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This paper studies the regularity results of classical solutions to the two-dimensional
critical Oldroyd-B model in the corotational case. The critical case refers to the full
Laplacian dissipation in the velocity or the full Laplacian dissipation in the
non-Newtonian part of the stress tensor. Whether or not their classical solutions
develop finite time singularities is a difficult problem and remains open. The object
of this paper is two-fold. Firstly, we establish the global regularity result to the case
when the critical case occurs in the velocity and a logarithmic dissipation occurs in
the non-Newtonian part of the stress tensor. Secondly, when the critical case occurs
in the non-Newtonian part of the stress tensor, we first present many interesting
global a priori bounds, then establish a conditional global regularity in terms of the
non-Newtonian part of the stress tensor. This criterion comes naturally from our
approach to obtain a global L∞-bound for the vorticity ω.
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1. Introduction

The two-dimensional (2D) Oldroyd-B type model with diffusive stress in the whole
space R

2 takes the following form [10]

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu + (u · ∇)u − νΔu + ∇π = κ∇ · τ,
∂tτ + (u · ∇)τ + βτ − μΔτ − Q(∇u, τ) = γDu,

∇ · u = 0,

u(x, 0) = u0(x), τ(x, 0) = τ0(x),

(1.1)

where the unknown vector u = (u1(x, t), u2(x, t)) ∈ R
2 is the velocity of the fluid,

π = π(x, t) ∈ R is the scalar pressure and τ = τ(x, t) which is a symmetric tensor
is the non-Newtonian part of the stress tensor. The parameters ν, μ β, κ, γ are
such that ν � 0, μ � 0 β � 0 and κ > 0, γ > 0. Here Du is the symmetric part of
the velocity gradient, namely Du = 1/2(∇u + ∇u�). Q is a given bilinear form and
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usually chooses the following form

Q(∇u, τ) = Ωτ − τΩ + b(Duτ + τDu), (1.2)

where Ω = 1/2(∇u −∇u�) is the skew symmetric part of ∇u and b ∈ [−1, 1] is
a parameter. If b = 0, we call the corresponding system as corotational case. The
classical Oldroyd-B type model (μ = 0) originally was introduced by Oldroyd [36]
which is one of the basic macroscopic models for viscoelastic flows such as polymer
flows; fluids of this type have both elastic properties and viscous properties. For
more discussions and the derivation of Oldroyd-B model, we refer the readers to
[6,16,36].

Due to the physical applications and mathematical significance, the Oldroyd-B
model has recently attracted considerable attention. Let us first briefly review some
existence theories of the Oldroyd-B model from various aspects, we will not attempt
to address exhaustive reference in this paper. The study of the most interesting case
ν > 0 and μ = 0 (which is the classical case) started by Guillopé and Saut in [17,
18], where the existence of local strong solutions to the Oldroyd-B model was proved
in Hilbert space. In the frame of critical Besov spaces, Chemin and Masmoudi [6]
constructed global solutions to the incompressible Oldroyd-B model with small
initial data (see Chen-Miao [7]). Very recently, the results of global existence of
smooth solution with small initial data were significantly improved by many works,
see [11,14,15,19,39,40] and references therein. Moreover, Chemin and Masmoudi
[6], they also provided some interesting blowup criteria. An improvement of the
Chemin-Masmoudi blow-up criterion was presented by Lei, Masmoudi and Zhou in
[31]. For the Oldroyd-B fluids with diffusive stress (namely, the system (1.1) with
ν > 0, μ > 0 and b = 1), the existence and uniqueness of global strong solutions in
2D case was established by Constantin and Kliegel [10]. Very recently, Elgindi and
Rousset [13] proved the global regularity with general initial data to the system
(1.1) in the case ν = 0, μ > 0 and Q = 0. Moreover, they also obtained the global
existence of smooth solution with small initial data in the case of ν = 0, μ > 0 and
the general Q given by (1.2). Many other interesting results on the Oldroyd-B
and related models have been established (see, e.g., [8,22–24,28–30,33–35,37]
and the references therein).

In 2000, Lions and Masmoudi [34] proved the global existence of weak solu-
tions (without uniqueness) to the following 2D critical Oldroyd-B model in the
corotational case, namely,⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu + (u · ∇)u − νΔu + ∇π = κ∇ · τ,
∂tτ + (u · ∇)τ + βτ + η(τΩ − Ωτ) = γDu,

∇ · u = 0,

u(x, 0) = u0(x), τ(x, 0) = τ0(x),

(1.3)

which was further generalized by Bejaoui and Mohamed Majdoub [3]. However,
the global existence of smooth solutions is open and quite challenging (see [13]
for more details). We also mention that global weak for the above system (1.3)
with η(τΩ − Ωτ) replaced by general Q, namely (1.2), is still open up to now. As
pointed out in [13], in the case where η = 0 and ν > 0, the global existence of
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smooth solutions to the above system (1.3) is also open and quite challenging, not
to speak of the case η > 0. Very recently, when one adds the fractional dissipation
(−Δ)γτ (the power γ > 0 can be arbitrarily small) to the τ equation, the author
[38] obtained the global existence of classical solution for the general initial data for
the corresponding system. Consequently, the above system (1.3) is the first object
of the study.

On the other hand, as indicated in [13], the global regularity of the following 2D
critical Oldroyd-B model in the corotational case (with b = 0) with diffusive stress
is also an unsolved critical problem⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂tu + (u · ∇)u + ∇π = κ∇ · τ,
∂tτ + (u · ∇)τ + βτ + η(τΩ − Ωτ) − μΔτ = γDu,

∇ · u = 0,

u(x, 0) = u0(x), τ(x, 0) = τ0(x).

(1.4)

As stated above, when the system (1.4) with μ > 0 and η = 0, Elgindi and Rousset
[13] proved the global regularity with general initial data. The major obstacle to get
the global regularity for the system (1.4) with μ > 0 and η > 0 is to show the global
L∞-bound for the vorticity ω. However, the corotational term τΩ − Ωτ prevents
us to get the global ‖ω‖L∞ bound (see lemma 4.5 for details). Actually, the above
system (1.4) is also our object of the study.

Now we are in the position to state our main results. The first goal of this paper
is to establish the global regularity for the case when the critical case occurs in
the velocity and a logarithmic dissipation occurs in the non-Newtonian part of the
stress tensor. More precisely, the first main result can be stated as follows.

Theorem 1.1. Consider the following system⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu + (u · ∇)u − Δu + ∇π = ∇ · τ,
∂tτ + (u · ∇)τ + Lτ + τΩ − Ωτ = Du,

∇ · u = 0,

u(x, 0) = u0(x), τ(x, 0) = τ0(x),

(1.5)

where the dissipation operator L is defined via

Lτ(x) = P.V.
∫

R2

τ(x) − τ(x − y)
|y|2m(|y|) dy (1.6)

for some non-decreasing, smooth function m : [0, ∞) �→ [0, ∞) satisfying the
following conditions:

(I) There exists a positive constant γ such that

lim sup
r→0+

rδ

m(r)
� γ (1.7)

for some δ ∈ (0, 1).
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(II) It satisfies the assumption ∫ ∞

1

dr

rm(r)
< ∞. (1.8)

(III) It satisfies the assumption ∫ 1

0

m(r)
r

dr < ∞. (1.9)

If (u0, τ0) ∈ Hs(R2) × Hs(R2) with s > 2 and ∇ · u0 = 0, then the system
(1.5) admits a unique global solution such that for any given T > 0

u ∈ C([0, T ];Hs(R2)) ∩ L2([0, T ];Hs+1(R2)), τ ∈ C([0, T ];Hs(R2)).

Remark 1.2. The classical example of m satisfying the conditions (I)–(III) is

m(r) = rα with 0 < α � δ,

which corresponds to the fractional Laplacian operator. But it is not the purpose of
this paper. What we care is the case that m behaves like 1/(− ln r)α1 for sufficiently
small r with some α1 > 1, and behaves like (ln r)α2 for sufficiently large r with some
α2 > 1.

Remark 1.3. It should be noted that the condition (1.7) can be replaced by the
following doubling condition

m(2r) � C0m(r)

with C0 ∈ (1, 2). As a matter of fact, it directly gives

m(1) � C0m

(
1
2

)
< · · · < Ck

0 m

(
1
2k

)
, ∀ k ∈ N.

Then for any r ∈ (0, 1), there exists k ∈ N such that

1
2k

� r <
1

2k−1
.

This implies for any r ∈ (0, 1) that

m(r) � m

(
1
2k

)
� m(1)C−k

0 � m(1)C−(1−ln r/ln 2)
0 � m(1)

C0
eln C0/ln 2 ln r � rδ

γ̃
,

where δ = lnC0/ln 2 ∈ (0, 1) and γ̃ = C0/m(1). The above estimate immediately
implies (1.7).

Remark 1.4. Obviously, the dissipation L given in theorem 1.1 is weaker than any
power of the fractional Laplacian. Consequently, theorem 1.1 is a further improve-
ment of [38]. However, it remains an open problem whether there exists a global
smooth solution when the operator L is absent from the system (1.5).
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The next goal of this paper is to gain further understanding of the global regu-
larity problem for the case when the operator L is absent from the system (1.5),
namely (1.3). Several global a priori bounds are also presented, which will be useful
on the eventual resolution of this difficult global regularity problem. More precisely,
we have the following results for the system (1.3).

Theorem 1.5. Assume that (u0, τ0) ∈ Hs(R2) × Hs(R2) with s > 2 and ∇ · u0 = 0.
Then, the solution (u, τ) of the system (1.3) admits the following global bounds, for
any T > 0 and t � T ,

(d) Global bound for u,

‖∇u‖Lp(0,T ;Lq) � C, ∀ 2 � p, q < ∞, (1.10)

where C = C(p, q, T, u0, τ0);

(e) Global bound for τ ,

‖τ(t)‖Lp � C, ∀ 2 � p < ∞, (1.11)

where C = C(p, T, u0, τ0);

(f) Global bounds for G,

‖G‖Lp(0,T ;W 1,q) � C, ∀ 2 � p, q < ∞, (1.12)

where C = C(p, q, T, u0, τ0);

‖ΛγG(t)‖Lp � C, ∀ 0 � γ < 1, ∀ 2 � p < ∞, (1.13)

where C = C(γ, p, T, u0, τ0) and Λ := (−Δ)1/2.

Here the G is given by

G = ω − (−Δ)−1curl div (τ), ω = ∂x1u2 − ∂x2u1.

Remark 1.6. The desired estimates (1.10), (1.11), (1.12) and (1.13) can be
obtained by the same arguments adopted in proving lemmas 3.4 and 3.5. In order
to avoid the redundancy, we thus omit the details.

The third goal of this paper is to gain further understanding of the global reg-
ularity problem for the 2D critical Oldroyd-B model in the corotational case with
diffusive stress, namely (1.4). We first present many global a priori bounds and
then establish a conditional global regularity in terms of the non-Newtonian part
of the stress tensor. We hope that these results will shed light on the eventual
resolution of this difficult global regularity problem.
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Theorem 1.7. Assume that (u0, τ0) ∈ Hs(R2) × Hs(R2) with s > 2 and ∇ · u0 = 0.
Then, the solution (u, τ) of the system (1.4) admits the following global bounds, for
any T > 0 and t � T ,

• Global a priori bounds:
(a) Global W 1,q-bound for u,

‖u(t)‖W 1,q � C, ∀ 2 � q < ∞, (1.14)

where C = C(q, T, u0, τ0);

(b) Global bounds for τ ,

‖τ(t)‖W 1,p � C, ∀ 2 � p < ∞, (1.15)

where C = C(p, T, u0, τ0);

‖∇2τ‖Lp(0,T ;Lq) � C, ∀ 2 � p, q < ∞, (1.16)

where C = C(p, q, T, u0, τ0);

‖Λδτ(t)‖L∞ � C, ∀ 0 � δ < 2, (1.17)

where C = C(δ, T, u0, τ0).

• Regularity criterion:
Let (u, τ) be the local (in time) smooth solution of the system (1.4) on [0, T0)

associated with initial value (u0, τ0). Let T > T0. If there is an integer j0 > 0
such that τ satisfies

∫ T

0

∑
j�j0

‖Sj−1τ(σ)‖L∞ dσ < ∞, (1.18)

then the local solution can be extended to [0, T ], where Sj denotes the low-
frequency cut-off operator defined through the Littlewood–Paley decomposition
(see § 2 for details).

Remark 1.8. Although we can obtain many global a priori bounds (1.15)–(1.17)
for τ , however it is not clear whether (1.18) can be guaranteed by these a priori
estimates.

If we add the dissipation term (−Δ)αu (the power α > 0 can be arbitrarily small)
to the velocity equation of the system (1.4), then we have the global regularity result
for the corresponding system.
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Theorem 1.9. Consider the following system

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tu + (u · ∇)u + (−Δ)αu + ∇π = ∇ · τ,
∂tτ + (u · ∇)τ + τ + τΩ − Ωτ − Δτ = Du,

∇ · u = 0,

u(x, 0) = u0(x), τ(x, 0) = τ0(x).

(1.19)

If (u0, τ0) ∈ Hs(R2) × Hs(R2) with s > 2 and ∇ · u0 = 0, then for any α > 0 the
system (1.19) admits a unique global solution such that for any given T > 0

u ∈ C([0, T ];Hs(R2)) ∩ L2([0, T ];Hs+α(R2)),

τ ∈ C([0, T ];Hs(R2)) ∩ L2([0, T ];Hs+1(R2)).

The rest part of this paper is organized as follows. Section 2 makes several prepa-
rations including presenting the Littlewood–Paley decomposition, functional spaces
and some related inequalities. Section 3 is devoted to the proof of theorem 1.1.
Section 4 provides the proof of theorem 1.7. A brief of the proof of theorem 1.9 is
carried out in § 5. In appendix, we provide the proof of several facts.

2. Preliminaries

This section presents the Besov spaces as well as several inequalities to be exten-
sively used in the subsequent section. In this paper, all constants will be denoted by
C that is a generic constant depending only on the quantities specified in the con-
text. We shall write C(λ1, λ2, . . . , λk) as the constant C depends on the quantities
λ1, λ2, . . . , λk. We denote the fractional operator Λ by (−Δ)1/2. For a quasi-Banach
space X and for any 0 < T � ∞, we use standard notation Lp(0, T ;X) or Lp

T (X)
for the quasi-Banach space of Bochner measurable functions f from (0, T ) to X
endowed with the norm

‖f‖Lp
T (X) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(∫ T

0

‖f(., t)‖p
X dt

)1/p

, 1 � p < ∞,

sup
0�t�T

‖f(., t)‖X , p = ∞.

Now we recall the so-called Littlewood–Paley operators and their elementary
properties which allow us to define the Besov spaces (see e.g,. [1]). Let (χ,ϕ) be a
couple of smooth functions with values in [0, 1] such that χ ∈ C∞

0 (Rn) is supported
in the ball B := {ξ ∈ R

n, |ξ| � 4/3}, ϕ ∈ C∞
0 (Rn) is supported in the annulus C :=

{ξ ∈ R
n, 3/4 � |ξ| � 8/3} and satisfy

χ(ξ) +
∑
j∈N

ϕ(2−jξ) = 1, ∀ξ ∈ R
n;

∑
j∈Z

ϕ(2−jξ) = 1, ∀ξ ∈ R
n \ {0}.
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Let h = F−1ϕ and g = F−1χ and then we define the non-homogeneous Littlewood–
Paley operators as follows

Δju = ϕ(2−jD)u = 2jn

∫
Rn

h(2jy)u(x − y) dy, ∀j � 0;

Sju = χ(2−jD)u =
j−1∑

k=−1

Δku = 2jn

∫
Rn

g(2jy)u(x − y) dy,

and

Δju = 0, j � −2; Δ−1u = χ(D)u = S0u.

Also, we denote

Δ̃ju := Δj−1u + Δju + Δj+1u.

We now point out several simple facts concerning the operators Δj : By compactness
of the supports of the series of Fourier transform, we have

ΔjΔlu ≡ 0, |j − l| � 2 and Δk(SluΔlv) ≡ 0, |k − l| � 5.

Moreover, it is easy to check that

suppF(Sj−1uΔjv) ≈
{

ξ | 1
12

2j � |ξ| � 10
3

2j

}
and

suppF(Δ̃juΔjv) ⊂ {ξ | |ξ| � 8 × 2j},

where F denotes the Fourier transform. Let us recall the definition of inhomoge-
neous Besov spaces through the dyadic decomposition.

Definition 2.1. Let s ∈ R, (p, r) ∈ [1,+∞]2. The inhomogeneous Besov space Bs
p,r

is defined as a space of f ∈ S′(Rn) such that

Bs
p,r = {f ∈ S′(Rn); ‖f‖Bs

p,r
< ∞},

where

‖f‖Bs
p,r

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎛⎝ ∑

j�−1

2jrs‖Δjf‖r
Lp

⎞⎠1/r

, ∀ r < ∞,

supj�−1 2js‖Δjf‖Lp , ∀ r = ∞.
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In addition, for two tempered distributions f and g, we also recall the notion of
paraproducts

Tfg =
∑

j

Sj−1fΔjg, R(f, g) =
∑

j

Δ̃jfΔjg

and Bony’s decomposition

fg = Tfg + Tgf + R(f, g).

Bernstein inequalities are fundamental in the analysis involving Besov spaces and
these inequalities trade integrability for derivatives.

Lemma 2.2 (see [1]). Let k � 0, 1 � a � b � ∞. Assume that

supp f̂ ⊆ {ξ ∈ R
n : |ξ| � A02j},

for some integer j, then there exists a constant C1 such that

‖Λkf‖Lb � C1 2jk+jn(1/a−1/b)‖f‖La .

If f satisfies

supp f̂ ⊆ {ξ ∈ R
n : A12j � |ξ| � A22j}

for some integer j, then

C1 2jk‖f‖Lb � ‖Λkf‖Lb � C2 2jk+jn(1/a−1/b)‖f‖La ,

where C1 and C2 are constants depending on k, a, b and dimension n only.

Now we recall some properties involving the heat operator. We set (n is the space
dimension)

etΔf = H(t, x) ∗ f, H(t, x) = (4πt)−n/2e−|x|2/4t.

The following estimate is a direct consequence of the Young inequality.

Lemma 2.3. Let 1 � p � q � ∞ and k � 0, then it holds

‖ΛketΔf‖Lq � Ct−k/2−n/2(1/p−1/q)‖f‖Lp .

Finally, we recall the following Maximal Lq
tL

p
x regularity for the heat kernel

(see e.g,. [32]).

Lemma 2.4. The operator A defined by

Af(x, t) :=
∫ t

0

e(t−s)ΔΔf(s, x) ds

is bounded from Lq(0, T ;Lp(Rn)) to Lq(0, T ;Lp(Rn)) for very (q, p) ∈ (1,∞) ×
(1,∞) and T ∈ (0,∞].
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3. The proof of theorem 1.1

This section is devoted to the proof of theorem 1.1. For two n order matrices A and
B, we denote A : B =

∑n
i,j=1 aijbij where aij and bij are the components of matrices

A and B, respectively. The existence and uniqueness of local smooth solutions in
Hs (s > 2) can be done without any difficulty, thus it is sufficient to establish a
priori estimates for (u, τ) at the interval [0, T ]. We first establish some properties
of the operator L, namely, lemmas 3.1 and 3.2.

Lemma 3.1. Under the assumptions (1.7) and (1.8), it holds that for any 1 < p < ∞
‖Lh‖Lp � C‖h‖W δ̃, p , (3.1)

where δ < δ̃ < 1.

Proof of lemma 3.1. Recalling the operator L, namely,

Lh(x) = P.V.
∫

R2

h(x) − h(x − y)
|y|2m(|y|) dy,

we immediately have

‖Lh(t)‖Lp =
(∫

R2

∣∣∣∣P.V.
∫

R2

h(x) − h(x − y)
|y|2m(|y|) dy

∣∣∣∣p dx

)1/p

� I + J,

where I and J are given by

I =

(∫
R2

∣∣∣∣∣P.V.
∫
|y|�1

h(x) − h(x − y)
|y|2m(|y|) dy

∣∣∣∣∣
p

dx

)1/p

,

J =

(∫
R2

∣∣∣∣∣P.V.
∫
|y|�1

h(x) − h(x − y)
|y|2m(|y|) dy

∣∣∣∣∣
p

dx

)1/p

.

By the Minkowski inequality and the Hölder inequality, one has

I �
∫
|y|�1

(∫
R2

|h(x) − h(x − y)|p
|y|2pmp(|y|) dx

)1/p

dy

=
∫
|y|�1

(∫
R2

|h(x) − h(x − y)|p
|y|2+δ̃p|y|(2−δ̃)p−2mp(|y|)

dx

)1/p

dy

=
∫
|y|�1

(∫
R2

|h(x) − h(x − y)|p
|y|2+δ̃p

dx

)1/p
1

|y|2−δ̃−2/pm(|y|)
dy

�
(∫

|y|�1

∫
R2

|h(x) − h(x − y)|p
|y|2+δ̃p

dxdy

)1/p

×
(∫

|y|�1

1

|y|(2−δ̃−2/p)p/(p−1)mp/(p−1)(|y|)
dy

)(p−1)/p
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� C

(∫
R2

∫
R2

|h(x) − h(x − y)|p
|y|2+δ̃p

dxdy

)1/p

×
(∫ 1

0

r

r(2−δ̃−2/p)p/(p−1)m(r)p/(p−1)
dr

)(p−1)/p

� C‖h(t)‖W δ̃, p

(∫ 1

0

r

r(2−δ̃−2/p)p/(p−1)m(r)p/(p−1)
dr

)(p−1)/p

.

By means of (1.7), there exists r0 ∈ (0, 1) such that for any r ∈ (0, , r0]

rδ

m(r)
� γ + 1 or m(r) � rδ

γ + 1
.

Consequently, one has

I � C‖h(t)‖W δ̃, p

(∫ r0

0

r

r(2−δ̃−2/p)p/(p−1)m(r)p/(p−1)
dr

+
∫ 1

r0

r

r(2−δ̃−2/p)p/(p−1)m(r)p/(p−1)
dr

)(p−1)/p

� C‖h(t)‖W δ̃, p

(∫ r0

0

1

r1−(δ̃−δ)p/(p−1)
dr +

∫ 1

r0

1

r1−pδ̃/(p−1)m(r0)p/(p−1)
dr

)(p−1)/p

� C‖h(t)‖W δ̃, p ,

where in the last line we have applied the following bound∫ r0

0

1

r1−(δ̃−δ)p/(p−1)
dy � C

due to δ̃ > δ. Using the Minkowski inequality again, we obtain by (1.8) that

J �
∫
|y|�1

(∫
R2

|h(x) − h(x − y)|p
|y|2pmp(|y|) dx

)1/p

dy

=
∫
|y|�1

(∫
R2

|h(x) − h(x − y)|p dx

)1/p 1
|y|2m(|y|) dy

� C

∫
|y|�1

‖h‖Lp

1
|y|2m(|y|) dy

� C‖h‖Lp

∫ ∞

1

1
rm(r)

dr

� C‖h‖Lp

� C‖h(t)‖W δ̃, p .

Combining the above two estimates yields (3.1). �
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Lemma 3.2. For the operator L given by (1.6), it holds that for any 2 � p < ∞∫
R2

|h|p−2hLh dx � 0. (3.2)

Proof of lemma 3.2. Let us first show the case p = 2. It is easy to see that Lh(x)
can be rewritten as

Lh(x) = P.V.
∫

R2

h(x) − h(y)
|x − y|2m(|x − y|) dy.

Therefore, we get∫
R2

hLh dx =
∫

R2
h(x)P.V.

∫
R2

h(x) − h(y)
|x − y|2m(|x − y|) dy dx

= P.V.
∫

R2

∫
R2

h2(x) − h(x)h(y)
|x − y|2m(|x − y|) dy dx

=
∫

R2

∫
R2

h2(x)
|x − y|2m(|x − y|) dy dx

− 1
2

∫
R2

∫
R2

2h(x)h(y)
|x − y|2m(|x − y|) dy dx.

One may check that by exchanging x and y∫
R2

∫
R2

h2(x)
|x − y|2m(|x − y|) dy dx =

∫
R2

∫
R2

h2(y)
|y − x|2m(|y − x|) dy dx.

Consequently, ∫
R2

hLh dx =
1
2

∫
R2

∫
R2

(h(x) − h(y))2

|x − y|2m(|x − y|) dy dx � 0. (3.3)

This is the desired (3.2) with the case p = 2. For the general case, we first verify
that for any q > 1

|h(x)|q−2h(x)Lh(x) � 1
q
L(|h(x)|q). (3.4)

Now it is obvious that

|h(x)|q−2h(x)Lh(x) = P.V.
∫

R2

|h(x)|q − |h(x)|q−2h(x)h(y)
|x − y|2m(|x − y|) dy.

According to the Young inequality, it implies

|h(x)|q−2h(x)h(y) � |h(x)|q−1|h(y)| � q − 1
q

|h(x)|q +
1
q
|h(y)|q.

We therefore deduce

|h(x)|q−2h(x)Lh(x) � 1
q
P.V.

∫
R2

|h(x)|q − |h(y)|q
|x − y|2m(|x − y|) dy =

1
q
L(|h(x)|q).
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Now for 2 < p < ∞, we appeal to (3.4) to conclude∫
R2

|h|p−2hLh dx =
∫

R2
|h|p/2 |h|p/2−2hLh︸ ︷︷ ︸ dx

� 2
p

∫
R2

|h|p/2L|h|p/2 dx

� 0,

where in the last line we have applied (3.3). Therefore, the proof of lemma 3.2 is
completed. �

With lemmas 3.1 and 3.2 in hand, it is not difficult to show the following lemma.

Lemma 3.3. Let (u, τ) be the corresponding solution of (1.5), then it holds true

‖u(t)‖2
L2 + ‖τ(t)‖2

L2 + 2
∫ t

0

‖∇u(s)‖2
L2 ds � ‖u0‖2

L2 + ‖τ0‖2
L2 . (3.5)

Proof of lemma 3.3. Multiplying (1.5)1 by u and (1.5)2 by τ and adding them up
yield

1
2

d
dt

(‖u(t)‖2
L2 + ‖τ(t)‖2

L2) +
∫

R2
Lτ : τ dx + ‖∇u‖2

L2 = 0, (3.6)

where we have used the following identity∫
R2

(∇ · τ) · u dx +
∫

R2
Du : τ dx = 0

and the following cancellation property (see (3.17) below)∫
R2

(τΩ − Ωτ) : τ dx = 0.

By (3.2), we have ∫
R2

Lτ : τ dx � 0.

Therefore, the desired estimate (3.5) follows by integrating (3.6) in time. This ends
the proof of the lemma. �

Next, we will establish the following lemma, which concerns the global H1-
estimate of u and the Lr-estimate of τ for any r < ∞.

Lemma 3.4. Let (u, τ) be the corresponding solution of (1.5). Then, for any 2 <
r < ∞, (u, τ) obeys the global bound

‖∇u(t)‖L2 + ‖τ(t)‖Lr � C, (3.7)

where C is a constant depending on T, r and the initial data.
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Proof of lemma 3.4. In order to get the above estimate (3.7), we first apply operator
curl to the equation (1.5)1 to obtain the vorticity ω equation as follows

∂tω + (u · ∇)ω − Δω = curl div (τ).

We denote R as the singular integral operator

R = −(−Δ)−1curl div.

Applying the operator R to equation (1.5)2, one has

∂tRτ + (u · ∇)Rτ = RDu − [R, u · ∇]τ −R(τΩ − Ωτ) −RLτ.

In this case, the combined quantity G := ω + Rτ satisfies the equation

∂tG + (u · ∇)G − ΔG = RDu − [R, u · ∇]τ −R(τΩ − Ωτ) −RLτ. (3.8)

Multiplying (3.8) by G, we obtain, after integration by parts

1
2

d
dt

‖G‖2
L2 + ‖∇G‖2

L2 = N1 + N2 + N3 + N4, (3.9)

where

N1 =
∫

R2
RDuG dx, N2 = −

∫
R2

[R, u · ∇]τG dx,

N3 = −
∫

R2
R(τΩ − Ωτ)Gdx, N4 = −

∫
R2

RLτG dx.

The Young inequality implies

N1 � C‖∇u‖L2‖G‖L2 . (3.10)

Thanks to the following commutator estimate (see [20, theorem 3.3] for its proof)

‖[R, u]f‖Hσ � C(σ)(‖∇u‖L2‖f‖Bσ−1
∞,r

+ ‖u‖L2‖f‖L2)

for any σ ∈ (0, 1), one concludes

N2 =
∫

R2
∇ · [R, u]τG dx

� C‖[R, u]τ‖Ḣ(r−2)/2r‖G‖Ḣ(r+2)/2r

� C‖[R, u]τ‖H(r−2)/2r‖G‖Ḣ(r+2)/2r

� C(‖∇u‖L2‖τ‖
B

(−r−2)/2r
∞,2

+ ‖u‖L2‖τ‖L2)‖G‖(r−2)/2r
L2 ‖∇G‖(r+2)/2r

L2

� C(‖∇u‖L2‖τ‖Lr + ‖u‖L2‖τ‖L2)‖G‖(r−2)/2r
L2 ‖∇G‖(r+2)/2r

L2

� 1
8
‖∇G‖2

L2 + C‖∇u‖4r/(3r−2)
L2 ‖τ‖4r/(3r−2)

Lr ‖G‖2(r−2)/(3r−2)
L2

+ C(‖u‖L2‖τ‖L2)4r/(3r−2)‖G‖2(r−2)/(3r−2)
L2

� 1
8
‖∇G‖2

L2 + C(1 + ‖∇u‖2
L2)(‖τ‖2

Lr + ‖G‖2
L2), (3.11)
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where we have used the following fact Lr(R2) ↪→ B
(−r−2)/2r
∞,2 (R2) with 2 � r < ∞.

Finally, by the Young inequality and the Gagliardo-Nirenberg inequality, one can
check that

N3 � ‖R(τΩ − Ωτ)‖L2r/(r+2)‖G‖L2r/(r−2)

� C‖Ω‖L2‖τ‖Lr‖G‖L2r/(r−2)

� C‖∇u‖L2‖τ‖Lr‖G‖(r−2)/r
L2 ‖∇G‖2/r

L2

� 1
4
‖∇G‖2

L2 + C‖∇u‖r/(r−1)
L2 (‖τ‖Lr‖G‖(r−2)/r

L2 )r/(r−1)

� 1
4
‖∇G‖2

L2 + C(1 + ‖∇u‖2
L2)(‖τ‖2

Lr + ‖G‖2
L2). (3.12)

Finally, by (3.1), the term N4 admits the bound

N4 = −
∫

R2
τLRGdx

� C‖τ‖L2‖LRG‖L2

� C‖τ‖L2(‖RG‖L2 + ‖∇RG‖L2)

� C‖τ‖L2(‖G‖L2 + ‖∇G‖L2)

� 1
16

‖∇G‖2
L2 + C(‖τ‖2

L2 + ‖G‖2
L2), (3.13)

where we have used the fact (see appendix for its proof)∫
R2

Lfg dx =
∫

R2
fLg dx. (3.14)

Putting (3.10), (3.11), (3.12) and (3.13) into (3.9), and absorbing the dissipative
term, it gives

d
dt

‖G‖2
L2 + ‖∇G‖2

L2 � C(1 + ‖∇u‖2
L2)(‖τ‖2

Lr + ‖G‖2
L2) + C‖τ‖2

L2 . (3.15)

In order to close the above inequality (3.15), we need to establish the differential
inequality of estimate of ‖τ‖Lr . Now multiplying the stress tensor τ equation of
(1.5) by |τ |r−2τ and integrating over R

2, it follows that

1
r

d
dt

‖τ‖r
Lr +

∫
R2

|τ |r−2τ : Lτ dx =
∫

R2
Duτ |τ |r−2 dx, (3.16)

where the following simple fact has been used∫
R2

(τΩ − Ωτ) : |τ |r−2τ dx = 0
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for any r � 2 due to the symmetry of τ . As a matter of fact, we have∫
R2

(τΩ − Ωτ) : |τ |r−2τ dx =
∫

R2
τikΩkj |τ |r−2τij dx −

∫
R2

Ωkjτji|τ |r−2τki dx

=
∫

R2
τikΩkj |τ |r−2τij dx −

∫
R2

Ωkjτij |τ |r−2τik dx

= 0, (3.17)

where we used τji = τij and τki = τik due to the symmetry of τ . Thanks to (3.2),
one gets ∫

R2
|τ |r−2τ : Lτ dx � 0.

We thus deduce from (3.16) that

d
dt

‖τ‖2
Lr � C‖Du‖Lr‖τ‖Lr .

Now it is easy to see

d
dt

‖τ‖2
Lr � C‖Du‖Lr‖τ‖Lr

� C‖ω‖Lr‖τ‖Lr

� C(‖G‖Lr + ‖τ‖Lr )‖τ‖Lr

� C‖G‖2/r
L2 ‖∇G‖(r−2)/r

L2 ‖τ‖Lr + ‖τ‖2
Lr

� 1
4
‖∇G‖2

L2 + C(‖G‖2
L2 + ‖τ‖2

Lr ). (3.18)

Adding up the above estimates (3.15) and (3.18) altogether, we obtain

d
dt

(‖G‖2
L2 + ‖τ‖2

Lr ) + ‖∇G‖2
L2 � C(1 + ‖∇u‖2

L2)(‖τ‖2
Lr + ‖G‖2

L2).

The Gronwall inequality gives

‖G(t)‖2
L2 + ‖τ‖2

Lr +
∫ t

0

‖∇G(s)‖2
L2 ds < ∞,

which also shows

‖∇u‖L2 � ‖ω‖L2 � ‖G‖L2 + ‖τ‖L2 < ∞.

Therefore, this concludes the proof of lemma 3.4. �

We are now in the position to prove the following lemma.
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Lemma 3.5. Let (u, τ) be the corresponding solution of (1.5). Then, for any 2 � p,
q < ∞, (u,G) obeys the global bound

‖∇u‖Lq(0,T ;Lp) � C, (3.19)

‖G‖Lq(0,T ;W 1,p) � C, (3.20)

where C is a constant depending on T , p, q and the initial data. For any 0 � γ < 1

‖G‖L∞(0,T ;W γ,q) � C, (3.21)

where C is a constant depending on T, γ, q and the initial data.

Proof of lemma 3.5. To avoid the pressure term, we resort to the incompressible
condition to deduce from the first equation of (1.5) that

−π =
divdiv
−Δ

(τ − u ⊗ u) := R̃(τ − u ⊗ u).

Hence, the first equation of (1.5) can be rewritten as

∂tu − Δu = (div + ∇R̃)(τ − u ⊗ u).

Applying operator ∇ to above equality yields

∂t∇u − Δ∇u = ∇(div + ∇R̃)(τ − u ⊗ u).

Owing to the Duhamel Principle, we have

∇u(x, t) = etΔ∇u0(x) −
∫ t

0

e(t−s)Δ

× Δ(−Δ)−1∇(div + ∇R̃)(τ − u ⊗ u)(x, s) ds. (3.22)

Note that the following estimate

‖u‖Lp � ‖u‖2/p
L2 ‖∇u‖1−2/p

L2 � C, ∀ 2 < p < ∞,

which together with lemma 2.4 allows us to deduce from (3.22) that

‖∇u‖Lq(0,T ;Lp) � ‖etΔ∇u0‖Lq(0,T ;Lp)

+
∥∥∥∥∫ t

0

e(t−s)ΔΔ(−Δ)−1∇(div + ∇R̃)(τ − u ⊗ u) ds

∥∥∥∥
Lq(0,T ;Lp)

� C‖H(t, x)‖Lq(0,T ;L1)‖∇u0‖Lp
x

+ C‖(−Δ)−1∇(div + ∇R̃)(τ − u ⊗ u)‖Lq(0,T ;Lp)

� C‖∇u0‖Lp + C‖τ − u ⊗ u‖Lq(0,T ;Lp)

� C + CT 1/q
(
‖τ‖L∞(0,T ;Lp) + ‖u‖2

L∞(0,T ;L2p)

)
� C,
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which is (3.19). Now making use of the incompressible condition and applying
operator ∇, we deduce from (3.8) that

∂t∇G − Δ∇G = ∇(RDu −∇ · [R, u]τ −∇ · (uG) −R(τΩ − Ωτ)) −∇RLτ.

Again using the Duhamel Principle, we can rewrite ∇G as follows

∇G(x, t) = etΔ∇G0(x)

−
∫ t

0

e(t−s)Δ∇(RDu −∇ · [R, u]τ −∇ · (uG) −R(τΩ − Ωτ))(x, s) ds

−
∫ t

0

e(t−s)Δ∇RLτ(x, s) ds := J1 + J2 + J3.

We resort to lemma 2.4 again to obtain that

‖J1‖Lq(0,T ;Lp) + ‖J2‖Lq(0,T ;Lp)

� ‖etΔ∇G0‖Lq(0,T ;Lp) +
∥∥∥∥∫ t

0

e(t−s)Δ∇∇ · [R, u]τ ds

∥∥∥∥
Lq(0,T ;Lp)

+
∥∥∥∥∫ t

0

e(t−s)Δ∇RDu ds

∥∥∥∥
Lq(0,T ;Lp)

+
∥∥∥∥∫ t

0

e(t−s)Δ∇∇ · (uG) ds

∥∥∥∥
Lq(0,T ;Lp)

+
∥∥∥∥∫ t

0

e(t−s)Δ∇R(τΩ − Ωτ) ds

∥∥∥∥
Lq(0,T ;Lp)

� C‖H(t, x)‖Lq(0,T ;L1)‖∇G0‖Lp + C ‖[R, u]τ‖Lq(0,T ;Lp)

+ C‖u‖Lq(0,T ;Lp) + C‖uG‖Lq(0,T ;Lp) + C‖Λ−1(τΩ − Ωτ)‖Lq(0,T ;Lp)

� C + CT 1/q‖[R, u]τ‖L∞(0,T ;Lp) + C‖u‖L∞(0,T ;L2p)‖G‖Lq(0,T ;L2p)

+ CT 1/q‖u‖L∞(0,T ;Lp) + C‖τΩ‖Lq(0,T ;L2p/(p+2))

� C + CT 1/q‖[R, u]τ‖L∞(0,T ;Lp) + C‖u‖L∞(0,T ;L2p)‖G‖Lq(0,T ;L2p)

+ CT 1/q‖u‖L∞(0,T ;Lp) + C‖Ω‖L∞(0,T ;L2)‖τ‖Lq(0,T ;Lp)

� C,

where we have used the following estimate

‖[R, u]τ‖Lp � C‖u‖BMO‖τ‖Lp � C‖∇u‖L2‖τ‖Lp � C.

One deduces by using (3.1) that

‖J3‖Lq(0,T ;Lp) =
∥∥∥∥∫ t

0

e(t−s)Δ∇RΛδ̃LΛ−δ̃τ(x, s) ds

∥∥∥∥
Lq(0,T ;Lp)

� C‖Λδ̃−1LΛ−δ̃τ(x, s)‖Lq(0,T ;Lp)
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� C‖LΛ−δ̃τ(x, s)‖Lq(0,T ;LΥ)

� C‖Λ−δ̃τ(x, s)‖Lq(0,T ;W δ̃, Υ)

� C‖τ(x, s)‖Lq(0,T ;LΥ) + C‖τ(x, s)‖Lq(0,T ;L2)

� C,

where Υ = 2p/2 + (1 − δ̃)p. We point out that here and in what follows, we use the
fact (see appendix for its proof)

Λ−δLf(x) = LΛ−δf(x), δ ∈ (0, 2). (3.23)

We thus obtain

‖∇G‖Lq(0,T ;Lp) � C,

which along with the simple interpolation inequality implies (3.20). Applying Λγ

to the equation (3.8) and using the incompressible condition yield

∂tΛγG − ΔΛγG = ΛγRDu − Λγ∇ · [R, u]τ − Λγ(u · ∇G)

− ΛγR(τΩ − Ωτ) − ΛγRLτ.

The Duhamel Principle entails

ΛγG(x, t) = etΔΛγG0(x) −
∫ t

0

e(t−s)Δ(Λγ∇ · [R, u]τ

− ΛγRDu + Λγ(u · ∇G))(s) ds

−
∫ t

0

e(t−s)ΔΛγR(τΩ − Ωτ)(s) ds −
∫ t

0

e(t−s)ΔΛγRLτ(s) ds.

Now we have that

‖ΛγG(t)‖Lq � K1 + K2,

where

K1 = C‖ΛγG0‖Lq + C

∫ t

0

‖e(t−s)ΔΛγ∇ · [R, u]τ‖Lq ds

+ C

∫ t

0

‖e(t−s)ΔΛγRDu‖Lq ds + C

∫ t

0

‖e(t−s)ΔΛγ(u · ∇G)‖Lq ds

+ C

∫ t

0

‖e(t−s)ΔΛγR(τΩ − Ωτ)‖Lq ds,

K2 = C

∫ t

0

‖e(t−s)ΔΛγRLτ(s)‖Lq ds.
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By means of lemma 2.3, it is not hard to check that

K1 � C‖ΛγG0‖Lq + C

∫ t

0

(t − s)−(γ+1)/2‖[R, u]τ‖Lq ds

+ C

∫ t

0

(t − s)−γ/2‖∇u‖Lq ds + C

∫ t

0

(t − s)−γ/2‖(u · ∇G)‖Lq ds

+ C

∫ t

0

(t − s)−γ/2‖τΩ‖Lq ds

� C + C

∫ t

0

s−(γ+1)/2 ds + C‖∇u‖
L

2/γ
t Lq

x

(∫ t

0

s−γ/(2−γ) ds

)(2−γ)/2

+ C

∫ t

0

(t − s)−γ/2‖u‖L2q‖∇G‖L2q ds + C

∫ t

0

(t − s)−γ/2‖τ‖L2q‖Ω‖L2q ds

� C + Ct(1−γ)/2 + C‖∇u‖
L

2/γ
t Lq

x
t1−γ

+ C‖τ‖L∞
t L2q

x
‖Ω‖

L
2/γ
t L2q

x

(∫ t

0

s−γ/(2−γ) ds

)(2−γ)/2

+ C‖u‖1/q
L∞

t L2
x
‖ω‖(q−1)/q

L∞
t L2

x

∫ t

0

(t − s)−γ/2‖∇G‖L2q ds

� C + Ct(1−γ)/2 + C‖∇u‖
L

2/γ
t Lq

x
t1−γ + C‖τ‖L∞

t L2q
x
‖∇u‖

L
2/γ
t L2q

x
t1−γ

+ C‖u‖1/q
L∞

t L2
x
‖ω‖(q−1)/q

L∞
t L2

x
‖∇G‖

L
2/γ
t L2q

x
t1−γ

� C(1 + t)1−γ .

According to (3.1) and (3.23), it follows that

K2 � C

∫ t

0

‖e(t−s)ΔΛγRΛδ̃LΛ−δ̃τ(s)‖Lq ds

� C

∫ t

0

(t − s)−(γ+δ̃)/2‖LΛ−δ̃τ‖Lq ds

� C + C

∫ t

0

(t − s)−(γ+δ̃)/2(‖τ(s)‖Lq + ‖τ(s)‖L2) ds

� C(‖τ‖L∞(0,T ;Lq) + ‖τ‖L∞(0,T ;L2))
∫ t

0

s−(γ+δ̃)/2 ds

� C.

Therefore, we obtain the desired estimate (3.21). We thus complete the proof of the
lemma. �

Next we will derive the bound for ‖ω‖L∞ which will play a significant role in
obtaining the global Hs-bound. More precisely, it reads as follows.
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Lemma 3.6. Let (u, τ) be the corresponding solution of (1.5), then it holds

max
0�t�T

‖τ(t)‖L∞ � C, (3.24)

where C is a constant depending on T and the initial data.

Proof of lemma 3.6. To begin with, it is easy to see that

u = −∇⊥(−Δ)−1ω

= −∇⊥(−Δ)−1(G + (−Δ)−1curl divτ)

= −∇⊥(−Δ)−1G −∇⊥curl div(−Δ)−2τ, (3.25)

where ∇⊥ = (−∂x2 , ∂x1)
T. Consequently, we have

∂tτ + (u · ∇)τ + Lτ + τΩ − Ωτ = −D∇⊥(−Δ)−1G −D∇⊥curl div(−Δ)−2τ.
(3.26)

Multiplying (3.26) by τ(x, t) implies

1
2
(∂t + u · ∇)|τ(x, t)|2 + τ(x, t)Lτ(x, t) = −τ(x, t)D∇⊥(−Δ)−1G

− τ(x, t)D∇⊥curl div(−Δ)−2τ,

where we have used the following identity

(τΩ − Ωτ) : |τ |r−2τ = τikΩkj |τ |r−2τij − Ωkjτji|τ |r−2τki

= τikΩkj |τ |r−2τij − Ωkjτij |τ |r−2τik

= 0.

Notice the identity

τ(x, t)Lτ(x, t) =
1
2
L(|τ(x, t)|2) +

1
2
D(x, t),

where

D(x, t) = P.V.
∫

R2

(τ(x, t) − τ(x − y, t))2

|y|2m(|y|) dy.
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This identity can be deduced by

τ(x, t)Lτ(x, t) = τ(x, t)P.V.
∫

R2

τ(x, t) − τ(x − y, t)
|y|2m(|y|) dy

= P.V.
∫

R2

|τ(x, t)|2 − τ(x, t)τ(x − y, t)
|y|2m(|y|) dy

=
1
2
P.V.

∫
R2

|τ(x, t)|2 − |τ(x − y, t)|2
|y|2m(|y|) dy

+
1
2
P.V.

∫
R2

|τ(x, t)|2 − 2τ(x, t)τ(x − y, t) + |τ(x − y, t)|2
|y|2m(|y|) dy

=
1
2
L(|τ(x, t)|2) +

1
2
P.V.

∫
R2

(τ(x, t) − τ(x − y, t))2

|y|2m(|y|) dy

=
1
2
L(|τ(x, t)|2) +

1
2
D(x, t).

We thus deduce

1
2
(∂t + u · ∇ + L)|τ(x, t)|2 + +

1
2
D(x, t) = −τ(x, t)D∇⊥(−Δ)−1G

− τ(x, t)D∇⊥curl div(−Δ)−2τ.

Thanks to (3.21), it gives that for p > 2/γ

‖D∇⊥(−Δ)−1G‖L∞ � C(‖G‖L2 + ‖ΛγG‖Lp) � C.

This leads to

| − τ(x, t)D∇⊥(−Δ)−1G| � C|τ(x, t)|.

Noticing the fundamental solutions for biharmonic equation (see, e.g., [25])

r2

8π
ln r, r = |x − y|,

it gives that

(−Δ)−2τ(x) =
1
8π

∫
R2

|y|2 ln |y|τ(x − y) dy.

Let χ(x) ∈ C∞
c (R2) be the standard smooth cut-off function satisfying

χ(x) =

{
1, |x| � 1

2 ,

0, |x| > 1.
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Therefore, it gives

|D∇⊥curl div(−Δ)−2τ(x)|

=
1
8π

∣∣∣∣∫
R2

|y|2 ln |y|(D∇⊥curl div)yτ(x − y) dy

∣∣∣∣
=

1
8π

∣∣∣∣∫
R2

|y|2 ln |y|(D∇⊥curl div)y(τ(x − y) − τ(x)) dy

∣∣∣∣
� 1

8π

∣∣∣∣∣
∫
|y|�1

χ4(y)|y|2 ln |y|(D∇⊥curl div)y(τ(x − y) − τ(x)) dy

∣∣∣∣∣
+

1
8π

∣∣∣∣∣
∫
|y|� 1

2

(1 − χ4(y))|y|2 ln |y|(D∇⊥curl div)yτ(x − y) dy

∣∣∣∣∣
=

1
8π

∣∣∣∣∣
∫
|y|�1

(D∇⊥curl div)y(χ4(y)|y|2 ln |y|)(τ(x − y) − τ(x)) dy

∣∣∣∣∣
+

1
8π

∣∣∣∣∣
∫
|y|�1/2

(D∇⊥curl div)y((1 − χ4(y))|y|2 ln |y|)τ(x − y) dy

∣∣∣∣∣
:= H1 + H2.

Direct computations yield

∂yl
(|y|2 ln |y|) = yl(2 ln |y| + 1),

∂yk
∂yl

(|y|2 ln |y|) = δkl(2 ln |y| + 1) + 2
ykyl

|y|2 ,

∂yj
∂yk

∂yl
(|y|2 ln |y|) = 2

δklyj + δjkyl + δjlyk

|y|2 − 4
yjykyl

|y|4 ,

∂yi
∂yj

∂yk
∂yl

(|y|2 ln |y|) = 2
δijδkl + δkjδil + δjlδki

|y|2 + 16
yiyjykyl

|y|6

− 4

δklyiyj + δkjyiyl + δjlykyi + δikylyj

+δilykyj + δijykyl

|y|4 ,

where

δij =

{
1, i = j;
0, i �= j.

As a result, it is not hard to check for |y| � 1 that

|∂yl
(|y|2 ln |y|)| + |∂yk

∂yl
(|y|2 ln |y|)| + |∂yj

∂yk
∂yl

(|y|2 ln |y|)|
+ |∂yi

∂yj
∂yk

∂yl
(|y|2 ln |y|)|

� C

|y|2 ,
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which implies

H1 � C

∫
|y|�1

|τ(x − y) − τ(x)|
|y|2 dy.

For the term H2, we have

H2 =
1
8π

∣∣∣∣∣
∫
|y|�1/2

(1 − χ4(y))(D∇⊥curl div)y(|y|2 ln |y|)τ(x − y) dy

∣∣∣∣∣
+

1
8π

∣∣∣∣∣
∫
|y|�1/2

4∑
m=1

Cm
4 ∇m

y (1 − χ4(y))∇4−m
y (|y|2 ln |y|)τ(x − y) dy

∣∣∣∣∣
=

1
8π

∣∣∣∣∣
∫
|y|�1/2

(1 − χ4(y))(D∇⊥curl div)y(|y|2 ln |y|)τ(x − y) dy

∣∣∣∣∣
+

1
8π

∣∣∣∣∣
∫

1/2�|y|�1

4∑
m=1

Cm
4 ∇m

y (1 − χ4(y))∇4−m
y (|y|2 ln |y|)τ(x − y) dy

∣∣∣∣∣
� C

∫
|y|�1/2

|τ(x − y)|
|y|2 dy

+ C

∫
1/2�|y|�1

(
|y|2 ln |y| + |y| ln |y| + |y| + ln |y| + 1 +

1
|y|

)
|τ(x − y)|dy

� C

∫
|y|�1/2

|τ(x − y)|
|y|2 dy + C

∫
1/2�|y|�1

|τ(x − y)|
|y|2 dy

� C

∫
|y|�1/2

|τ(x − y)|
|y|2 dy.

Consequently, keeping in mind (1.9), we infer that

|D∇⊥curl div(−Δ)−2τ(x)|

� C

∫
|y|�1

|τ(x − y) − τ(x)|
|y|2 dy + C

∫
|y|�1/2

|τ(x − y)|/|y|2 dy

� C

∫
|y|�1

|τ(x − y) − τ(x)|
|y|√m(|y|)

√
m(|y|)
|y| dy

+ C‖τ‖L2

(∫
|y|�1/2

1
|y|4 dy

)1/2

� C
√

D(x, t)

(∫
|y|�1

m(|y|)
|y|2 dy

)1/2

+ C‖τ‖L2

� C
√

D(x, t)
(∫ 1

0

m(r)
r

dr

)1/2

+ C‖τ‖L2

� C
√

D(x, t) + C.
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As a result, one obtains

| − τ(x, t)D∇⊥curl div(−Δ)−2τ | � 1
4
D(x, t) + C(|τ(x, t)| + |τ(x, t)|2).

The above estimates allow us to show

1
2
(∂t + u · ∇ + L)|τ(x, t)|2 +

1
4
D(x, t) � C1(|τ(x, t)| + |τ(x, t)|2).

Resorting to [12, (5.18)], one has

D(x, t) � C2

m(1)
|τ(x, t)|2 ln

1
ρ
− C3|τ(x, t)|

ρm(ρ)
,

where ρ ∈ (0, 1). We choose ρ ∈ (0, 1) such that

C2

16m(1)
ln

1
ρ

� C1,

which further implies

(∂t + u · ∇ + L)|τ(x, t)|2 + C3|τ(x, t)|2 � C4|τ(x, t)|. (3.27)

Let ϕ(r) be a non-decreasing positive convex smooth function which is identically
0 on 0 � r � max{‖τ0‖2

L∞ , (C4/C3)2}, and positive otherwise. Multiplying (3.27)
by ϕ′(|τ(x, t)|2) and applying the lower bound

ϕ′(f)Lf � L(ϕ(f)),

which can be deduced from [9, proposition 6.3] due to the convexity of function ϕ.
Therefore, we obtain

(∂t + u · ∇ + L)ϕ(|τ(x, t)|2) � 0. (3.28)

Keeping in mind (3.2), namely,∫
R2

|h(x)|p−2h(x)Lh(x) dx � 0,

it follows from (3.28) that

‖ϕ(|τ(x, t)|2)‖L∞ � ‖ϕ(|τ0|2)‖L∞ = 0.

This implies

‖τ(x, t)‖L∞ � max
{
‖τ0‖L∞ ,

C4

C3

}
,

which is the desired estimate (3.24). We therefore conclude the proof of
lemma 3.6. �

Finally we are ready to prove the global Hs-estimate.
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Proof of the global Hs-estimate. Applying Λs to the system (1.5), taking the L2

inner product with Λsu and Λsτ respectively, it yields

1
2

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) + ‖Λs+1u‖2
L2

�
∫

R2
Λs∇ · τ · Λsu dx +

∫
R2

ΛsDu : Λsτ dx +
∫

R2
[Λs, u · ∇]u · Λsu dx

+
∫

R2
Λs(u · ∇τ) : Λsτ dx +

∫
R2

Λs(τΩ − Ωτ) : Λsτ dx

:= H1 + H2 + H3 + H4 + H5,

where we have used the following fact

∫
R2

ΛsτLΛsτ dx � 0.

Integrating by parts and using the Young inequality, we deduce

H1 + H2 � ‖Λs+1u(t)‖L2‖Λsτ‖L2 � 1
16

‖Λs+1u‖2
L2 + C‖Λsτ‖2

L2 .

Now we recall the following classical estimates (see [26,27])

‖[Λs, f ]g‖Lp � C(‖∇f‖Lp1 ‖Λs−1g‖Lp2 + ‖Λsf‖Lp3 ‖g‖Lp4 ), (3.29)

‖Λs(fg)‖Lp � C(‖f‖Lp1 ‖Λsg‖Lp2 + ‖Λsf‖Lp3 ‖g‖Lp4 ) (3.30)

with s > 0, p2, p3 ∈ (1,∞) such that 1/p = 1/p1 + 1/p2 = 1/p3 + 1/p4. In some
context, we also need the following variant version of (3.29), whose proof is the
same one as for (3.29)

‖[Λs−1∂i, f ]g‖Lr � C(‖∇f‖Lp1 ‖Λs−1g‖Lq1 + ‖Λsf‖Lp2 ‖g‖Lq2 ). (3.31)

It follows from (3.29) that

H3 � C‖[Λs, u · ∇]u‖L4/3‖Λsu‖L4

� C‖∇u‖L2‖Λsu‖2
L4

� C‖∇u‖L2‖Λsu‖L2‖Λs+1u‖L2

� 1
16

‖Λs+1u‖2
L2 + C‖∇u‖2

L2‖Λsu‖2
L2 .
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Invoking the divergence free property, (3.31) and the Young inequality, we obtain

H4 =
∫

R2
Λs∂k(ukτi,j)Λsτi,j dx

=
∫

R2
[Λs∂k, uk]τi,jΛsτi,j dx

� C‖[Λs∂k, uk]τi,j‖L2‖Λsτ‖L2

� C(‖τ‖L∞‖Λs+1u‖L2 + ‖∇u‖L∞‖Λsτ‖L2)‖Λsτ‖L2

� 1
16

‖Λs+1u‖2
L2 + C(‖τ‖2

L∞ + ‖∇u‖L∞)‖Λsτ‖2
L2 .

By (3.30), one gets

H5 � ‖Λs(τΩ − Ωτ)‖L2‖Λsτ‖L2

� C(‖τ‖L∞‖ΛsΩ‖L2 + ‖Ω‖L∞‖Λsτ‖L2)‖Λsτ‖L2

� C(‖τ‖L∞‖Λs+1u‖L2 + ‖∇u‖L∞‖Λsτ‖L2)‖Λsτ‖L2

� 1
16

‖Λs+1u‖2
L2 + C(‖τ‖2

L∞ + ‖∇u‖L∞)‖Λsτ‖2
L2).

Combining all the above estimates yields

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) + ‖Λs+1u‖2
L2

� C(1 + ‖∇u‖L∞ + ‖τ‖2
L∞)(‖Λsu‖2

L2 + ‖Λsτ‖2
L2).

Recalling (3.25), it leads to

∇u = −∇∇⊥(−Δ)−1G −∇∇⊥curl div(−Δ)−2τ.

Now we may deduce that

‖∇u‖L∞ � C(1 + ‖τ‖L∞ ln(e + ‖Λsτ‖L2)). (3.32)

As a matter of fact, (3.32) can be deduced by using (3.21) and the high-low
frequency technique

‖∇u‖L∞ � ‖Δ−1∇u‖L∞ +
N∑

j=0

‖Δj∇u‖L∞ +
∞∑

j=N+1

‖Δj∇u‖L∞

� C‖u‖L2 +
N∑

j=0

‖Δj∇∇⊥(−Δ)−1G‖L∞

+
N∑

j=0

‖Δj∇∇⊥curl div(−Δ)−2τ‖L∞
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+
∞∑

j=N+1

‖Δj∇∇⊥(−Δ)−1G‖L∞

+
∞∑

j=N+1

‖Δj∇∇⊥curl div(−Δ)−2τ‖L∞

� C + C

∞∑
j=0

2j(2/p−γ)‖ΔjΛγG‖Lp + C

N∑
j=0

‖Δjτ‖L∞

+ C
∞∑

j=N+1

2j(1−s)2js‖Δjτ‖L2

� C + C‖ΛγG‖Lp + CN‖τ‖L∞ + C2N(1−s)‖Λsτ‖L2

� C + CN‖τ‖L∞ + C2N(1−s)‖Λsτ‖L2

� C(1 + ‖τ‖L∞ ln(e + ‖Λsτ‖L2)),

where we have selected p > 2/γ and N satisfying

N =
[
ln(e + ‖Λsτ‖L2)

(s − 1) ln 2

]
+ 1.

Taking advantage of the above inequality, we easily get

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) + ‖Λs+1u‖2
L2

� C(1 + ‖τ‖2
L∞) ln(e + ‖Λsu‖2

L2 + ‖Λsτ‖2
L2)(‖Λsu‖2

L2 + ‖Λsτ‖2
L2).

Applying the Gronwall inequality leads to

max
0�t�T

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) +
∫ T

0

‖Λs+1u(t)‖2
L2 dt < ∞.

This completely finishes the proof of theorem 1.1. �

4. The proof of theorem 1.7

This section is devoted to the proof of theorem 1.7. For simplicity, without loss of
generality, we assume μ = η = κ = γ = 1 and β = 0 in this section.

Proof of the a priori estimates of theorem 1.7. We start with the following global
L2 estimate for the system (1.4).

Lemma 4.1. Let (u, τ) be the corresponding solution of (1.4), then (u, τ) obeys the
global bound

‖u(t)‖2
L2 + ‖τ(t)‖2

L2 + 2
∫ t

0

‖∇τ‖2
L2 dt = ‖u0‖2

L2 + ‖τ0‖2
L2 . (4.1)
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The next lemma provides the global bounds for ‖∇u(t)‖Lq and ‖τ(t)‖W 1,p for
any 2 � q, p < ∞.

Lemma 4.2. Let (u, τ) be the corresponding solution of (1.4). Then, for any 2 �
p, q < ∞, (u, τ) obeys the global bound, for any t ∈ [0, T ]

‖∇u(t)‖Lq + ‖τ(t)‖W 1,p +
∫ t

0

‖Δτ(s)‖2
L2 ds � C, (4.2)

where C is a constant depending on T, p, q and the initial data.

Proof of lemma 4.2. Testing the equations (1.4)1, (1.4)2 by Δu and Δτ , respec-
tively, and summing them up, one easily gets

1
2

d
dt

(‖∇u‖2
L2 + ‖∇τ‖2

L2) + ‖Δτ‖2
L2 =

∫
R2

(u · ∇τ) : Δτ dx

+
∫

R2
(τΩ − Ωτ) : Δτ dx, (4.3)

where we have applied the following simple facts∫
R2

(∇ · τ) · Δu dx +
∫

R2
Du : Δτ dx = 0 and

∫
R2

(u · ∇)u · Δu dx = 0.

Recalling the incompressibility condition, the first term can be bounded by∫
R2

(u · ∇τ) : Δτ dx = −
∫

R2
∂l(ui∂iτkj)∂lτkj dx

= −
∫

R2
∂lui∂iτkj∂lτkj dx

� C‖∇u‖L2‖∇τ‖2
L4

� C‖∇u‖L2‖∇τ‖L2‖Δτ‖L2

� 1
8
‖Δτ‖2

L2 + C‖∇τ‖2
L2‖∇u‖2

L2 . (4.4)

By the Young inequality, one immediately has the following estimate∫
R2

(τΩ − Ωτ) : Δτ dx � C‖τ‖L∞‖∇u‖L2‖Δτ‖L2

� 1
8
‖Δτ‖2

L2 + C‖τ‖2
L∞‖∇u‖2

L2 . (4.5)

Inserting (4.4) and (4.5) into (4.3) yields

d
dt

(‖∇u‖2
L2 + ‖∇τ‖2

L2) + ‖Δτ‖2
L2 � C(‖∇τ‖2

L2 + ‖τ‖2
L∞)‖∇u‖2

L2 ,

which along the basic L2-energy estimate yields

d
dt

(‖u(t)‖2
H1 + ‖τ(t)‖2

H1) +
3
2
‖Δτ‖2

L2 � C(‖∇τ‖2
L2 + ‖τ‖2

L∞)‖u‖2
H1 . (4.6)
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Using the Brezis–Gallouet inequality in the form (see [4,5])

‖τ‖2
L∞ � C‖τ‖2

H1 ln(1 + ‖Δτ‖2
L2)

and the following inequality

px � 1
2
ex + p ln p, p, x > 0,

we conclude that

C‖τ‖2
L∞‖u‖2

H1 � C‖u‖2
H1‖τ‖2

H1 ln(1 + ‖Δτ‖2
L2)

� 1
2

+
1
2
‖Δτ‖2

L2 + C‖τ‖2
H1‖u‖2

H1 ln(1 + ‖∇u‖2
L2 + ‖τ‖2

H1)

� C +
1
2
‖Δτ‖2

L2 + C‖τ‖2
H1‖u‖2

H1 ln(1 + ‖u‖2
H1 + ‖τ‖2

H1). (4.7)

Inserting (4.7) into (4.6), we have

d
dt

Y (t) + ‖Δτ‖2
L2 � C + C(1 + ‖τ‖2

H1)Y (t) ln(1 + Y (t)),

where

Y (t) := ‖u(t)‖2
H1 + ‖τ(t)‖2

H1 .

Thanks to (4.1), we obtain

Y (t) +
∫ t

0

‖Δτ(s)‖2
L2 ds � C,

which is equal to

‖u(t)‖2
H1 + ‖τ(t)‖2

H1 +
∫ t

0

‖Δτ(s)‖2
L2 ds � C. (4.8)

This also implies ∫ t

0

‖τ(s)‖2
L∞ ds � C. (4.9)

Next we apply operator curl to the equation (1.4)1 to obtain the vorticity ω equation
as follows

∂tω + (u · ∇)ω = curl div(τ). (4.10)

However, the ‘vortex stretching’ term curl div(τ) appears to prevent us from proving
any global bound for ω, except ‖ω‖L2 due to (4.8). A natural idea would be to
eliminate curl div (τ) from the vorticity equation, which is motivated by the two
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elegant works [20,21]. To realize this idea, we take R as the singular integral
operator

R = −(−Δ)−1curl div.

By applying the operator R to the equation (1.4)2, it gives directly

∂tRτ + (u · ∇)Rτ − ΔRτ = ω −R(τΩ − Ωτ) − [R, u · ∇]τ, (4.11)

where we have used the simple fact

RDu = ω.

Now we denote Γ = ω −Rτ , which satisfies by combining (4.10) and (4.11)

∂tΓ + (u · ∇)Γ = [R, u · ∇]τ + R(τΩ − Ωτ) − ω. (4.12)

According to the definition of Ω, one may check

Ω =
1
2

(
0 −1
−1 0

)
ω := Aω,

which leads to

‖Ω‖Lm � ‖ω‖Lm , 1 � m � ∞.

Multiplying (4.12) by |Γ|q−2Γ and integrating by parts, it can be obtained that

1
q

d
dt

‖Γ(t)‖q
Lq = K1 + K2 + K3, (4.13)

where

K1 = −
∫

R2
ω |Γ|q−2Γ dx, K2 =

∫
R2

[R, u · ∇]τ |Γ|q−2Γ dx,

K3 =
∫

R2
R(τΩ − Ωτ) |Γ|q−2Γ dx.

We start with the first term which follows from the Young inequality and the
boundedness of the Riesz transform between the Lq (1 < q < ∞) space

K1 � C‖ω‖Lq‖Γ‖q−1
Lq

� C(‖Γ‖Lq + ‖Rτ‖Lq )‖Γ‖q−1
Lq

� C(‖Γ‖q
Lq + ‖Rτ‖q

Lq )

� C‖Γ‖q
Lq + C‖τ‖q

H1 , (4.14)

where we have used the fact

‖Rτ‖Lq � C(q)‖τ‖Lq � C(q)‖τ‖H1 .

Making use of the following commutator estimate (see [21, theorem 3.3] or
[13, corollary 3.2] for details)

‖[R, u · ∇]f‖B0
p,r

� C(r, p)‖∇u‖Lp(‖f‖B0∞,r
+ ‖f‖Lp),
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for any smooth incompressible vector field u and any (p, r) ∈ [2, ∞) × [1, ∞], we
thus obtain

K2 =
∫

R2
[R, u · ∇]τ |Γ|q−2Γ dx

� C‖[R, u · ∇]τ‖Lq‖Γ‖q−1
Lq

� C(q)‖[R, u · ∇]τ‖B0
q,2

‖Γ‖q−1
Lq

� C(q)‖∇u‖Lq (‖τ‖B0
∞,2

+ ‖τ‖L2)‖Γ‖q−1
Lq

� C(q)‖ω‖Lq (‖τ‖B0
∞,2

+ ‖τ‖L2)‖Γ‖q−1
Lq

� C(q)(‖Γ‖Lq + ‖Rτ‖Lq )(‖τ‖B0
∞,2

+ ‖τ‖L2)‖Γ‖q−1
Lq

� C(q)(‖τ‖B0
∞,2

+ ‖τ‖L2)(‖Γ‖q
Lq + ‖Rτ‖q

Lq )

� C(q)(‖τ‖B0
∞,2

+ ‖τ‖L2)(‖Γ‖q
Lq + ‖τ‖q

H1). (4.15)

The last term can be easily estimated by

K3 � ‖R(τAω −Aωτ)‖Lq‖Γ‖q−1
Lq

� C(q)‖τAω −Aωτ‖Lq‖Γ‖q−1
Lq

� C(q)‖τ‖L∞‖ω‖Lq‖Γ‖q−1
Lq

� C(q)‖τ‖L∞(‖Γ‖Lq + ‖Rτ‖Lq )‖Γ‖q−1
Lq

� C(q)‖τ‖L∞(‖Γ‖q
Lq + ‖τ‖q

H1). (4.16)

Putting estimates (4.14), (4.15) and (4.16) into (4.13), we obtain

d
dt

‖Γ‖q
Lq � C(q)(1 + ‖τ‖H1 + ‖τ‖L∞)‖Γ‖q

Lq + C(q)(1 + ‖τ‖H1 + ‖τ‖L∞)‖τ‖q
H1 ,

where we have used

‖τ‖B0
∞,2

� C‖τ‖H1 .

Thanks to the Gronwall inequality and (4.8)–(4.9), we show

‖Γ(t)‖Lq + ‖τ(t)‖Lq � C(q),

which leads to

‖∇u(t)‖Lq � ‖ω(t)‖Lq � C(q). (4.17)

Next, our main target is to estimate ‖∇τ‖Lq for any 2 < q < ∞. Applying ∇ to the
equation (1.4)2 leads to

∂t∇τ + (u · ∇)∇τ − Δ∇τ = ∇Du −∇(τΩ − Ωτ) −∇u · ∇τ. (4.18)
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Multiplying (4.18) by |∇τ |q−2∇τ and integrating over R
2, it thus follows that

1
q

d
dt

‖∇τ(t)‖q
Lq + (q − 1)

∫
R2

|∇2τ |2|∇τ |q−2 dx � F1 + F2 + F3,

where F1, F2 and F3 are given by

F1 =
∫

R2
∇Du(|∇τ |q−2∇τ) dx, F2 = −

∫
R2

∇(τΩ − Ωτ)(|∇τ |q−2∇τ) dx,

F3 = −
∫

R2
∇u · ∇τ(|∇τ |q−2∇τ) dx.

Owing to integrating by parts and using the Hölder inequality, one obtains

F1 � (q − 1)
∫

R2
|Du| |∇τ |q−2|∇2τ |dx

� q − 1
8

∫
R2

|∇2τ |2|∇τ |q−2 dx + C(q)
∫

R2
|Du|2 |∇τ |q−2 dx

� q − 1
8

∫
R2

|∇2τ |2|∇τ |q−2 dx + C(q)‖∇u‖2
Lq‖∇τ‖q−2

Lq

F2 � (q − 1)
∫

R2
|(τΩ − Ωτ)| |∇τ |q−2|∇2τ |dx

� q − 1
8

∫
R2

|∇2τ |2|∇τ |q−2 dx + C(q)
∫

R2
|τΩ|2 |∇τ |q−2 dx

� q − 1
8

∫
R2

|∇2τ |2|∇τ |q−2 dx + C(q)‖τ‖2
L∞‖∇u‖2

Lq‖∇τ‖q−2
Lq .

The term F3 admits the same bound as F2. As a matter of fact, by the
incompressible condition, we have

F3 = −
∫

R2
∇ · (∇uτ)(|∇τ |q−2∇τ) dx

� q − 1
8

∫
R2

|∇2τ |2|∇τ |q−2 dx + C(q)‖τ‖2
L∞‖∇u‖2

Lq‖∇τ‖q−2
Lq .

Collecting the above estimates of F1 − F3 gives

d
dt

‖∇τ(t)‖2
Lq � C(q)(1 + ‖τ‖2

L∞)‖∇u‖2
Lq .

By (4.17) and (4.9), we have

max
0�t�T

‖∇τ(t)‖Lq � C(q), 2 < q < ∞.

Combining all the above estimates gives (4.2). Therefore, we finally conclude the
proof of lemma 4.2. �

The estimates of lemma 4.2 allow us to show the following lemma.
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Lemma 4.3. Let (u, τ) be the corresponding solution of (1.4). Then, for any 2 �
p, q < ∞, τ obeys the global bound

‖∇2τ‖Lp(0,T ;Lq) � C, (4.19)

where C is a constant depending on T , p, q and the initial data. For any 0 � δ < 2

‖Λδτ‖L∞(0,T ;L∞) � C, (4.20)

where C is a constant depending on T , δ and the initial data.

Remark 4.4. Unfortunately, we are unable to get the following key estimate

‖∇2τ‖L∞(0,T ;L∞) � C. (4.21)

If one could obtain the above estimate (4.21), then according to the equation (4.10),
we have the key estimate ‖ω‖L∞ < ∞, which allows us to conclude the global
regularity result for the system (1.4).

Proof of lemma 4.3. Applying ∇2 to equation (1.4)2 and making use of the
Duhamel Principle, we immediately have

∇2τ(x, t) = etΔ∇2τ0(x) −
∫ t

0

e(t−s)ΔΔ(−Δ)−1∇2(Du − (u · ∇)τ

− (τΩ − Ωτ))(s) ds.

By means of lemma 2.4, it is clear that

‖∇2τ‖Lp(0,T ;Lq)

� ‖etΔ∇2τ0‖Lp(0,T ;Lq)

+
∥∥∥∥∫ t

0

e(t−s)ΔΔ(−Δ)−1∇2(Du − (u · ∇)τ − (τΩ − Ωτ))(s) ds

∥∥∥∥
Lp(0,T ;Lq)

� C(T, ‖τ0‖Hs) + C‖(−Δ)−1∇2(Du − (u · ∇)τ − (τΩ − Ωτ))‖Lp(0,T ;Lq)

� C(T, ‖τ0‖Hs) + C‖Du − (u · ∇)τ − (τΩ − Ωτ)‖Lp(0,T ;Lq)

� C(T, ‖τ0‖Hs) + C‖Du‖Lp(0,T ;Lq) + C‖(u · ∇)τ‖Lp(0,T ;Lq) + C‖τΩ‖Lp(0,T ;Lq)

� C(T, ‖τ0‖Hs) + CT 1/p‖ω‖L∞(0,T ;Lq) + CT 1/p‖u‖L∞(0,T ;L∞)‖∇τ‖L∞(0,T ;Lq)

+ CT 1/p‖τ‖L∞(0,T ;L∞)‖Ω‖L∞(0,T ;Lq)

� C(p, q, T, u0, τ0),

where in the last line we have used the estimates of lemma 4.2. This yields (4.19).
Applying Λδ to equation (1.4)2 and using the Duhamel Principle, we obtain

Λδτ(x, t) = etΔΛδτ0(x) −
∫ t

0

e(t−s)ΔΛδ(Du − (u · ∇)τ − (τΩ − Ωτ))(s) ds.
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By choosing q > 2
/ (2 − δ), it follows from lemma 2.3 that

‖Λδτ‖L∞(0,T ;L∞) � ‖etΔΛδτ0‖L∞(0,T ;L∞) +
∥∥∥∥∫ t

0

e(t−s)ΔΛδDu(s) ds

∥∥∥∥
L∞(0,T ;L∞)

+
∥∥∥∥∫ t

0

e(t−s)ΔΛδ((u · ∇)τ)(s) ds

∥∥∥∥
L∞(0,T ;L∞)

+
∥∥∥∥∫ t

0

e(t−s)ΔΛδ(τΩ − Ωτ)(s) ds

∥∥∥∥
L∞(0,T ;L∞)

� C + C

∥∥∥∥∫ t

0

(t − s)−δ/2−1/q‖ω(s)‖Lq ds

∥∥∥∥
L∞(0,T )

+ C

∥∥∥∥∫ t

0

(t − s)−δ/2−1/q‖u(s)‖L∞‖∇τ(s)‖Lq ds

∥∥∥∥
L∞(0,T )

+ C

∥∥∥∥∫ t

0

(t − s)−δ/2−1/q‖τ(s)‖L∞‖ω(s)‖Lq ds

∥∥∥∥
L∞(0,T )

� C + CT 1−δ/2−1/q

� C(δ, T, u0, τ0),

which is (4.20). Therefore, this concludes the proof of the lemma. �

By this time, we have obtained the desired results (1.14)–(1.17), thus we complete
the proof of the a priori estimates of theorem 1.7. �

We remark that the high regularity of τ was obtained, however, for the velocity
u we only have (4.17), which has no effect on bounding the terms ‖ω‖L∞ , not to
speak of the term ‖∇u‖L∞ . As a matter of fact, at present we are unable to control
the key quantity ‖ω‖L∞ of the system (1.4). But if one imposes a condition on
τ , namely (1.18), then we would derive the bound for ‖ω‖L∞ which will play a
significant role in obtaining the global Hs-bound. More precisely, we have

Lemma 4.5. Let (u, τ) be the corresponding solution of (1.4). If the condition (1.18)
holds, then there exist some constants C such that

max
0�t�T

‖ω(t)‖L∞ � C. (4.22)

Proof of lemma 4.5. Applying the maximum principle to the equation (4.12), it has

d
dt

‖Γ(t)‖L∞ � ‖[R, u · ∇]τ‖L∞ + ‖R(τΩ − Ωτ)‖L∞ + ‖ω‖L∞ . (4.23)

By the following commutator estimate (see [21, theorem 3.3] or [13, corollary 3.2])

‖[R, u · ∇]f‖B0∞,r
� C(‖ω‖Lp + ‖ω‖L∞)(‖f‖Bε∞,r

+ ‖f‖Lp), ε > 0,
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one easily concludes that for any 0 < ε < 1 − 2/p

‖[R, u · ∇]τ‖L∞ � ‖[R, u · ∇]τ‖B0
∞,1

� C(‖ω‖Lp + ‖ω‖L∞)(‖τ‖Bε
∞,1

+ ‖τ‖Lp)

� C(‖ω‖Lp + ‖Γ‖L∞ + ‖Rτ‖L∞)(‖τ‖Bε
∞,1

+ ‖τ‖Lp)

� C(‖ω‖Lp + ‖Γ‖L∞ + ‖τ‖L2 + ‖τ‖Bε
∞,1

)(‖τ‖Bε
∞,1

+ ‖τ‖Lp)

� C(‖ω‖Lp + ‖Γ‖L∞ + ‖τ‖L2 + ‖τ‖W 1,p)(‖τ‖W 1,p + ‖τ‖Lp)

� C(1 + ‖Γ‖L∞), (4.24)

where we have applied the estimates of lemma 4.2. It is also easy to see

‖ω‖L∞ � C(1 + ‖Γ‖L∞). (4.25)

Now we will handle the second term at the right-hand side of (4.23). By the
definition of the Besov space and the Bony decomposition, we get

‖R(τΩ − Ωτ)‖L∞ = ‖R(τAω −Aωτ)‖L∞

� ‖R(τAω −Aωτ)‖B0
∞,1

� C‖τω‖B0
∞,1

+ C‖u‖L2‖τ‖L2

= C
(
‖Tτω‖B0

∞,1
+ ‖Tωτ‖B0

∞,1
+ ‖R(ωτ)‖B0

∞,1

)
+ C‖u‖L2‖τ‖L2 . (4.26)

According to the definition of the Besov space, it is not hard to check that

‖Tωτ‖B0
∞,1

� C‖ω‖L∞‖τ‖B0
∞,1

� C‖ω‖L∞‖τ‖W 1,p

� C(1 + ‖Γ‖L∞),

‖R(ωτ)‖B0
∞,1

� C‖R(ωτ)‖Bε
∞,1

� C‖ω‖B0∞,∞‖τ‖Bε
∞,1

� C‖ω‖L∞‖τ‖W 1,p

� C(1 + ‖Γ‖L∞),

where 0 < ε < 1 − 2/p. In order to bound the term Tτω, we need the condition
(1.18). Actually, it allows us to deduce

‖Tτω‖B0
∞,1

�
∑
j�0

‖Sj−1τΔjω‖L∞

=
∑

0�j�j0−1

‖Sj−1τΔjω‖L∞ + C
∑
j�j0

‖Sj−1τΔjω‖L∞
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� C
∑

0�j�j0−1

‖Sj−1τ‖L∞‖Δjω‖L∞ + C
∑
j�j0

‖Sj−1τ‖L∞‖Δjω‖L∞

� Cj0‖τ‖L∞‖ω‖L∞ + C
∑
j�j0

‖Sj−1τ‖L∞‖ω‖L∞

� C‖ω‖L∞ + C‖ω‖L∞
∑
j�j0

‖Sj−1τ‖L∞

� C(1 + ‖Γ‖L∞) +
∑
j�j0

‖Sj−1τ‖L∞(1 + ‖Γ‖L∞).

We would like to point out that this is the only place in the proof where we use the
condition (1.18). Putting the above estimates into (4.26) yields

‖R(τΩ − Ωτ)‖L∞ � C(1 + ‖Γ‖L∞) +
∑
j�j0

‖Sj−1τ‖L∞(1 + ‖Γ‖L∞). (4.27)

Combining (4.23), (4.24), (4.25) and (4.27) ensures

d
dt

‖Γ(t)‖L∞ � C(1 + ‖Γ‖L∞) +
∑
j�j0

‖Sj−1τ‖L∞(1 + ‖Γ‖L∞).

The Gronwall inequality and the condition (1.18) allow us to obtain

max
0�t�T

‖Γ(t)‖L∞ � C,

which further implies that

max
0�t�T

‖ω(t)‖L∞ � C.

Therefore, this completes the proof of the lemma. �

Now we are ready to prove our main theorem 1.7 with the obtained estimates at
our disposal.

Proof of the regularity criterion of theorem 1.7. Applying the operator Λs with
s > 2 to the system (1.4), taking the L2 inner product with Λsu and Λsτ ,
respectively, and adding them up, we can get

1
2

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) + ‖Λs+1τ‖2
L2

=
∫

R2
Λs∇ · τ · Λsu dx +

∫
R2

ΛsDu : Λsτ dx +
∫

R2
[Λs, u · ∇]u · Λsu dx

+
∫

R2
Λs(u · ∇τ) : Λsτ dx +

∫
R2

Λs(τΩ − Ωτ) : Λsτ dx

:= H1 + H2 + H3 + H4 + H5. (4.28)
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In what follows, we will handle each term at the right-hand side of (4.28) separately.
We get by integrating by parts and using the Young inequality that

H1 + H2 � ‖Λsu(t)‖L2‖Λs+1τ‖L2 � 1
4
‖Λs+1τ‖2

L2 + C‖Λsu‖2
L2 . (4.29)

As a consequence of (3.29), we have

H3 � C‖[Λs, u · ∇]u‖L2‖Λsu‖L2 � C‖∇u‖L∞‖Λsu‖2
L2 . (4.30)

By use of the divergence free property and (3.30), it follows that

H4 =
∫

R2
Λs∂k(ukτi,j) : Λsτi,j dx

� C‖Λs(uτ)‖L2‖Λs+1τ‖L2

� C(‖τ‖L∞‖Λsu‖L2 + ‖u‖L∞‖Λsτ‖L2)‖Λs+1τ‖L2

� 1
4
‖Λs+1τ‖2

L2 + C(‖τ‖2
L∞‖Λsu‖2

L2 + ‖u‖2
L∞‖Λsτ‖2

L2). (4.31)

Similarly, the last term can be estimated as follows

H5 � ‖Λs−1(τΩ − Ωτ)‖L2‖Λs+1τ‖L2

� C(‖τ‖L∞‖Λs−1Ω‖L2 + ‖Ω‖Lq‖Λs−1τ‖L2q/(q−2))‖Λs+1τ‖L2 (q > 2)

� C(‖τ‖L∞‖Λs−1Ω‖L2 + ‖Ω‖Lq‖τ‖(q−2)/sq
L2 ‖Λsτ‖((s−1)q+2)/sq

L2 )‖Λs+1τ‖L2

� 1
4
‖Λs+1τ‖2

L2 + C(‖τ‖2
L∞‖Λsu‖2

L2 + ‖w‖2
Lq‖τ‖2(q−2)/sq

L2 ‖Λsτ‖(2(s−1)q+4)/sq
L2 )

� 1
4
‖Λs+1τ‖2

L2 + C(‖τ‖2
L∞‖Λsu‖2

L2 + ‖w‖2
Lq + ‖w‖2

Lq‖Λsτ‖2
L2). (4.32)

Plugging together the preceding estimates (4.29), (4.30), (4.31) and (4.32) into
(4.29), we find the following differential type inequality

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) + ‖Λs+1τ‖2
L2

� C(1 + ‖∇u‖L∞ + ‖w‖2
Lq + ‖u‖2

L∞ + ‖τ‖2
L∞)(‖Λsu‖2

L2 + ‖Λsτ‖2
L2)

� C(1 + ‖∇u‖L∞)(‖Λsu‖2
L2 + ‖Λsτ‖2

L2). (4.33)

To control the term ‖∇u‖L∞ , we will appeal to the following logarithmic Sobolev
embedding inequality (see [2])

‖∇u‖L∞(R2) � C(1 + ‖u‖L2(R2) + ‖ω‖L∞(R2)ln(e + ‖Λsu‖L2(R2))), s > 2. (4.34)

Applying (4.34) to (4.33) yields

d
dt

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) + ‖Λs+1τ‖2
L2

� C(1 + ‖ω‖L∞) ln(e + ‖Λsu‖2
L2 + ‖Λsτ‖2

L2)(‖Λsu‖2
L2 + ‖Λsτ‖2

L2). (4.35)
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Applying the Gronwall inequality to (4.35) gives that

max
0�t�T

(‖Λsu(t)‖2
L2 + ‖Λsτ(t)‖2

L2) < ∞.

This bound implies that the local solution can be extended to [0, T ]. Thus, we
completely finish the proof of theorem 1.7. �

5. The proof of theorem 1.9

If we add the dissipation term (−Δ)αu to the velocity equation of the system (1.4),
then with suitable modifications, it is not difficult to deduce that the estimates
(1.14)–(1.17) are still true for the corresponding system. In order to avoid much
of the repetition, we omit the details. In this case, the estimates (1.14)–(1.17) are
sufficient for us to get the global Hs (s > 2) estimate without (4.22). Actually, it
suffices to bound H3 as follows which is different from (4.30)

H3 � C‖[Λs, u · ∇]u‖L2‖Λsu‖L2

� C‖∇u‖Lq‖Λsu‖L2q/(q−2)‖Λsu‖L2

� C‖∇u‖Lq‖Λsu‖(αq−2)/αq
L2 ‖Λs+αu‖2/αq

L2 ‖Λsu‖L2

� 1
4
‖Λs+αu‖2

L2 + C‖∇u‖αq/(αq−1)
Lq ‖Λsu‖2

L2 ,

where q � 2/α. We would like to point out that this is the only place in the proof
where we use the main assumption of the theorem, namely α > 0. The other four
terms H1, H2, H4, H5 can be bounded as the same as in proving theorem 1.7. We
thus complete the proof of theorem 1.9.

Appendix A. The proof of (3.14) and (3.23)

Let us start with the proof of (3.14). By the definition of operator L, we obtain
that

∫
R2

Lfg dx

= P.V.
∫

R2

∫
R2

(f(x) − f(x − y))g(x)
|y|2m(|y|) dydx

= P.V.
∫

R2

∫
R2

f(x)(g(x) − g(x − y)) + f(x)g(x − y) − f(x − y)g(x)
|y|2m(|y|) dydx

=
∫

R2
fLg dx + P.V.

∫
R2

∫
R2

f(x)g(x − y) − f(x − y)g(x)
|y|2m(|y|) dydx. (A.1)
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By using the variable substitution x = x̃ − ỹ, y = −ỹ, we have

I := P.V.
∫

R2

∫
R2

f(x)g(x − y) − f(x − y)g(x)
|y|2m(|y|) dydx

= P.V.
∫

R2

∫
R2

f(x̃ − ỹ)g(x̃) − f(x̃)g(x̃ − ỹ)
| − ỹ|2m(| − ỹ|) dỹdx̃

= −P.V.
∫

R2

∫
R2

f(x̃)g(x̃ − ỹ) − f(x̃ − ỹ)g(x̃)
|ỹ|2m(|ỹ|) dỹdx̃

= −I,

which implies

P.V.
∫

R2

∫
R2

f(x)g(x − y) − f(x − y)g(x)
|y|2m(|y|) dydx = 0.

This along with (A.1) gives ∫
R2

Lfg dx =
∫

R2
fLg dx.

This concludes the proof of (3.14).
The proof of (3.23) can be performed as follows. The well-known Riesz potential

operator Λ−δ with δ ∈ (0, 2) reads

Λ−δf(x) = C(δ)
∫

R2

f(y)
|x − y|2−δ

dy,

where C(δ) is a positive constant depending only on δ. For the sake of simplicity, in
what follows we ignore the constant C(δ). Recalling the definition of the operator
L, we have

Λ−δLf(x) =
∫

R2

Lf(y)
|x − y|2−δ

dy

= P.V.
∫

R2

∫
R2

f(y) − f(y − z)
|x − y|2−δ|z|2m(|z|) dzdy. (A.2)

On the other hand, it also implies

LΛ−δf(x) =P.V.
∫

R2

Λ−δf(x) − Λ−δf(x − y)
|y|2m(|y|) dy

=P.V.
∫

R2

∫
R2

f(z)
|x − z|2−δ|y|2m(|y|) dzdy

− P.V.
∫

R2

∫
R2

f(z)
|x − y − z|2−δ|y|2m(|y|) dzdy. (A.3)
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Thanks to the variable substitution z = z̃ − ỹ, y = ỹ, we infer

P.V.
∫

R2

∫
R2

f(z)
|x − y − z|2−δ|y|2m(|y|) dzdy

= P.V.
∫

R2

∫
R2

f(z̃ − ỹ)
|x − z̃|2−δ|ỹ|2m(|ỹ|) dz̃dỹ

= P.V.
∫

R2

∫
R2

f(z − y)
|x − z|2−δ|y|2m(|y|) dzdy,

which along with (A.3) further shows by the variable substitution z = ỹ, y = z̃ that

LΛ−δf(x) = P.V.
∫

R2

∫
R2

f(z) − f(z − y)
|x − z|2−δ|y|2m(|y|) dzdy

= P.V.
∫

R2

∫
R2

f(ỹ) − f(ỹ − z̃)
|x − ỹ|2−δ|z̃|2m(|z̃|) dz̃dỹ

= P.V.
∫

R2

∫
R2

f(y) − f(y − z)
|x − y|2−δ|z|2m(|z|) dzdy. (A.4)

Combining (A.2) and (A.4), we finally get

Λ−δLf(x) = LΛ−δf(x).

This completes the proof of (3.23).
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32 P. G. Lemarié-Rieusset. Recent developments in the Navier-Stokes problem, Chapman
Hall/CRC Research Notes in Mathematics, vol. 431 (Boca Raton, FL: Chapman Hall/CRC,
2002).

33 F. Lin, C. Liu and P. Zhang. On hydrodynamics of viscoelastic fluids. Comm. Pure Appl.
Math. 58 (2005), 1437–1471.

34 P. Lions and N. Masmoudi. Global solutions for some Oldroyd models of non-Newtonian
flows. Chinese Ann. Math. Ser. B 21 (2000), 131–146.

https://doi.org/10.1017/prm.2019.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.3


Regularity results for the 2D critical Oldroyd-B model 1913

35 N. Masmoudi. Global existence of weak solutions to macroscopic models of polymeric flows.
J. Math. Pures Appl. 96 (2011), 502–520.

36 J. G. Oldroyd. Non-Newtonian effects in steady motion of some idealized elastico-viscous
liquids. Proc. Roy. Soc. London Ser. A 245 (1958), 278–297.

37 Z. Ye. On the global regularity of the 2D Oldroyd-B-type model, Annali di Matematica
(2018). https://doi.org/10.1007/s10231-018-0784-2.

38 Z. Ye and X. Xu. Global regularity for the 2D Oldroyd-B model in the corotational case.
Math. Methods Appl. Sci. 39 (2016), 3866–3879.

39 R. Zi. Global solution to the incompressible Oldroyd-B model in hybrid Besov spaces.
Filomat 30 (2016), 3627–3639.

40 R. Zi, D. Fang and T. Zhang. Global solution to the incompressible Oldroyd-B model in
the critical Lp framework: the case of the non-small coupling parameter. Arch. Rational
Mech. Anal. 213 (2014), 651–687.

https://doi.org/10.1017/prm.2019.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2019.3

	1 Introduction
	2 Preliminaries
	3 The proof of theorem 1.1
	4 The proof of theorem 1.7
	5 The proof of theorem 1.9
	A Appendix A. The proof of (3.14) and (3.23)
	References



