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Abstract
Recently there has been significant work in the social sciences involving ensembles of social networks, that
is, multiple, independent, social networks such as students within schools or employees within organiza-
tions. There remains, however, very little methodological work on exploring these types of data structures.
We present methods for clustering social networks with observed nodal class labels, based on statistics of
walk counts between the nodal classes. We extend this method to consider only non-backtracking walks,
and introduce a method for normalizing the counts of long walk sequences using those of shorter ones.We
then present a method for clustering networks based on these statistics to explore similarities among net-
works. We demonstrate the utility of this method on simulated network data, as well as on advice-seeking
networks in education.
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1. Introduction
There are many contexts in the social sciences that involve ensembles of social networks, that is,
multiple, independent networks such as networks of students in different classes or schools (Gest
and Rodkin, 2011; Harris et al., 2009; Paluck and Shepherd, 2012), networks of teachers in differ-
ent schools (Frank et al., 2004; Hopkins et al., 2015; Spillane et al., 2017), or employee networks
at different companies (Sarkar et al., 2010). Recently, a small body of research has focused on
multilevel statistical network models; there has been some recent work on multilevel social selec-
tion models (Snijders and Kenny, 1999; Sweet et al., 2013; Zijlstra et al., 2006), influence models
(Frank et al., 2014), and models that disentangle the two (Snijders and Baerveldt, 2003; Snijders
et al., 2008).

Still, there has been very little collective attention paid to exploratory methods for analyzing
multiple social networks. The work that does exist tends to focus on a substantive analysis (e.g.,
Sinani et al., 2008) or anothermethodological issue altogether (e.g., Sweet and Zheng, 2017; Traud
et al., 2011). One possible exception is Faust and Skvoretz (2002), who used parameter estimates
from network models in an exploratory comparative analysis.

We argue that exploratory methods for multiple network data are needed, given the increas-
ing availability of data and renewed focus on both replication and generalizability in substantive
research. In addition, we argue that these methods both scale to accommodate larger datasets and
allow analysts to incorporate content knowledge in their exploration.
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We propose using cluster analysis to cluster social networks based on tie structure among nodes
with certain attributes. While cluster analysis has largely been applied to individual networks to
determine communities of nodes, we aim to cluster entire networks into groups that are similar in
terms of how nodes of some a certain type interact. Our pedagogical example focuses on advice-
seeking networks across 14 elementary schools. School staff members have various assigned roles:
teacher, department chair, instructional coach, and administrator. Thus, our method aims to clus-
ter schools based on the differing patterns of advice-seeking ties in each school, between staff of
different roles.

Towards this aim, we highlight a data-mining concept known as a graph kernel (Kashima et al.,
2003; Ralaivola et al., 2005; Vishwanathan et al., 2010), in which each network is implicitly rep-
resented by a vector of attributes that are derived from its adjacency matrix, which for particular
choices of attributes can be efficiently manipulated by a technique known as the “kernel trick”
(Friedman et al., 2001). For example, Ralaivola et al. (2005) consider settings where nodal group
labels are included with the network data and propose to represent each network by its walk
counts between the nodal groups. For this choice of attributes, very high dimensional attribute
vectors—i.e., involving many different walk patterns—can be tractably utilized, which potentially
may improve the richness of the network representation.

In this work, we propose extensions to the methodology of Ralaivola et al. (2005) which may
improve the interpretability of the walk counts, and also their suitability for sparse networks.
Specifically, we propose a method for normalizing the walk count statistics. Just as the skewness
of a distribution normalizes by variance and is a better descriptor than the unnormalized third
moment, our walk counts will be similarly normalized in hopes of better representing the net-
work. Additionally, we propose counting only the non-backtracking walks in a network, which
has been shown to improve performance for sparse graphs in other settings (Krzakala et al., 2013;
Martin et al., 2014).

In our advice-seeking network data, we conjecture that the usage of walk counts between staff
members in a formal leadership position (coach, chair, and administrator) and staff members
without a formal leadership position may be informative. As information might propagate in a
network by “walking” along its edges, we believe that the walk count statistics will capture aspects
of the school networks that are relevant to the flow of information between teachers and formally
designated school leaders.

2. Related work: data analysis for ensembles of networks
When analyzing data from multiple networks, it is common to characterize the networks as inde-
pendent replications or samples from some super population of networks; that is, these networks
are isolated, independent, but similar enough to one another to be analyzed collectively (Lazega
and Snijders, 2015; Sweet et al., 2013). Thus in our discussion of exploratory methods for multiple
network data, we generally assume that networks are comparable; network ties represent the same
relationship across networks, and ties are measured in the same way.

Our discussion will focus specifically on studies involving cluster analysis, but we note that this
is not a comprehensive review of the literature. One notable work is Faust and Skvoretz (2002),
who clustered 42 different networks based after fitting network models. Given each fitted net-
work model, they calculated a pairwise similarity measure based on predicted tie probabilities for
one network based on the parameter estimates from another network. They used correspondence
analysis to organize these similarities. It is worth noting that this is the only study in which the
nodes are a different species across each network.

Related to cluster analysis on an ensemble of networks, existing work has also considered the
classification task. For example, Saigo et al. (2009) considered classifiers which in principle could
use all possible network subgraphs as the set of attributes to describe each network. As this is
a computationally intractable set to enumerate, a computational technique known as column
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Figure 1. A binary, directed social network with six nodes
can be represented by a sociomatrix (left) or a sociogram
(right). Leaders are represented as circles and followers are
shown as squares in the sociogram (right).

generation was used to greedily select subgraphs to be added to the set of network attributes
under consideration. In Vogelstein et al. (2013), a classifier was developed where the network
attributes are a subset of all

(n
2
)
dyads; this subset is selected by testing for each dyad the hypoth-

esis that its probability of occurrence is equal across classes. In addition, classifiers using graph
kernels have been considered in works such as Ralaivola et al. (2005), Vishwanathan et al. (2010),
and Kashima et al. (2003). Our paper extends the methodology for random walk kernels (e.g.,
Ralaivola et al. (2005)), by proposing a normalization for the walk counts and by considering the
usage of non-backtracking walks.

3. Using walk counts to cluster networks
In this section, we present the walk count statistics used in our graph kernel approach. We also
give extensions to improve interpretability and suitability for sparse networks.

3.1 Counting walks in a network
To apply the walk count statistics of Ralaivola et al. (2005), we require a social network with nodal
class labels. That is, we require an n× n sociomatrix Y , such that Yij is the value of the relationship
from node i to node j, along with a categorical label for each node. For example, in Section 5 we
consider advice networks between teachers, where a tie indicates that a teacher goes to another
teacher for advice regarding instruction on a regular basis, and where the data contain a categori-
cal label for each teacher, designating whether or not they hold a formal leadership position in the
school, such as instructional coach or principal.

Relationships are measured as binary, ordinal, or continuous, and network ties may be direc-
tional. For example, advice-seeking networks are directed so that Y is not necessarily symmetric.
For simplicity, our examples will involve binary-valued network ties, such that Yij = 1 indicates
the presence of a tie from i to j; however, our walk count formulae will also be applicable to
multigraphs and nonnegative weighted graphs without modification.

A toy example network is given in Figure 1, which shows the binary sociomatrix Y for the six
nodes and the corresponding sociogram (network plot). In addition, our sociogram uses squares
and circles to denote followers and leaders, respectively. Note that being a leader or a follower
is a node-level attribute determined independently from the network structure; for example, in a
school, some staff members are leaders based on their formal position. Further, this designation
could be generalized to a different node-level attribute.

We will use the example network in Figure 1 throughout this section. We define a walk as
a sequence of connected nodes (respecting tie directionality) which can include the same node
or edge multiple times. For example, a possible walk from node 1 to node 2 in our toy network
(Figure 1) is 1–3–2, where we start at node 1, then go to node 3, and then to node 2. Another
longer walk from node 1 to node 2 is 1–3–1–3–2. We can also specify the length of the walk; the
walk 1–3–2 has length 2 since it traverses two edges in the network, whereas the walk of 3–1–3–2
has length 3.
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Table 1. Number of walks of length 1 and 2 of the toy network Figure 1

ll lf fl ff

2 1 3 0

lll llf lfl lff fff flf fll ffl

2 1 1 0 0 1 3 0

In our toy example (Figure 1), there are 2 length 1 walks from leaders to leaders (2–3 and 3–2)
and 1 length 1 walk from leaders to followers (3–1). As examples of length 2 walks, 2–3–1 is the
only length 2 walk in the network from leader to leader to follower, while there exist 2 differ-
ent length 2 walks involving leaders only, namely 3–2–3 and 2–3–2. For our example network
(Figure 1), Table 1 shows the possible walk configurations and the corresponding length 1 and 2
walk counts; there are four possible sequences corresponding to length 1 walks (or “length 1 walk
types”) and eight possible length 2 walk sequences. Of course, walks of any length can be enumer-
ated; for our toy example, there is at most 1 walks of length 3 for a given configuration, so we did
not include these counts or counts of longer walks in Table 1.

To compute these counts as well as counts of longer walks, define Dl as a diagonal matrix such
that [Dl]ii = 1 if node i is a leader and 0 otherwise. Similarly, Df is defined as the diagonal matrix
such that [Df ]ii = 1 for follower nodes and 0 otherwise. Then we can calculate the number of
walks by taking products of Y , Dl, and Df . This is perhaps best illustrated by an example. LetWlf
denote the number of length 1 walks from leaders to followers, then

Wlf =
∑

i:leader

∑
j:follower

Yij = 1TDlYDf 1

In this formula, one can easily see that we are creating a matrix DlYDf that has a 1 for every
tie from a leader to a follower and 0 otherwise. Then we pre- and post-multiply by the vector 1 to
compute the sum of the entries in DlYDf .

For longer walks, we can extend the formula to capture additional ties. For example,

Wllfl =
∑

i:leader

∑
j:leader

∑
k:follower

∑
l:leader

YijYjkYkl = 1TDlYDlYDf YDl1

counts the number of walks which follow the sequence llfl, and for a general sequence c1c2 · · · c�
where ci ∈ {l, f } for i= 1, . . . , �, it holds that

Wc1···c� = 1TDc1

(
�∏

i=2
YDci

)
1 (1)

Given a network and a list of walk types, Equation (1) can be evaluated to count the number of
walks of each type, generating a vector of descriptive statistics for each network.

3.2 Modifications of walk counts
In this section, we propose two modifications to computing walk count vectors, which may
improve practical performance. For later use, we defineWf andWl as the number of leaders and
followers in the network. These are given by

Wf = 1TDf 1

Wl = 1TDl1
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Standardizing the walk counts. Clustering the vector of unnormalized walk counts can lead to
a degraded and unreliable solution due to two artifacts of counting walks, both of which are par-
tially illustrated in our example with length 1 and 2 walks (see Section 6). First, longer walks are
exponentially more numerous than shorter ones, so the feature vectors are poorly scaled. Second,
the walk counts are highly correlated with one another. For example, if there are a lot of edges
between leaders, then there will be a lot of walks of length 2 between leaders as well.

Thus to compare feature vectors across networks and ultimately cluster them, we need to
address the scaling issue. To standardize the walk counts, we rescale counts based on edge
probabilities. That is, we scale the count of each walk type by the number of ways to choose
that combination of connectivity and count the fraction of possible walk combinations that are
connected. As an example, the number of leader to follower walks,Wlf , is rescaled to

W�
lf = Wlf

WlWf

The length 2 walkWlff is rescaled to

W�
lff =

Wlff
WlWfWf( Wlf

WlWf
· Wff
WfWf

) (2)

Notice that the numerator is the same form as for the length 1 walk, whereas the denominator is
the product of the individual probabilities for the two events that need to occur to have a length 2
walk of lff .

We can extend this normalization to an arbitrary walk type c1, c2, . . . , c�, where ci ∈ {l, f } for
i= 1, . . . , �:

W�
c1c2···c� =

Wc1c2···c�
Wc1Wc2 ···Wc�( Wc1c2

Wc1Wc2
· · · Wc�−1c�

W�−1W�

) (3)

Non-backtracking walks. In our toy network (Figure 1), there are 2 llll walks, 2–3–2–3 and
3–2–3–2. We call these backtracking walks because they involve traveling along an edge and then
immediately backtracking by following the same edge in the opposite direction.

For sparse networks, a significant proportion of long walks will involve repeated edges. In such
cases, we found that the normalization formula Equation (2) was less successful. Our intuition
for this observation is that the denominator of Equation (2) is a product of independent edge
probabilities, which is not valid when edges are repeated. For this reason, we need to modify our
walk count vector so that only walks with non-repeated edges are counted; however, this is a
computationally difficult task. As an approximation to counting only walks with non-repeating
edges, we instead will count only non-backtracking walks, which can be computed efficiently by
replacing the sociomatrix Y with its Hashimoto non-backtrackingmatrix (Hashimoto, 1989). This
matrix has been used in a number of network analyses for both community detection (Krzakala
et al., 2013) and measures of centrality (Martin et al., 2014).

The non-backtracking Hashimoto matrix H is an m×m matrix, where m is the number of
potential ties in the original network Y . Each entry inH provides information about the next step
one can take on the graph given the prior step just taken. We can mathematically define H as
follows:

Hk→�,i→j =
⎧⎨
⎩
1 if j= k and i �= �

0 otherwise

https://doi.org/10.1017/nws.2019.2 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2019.2


146 T. M. Sweet et al.

1

2

3

4

5

1 2

3

4
5

6

Figure 2. Our toy network with the edges relabeled to create a Hashimoto
non-backtracking matrix. Walks can now be represented by a sequence of
edges.

For example, let us enumerate the six directed ties in Figure 1; we can label each directed tie
with a number from 1 to 6 (see Figure 2). Edge 1 is one walk or step that we can take along the
network. Having followed along Edge 1, we can then go to edge 2 or edge 4; the other edges are not
possible routes. Then H21 and H41 would be 1, and the rest of the first column of H would be 0.

The entire Hashimoto non-backtracking matrix for our toy network is given as

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 1 0 0

0 0 1 0 0 0

0 1 0 1 0 0

0 0 0 0 1 0

0 1 0 0 1 0

0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

The walk along nodes 4–3–2 is represented by the edge sequence 1–4. Now using H instead of
Y in our formula for walk counts, we can calculate Wlff , for example, as the number of non-
backtracking walks from leaders to followers to followers, which would be H32 +H12 = 2.

3.3 Clustering feature vectors
Given a set of feature vectors for each network, we are now interested in exploring how networks
vary in their walk counts. In particular, we explore network structure using statistical clustering to
determine which networks have feature vectors that are similar to each other and different from
other networks in some meaningful way. There are many methods of clustering available for this
type of analysis, including k-means clustering (MacQueen , 1967), hierarchical clustering (Ward,
1963), and model-based clustering (Fraley and Raftery, 2002; Wolfe, 1963). With the feature vec-
tors measuring walk counts within a network, it is natural to think about differences in networks
by comparing the “distances” between the walk counts. Based on this, and extensive testing via
simulation, agglomerative hierarchical clustering with Ward’s linkage and Euclidean distance was
the method able to most accurately recover the simulated cluster structure of the networks.

In this clustering method, observations begin as singletons in their own clusters and at each
step, clusters are merged together based on some distance-based criterion, until all observations
are in one cluster. This creates a set of hierarchical or nested clusters that are easily visualized
using a dendrogram (see Figure 3), regardless of the dimensionality of the data. Ward’s linkage
merges pairs of clusters based on the minimum increase in the total within-cluster error sum of
squares. That is, two clusters will be merged (over a different two clusters) when they produce a
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Figure 3. Example dendrogram illustrating a
hierarchical clustering solution. Each leaf rep-
resents one network. The tree structure illus-
trates the merges made at each agglomerative
step, where the height of the merge is pro-
portional to the increase in within-cluster error
sum of squares.
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Figure 4. The within-cluster sum of squares
versus the number of clusters in a clustering
solution shows a clear elbow (turning point)
indicating k= 3 clusters as a solution.

single cluster with the smallest total within-cluster sum of squared deviations of each observation
to the centroid of the cluster. The height of the merge (y-axis) is proportional to the increase in
within-cluster error sum-of-squares. In other words, it is a measure of dissimilarity between the
clusters. Note that the actual values on the y-axis will be reliant on the data and choice of dis-
tance/dissimilarity measure, and therefore should not be compared across different sets of feature
vectors.

One disadvantage of hierarchical clustering is that the user must choose where to “cut the tree.”
In other words, the user must decide howmany clusters to choose for the final clustering solution.
There is no substitute for expert knowledge so, a researcher should use their content knowledge
in addition to the following heuristics to make a practical choice for the final number of clusters,
k (Everitt et al., 2011). Visually, one can try to ascertain a reasonable cut based on the dendrogram
(Figure 3), by looking for a large vertical distance between branches. Similarly, one can look at an
elbow plot of the total within sum of squares versus the number of clusters, with k taken to be the
elbow or turning point in the line plot, where the reduction in sum of squares seems to drop off
(Figure 4).

Tibshirani et al. (2001) formalized a procedure for finding the “elbow” of such plots using a
gap statistic. A gap statistic compares changes in the within-cluster dispersion with that expected
under a null distribution, often chosen as a uniform distribution. The number of clusters, k, is
chosen as the value where the difference in the within-cluster sum of squares between the cluster-
ing solution and reference distribution is maximized, while also taking the standard error into
account. Specifically, the number of clusters k is chosen as the smallest k such that Gap(k)≥
Gap(k+ 1)− sek+1, where sek+1 is the standard error of the gap statistic for k+ 1 clusters. When
there are moderate to large numbers of observations being clustered, the gap statistic method
works well for choosing k. When there are fewer observations, however, the gap statistic cannot
be used to find k due to the large standard errors of the gap statistic at each k.
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In our simulation studies, we find the gap statistic to be reliable with at least 25 simulated
networks. For the example in Figure 3 with 60 networks (see Section 4.1), the gap statistic cor-
rectly chooses k= 3. Because this section produces aggregate results over 50 replications of each
scenario, using the gap statistic to choose the optimal number of clusters for each solution is nec-
essary. However, in our application to school network data (see Section 5), we have only 14 schools
and so the choice of k needs to be done visually using the dendrogram and expert knowledge.

4. Examples using simulated data
We have proposed clustering feature vectors of walk counts as a method of exploratory data anal-
ysis for ensembles of networks. To illustrate the feasibility of this method, we present three simple
examples using simulated data. We use simple examples both for understanding and to show how
one can recursively generate increasingly more complicated network structures.

To build intuition for the walk count features, our aim is to create separate synthetic network
data that cluster by standardized counts of length 1, length 2, and length 3 walks. Continuing with
our school example, we generate data such that each node is defined a priori to be either a leader or
a follower; in a school system, these roles would be defined based on position—a principal would
be a leader for example.

We use standard stochastic blockmodels (Holland et al., 1983) to generate network data for our
first example and stochastic blockmodels with clique structure for our latter examples. The feature
vectors summarizing counts of lengths of walks will then serve as the variables for our clustering
algorithm, where each observation is a different network. The algorithm will merge clusters of
networks together based on the similarity of the feature vectors, measured using Ward’s linkage
and Euclidean distance.

4.1 Clustering based on walks of length 1
To generate networks that differ with respect to the normalized walks of length 1, we use a binary
nodal attribute indicating whether or not that node is in a leadership position. To generate net-
works that would then differ in the relative number of walks among leaders and followers (ll, lf , fl,
and ff ), we use a stochastic blockmodel as our generative model. These models provide a natural
way of generating ties among and between groups with differential probabilities.

In this example, we simulated networks using a stochastic blockmodel with one of three B
matrices that we term highly assortative, less assortative, and highly disassortative. There are three
clusters of 20 networks generated for a total of 60 networks. The generative model for a single
network is given as

Yijk ∼ Bernoulli(gTikBkgjk), i, j= 1, . . . , 50 (4)

such that Bk is one of three matrices,

(
0.6 0.05
0.05 0.6

)
,

(
0.3 0.1
0.1 0.3

)
, or

(
0.05 0.6
0.6 0.05

)
, depending on

the true network cluster assignment. Furthermore, the distribution of leaders to followers in each
network was randomly selected as either 30/30, 20/40, or 40/20; this distribution was independent
of cluster assignment.

An example of a simulated network from each of the three clusters is shown in Figure 5; the
nodes that are leaders are shown as circles and the followers are shown as squares. In the highly
assortative network (left), leaders tend to have ties with only leaders and followers tend to have
ties with only followers, and this network is much more dense within leaders and followers than
between them. The less assortative network (center) shows this phenomenon to a lesser degree,
whereas the highly disassortative network (right) shows an increase in ties between leaders and
followers and a decrease in ties among leaders and among followers compared with the highly
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Figure 5. A simulated network from each true network type shows the differences in length 1 walk counts between leaders
(circles) and followers (squares).

assortative network. Across these three networks, it is visually apparent that the standardized walk
counts of ll, lf , fl, and ff would be different across these network types.

For each of the 50 replications of 60 networks, we obtained a clustering solution using hierar-
chical clustering with Ward’s linkage and Euclidean distance. We used the R function clusGap
from the cluster package to compute the gap statistic for our simulated networks (Maechler
et al., 2018), using 500 bootstrap resamples from a uniform reference distribution. Additionally,
we tested solutions between 1 and 8 clusters.

The accuracy of the clustering solution was measured against the true simulated clusters using
the adjusted Rand index (ARI; Hubert and Arabie, 1985). This is an index that measures the
amount of agreement between any two hard partitions of data, where an ARI of 1 indicates perfect
agreement and a value near 0 indicates no agreement. We calculated the average ARI based on 50
replications.

For all 50 replications, the gap statistic chose k= 3, which was also confirmed visually, and the
resulting clustering solutions were in perfect agreement with the truth, resulting in an ARI of 1 for
each replication. Because length 1 walks measure the density of ties within a network with block
structure, it is not surprising that the cluster algorithm was able to differentiate between the three
classes of block models. When we clustered the length 2 feature vectors within each replication,
no cluster structure was found and the average ARI was 0.

4.2 Clustering based on walks of length 2
To create networks that differ based on normalized walks of length 2 and length 3, our aim was
to generate networks that differ on longer walk counts even when adjusting for walks of shorter
lengths; that is, our goal was to generate networks that have relatively different numbers of walks,
for example, lll versus llf ties, despite having similar numbers of ll and lf ties.

To generate networks with differences in longer walk counts, we created a network-generating
model that would ensure that either triads or pairs of edges with an adjacent node would appear
regularly in the network by generating networks with clique structure. A clique is set of nodes that
all share ties, so networks with cliques would have nonzero counts of longer walks.

Thus, our data-generating model for one cluster of networks was a random graph model with
tie probability 0.2. The second cluster of networks had added clique structure among its leaders
and the third cluster had added clique structure among its followers. That is, we selected a subset
of the leaders (or followers) and generated ties with higher tie probability among a smaller subset
of nodes. Note that all networks generated had equal expected density of 0.2.

In addition, we varied network size, which was sampled from a truncated normal distribution
centered at 50 with a variance of 25 and minimum value 20, and the number of leaders, which
we sampled from a normal distribution centered at 35% of the network size with a variance of 4.
The tie probability within the clique among leaders and followers in network clusters 1 and 2,
respectively, is 0.25, so the added clique structure was fairly weak.
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Table 2. Summary statistics for the ARI across the 50 replications, for clustering
length 2 walks

Min. First Quartile Median Mean Third Quartile Max.

Length 2 0.776 0.950 1.000 0.970 1.000 1.000

Figure 6. To simulate networks to cluster based on length 2 walks, two of the true groups generated clique structure among
leaders (left) and followers (right).

Figure 6 shows examples of the simulated networks, one from each of the three groups. The
network on the left shows additional clique structure among the leaders, the network in the center
is a random graph, and the network on the right shows clique structure among the followers. Note
that all three networks had an expected density of 0.2. Although it is less obvious, Figure 6 does
convey differences in some walk counts of length 2, namely lll and fff , that would differentiate
clusters.

When clustering walks of length 2, the gap statistic correctly chose three clusters for each repli-
cation, and the clustering solutions produced an average ARI of 0.971. Summary statistics for the
ARI across replications are shown in Table 2. Additionally, we clustered the length 1 walks for
this simulation, and the gap statistic found no cluster structure in any of the 50 replications for an
average ARI of 0.

4.3 Clustering based on walks of length 3
To simulate network data with longer walks, we used the same generating model as in Section 4.2:
one group had clique structure among the leaders, the second group had clique structure among
the followers, and the third group was a random graph. Note that in Section 4.2, we generated
cliques with slightly higher tie probability of 0.25, only slightly higher than the overall density of
0.2. To simulate networks with nonzero counts of llll for example, our networks required clique
structure that was more dense and in this simulation, the tie probability among the subset of
leaders (or followers) was 0.90. Again, we varied network size and proportion of leaders as we
did in the previous simulation. We generated 60 networks (20 of each group) and repeated the
simulation 50 times.

Figure 7 shows examples of the simulated networks, and the strong clique structure is quite
apparent, particularly in the network on the right, whose generating model incorporated dense
clique structure among a subgroup of followers. The network on left shows high clique density
among leaders; there are a small number of squares that are well connected. The network in the
middle is again a random graph.

For this simulation, the gap statistic chooses 1 (2 replications), 4, 5, or 6 clusters for each repli-
cation. For the solutions with four or more clusters, a simulated network type is being divided into
a greater number of smaller clusters. Due to the nature of the ARI counting pairs of observations
in the same class, this still produces a clustering solution that has high agreement with the true
simulated classes. The average ARI for clustering walks of length 3 is 0.809. Summary statistics for
the ARI across the 50 replications are shown in Table 3.
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Table 3. Summary statistics for the ARI across the 50 replications, for clustering
length 3 walks

Min. First Quartile Median Mean Third Quartile Max.

Length 3 0.000 0.820 0.832 0.809 0.860 0.900

Table 4. Summary statistics for the ARI across the 50 replications, for clustering length
1–3 walks

Min. First Quartile Median Mean Third Quartile Max.

Length 1–3 0.800 0.827 0.839 0.846 0.864 0.900

Figure 7. To simulate networks to cluster based on length 3 walks, more extreme clique structure is added. Two of the true
clusters generated clique structure among leaders (left) and followers (right) such that expected clique density is 0.9.

Rather than pulling out the length 3 walks, we can cluster the networks using all of their walks
from length 1 to length 3. We find similar clustering solutions when compared to those for just
the length 3 walks. The average ARI for clustering networks based on walks of length 1, 2 and 3 is
0.846, and the summary statistics are shown in Table 4.

5. Application
We now apply our method of clustering networks to real-world network data, again focusing on
length 1, 2, and 3 walks. These data come from a longitudinal study of a midwestern elementary
school district consisting of 14 schools that have been used in a number of studies in education
research (e.g., Spillane and Hopkins, 2013; Spillane et al., 2016, 2017) and are a part of a larger
study on distributed leadership (www.distributedleadership.org).

Teachers were surveyed each spring in 2010–2013 and 2015, with response rates of 81%, 95%,
94%, 94%, and 96%. Due to low response rates in 2010 and the issues that arise in how one deals
with missing data (e.g., Žnidaršič et al., 2017), we will be using the 2011–2015 data in this analysis.
In addition to survey items regarding their formal position in the school—teacher, administrator,
instructional coach, etc.—teachers were asked to nominate those staff members to whom they go
to for advice or information around instruction. These nominations were recorded for a number
of subjects, where we focus on the advice-seeking ties around mathematics.

We also classified nodes as leaders or followers (i.e., non-leaders) based on their formal assigned
role in the school; principals, assistant principals, department/grade-level chairs, and instruc-
tional coaches were all coded as leaders and other school staff were coded as followers. Note that
we are using the term “followers” for consistency in this manuscript and are not attempting to
characterize non-leaders in a particular way.

As an example, Figure 8 shows the mathematics networks from 2015 where leaders and follow-
ers, as defined by their formal staff position, are discerned by color and shape; the orange circles
represent the formal leaders and the purple squares depict the followers. There is both variability
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Figure 8. Advice-seeking networks among staff in 14 elementary schools. Nodes are colored and shaped based on formal
assignment; orange circle nodes are leaders and purple square nodes are followers (non-leaders).

in network structure across these schools as well as variability in the placement of leaders within
their networks. There are some schools in which leaders appear to be quite central and other
schools where some leaders appear somewhat marginalized.

Our goal then is to see if these networks cluster based on the relative counts of length 1, 2,
and 3 walks among leaders and followers. Understanding whether and how schools differ based
on how leaders and followers interact is relevant to current research on distributed leadership
(Harris, 2009; Harris and Spillane, 2008; Spillane, 2012; Spillane et al., 2001). Further, we know of
some major policy changes that took place during these years. The entire district began imple-
menting a new mathematics curriculum in 2010 and to aid in this transition, several schools
were assigned instructional coaches. Two schools received coaches in 2011, five additional schools
gained coaches in 2013, and one school received a coach in 2015.

Schools vary in terms of network size as well as the proportion of formal leaders in the
school. It is surprising that schools assigned an instructional coach (a formal leadership position)
do not have higher proportions of leaders than schools without coaches. Of the seven schools
reporting 30% or higher formal leaders, only two are schools that employed an instructional
coach. Similarly, the schools who received coaches do not appear to differ in terms of network
size.

Using our standardized, non-backtracking walk-counting algorithm described in Sections 3.1
and 3.2, we created feature vectors based on the mathematics advice-seeking networks in 2011–
2013, and 2015.We then used hierarchical clustering (see Section 3.3) to produce the dendrograms
shown in Figures 9, 10, and 11 for the length 1, 2, and 3 walks, respectively. Furthermore, the final
clustering solutions were based on choosing reasonable cut points in the dendrograms.

Length 1 walk counts (standardized). Figure 9 shows the network cluster assignments based on
length 1 walks among leaders and followers. Note that the clustering algorithm results in many
solutions since one could cut the dendrogram at any height, but a two-cluster solution does appear
most likely in years 2011, 2013, and 2015, along with a two-cluster solution in 2012 after removing
School 1. What is particularly interesting is that schools with coaches tend to cluster together. For
example, 2011 (Figure 9, top left) was the first year Schools 1 and 2 had coaches and these were
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Figure 9. Dendrograms of Mathematics networks clustering length 1 walks.

the only schools with coaches. Schools 1, 2, and 14 appear to be quite different from the other 11
schools that year and in fact this cluster differs from the other cluster of schools in the relative
counts of walks from followers to leaders and leaders to leaders.

Schools 1 and 2 were again the only schools with coaches in 2012 (Figure 9, top right); however,
the clustering solution does not reflect this information. School 1 differs from the other 13 schools
in the relative numbers of fl and ll walks. When the cluster of 13 schools is broken down again,
the cluster on the left has fewer ll ties and more ff ties.

In 2013 (Figure 9, bottom left), Schools 5, 6, 9, 10, and 11 were in their first year of coaches, and
some of these schools tend to cluster together but the more obvious two-cluster solution groups
schools with coaches and schools without coaches together. The cluster on the left has fewer fl and
ll walks than the cluster of schools on the right.

In 2015 (Figure 9, bottom right), School 1’s coach went back to School 1 as a teacher; Schools 2,
5, 6, 10, 11, and 13 had coaches. Again, the two-cluster solution appears to group Schools 2, 5, 6,
10, and 13 together, which are five of the six schools with coaches that year. The cluster with more
coaches also had higher relative counts of fl walks, whereas ff interactions were relatively more
frequent in the cluster without coaches.

Although there is variability across years in cluster solutions, there are several patterns to note.
First, schools with coaches do tend to cluster together and these clusters generally have higher
counts of ties from followers to leaders. This means that followers are seeking advice from leaders
in these schools, most likely because teachers are going to coaches for advice around mathemat-
ics. The fact that a single instructional coach is associated with structural differences between
networks (as related to walks from followers to leaders) suggests that instructional coaches may
be quite influential in how leadership is organized within a school.
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Figure 10. Dendrograms of Mathematics networks clustering length 2 walks.

Length 2 walk counts (standardized). Figure 10 shows the dendrograms for the length 2 walk
clustering solutions in the years 2011–2013 and 2015. Here the cluster analysis results do not
appear to align with the presence or absence of coaches. Additionally, the dendrograms for years
2011–2012 and 2015 do not suggest a clear choice for the number of clusters or where to cut the
tree. Intuitively, this seems consistent with the nature of the networks: because coaches tend to
advice providers and because these are directed networks, walks of length 2 involving a coach may
be less common and less likely to differentiate networks.

In 2011 (Figure 10, top left), Schools 1 and 2 appear in the same final cluster although sev-
eral clustering solutions are possible. Assuming a three-cluster solution, differences across the
three final clusters involve counts of triads involving leaders and followers (e.g., lfl, flf ). In 2012
(Figure 10, top right), the cluster on the left has higher relative counts of llf and lll walks than the
cluster on the right, and in 2013 (Figure 10, bottom left), School 13 has more llf and flf than the
other schools. In 2015, there are arguably anywhere between 2 and 6 clusters (Figure 10, bottom
right). If we compare the two groups on the left with the four on the right, the biggest differences
are in the relative counts of llf .

Recall that in Section 4.2, we show in simulations that networks with varying amounts of
clique structure can cluster well on length 2. In our current data example, the lack of “interest-
ing” clustering results for the standardized walks of length 2 seems to agree with the intuition
that advice-seeking is not a relationship that is associated with cliques among elementary school
teachers; that is, unlike friendship or collaboration, advice-seeking ties are probably less likely to
result in dense subgroup structure among leaders or followers. In fact, Spillane et al. (2015) found
under a variety of conditions that advice-seeking occurs primarily when the advice provider is in
a leadership position.

https://doi.org/10.1017/nws.2019.2 Published online by Cambridge University Press

https://doi.org/10.1017/nws.2019.2


Network Science 155

13 14 8 10

12

5 6

11

4

9

1 2

3 7

1

2

3

4

5

6
Mathematics Networks for 2011

4

13

5 9

2 3 10 12 8 14

7

1 6 11

0

5

10

15

Mathematics Networks for 2012
13

14 7

10 1 3 8

6

5 11 12 9 2 4

0

5

10

15

Mathematics Networks for 2013

12

1

13 14 9

8 11

7

4 10 2 6

3 51

2

3

4

5

6

7
Mathematics Networks for 2015

Length 1 Walks

Figure 11. Dendrograms of Mathematics networks clustering length 3 walks.

Length 3 walk counts (standardized). Given the lack of cluster structure from length 2 walks, we
again do not see strong cluster structure based on length 3 walk counts (Figure 11). In fact, the
dendrograms for length 3 walks resemble the dendrograms for the length 2 walks (Figure 10). Any
obvious separation among schools does not appear to be related to coaches in the schools and in
fact the strongest cluster solutions result in 1 or 2 schools separated from the rest of the schools.

In 2011, Schools 13 and 14 had a relatively high walk counts of lffl and lfff and low counts of
most other types of walks. In 2012, School 4 has high counts of lfll, ffll, and lflf , and School 13
had high counts of fllf and lllf compared to the other 12 schools. School 13 was different from
other schools in 2013 in that it had much higher counts of almost every type of walk, and in 2015,
School 12 had higher counts of lfll and llfl than the other schools.

The purpose of this application was to illustrate and provide amotivating example for our walk-
counting algorithm which now allows researchers to explore differences among schools based
on how leaders and non-leaders interact. That we found differences in how leaders and non-
leaders interact in schools with coaches is of particular interest to those who study leadership
within schools, and this methodology in general will be of interest to researchers interested in
comparing organizations based on interactions among certain types of people. For example, our
walk-counting algorithm can be used to count interactions among individuals of different races,
and researchers can cluster organizations with respect to how people of certain races interact.

6. Considering unstandardized walk counts
One of the contributions of this paper is our focus on counting standardized, non-backtracking
walks for which we developed efficient algorithms. Further, we argue that standardized and non-
backtracking walk counts should be used for clustering social network data. The argument for
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non-backtracking walk counts may be obvious since backtracking allows any undirected or bidi-
rectional edge between two nodes to count towards increasingly long walk counts; that is, we
found increasing counts of walks of increasing length, a phenomenon we would not expect in a
social network.

The argument for standardizing the counts of non-backtracking walks, however, is less obvi-
ous, and in this section, we explore, through an example why it is necessary to standardize walk
counts to properly cluster social networks. Using themathematics advice-seeking networks among
school staff introduced in Section 5, we construct new feature vectors for the 2011–2013 and 2015
networks using the unstandardized walk counts and employ the same methods to cluster the 14
schools based on length 1, length 2, and length 3 walks separately.

Figure 12 shows the cluster solutions for the 14 schools when clustering based on length 1 walks
(left), length 2 walks (center), and length 3 walks (right) for each of the four years of network data.
Note the similarity in cluster solutions using walks of different length. Most of the small clusters
formed are the same. In fact, the cluster solutions differ by at most two schools. This was not the
case in the standardized count cluster solutions shown in Figures 9–11.

What these similarities in clustering solutions suggest is that the unstandardized walk counts
of length 1, 2, or 3 capture largely the same information. When comparing Figure 12 with the
standardized solutions given in Figures 9–11, we find that the unstandardized walk counts appear
to be perhaps a combination of the standardized clustering solutions. Thus, without standardizing
walk counts, one cannot separate networks based specifically on walks of length k. Treating walks
of any count as equivalent is much less useful because it disqualifies further exploration into why
some networks are clustering together and what the differences within and between clusters are in
terms of specific walks between leaders and followers in our example, or among nodes of various
attributes more generally.

7. Discussion
We introduced a new method for exploring differences in network structure across ensembles of
social networks by clustering feature vectors. Specifically, this paper motivated and introduced
algorithms for counting walks in a network: a method for standardizing walk counts based on
node attributes and a method for counting only non-backtracking walks. We applied these meth-
ods to count walks among leaders and followers in various social network ensembles, where
network sizes vary and both counts and proportions of leaders varied.

In particular, we demonstrated how one can cluster networks using feature vectors of standard-
ized non-backtracking walk counts for walks of length 1, 2, and 3, and we illustrated the feasibility
of this method through a series of simulated data examples in which clusters based on counts
of walks were recovered with high accuracy. In addition, we also applied this method to real-
world data to illustrate how social networks could be clustered in practice. We found evidence
that clusters based on length 1 walks align with the presence or absence of instructional coaches
since schools with coaches tend to have relatively more ties from followers to leaders than schools
without coaches. Clusters based on length 2 or length 3 walks did not have a similar contextual
explanation.

We demonstrated with the use of the mathematics advice-seeking networks that clustering
unstandardized walk counts will not produce unique solutions based on the length of the walk
count. This is meaningful if we want to relate counts of walks of a certain length with network
differences, and this is particularly important in networks with different numbers of nodes and
different distributions of nodal attributes.

In addition to our methodological contributions, we also present this paper as a general proof
of concept of exploratory methods for ensembles of social networks. That is, cluster analysis
based on feature vectors of walk counts is simply one example of such exploration. Given the
abundance of network structures that may be of interest, counts of other features could be used
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Figure 12. Dendrograms of Mathematics networks clustering unstandardized length 1–3 walks.
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for feature vectors such as reciprocated dyads, triads, cliques, or k-stars, assuming sufficient atten-
tion is paid to both standardizing these counts and potentially high correlations among counts of
these structures.

Further, given feature vectors for each network, there are a number of other classificationmeth-
ods that can be applied. For example, model-based clustering fits a mixture model to the data and
produces a likelihood value allowing for the number of clusters to be selected using ameasurement
like the Bayesian Information Criterion.

Finally, we argue that future research on exploratory methods on ensembles of social networks
in particular is both interesting and warranted. First, there are types of structures found in social
networks not seen in other networks. Social networks vary in size, structure, as well as nodal
attributes. In addition, there are specific structure/phenomena observed in social networks (e.g.,
homophily, small world, preferential attachment) that make exploratory analyses across networks
even more complicated and rewarding.
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