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Abstract

Let g(x) = x3 + ax2 + bx + c and f (x) = g(x3) be irreducible polynomials with rational coefficients, and let
Gal( f ) be the Galois group of f (x) over Q. We show Gal( f ) is one of 11 possible transitive subgroups of
S9, defined up to conjugacy; we use Disc( f ), Disc(g) and two additional low-degree resolvent polynomials
to identify Gal( f ). We further show how our method can be used for determining one-parameter families
for a given group. Also included is a related algorithm that, given a field L/Q, determines when L can be
defined by an irreducible polynomial of the form g(x3) and constructs such a polynomial when it exists.

2020 Mathematics subject classification: primary 11Y40; secondary 12F10.
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1. Introduction

LetQ denote the rational numbers and consider an irreducible polynomial f (x) ∈ Q[x].
An important problem in computational algebra is the determination of the Galois
group, Gal( f ), of f (x). Standard techniques for doing so involve forming and factoring
resolvent polynomials, which are polynomials that define subfields of the splitting field
of f (x) (see [14, 15]). In general, forming and factoring resolvent polynomials is a
difficult task. However, in the special case where f (x) = g(xk) for some integer k > 1, it
is often possible to compute the Galois group via more elementary methods. Previous
results in this direction have produced elementary characterisations for Gal( f ) in the
following cases:

• k = 2 and g(x) = x2 + ax + b (see [13]);
• k = 3 and g(x) = x2 + ax + b (see [1]);
• k = 4 and g(x) = x2 + ax + b (see [3]);
• k = 2 and g(x) = x3 + ax2 + bx + c (see [2]).

The purpose of this paper is to give a similar characterisation for the case k = 3 and
g(x) = x3 + ax2 + bx + c. Such polynomials are of the form f (x) = x9 + ax6 + bx3 + c,
and we call them power compositional nonic polynomials, in accordance with [9].
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Further, we give an algorithm to determine when an extension L/Q can be defined by
a power compositional polynomial of the form f (x) = g(x3). This is similar in spirit to
what was done in [1], where the focus was on the special case where the degree of g(x)
was 2. An implementation of our algorithm is available at [4].

The remainder of the paper is organised as follows. In Section 2, we give a
formula for discriminants of general power compositional polynomials of the form
f (x) = g(xn), where the degree of g(x) is m. In the subsequent sections, we restrict our
attention to irreducible polynomials f (x) = g(x3), where g(x) = x3 + ax2 + bx + c. In
Section 3, we establish notation, and recall two basic results about Galois groups of
cubic polynomials and the relationship between Gal( f ) and Disc( f ), the discriminant
of f (x). We end by establishing bounds on the degree of the splitting field of f (x) as
well as the Galois group of the relative extension L/K, where L and K are the fields
defined by f (x) and g(x), respectively. The purpose of Section 4 is to develop a list
of possibilities for Gal( f ), defined up to conjugacy in S9 (the symmetric group of
degree 9). The list includes 11 possible groups, and we show that each one is realised
as a Galois group over Q of an irreducible power compositional nonic polynomial.
In Section 5, we develop a characterisation of Gal( f ) that involves the squareness of
Disc( f ) and Disc(g) as well as the factorisation pattern of a related degree 9 resolvent
polynomial. These three pieces of information are enough to determine Gal( f ) in 9 out
of 11 cases. For the other two cases, we use a standard linear resolvent (following [14]).
This section culminates in our main result, Theorem 5.5. In the following section, we
give several examples that illustrate the use of Theorem 5.5. Example 6.1 recovers
the characterisation in [11] that Gal(x9 + 9mx6 + 192m3) is isomorphic to the dihedral
group of order 18 for all m � 0. In addition, Table 5 gives one-parameter families with
a given Galois group, where the verification that each polynomial in a given family has
the associated Galois group follows from Theorem 5.5; Examples 6.2 and 6.3 illustrate
this. We end with Section 7, which is devoted to describing an algorithm that, given
an extension L/Q, constructs an irreducible power compositional polynomial of the
form g(x3) that defines L when such a polynomial exists; we make no restrictions on
the degree of g(x).

Note. While we are assuming all polynomials have rational coefficients, this is only for
concreteness. Our proofs are valid for polynomials defined over any finite extension of
Q that does not contain the cube roots of unity. With minor modifications, the results
also apply more generally, including all fields of characteristic 0.

2. Discriminants of power compositional polynomials

In this section, we give a formula for the discriminant of a polynomial of the form
g(xn) that we will use later. We note that our result is a special case of [10, Theorem
2.7], but our method of proof is different.

For complete generality, we let K be a field, K an algebraic closure of K, f (x) ∈ K[x]
a monic polynomial of degree n, R f the set of roots of f (x) in K and f ′(x) the derivative
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of f (x). Recall that the discriminant of f (x), which we denote by Disc( f ), can be
computed as follows (see for example [6, Section 3.3]):

Disc( f ) = (−1)n(n−1)/2
∏
ρ∈R f

f ′(ρ).

LEMMA 2.1. Let K be a field and f (x) ∈ K[x] a monic polynomial, where f (x) = g(xn)
and g(x) ∈ K[x] is monic of degree m. Let c = f (0). Then,

Disc( f ) = (−1)nm(n−1)(m+2)/2 · nnm · cn−1 · Disc(g)n.

PROOF. Let R f and Rg denote the roots of f (x) and g(x) in an algebraic closure K,
respectively. Let ζ ∈ K be a primitive nth root of unity. Thus, there exist ρ1, . . . , ρm ∈ K
such that R f = {ρiζ

j : 1 ≤ i ≤ m, 0 ≤ j ≤ n − 1} and Rg = {ρn
1, . . . , ρn

m}. We note that

c = f (0) = (−1)nm
∏
ρ∈R f

ρ.

We define d f and dg by

d f =
∏
ρ∈R f

g′(ρn), dg =
∏
ρ∈Rg

g′(ρ).

Since the map R f to Rg defined by x �→ xn is n-to-one, we have d f = dn
g. Further,

Disc(g) = (−1)m(m−1)/2
∏
ρ∈Rg

g′(ρ) = (−1)m(m−1)/2dg.

We can therefore conclude that

(−1)nm(1−m)/2Disc(g)n = dn
g .

Using the chain rule, we see that f ′(x) = nxn−1g′(xn). Therefore, the discriminant of
f (x) is

Disc( f ) = (−1)nm(nm−1)/2
∏
ρ∈R f

f ′(ρ) = (−1)nm(nm−1)/2
∏
ρ∈R f

(n · ρn−1 · g′(ρn))

= (−1)nm(nm−1)/2
(∏
ρ∈R f

n
)(∏
ρ∈R f

ρn−1
)(∏
ρ∈R f

g′(ρn)
)

= (−1)nm(nm−1)/2 · nnm · (−1)nm(n−1) · cn−1 · d f

= (−1)nm(nm−2n−3)/2 · nnm · cn−1 · dn
g

= (−1)nm(n−1)(m+2)/2 · nnm · cn−1 · Disc(g)n. �

3. Notation and preliminary results

For the rest of this paper, we fix the following notation:

• f (x) = x9 + ax6 + bx3 + c ∈ Q[x], irreducible;
• g(x) = x3 + ax2 + bx + c;

https://doi.org/10.1017/S0004972725000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972725000048


4 C. Awtrey, F. Patane and B. Toone [4]

• ζ a primitive cube root of unity (that is, a root of x2 + x + 1);
• Sn the symmetric group of degree n;
• An the alternating group of degree n;
• Gal(h) the Galois group of a polynomial h(x), where the base field will be clear from

context.

It follows that the complex roots of f (x) are

{α,αζ,αζ2, β, βζ, βζ2, γ, γζ, γζ2},

where α3, β3, γ3 are the roots of g(x). From Lemma 2.1,

Disc( f ) = −39c2Disc(g)3.

This leads to the following results.

COROLLARY 3.1. Suppose f (x) = x9 + ax6 + bx3 + c is irreducible over Q. Then,
Disc( f ) ∈ Q2 if and only if −3Disc(g) ∈ Q2.

We recall two facts about discriminants and Galois groups (see for example
[8, Section 14.6]).

(1) For any irreducible polynomial g̃(x) ∈ Q[x] of degree n, Gal(g̃) is isomorphic to
a subgroup of An if and only if Disc(g̃) ∈ Q2.

(2) If F is any field of characteristic 0 and g̃(x) ∈ F[x] is irreducible of degree 3,
then Gal(g̃) over F is isomorphic to A3 (cyclic of order 3) if Disc(g̃) ∈ F2 and is
isomorphic to S3 if Disc(g̃) � F2.

Combining item (2) above with Corollary 3.1 yields the following result.

COROLLARY 3.2. Suppose f (x) = x9 + ax6 + bx3 + c is irreducible over Q and let
g(x) = x3 + ax2 + bx + c. If Gal(g) is cyclic of order 3 (that is, A3), then Disc( f ) � Q2.

Let L denote the splitting field of f (x) over Q. Thus, L = Q(α, β, γ, ζ). Since
[Q(α) : Q] = 9 and [Q(ζ) : Q] = 2, we see that [L : Q] ≥ 18. Let K denote the splitting
field of g(x). Thus, K = Q(α3,

√
Disc(g)), and we have β3, γ3 ∈ K as well. We note

further that [K : Q] ≤ 6 and, therefore, [K(ζ) : Q] ≤ 12. It follows that for each ρ ∈
{α, β, γ}, we have [K(ρ, ζ) : K(ζ)] ≤ 3. We have therefore established the following
result.

LEMMA 3.3. Suppose f (x) = x9 + ax6 + bx3 + c is irreducible over Q and let L/Q
denote its splitting field. Then, 18 ≤ [L : Q] ≤ 324.

We turn our attention to the relative extension Q(α)/Q(α3). Factoring f (x) over
Q(α3), we obtain the factorisation

f (x) = (x3 − α3)(x6 + (a + α3)x3 + (α6 + aα3 + b),

which can be verified by expanding the factored expression and using the fact that
f (α) = 0 so that c = −α9 − aα6 − bα3. It follows that x3 − α3 is irreducible, for if it
were not, then this would contradict the fact that [Q(α) : Q] = 9, thereby contradicting
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the irreducibility of f (x). It therefore also follows that x3 − α3 defines the relative
extension Q(α)/Q(α3). The following result will be useful in the determination of
Gal( f ).

LEMMA 3.4. Suppose f (x) = x9 + ax6 + bx3 + c is irreducible overQ and let f (α) = 0.
Then, Gal(x3 − α3) over Q(α3) is isomorphic to S3, the symmetric group of degree 3.

PROOF. Let f̃ = x3 − α3. Since f̃ is irreducible over Q(α3), we have already men-
tioned that Gal( f̃ ) is isomorphic to S3 if and only if Disc( f̃ ) � Q(α3)2. Since
Disc( f̃ ) = −27α6, we have Disc( f̃ ) � Q(α3)2 since −3 � Q(α3)2 (since [Q(α3) : Q] = 3
and therefore does not contain the quadratic extension Q(

√
−3)). �

4. Possible Galois groups

Since f (x) is irreducible of degree 9, Gal( f ) can be realised as a transitive subgroup
of S9, the symmetric group of degree 9; it is well defined up to conjugation as different
orderings of the roots correspond to conjugate groups.

There are 34 such transitive subgroups, and they can be accessed with GAP [16] or
at the L-functions and Modular Forms Database [17]. We use the standard ‘T-number’
notation to identify transitive groups as given in [5]. For example, 9T1 represents cyclic
groups of order 9 and 9T34 represents S9. See Table 1, which gives several pieces of
information about representatives of conjugacy classes of transitive subgroups of S9.

Specifically, let G be a representative from one of these conjugacy classes. Then,
the table gives the following information:

• the T-number of G;
• the order of G;
• the parity of G; the parity is +1 if G ≤ A9 and −1 otherwise;
• the subfields of G.

The subfields of G are identified as follows. Let G1 denote the stabiliser of 1 in G.
For each subgroup H of G of index 3 containing G1 up to conjugacy, we compute
the action of G on the cosets G/H and the action of H on the cosets H/G1, and
we identify each action as a transitive subgroup of S3. We are justified in calling
this list the ‘subfields’ of G for the following reason: if Gal( f ) is isomorphic to G
and f (α) = 0, then G1 corresponds to Q(α) under the Galois correspondence and
the nontrivial proper subfields Q(α) correspond to the proper subgroups H properly
containing G1; conjugate subgroups correspond to isomorphic subfields. For each such
subgroup H, let K denote its fixed field. Let the irreducible cubic polynomials g(x) and
g̃(x) define K/Q andQ(α)/K, respectively. Then, by the Galois correspondence, Gal(g)
and Gal(g̃) are isomorphic to the actions of G on G/H and H on H/G1, respectively.
Each entry in this column of the table is of the form [i, j], where Gal(g) is isomorphic
to 3Ti and Gal(g̃) is isomorphic to 3Tj; there is an entry for each such subgroup H
(up to conjugacy). This is slightly more general than what is listed at [17], which only
includes the transitive number for Gal(g) for each subfield K/Q.
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TABLE 1. Transitive subgroups of S9 by T-number, order, parity and subfield information, as defined in
Section 4.

T Order Parity Subfields

1 9 +1 [1,1]
2 9 +1 [1,1], [1,1], [1,1], [1,1]
3 18 +1 [2,2]
4 18 −1 [1,2], [2,1]
5 18 +1 [2,2], [2,2], [2,2], [2,2]
6 27 +1 [1,1]
7 27 +1 [1,1]
8 36 −1 [2,2], [2,2]
9 36 +1
10 54 +1 [2,2]
11 54 +1 [2,2]
12 54 −1 [2,1]
13 54 −1 [1,2]
14 72 +1
15 72 −1
16 72 −1
17 81 +1 [1,1]
18 108 −1 [2,2]
19 144 −1
20 162 −1 [2,1]
21 162 +1 [2,2]
22 162 −1 [1,2]
23 216 +1
24 324 −1 [2,2]
25 324 +1 [1,2]
26 432 −1
27 504 +1
28 648 −1 [1,2]
29 648 −1 [2,2]
30 648 +1 [2,2]
31 1296 −1 [2,2]
32 1512 +1
33 181440 +1
34 362880 −1
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TABLE 2. Sample irreducible power compositional nonic polynomials with specified Galois group
over Q.

T Name Polynomial

3 D9 x9 − 9x6 + 27x3 − 3
4 C3 × S3 x9 − 4x6 + 3x3 + 1
5 C3 : S3 x9 − 3x6 + 3x3 + 1
8 S3 × S3 x9 + 3x3 − 1
10 C9 : C6 x9 − 2
11 C2

3 : C6 x9 − x6 + 5x3 + 1
13 C2

3 : S3 x9 − 3x3 − 1
18 C2

3 : D6 x9 + x3 − 1
21 C3

3 : S3 x9 − x6 − 3x3 − 3
22 C3

3 : C6 x9 − 3x6 + 3
24 C3

3 : D6 x9 + x3 − 3

PROPOSITION 4.1. Suppose f (x) = x9 + ax6 + bx3 + c is irreducible over Q and
let g(x) = x3 + ax2 + bx + c. If G = Gal( f ), then G is isomorphic to 9Tj for some
j ∈ {3, 4, 5, 8, 10, 11, 13, 18, 21, 22, 24}.

PROOF. We make use of Table 1. By Lemma 3.3, the order of G is bounded between
18 and 324. This rules out j = 1, 2 and all j > 25. If f (α) = 0, then Q(α3) is a
cubic subfield of Q(α) defined by g(x). Thus, we can use Lemma 3.4 to rule out
j ∈ {6, 7, 9, 12, 14, 15, 16, 17, 19, 20, 23} since these groups do not have at least one entry
of the form [1, 2] or [2, 2]. To rule out 9T25, we note that its parity is +1 and its subfield
entry is [1, 2]. This means Disc( f ) ∈ Q2 and Gal(g) is isomorphic to 3T1. However, this
is a contradiction to Corollary 3.2. �

We note that if Gal( f ) is isomorphic to 9T4, then it is not clear immediately if
Gal(g) is isomorphic to 3T1 or 3T2. However, it follows from Lemma 3.4 that Gal(g)
must be 3T1. We formalise this in the following corollary.

COROLLARY 4.2. Suppose f (x) = x9 + ax6 + bx3 + c is irreducible over Q and let
g(x) = x3 + ax2 + bx + c. If Gal( f ) is isomorphic to 9T4, then Gal(g) is isomorphic
to 3T1.

We also note that each of the 11 groups appearing in Table 1 does indeed occur as
a Galois group of some irreducible power compositional polynomial of degree 9 over
Q; see Table 2 for one such polynomial per group. Also in the table, we give standard
descriptive names, such as Cn for the cyclic group of order n, Dn for the dihedral group
of order 2n and Sn for the symmetric group of degree n. We use × for direct products
and : for semidirect products (that are not direct products).

https://doi.org/10.1017/S0004972725000048 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972725000048


8 C. Awtrey, F. Patane and B. Toone [8]

5. Determining Gal( f )

In this section, we fix a generic ordering of the roots of f (x) as defined in Table 3.
As the roots of g(x) are {α3, β3, γ3}, we see that B = {B1, B2, B3} forms a complete

block system for Gal( f ), where B1 = {1, 4, 7}, B2 = {2, 5, 8} and B3 = {3, 6, 9}. In other
words, for each σ ∈ Gal( f ), we have σ(Bi) ∈ B.

By reordering the roots within each block if necessary, it follows that Gal( f ) is a
subgroup of the permutation group G 
 9T24, where

G = 〈(1, 5, 9)(2, 3, 7, 8, 6, 4), (2, 6, 5, 9, 8, 3)〉. (5.1)

Consider the subgroup H 
 9T8 of G, where

H = 〈(1, 3, 2)(4, 9, 5, 7, 6, 8), (1, 4, 7)(2, 6, 8, 3, 5, 9)〉. (5.2)

Consider also the multivariable function T(x1, . . . , x9) = (x1 + x2 + x3)3. Letting each
σ ∈ G act on T via subscripts, we see that the stabiliser of T inside G is H; this
straightforward computation can be carried out with [16], for example.

Let r(x) be the resolvent polynomial corresponding to G, H and T, according to
[6, Definition 6.3.2]. More concretely, we can specify the roots of r(x) in terms of
the roots of f (x) as follows. A group computation shows that a complete set of right
coset representatives for G/H is: Id, (3, 6, 9), (3, 9, 6), (2, 3, 5, 6, 8, 9), (2, 5, 8)(3, 6, 9),
(2, 5, 8)(3, 9, 6), (2, 3, 8, 9, 5, 6), (2, 6)(3, 8)(5, 9) and (2, 8, 5)(3, 9, 6). Letting each of
these coset representatives act on T via subscripts and then evaluating each image of
T at the roots of f (x) as specified in Table 3, we see that the roots of r(x) are of the
form (α + βζ i + γζ j)3 for 0 ≤ i, j ≤ 2. We can expand r(x) and express its coefficients
as elementary symmetric polynomials in the roots of f (x). Doing so leads us to the
following definition.

DEFINITION 5.1. Let f (x) = x9 + ax6 + bx3 + c ∈ Q[x] be irreducible and let
r(x) = x9 +

∑8
i=0 aixi, where

a8 = −9a;

a7 = 36a2 − 81b;

a6 = −84a3 + 486ab − 4293c;

a5 = 9(14a4 − 135a2b + 243b2 + 189ac);

a4 = −9(14a5 − 180a3b + 729ab2 − 1836a2c + 4860bc);

a3 = −2673c(19a3 − 81ab)(28a6 − 405a4b + 2187a2b2 − 6561b3) + 61236c2;

a2 = −9(4a7 − 54a5b + 243a3b2 + 108a4c + 1458a2bc − 6561b2c + 13851ac2);

a1 = 9(a8 − 9a6b + 432a5c − 1701a3bc + 7290a2c2 − 6561bc2);

a0 = −(a3 − 27c)3.

We have the following result about r(x).
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TABLE 3. Generic ordering of the roots of f (x) = x9 + ax6 + bx3 + c.

# 1 2 3 4 5 6 7 8 9

Root α β γ αζ βζ γζ αζ2 βζ2 γζ2

TABLE 4. Possible Galois groups of f (x) = g(x3), where g(x) = x3 + ax2 + bx + c. For each possible
G = Gal( f ), we include the T-number of G, the parity of G, the T-number of Gal(g), the degrees of the
irreducible factors of r(x) and the degrees of the irreducible factors of s(x) when Gal( f ) is either 9T10 or
9T21. The polynomials r(x) and s(x) are given in Definitions 5.1 and 5.3, respectively.

T Parity Gal(g) r(x) s(x)

3 +1 3T2 3,3,3
4 −1 3T1 1,2,6
5 +1 3T2 1,1,1,6
8 −1 3T2 1,2,6
10 +1 3T2 9 9,9,18
11 +1 3T2 3,6
13 −1 3T1 3,6
18 −1 3T2 3,6
21 +1 3T2 9 9,27
22 −1 3T1 9
24 −1 3T2 9

PROPOSITION 5.2. Let f (x) = x9 + ax6 + bx3 + c ∈ Q[x] be irreducible and define r(x)
as in Definition 5.1. Then:

(1) r(x) is separable;
(2) the degrees of the irreducible factors of r(x) are listed in Table 4, according to

Gal( f ).

PROOF. Item (2) follows from item (1) and a group computation, since the degrees of
the irreducible factors of r(x) correspond to the orbit lengths of the action of Gal( f ) on
the cosets G/H; which in turn follows from a general result about irreducible factors
of resolvent polynomials (see for example [6, Theorem 6.3.3]).

To prove item (1), we verify that (α + βζ i + γζ j)3 is not equal to (α + βζk + γζ l)3

except when (i, j) = (k, l). This is equivalent to showing βζ i + γζ j is not equal to
βζk + γζ l for (i, j) � (k, l) and j, k, l ∈ {0, 1, 2}.

If i = k (and j � l), then γ = 0; this contradicts the irreducibility of f (x). We reach
a similar contradiction if j = l (and i � k). By dividing both expressions by ζ i, we may
also assume i = 0. This leaves 12 cases to analyse; namely j ∈ {0, 1, 2}, k ∈ {1, 2} and
l ∈ {0, 1, 2} \ {j}.

Suppose (j, k, l) = (0, 1, 1) so that β + γ = βζ + γζ. In this case, β = −γ, which
implies that β3 = −γ3. This in turn implies −α3 = a is a rational root of g(x), indicating
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that g(x) is reducible, contradicting the irreducibility of f (x). Similar reasoning also
applies to the cases (j, k, l) ∈ {(0, 2, 2), (1, 1, 2), (1, 2, 0), (2, 1, 0), (2, 2, 1)}.

Suppose (j, k, l) = (0, 1, 2) so that β + γ = βζ + γζ2. Thus, β(1 − ζ) = γ(ζ2 − 1).
This implies β = γζ2, and thus f (x) is not separable and therefore reducible. Sim-
ilar reasoning also applies to the cases (j, k, l) ∈ {(0, 2, 1), (1, 1, 0), (1, 2, 2), (2, 1, 1),
(2, 2, 0)}. �

An inspection of Table 4 shows that Gal( f ) is uniquely determined in all cases
except for 9T10 versus 9T21 by considering: (1) whether Disc( f ) is a square in Q; (2)
whether Disc(g) is a square in Q; and (3) the degrees of the irreducible factors of r(x).

To determine whether Gal( f ) is 9T10 or 9T21, we use another resolvent polynomial,
which we define next.

DEFINITION 5.3. Let f (x) = x9 + ax6 + bx3 + c ∈ Q[x] be irreducible and r(x) be as in
Definition 5.1. Let s(x) be defined by

s(x)2 =
Resultanty(r(y), r(x − y))

29 · r(x/2)
.

Thus, s(x) is the polynomial whose roots are sums of the form ρi + ρj for i < j, where
ρ1, . . . , ρ9 are the roots of r(x).

We note that resultants can be computed via [6, Algorithm 3.3.7]. The following
result completes our classification.

PROPOSITION 5.4. Let f (x) = x9 + ax6 + bx3 + c ∈ Q[x] be irreducible, r(x) as
defined in Definition 5.1 and assume Gal( f ) is either 9T10 or 9T21. Let s(x) be defined
as in Definition 5.3 and assume s(x) is separable. If the degrees of the irreducible
factors of s(x) are:

(1) [9, 9, 18], then Gal( f ) is 9T10;
(2) [9, 27], then Gal( f ) is 9T21.

PROOF. By Table 4, we see that r(x) is irreducible of degree 9. Letting 9T10 act on
the cosets of G/H, where G and H are defined in (5.1) and (5.2), respectively, we see
that:

• Gal(r) is 9T4 if Gal( f ) is 9T10;
• Gal(r) is 9T12 if Gal( f ) is 9T21.

It follows from [14, Section 3.5] that s(x) is the resolvent polynomial corresponding
to the subgroup H̃ = 〈(1, 2), (3, 4), (3, 4, 5, 6, 7, 8, 9)〉 of S9 that stabilises the multi-
variable function x1 + x2. We can assume s(x) is separable by taking a Tschirnhaus
transformation of r(x) if necessary and recomputing s(x); see [6, Algorithm 3.6.4].
Letting representatives for the conjugacy classes of 9T10 and 9T21 act on the cosets
S9/H̃ and extracting the orbit lengths of these actions proves the proposition. �

Using Table 4, we can summarise the characterisation of Gal( f ) as follows.
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THEOREM 5.5. Let f (x) = x9 + ax6 + bx3 + c ∈ Q[x] be irreducible and let g(x) = x3 +

ax2 + bx + c. Let r(x) and s(x) be defined as in Definitions 5.1 and 5.3, respectively, and
let R and S be the degrees of the irreducible factors of r(x) and s(x), respectively.

• If R = [3, 3, 3], then Gal( f ) is 9T3 
 D9.
• If R = [1, 1, 1, 6], then Gal( f ) is 9T5 
 C3 : S3.
• If R = [1, 2, 6], then:

– if Disc(g) ∈ Q2, then Gal( f ) is 9T4 
 C3 × S3;
– if Disc(g) � Q2, then Gal( f ) is 9T8 
 S3 × S3.

• If R = [3, 6], then:

– if Disc( f ) ∈ Q2, then Gal( f ) is 9T11 
 C9 : C6;
– if Disc( f ) � Q2 and Disc(g) ∈ Q2, then Gal( f ) is 9T13 
 C3

3 : S3;
– if Disc( f ) � Q2 and Disc(g) � Q2, then Gal( f ) is 9T18 
 C3

3 : D6.

• If r(x) is irreducible, then:

– if Disc( f ) � Q2 and Disc(g) ∈ Q2, then Gal( f ) is 9T22 
 C3
3 : C6;

– if Disc( f ) � Q2 and Disc(g) � Q2, then Gal( f ) is 9T24 
 C3
3 : D6;

– if Disc( f ) ∈ Q2 and S = [9, 9, 18], then Gal( f ) is 9T10 
 C9 : C6;
– if Disc( f ) ∈ Q2 and S = [9, 27], then Gal( f ) is 9T21 
 C3

3 : S3.

6. Examples

In this section, we give several examples that apply Theorem 5.5 to compute Galois
groups of power compositional nonic polynomials. Our first example recovers [11,
Theorem 1.1].

EXAMPLE 6.1. Let f (x) = x9 + 9mx6 + 192m3 ∈ Q[x], m � 0. Then, Gal( f ) =
9T3 
 D9.

PROOF. Factoring r(x) gives three irreducible factors of degree 3:

x3 + 27mx2 + 7047m2x − 107811m3,

x3 − 135mx2 + 2187m2x − 10125m3,

x3 + 27mx2 + 243m2x + 81m3.

By Theorem 5.5, this shows Gal( f ) = 9T3 
 D9. �

Table 5 gives one-parameter families of polynomials for each of the 11 possi-
ble Galois groups of f (x), assuming the resulting polynomial is irreducible when
specialised at a particular rational value of the parameter. Here are two additional
examples that illustrate the correctness of Table 5.

EXAMPLE 6.2. Let f (x) = x9 + 3tx6 − 4t2x3 + t3 ∈ Q[x]. Then, Gal( f ) = 9T4 

C3 × S3.
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TABLE 5. One parameter families of polynomials of the form f (x) = x9 + ax6 + bx3 + c ∈ Q[x] with
prescribed Galois group when f (x) is irreducible.

T Name f (x), t ∈ Q

3 D9 x9 − 225tx6 + 27t2x3 − 3t3

4 C3 × S3 x9 + 3tx6 − 4t2x3 + t3

5 C3 : S3 x9 + 3tx6 + 3t2x3 − t3

8 S3 × S3 x9 + tx6 + 3t2x3 + t3

10 C9 : C6 x9 + 9tx6 + 9t(2t + 1)x3 − t(t − 1)3

11 C2
3 : C6 x9 + 3t2x6 + 3t4x3 + 1

13 C2
3 : S3 x9 + t3x6 − 9x3 − t3

18 C2
3 : D6 x9 + 2tx3 + 1

21 C3
3 : S3 x9 + 6x6 + 12x3 + t3 − 3

22 C3
3 : C6 x9 + tx6 − 9x3 − t, t � Q3

24 C3
3 : D6 x9 + x3 + t, t � Q3

PROOF. Factoring r(x) gives

r(x) = x(x2 − 27tx + 189t2)(x6 + 459t2x4 + 7290t4x2 + (27t2)3).

Thus, R = [1, 2, 6]. It follows from Theorem 5.5 that Gal( f ) is either 9T4 or 9T8.
We have g(x) = x3 + 3tx2 − 4t2x + t3 and Disc(g) = (7t3)2 which is a square. Thus,
Gal( f ) = 9T4 
 C3 × S3. �

EXAMPLE 6.3. Let f (x) = x9 + 9tx6 + 9t(2t + 1)x3 − t(t − 1)3 ∈ Q[x]. Then, Gal( f ) =
9T10 
 C9 : C6.

PROOF. Using Mathematica, we see that r(x) is irreducible overQ(t). Thus, we assume
that t ∈ Q is chosen so that r(x) is irreducible. We also see that

Disc( f ) = (39t4(t − 1)3(t3 − 3t2 − 24t − 1)3)2,

which is a perfect square. By Theorem 5.5, we see that Gal( f ) is either 9T10 or 9T21.
Forming s(x) as given in Definition 5.3 and factoring it, we see it has three factors:

x9 − 162tx8 + (8019t2 + 729t)x7 + · · · ;

x9 − 162tx8 + (10206t2 + 729t)x7 + · · · ;

x18 + 324tx17 + · · · .

Assuming t is chosen so that s(x) is separable, we see that S = [9, 9, 18]. Thus, Gal( f ) =
9T10 
 C9 : C6. �
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7. Field extensions defined by polynomials of the form g(x3)

In this section, we are interested in determining when a field extension L/Q of
degree n can be defined by an irreducible polynomial f (x) = g(x3) ∈ Q[x]. We make
use of the following previous results.

THEOREM 7.1 [1, Proposition 1.2]. Suppose L/Q is an extension of degree mk. Then, L
can be defined by an irreducible polynomial g(xk) ∈ Q[x] if and only if L has a subfield
K of degree m such that L/K is defined by an irreducible polynomial xk − a ∈ K[x].

Moreover, if g̃(x) ∈ Q[x] is irreducible of degree m defining K and h(x) = xk − a ∈
K[x] is irreducible defining L/K, then f (x) = g(xk) defines L/Q, where

f (x) = Resultanty(xk − a, g̃(y)).

We can guarantee that f (x) is irreducible by replacing a by abk for some b ∈ K, if
necessary (see for example [7, Appendix A]).

THEOREM 7.2 [12, Theorem 1]. Let K/Q be a finite extension and let L/K be a cubic
extension defined by the irreducible polynomial h(x) = x3 + ax2 + bx + c. Then, L/K is
defined by a polynomial of the form x3 − d ∈ K[x] if and only if −3Disc(h) ∈ K2.

Moreover, if −3Disc(h) ∈ K2, let u = 3a2 − 9b, v = −2a3 + 9ab − 27c and e be a
solution to u2x2 − 9vx + 3u = 0. Then, L/K is defined by x3 − u/(3e).

As a consequence of Theorems 7.1 and 7.2, the following algorithm is guaranteed
to produce an irreducible power compositional polynomial g(x3) defining L/Q, when
it exists.

ALGORITHM 7.3. Suppose L = Q(α), where α is a root of the irreducible polynomial
f (x) ∈ Q[x] of degree n = km.

(1) Determine irreducible polynomials gi(x) defining subfields Ki of L of degree
m. If no such polynomials exist, L does not have subfields of degree m. (Note:
computing subfields is a built-in command in several computer algebra systems,
such as Pari/GP [18].)

(2) Factor f (x) over each Ki and extract an irreducible cubic polynomial hi(x) ∈ Ki[x].
Discard polynomials where − 3Disc(hi) � Ki

2, since in these cases, L/Ki cannot
be defined by a polynomial of the form x3 − a ∈ Ki[x].

(3) For each hi(x) that remains, use Theorem 7.2 to produce an irreducible polynomial
h̃i(x) = x3 − ai ∈ Ki[x] that defines L/Ki.

(4) For each h̃(x), compute f i(x) = Resultanty(h̃i(x), gi(y)) to produce power composi-
tional polynomials. If none of the f i(x) are irreducible, choose an h̃i(x), perform a
Tschirnhaus transformation as described in Theorem 7.1 and recompute f i(x).

We have implemented [18, Algorithm 7.3] and created a web-interface [4], where a
user can enter a polynomial f (x) ∈ Q[x]. The website returns a power compositional
g(x3) that defines an extension isomorphic to the extension defined by f (x), when such
a power compositional polynomial exists.
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EXAMPLE 7.4. To illustrate Algorithm 7.3, consider the irreducible polynomial in
Q[x]:

f (x) = x18 − 6x17 + 19x16 − 35x15 + 41x14

− 29x13 + 9x12 + 14x11 − 35x10 + 34x9 − 9x8

− 6x7 + 4x6 − 15x5 + 12x4 + 8x3 − 6x2 − x + 1.

Let f (α) = 0 and L = Q(α).

(1) Using [18], we see that the irreducible polynomial g(x) = x6 + 7x5 + 18x4 +

18x3 + 2x2 − 4x + 1 defines a subfield K of L of degree 6.
(2) Let g(β) = 0. Factoring f (x) over K and extracting an irreducible cubic factor, we

obtain the polynomial h(x) = x3 + h2x2 + h1x − β, where

h2 = β
5 + 6β4 + 12β3 + 8β2 + β; h1 = −β5 − 5β4 − 7β3 + 3β − 1.

(3) Using Theorem 7.2, we obtain

h̃(x) = x3 + (−9β5 − 42β4 − 60β3 − 12β2 − 9β − 3) ∈ K[x],

which is irreducible over K and also defines L/K.
(4) Computing Resultantβ(h̃(x), g(β)), we obtain

x18 + 108x15 + 3834x12 + 43011x9 − 107892x6 − 2755620x3 + 24111675,

which is a power compositional polynomial and irreducible over Q.
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