∏
i∈Qu

1{μ(S(Xi, ri,k)) ≥ yn}1{Eu}
]

= O(n|Qu|−1−ε)P(Eu)

= O(n|Qu|−1−ε)O

((
ln n

n

)|Qu|−1)
= O(n−ε ln n).

Summarizing, we have shown (4.8) and thus (4.6). Hence, (4.4) is verified with ν = exp (−y),
completing the proof of Theorem 2.2. �

5. Discussion of condition (2.5)

In this final section we comment on condition (2.5). For d = 1, we verify (2.5) if on S(x, r) ∪
S(z, s) the distribution function F of μ is either convex or concave. If ‖x − z‖ ≥ r + s then
S(x, r) and S(z, s) are disjoint; therefore, suppose that r + s ≥ ‖x − z‖ ≥ max (r, s). Assume
that F is convex; the proof for concave F is similar. If x < z, the convexity of F and

μ(S(z, s)) = F(z + s) − F(z − s) = : p (say)

imply that F(z) − F(z − s) ≤ p/2. Thus,

μ(S(x, r) ∩ S(z, s)) = μ([z − s, x + r])

≤ min{μ([z − s, z]), μ([x, x + r])}
= min{F(z) − F(z − s), F(x + r) − F(x)}
≤ F(z) − F(z − s)

≤ 1

2
p,

and, hence,

μ(S(x, r) ∩ S(z, s))

μ(S(z, s))
≤ 1

2
.

Thus, (2.5) is satisfied with β = 1
2 .
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For d > 1, the problem is more involved. Again, suppose that r + s ≥ ‖x − z‖ ≥ max (r, s).
Writing 〈·, ·〉 for the inner product in R

d, introduce the half-spaces

H1 := {u ∈R
d : 〈u − x, z − x〉 ≥ 0}, H2 := {u ∈R

d : 〈u − z, x − z〉 ≥ 0}.
Then

μ(S(x, r) ∩ S(z, s)) = μ((S(z, s) ∩ H2) ∩ (S(x, r) ∩ H1))

≤ μ(S(z, s) ∩ H2) + μ(S(x, r) ∩ H1)

2
.

We introduce another implicit condition as follows. Assume that α ∈ (1, 2) and δ > 0 such
that, for any r, s > 0 and any x, z ∈ supp(μ) with r + s ≥ ‖x − z‖ ≥ max (r, s) and μ(S(x, r)) =
μ(S(z, s)) ≤ δ, we have either

μ(S(z, s) ∩ H2) ≤ αμ(S(x, r) ∩ Hc
1) (5.1)

or

μ(S(x, r) ∩ H1) ≤ αμ(S(z, s) ∩ Hc
2). (5.2)

In the case of (5.1), we have

μ(S(z, s) ∩ H2) + μ(S(x, r) ∩ H1)

2
≤ αμ(S(x, r) ∩ Hc

1) + μ(S(x, r) ∩ H1)

2

= α

2
μ(S(x, r)),

and (2.5) is verified with β = α/2. The case of (5.2) is similar.
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